

FCC RF EXPOSURE REPORT

FCC ID: 2BH7FDL105

Project No. : 2504G021
Equipment : Smart Wi-Fi Door Lock
Brand Name : tp-link, tapo
Test Model : Tapo DL105
Series Model : N/A
Applicant : TP-Link Systems Inc.
Address : 10 Mauchly, Irvine, CA 92618
Manufacturer : TP-Link Systems Inc.
Address : 10 Mauchly, Irvine, CA 92618
Date of Receipt : Apr. 18, 2025
Date of Test : Apr. 18, 2025 ~ May 14, 2025
Issued Date : Jul. 02, 2025
Report Version : R00
Test Sample : Engineering Sample No.: DG2025041870
Standard(s) : FCC Guidelines for Human Exposure IEEE C95.1 & FCC Part 2.1091
FCC Title 47 Part 2.1091 & KDB 447498 D01 v06

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc. (Dongguan).

Prepared by

:
Sheldon Ou

Approved by

:
Welly Zhou

No.3, Jinshagang 1st Road, Dalang, Dongguan, Guangdong People's Republic of China.

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-3-2504G021	R00	Original Report.	Jul. 02, 2025	Valid

1. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

2. ANTENNA SPECIFICATION

Ant.	Manufacturer	P/N	Antenna Type	Connector	Gain (dBi)
1	TP-Link Systems Inc.	3101507419	PIFA	N/A	0

Note: The antenna gain is provided by the manufacturer.

3. CALCULATED RESULT

For LE:

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Max. Peak Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
0	1.0000	10.50	11.2202	0.00223	1	Complies

For 2.4GHz:

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
0	1.0000	20.09	102.0939	0.02032	1	Complies

Note:

(1) The calculated distance is 20 cm.

(2) Ratio=Power Density (S) (mW/cm²)/Limit of Power Density (S) (mW/cm²)

End of Test Report