

FCC RF EXPOSURE REPORT

FCC ID: 2BH7FEAP603OD

Project No. : 2501G023

Equipment: AX1800 Indoor/Outdoor Wi-Fi 6 Access Point

Brand Name : tp-link

Test Model : EAP603-Outdoor

Series Model : N/A

Applicant: TP-Link Systems Inc.

Address : 10 Mauchly, Irvine, CA 92618

Manufacturer : TP-Link Systems Inc.

Address: 10 Mauchly, Irvine, CA 92618

Date of Receipt : Feb. 28, 2025

Date of Test : Mar. 05, 2025 ~ Jul. 17, 2025

Issued Date : Jul. 30, 2025

Test Sample: Engineering Sample No.: DG2025022823

Standard(s) : FCC Guidelines for Human Exposure IEEE C95.1 & FCC Part 2.1091

FCC Title 47 Part 2.1091 & KDB 447498 D01 v06

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc. (Dongguan).

Prepared by

Chella Zheno

Approved by

Welly Zhou

No.3, Jinshagang 1st Road, Dalang, Dongguan, Guangdong People's Republic of China.

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-4-2501G023	R00	Original Report.	Jul. 18, 2025	Invalid
BTL-FCCP-4-2501G023	R01	In this report: 1. Modified the brand name in page 1. 2. Modified the antenna connection method in chapter 2. It is a revision of the report BTL-FCCP-4-2501G023 R00. This is a newly released report, replacing the BTL-FCCP-4-2501G023 R00 report.	Jul. 29, 2025	Invalid
BTL-FCCP-4-2501G023	R02	This report modified the antenna connection method in chapter 2. It is a revision of the report BTL-FCCP-4-2501G023 R01. This is a newly released report, replacing the BTL-FCCP-4-2501G023 R01 report.	Jul. 30, 2025	Valid

1. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator R = distance to the center of radiation of the antenna

Report No.: BTL-FCCP-4-2501G023 Report Version: R02

2. ANTENNA SPECIFICATION

For LE:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	TP-Link Systems Inc.	N/A	Dipole	N/A	3.66

Note:

1) This antenna gain is provided by the manufacturer.

For 2.4GHz:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	TP-Link Systems Inc.	N/A	Dipole	RP-SMA	4.08
2	TP-Link Systems Inc.	N/A	Dipole	RP-SMA	4.08

Note:

1) This EUT supports CDD, and all antennas have the same gain, Directional gain = G_{ANT} +Array Gain. For power measurements, Array Gain=0dB ($N_{ANT} \le 4$), so the Directional gain=4.08.

For power spectral density measurements,

Directional gain(each angle)= $10log[(10^{G1/20}+10^{G2/20}+...10^{GN/20})^2/N]dBi$.

So the Directional gain(each angle)= $10\log[(10^{4.05/20}+10^{4.44/20})^2/2]dBi=7.26$.

Then, the power spectral density limit is 8-(7.26-6)=6.74.

2) Beamforming gain: 3dBi.

3) The antenna gain and beamforming gain are provided by the manufacturer.

For 5GHz:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Note
1	TP-Link Systems Inc.	N/A	Dipole	RP-SMA	4.07	
2	TP-Link Systems Inc.	N/A	Dipole	RP-SMA	4.07	UNII-1
3	TP-Link Systems Inc.	N/A	Dipole	N/A	4.68	
1	TP-Link Systems Inc.	N/A	Dipole	RP-SMA	4.11	
2	TP-Link Systems Inc.	N/A	Dipole	RP-SMA	4.11	UNII-2A
3	TP-Link Systems Inc.	N/A	Dipole	N/A	4.68	
1	TP-Link Systems Inc.	N/A	Dipole	RP-SMA	5.14	
2	TP-Link Systems Inc.	N/A	Dipole	RP-SMA	5.14	UNII-2C
3	TP-Link Systems Inc.	N/A	Dipole	N/A	4.39	
1	TP-Link Systems Inc.	N/A	Dipole	RP-SMA	4.50	
2	TP-Link Systems Inc.	N/A	Dipole	RP-SMA	4.50	UNII-3
3	TP-Link Systems Inc.	N/A	Dipole	N/A	4.47	

Note:

- 1) This EUT supports CDD, and all antenna gains are not equal, Directional gain = G_{ANT}+Array Gain. For power measurements, Array Gain=0dB (N_{ANT}≤4), so the UNII-1 Directional gain=4.68, the UNII-2A Directional gain=4.68, the UNII-2C Directional gain=5.14, the UNII-3 Directional gain=4.50. For power spectral density measurements, Directional gain(each angle)=10log[(10^{G1/20}+10^{G2/20}+...10^{GN/20})²/N]dBi.
 - So the UNII-1 Directional gain(each angle)= $10log[(10^{3.93/20}+10^{4.26/20}+10^{-5.57/20})^2/3]dBi=6.67$, the UNII-2A Directional gain(each angle)= $10log[(10^{1.11/20}+10^{4.30/20}+10^{0.60/20})^2/3]dBi=6.93$,
 - the UNII-2C Directional gain(each angle)= $10\log[(10^{3.04/20}+10^{2.97/20}+10^{0.13/20})^2/3]dBi=6.92$,

the UNII-3 Directional gain(each angle)=10log[(10^{2.78/20}+10^{-0.32/20}+10^{1.65/20})²/3]dBi=6.23.

- 2) The maximum direction gain at any elevation angle above 30 degrees as measured from the horizon is -7.34 dBi.
- 3) Beamforming Gain: 5 dB.
- 4) The antenna gain and beamforming gain are provided by the manufacturer.

Report No.: BTL-FCCP-4-2501G023

Report Version: R02

3. CALCULATED RESULT

For LE:

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
3.66	2.3227	17.41	55.0808	0.02547	1	Complies

For 2.4GHz:

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Test Result
4.08	2.5586	25.79	379.3150	0.19317	1	Complies

For 5GHz:

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
4.68	2.9376	27.63	579.4287	0.33881	1	Complies

For the max simultaneous transmission MPE:

Ratio			Total	Limit of Ratio	Test Result
LE 2.4GHz 5GHz		5GHz	TOtal	LITTIL OF RALIO	lest Result
0.02547	0.19317	0.33881	0.55745	1	Complies

Note:

- (1) The calculated distance is 20 cm.
- (2) Ratio=Power Density (S) (mW/cm²)/Limit of Power Density (S) (mW/cm²)

End of Test Report