

# FCC Radio Test Report

## FCC ID: 2BH7FC325WBV2

**Report No.** : BTL-FCCP-1-2410G026  
**Equipment** : Outdoor Security Wi-Fi Camera  
**Model Name** : Tapo C325WB  
**Brand Name** : tapo, tp-link  
**Applicant** : TP-Link Systems Inc.  
**Address** : 10 Mauchly, Irvine, CA 92618  
**Manufacturer** : TP-Link Systems Inc.  
**Address** : 10 Mauchly, Irvine, CA 92618  
  
**Radio Function** : Bluetooth Low Energy  
  
**FCC Rule Part(s)** : FCC CFR Title 47, Part 15, Subpart C (15.247)  
**Measurement** : ANSI C63.10-2013  
**Procedure(s)**  
  
**Date of Receipt** : 2025/1/22  
**Date of Test** : 2025/2/25~2025/3/21  
**Issued Date** : 2025/5/27

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Ray Chen  
Ray Chen, Engineer



Approved by

Peter Chen  
Peter Chen, Manager

**BTL Inc.**

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: [www.newbtl.com](http://www.newbtl.com) Service mail: [btl\\_qa@newbtl.com](mailto:btl_qa@newbtl.com)

### Declaration

**BTL** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

**BTL**'s reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

**BTL**'s laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

**BTL** is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

### Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

**Table of Contents**

|                                                              | <b>Page</b> |
|--------------------------------------------------------------|-------------|
| <b>REVISION HISTORY</b>                                      | <b>6</b>    |
| <b>1 . SUMMARY OF TEST RESULTS</b>                           | <b>7</b>    |
| 1.1 TEST FACILITY                                            | 8           |
| 1.2 MEASUREMENT UNCERTAINTY                                  | 8           |
| 1.3 TEST ENVIRONMENT CONDITIONS                              | 9           |
| <b>2 . GENERAL INFORMATION</b>                               | <b>10</b>   |
| 2.1 GENERAL DESCRIPTION OF EUT                               | 10          |
| 2.2 DESCRIPTION OF TEST MODES                                | 12          |
| 2.3 PARAMETERS OF TEST SOFTWARE                              | 12          |
| 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 13          |
| 2.5 SUPPORT UNITS                                            | 14          |
| <b>3 . AC POWER LINE CONDUCTED EMISSIONS</b>                 | <b>15</b>   |
| 3.1 LIMIT                                                    | 15          |
| 3.2 TEST PROCEDURE                                           | 15          |
| 3.3 DEVIATION FROM TEST STANDARD                             | 15          |
| 3.4 TEST SETUP                                               | 16          |
| 3.5 EUT OPERATING CONDITIONS                                 | 16          |
| 3.6 TEST RESULTS                                             | 16          |
| <b>4 . RADIATED EMISSIONS</b>                                | <b>17</b>   |
| 4.1 LIMIT                                                    | 17          |
| 4.2 TEST PROCEDURE                                           | 18          |
| 4.3 DEVIATION FROM TEST STANDARD                             | 19          |
| 4.4 TEST SETUP                                               | 19          |
| 4.5 EUT OPERATING CONDITIONS                                 | 21          |
| 4.6 TEST RESULT - 9 KHZ TO 30 MHZ                            | 21          |
| 4.7 TEST RESULT - 30 MHZ TO 1000 MHZ                         | 21          |
| 4.8 TEST RESULT - ABOVE 1000 MHZ                             | 21          |
| <b>5 . BANDWIDTH</b>                                         | <b>22</b>   |
| 5.1 LIMIT                                                    | 22          |
| 5.2 TEST PROCEDURE                                           | 22          |
| 5.3 DEVIATION FROM STANDARD                                  | 22          |
| 5.4 TEST SETUP                                               | 22          |

| Table of Contents                                          | Page      |
|------------------------------------------------------------|-----------|
| 5.5 EUT OPERATION CONDITIONS                               | 22        |
| 5.6 TEST RESULTS                                           | 22        |
| <b>6 . MAXIMUM OUTPUT POWER</b>                            | <b>23</b> |
| 6.1 LIMIT                                                  | 23        |
| 6.2 TEST PROCEDURE                                         | 23        |
| 6.3 DEVIATION FROM STANDARD                                | 23        |
| 6.4 TEST SETUP                                             | 23        |
| 6.5 EUT OPERATION CONDITIONS                               | 23        |
| 6.6 TEST RESULTS                                           | 23        |
| <b>7 . CONDUCTED SPURIOUS EMISSION</b>                     | <b>24</b> |
| 7.1 LIMIT                                                  | 24        |
| 7.2 TEST PROCEDURE                                         | 24        |
| 7.3 DEVIATION FROM STANDARD                                | 24        |
| 7.4 TEST SETUP                                             | 24        |
| 7.5 EUT OPERATION CONDITIONS                               | 24        |
| 7.6 TEST RESULTS                                           | 24        |
| <b>8 . POWER SPECTRAL DENSITY</b>                          | <b>25</b> |
| 8.1 LIMIT                                                  | 25        |
| 8.2 TEST PROCEDURE                                         | 25        |
| 8.3 DEVIATION FROM STANDARD                                | 25        |
| 8.4 TEST SETUP                                             | 25        |
| 8.5 EUT OPERATION CONDITIONS                               | 25        |
| 8.6 TEST RESULTS                                           | 25        |
| <b>9 . MEASUREMENT INSTRUMENTS LIST</b>                    | <b>26</b> |
| <b>10 . EUT TEST PHOTO</b>                                 | <b>28</b> |
| <b>11 . EUT PHOTOS</b>                                     | <b>28</b> |
| <b>APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS</b>      | <b>29</b> |
| <b>APPENDIX B - RADIATED EMISSION - 30 MHZ TO 1000 MHZ</b> | <b>32</b> |
| <b>APPENDIX C - RADIATED EMISSION - ABOVE 1000 MHZ</b>     | <b>35</b> |
| <b>APPENDIX D - BANDWIDTH</b>                              | <b>46</b> |
| <b>APPENDIX E - MAXIMUM OUTPUT POWER</b>                   | <b>48</b> |

**Table of Contents**

|                                                 | <b>Page</b> |
|-------------------------------------------------|-------------|
| <b>APPENDIX F - CONDUCTED SPURIOUS EMISSION</b> | <b>50</b>   |
| <b>APPENDIX G - POWER SPECTRAL DENSITY</b>      | <b>52</b>   |

**REVISION HISTORY**

| Report No.          | Version | Description            | Issued Date | Note    |
|---------------------|---------|------------------------|-------------|---------|
| BTL-FCCP-1-2410G026 | R00     | Original Report.       | 2025/5/6    | Invalid |
| BTL-FCCP-1-2410G026 | R01     | Modified the comments. | 2025/5/22   | Invalid |
| BTL-FCCP-1-2410G026 | R02     | Modified the comments. | 2025/5/27   | Valid   |

## 1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

| FCC CFR Title 47, Part 15, Subpart C |                                   |                          |          |         |
|--------------------------------------|-----------------------------------|--------------------------|----------|---------|
| Standard(s) Section                  | Test Item                         | Test Result              | Judgment | Remark  |
| 15.207                               | AC Power Line Conducted Emissions | APPENDIX A               | PASS     | -----   |
| 15.247(d)<br>15.205(a)<br>15.209(a)  | Radiated Emissions                | APPENDIX B<br>APPENDIX C | PASS     | -----   |
| 15.247(a)(2)                         | Bandwidth                         | APPENDIX D               | PASS     | -----   |
| 15.247(b)(3)                         | Maximum Output Power              | APPENDIX E               | PASS     | -----   |
| 15.247(d)                            | Conducted Spurious Emission       | APPENDIX F               | PASS     | -----   |
| 15.247(e)                            | Power Spectral Density            | APPENDIX G               | PASS     | -----   |
| 15.203                               | Antenna Requirement               | -----                    | PASS     | Note(2) |

Note:

- (1) "N/A" denotes test is not applicable to this device.
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

## 1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659.

The test location(s) used to collect the test data in this report are:

1F,2F, No. 91, Ln. 298, Wengong 1st Rd., Guishan Dist., Taoyuan City 333001, Taiwan (FCC DN: TW0659)

C01       CB02       CB03  
 TR02

## 1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y \pm U$ , where expanded uncertainty  $U$  is based on a standard uncertainty multiplied by a coverage factor of  $k = 2$ , providing a level of confidence of approximately **95 %**. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2  $U_{cisp}$  requirement.

### A. AC Power Line Conducted Emissions Measurement:

| Test Site | Method | Measurement Frequency Range | U (dB) |
|-----------|--------|-----------------------------|--------|
| C01       | CISPR  | 150 kHz ~ 30MHz             | 3.44   |

### B. Radiated emissions Measurement:

| Test Site | Measurement Frequency Range | Ant. H / V | U,(dB) |
|-----------|-----------------------------|------------|--------|
| CB02      | 0.03GHz ~ 1 GHz             | H          | 1.54   |
|           | 0.03GHz ~ 1 GHz             | V          | 1.84   |

| Test Site | Measurement Frequency Range | Ant. H / V | U,(dB) |
|-----------|-----------------------------|------------|--------|
| CB03      | 0.009GHz ~ 0.03 GHz         | -          | 1.42   |
|           | 0.03GHz ~ 1 GHz             | H          | 1.56   |
|           |                             | V          | 1.96   |
|           | 1 GHz ~ 6 GHz               | H          | 2.36   |
|           |                             | V          | 2.45   |
|           | 6 GHz ~ 18 GHz              | H          | 2.36   |
|           |                             | V          | 2.31   |
|           | 18 GHz ~ 40 GHz             | -          | 2.07   |

### C. Other Measurement:

| Test Item                    | U      |
|------------------------------|--------|
| Occupied Bandwidth           | 0.5334 |
| Output power                 | 0.3669 |
| Power Spectral Density       | 0.6591 |
| Conducted Spurious emissions | 0.5416 |
| Conducted Band edges         | 0.5348 |

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

### 1.3 TEST ENVIRONMENT CONDITIONS

| Test Item                             | Environment Condition | Test Voltage | Tested By  |
|---------------------------------------|-----------------------|--------------|------------|
| AC Power Line Conducted Emissions     | 22°C, 65%             | AC 120V/60Hz | Jason Yang |
| Radiated Emissions-30 MHz to 1000 MHz | 20°C, 60%             | DC 9V        | Nero Hsieh |
| Radiated Emissions-Above 1000 MHz     | 19°C, 72%             | DC 9V        | Jason Yang |
| Bandwidth                             | 23°C, 60%             | DC 9V        | Nero Hsieh |
| Maximum Output Power                  | 23°C, 60%             | DC 9V        | Nero Hsieh |
| Conducted Spurious Emission           | 23°C, 60%             | DC 9V        | Nero Hsieh |
| Power Spectral Density                | 23°C, 60%             | DC 9V        | Nero Hsieh |

## 2. GENERAL INFORMATION

### 2.1 GENERAL DESCRIPTION OF EUT

|                         |                                                                                |
|-------------------------|--------------------------------------------------------------------------------|
| Equipment               | Outdoor Security Wi-Fi Camera                                                  |
| Brand Name              | tp-link, tapo                                                                  |
| Model Name              | Tapo C325WB                                                                    |
| Model Difference(s)     | N/A                                                                            |
| Software Version        | 2.X                                                                            |
| Hardware Version        | 2.0                                                                            |
| Power Source            | 1# DC Voltage supplied from AC adapter<br>Model: T090060-2B6<br>2# PoE supply. |
| Power Rating            | Input: 9V == 0.6A<br>802.3af/at PoE:36-57V 7W                                  |
| Operation Band          | 2400 MHz ~ 2483.5 MHz                                                          |
| Operation Frequency     | 2402 MHz ~ 2480 MHz                                                            |
| Modulation Type         | GFSK                                                                           |
| Bit Rate of Transmitter | 1Mbps                                                                          |
| Max. Output Power       | 1Mbps: 7.33 dBm (0.0054 W)                                                     |
| Test Model              | Tapo C325WB                                                                    |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

### 2. Channel List:

| Channel | Frequency (MHz) | Channel | Frequency (MHz) |
|---------|-----------------|---------|-----------------|
| 00      | 2402            | 20      | 2442            |
| 01      | 2404            | 21      | 2444            |
| 02      | 2406            | 22      | 2446            |
| 03      | 2408            | 23      | 2448            |
| 04      | 2410            | 24      | 2450            |
| 05      | 2412            | 25      | 2452            |
| 06      | 2414            | 26      | 2454            |
| 07      | 2416            | 27      | 2456            |
| 08      | 2418            | 28      | 2458            |
| 09      | 2420            | 29      | 2460            |
| 10      | 2422            | 30      | 2462            |
| 11      | 2424            | 31      | 2464            |
| 12      | 2426            | 32      | 2466            |
| 13      | 2428            | 33      | 2468            |
| 14      | 2430            | 34      | 2470            |
| 15      | 2432            | 35      | 2472            |
| 16      | 2434            | 36      | 2474            |
| 17      | 2436            | 37      | 2476            |
| 18      | 2438            | 38      | 2478            |
| 19      | 2440            | 39      | 2480            |

## 3. Table for Filed Antenna:

| Ant. | Manufacturer         | P/N        | Antenna Type | Connector | Gain (dBi) |
|------|----------------------|------------|--------------|-----------|------------|
| 1    | TP-Link Systems Inc. | 3101503989 | Dipole       | N/A       | 0.5        |
| 2    | TP-Link Systems Inc. | 3101503989 | Dipole       | N/A       | 0.5        |

## Note:

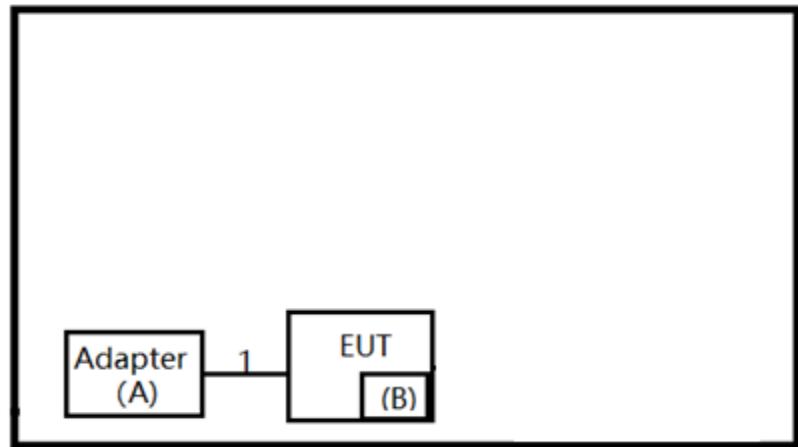
- (1) Smart antenna system with two transmit/receive chains, but operating in a mode where only one transmit/receive chain is used.
- (2) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

## 2.2 DESCRIPTION OF TEST MODES

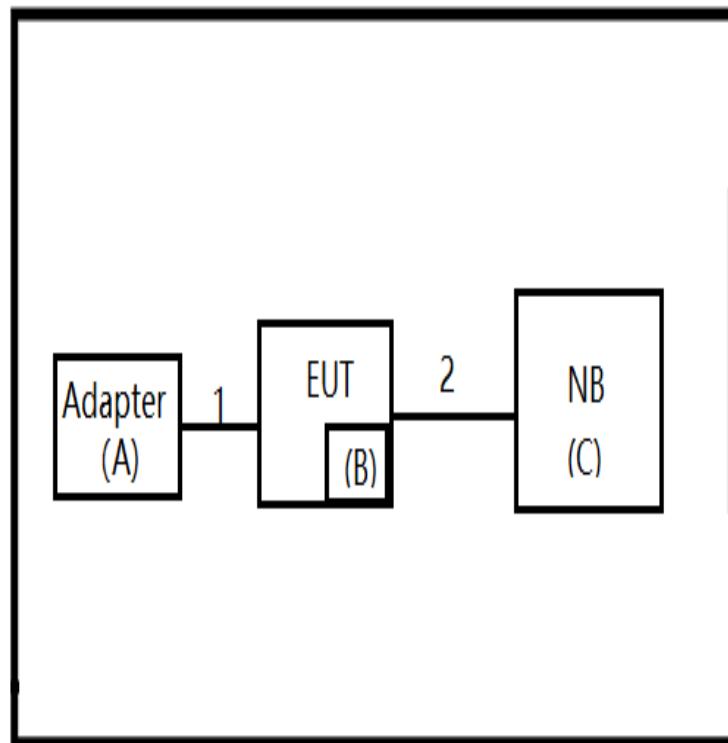
| Test Items                                                                      | Test mode | Channel  | Note     |
|---------------------------------------------------------------------------------|-----------|----------|----------|
| AC power line conducted emissions                                               | Normal    | -        | -        |
| Transmitter Radiated Emissions (below 1GHz)                                     | 1Mbps     | 00       | -        |
| Transmitter Radiated Emissions (above 1GHz)                                     | 1Mbps     | 00/39    | Bandedge |
| Transmitter Radiated Emissions (above 18GHz)                                    |           | 00/19/39 | Harmonic |
| Bandwidth & Output Power & Conducted Spurious Emission & Power Spectral Density | 1Mbps     | 00       | -        |
|                                                                                 |           | 00/19/39 | -        |

Note:

- (1) For AC power line conducted emissions and radiated emissions below 1 GHz test, the 1Mbps Channel 00 is found to be the worst case and recorded.
- (2) For radiated emission Harmonic 18-26.5GHz test, only tested the worst case and recorded.
- (3) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (4) For radiated emission below 1GHz test, both AC Adapter supplied and PoE supplied had been tested, but only the worst case (AC Adapter supplied) is recorded.
- (5) EUT Ant. 1 and Ant.2 only have different directionality, and the links between antenna connection modules are the same. Both Ant. 1 and Ant.2 had been tested, but the data of Ant. 1 were the worst case, so only the data of Ant.1 had been recorded.


## 2.3 PARAMETERS OF TEST SOFTWARE

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.


| Test Software Version | AltobeamWLANFacility_V1.0.19 |      |      |
|-----------------------|------------------------------|------|------|
| Frequency (MHz)       | 2402                         | 2440 | 2480 |
| 1Mbps                 | 6                            | 6    | 6    |

## 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Emissions(below 1GHz) & AC power line conducted emissions



Radiated Emissions(above 1GHz)



## 2.5 SUPPORT UNITS

| Item | Equipment | Brand    | Model No.   | Series No. | Remarks                    |
|------|-----------|----------|-------------|------------|----------------------------|
| A    | Adapter   | tp-link  | T090060-2B6 | N/A        | Supplied by test requester |
| B    | SD Card   | SanDisk  | ZN6MA       | N/A        | Furnished by test lab      |
| C    | NB        | dynabook | TECRA A40-J | N/A        | Furnished by test lab      |

| Item | Cable Type         | Shielded | Ferrite Core | Length | Remarks                    |
|------|--------------------|----------|--------------|--------|----------------------------|
| 1    | DC Cable           | NO       | NO           | 1.2m   | Supplied by test requester |
| 2    | Test Fixture Cable | UART STC | CP2102       | 0.8m   | Furnished by test lab      |

### 3. AC POWER LINE CONDUCTED EMISSIONS

#### 3.1 LIMIT

| Frequency of Emission (MHz) | Limit (dB $\mu$ V) |           |
|-----------------------------|--------------------|-----------|
|                             | Quasi-peak         | Average   |
| 0.15 - 0.5                  | 66 to 56*          | 56 to 46* |
| 0.5 - 5.0                   | 56                 | 46        |
| 5.0 - 30.0                  | 60                 | 50        |

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value – Limit Value

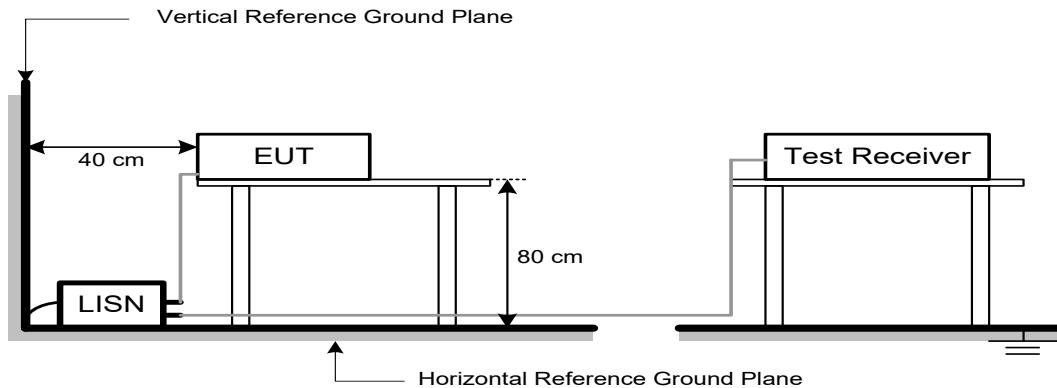
Calculation example:

| Reading Level<br>(dB $\mu$ V) |   | Correct Factor<br>(dB) |   | Measurement Value<br>(dB $\mu$ V) |
|-------------------------------|---|------------------------|---|-----------------------------------|
| 38.22                         | + | 3.45                   | = | 41.67                             |

| Measurement Value<br>(dB $\mu$ V) |   | Limit Value<br>(dB $\mu$ V) |   | Margin Level<br>(dB) |
|-----------------------------------|---|-----------------------------|---|----------------------|
| 41.67                             | - | 60                          | = | -18.33               |

#### 3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.


The following table is the setting of the receiver:

| Receiver Parameters | Setting  |
|---------------------|----------|
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |

#### 3.3 DEVIATION FROM TEST STANDARD

No deviation.

### 3.4 TEST SETUP



### 3.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

### 3.6 TEST RESULTS

Please refer to the APPENDIX A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of 『Note』 . If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform. In this case, a “ \* ” marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150 kHz to 30 MHz.

## 4. RADIATED EMISSIONS

### 4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

#### LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

| Frequency<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) |
|--------------------|--------------------------------------|----------------------------------|
| 0.009-0.490        | 2400/F(kHz)                          | 300                              |
| 0.490-1.705        | 24000/F(kHz)                         | 30                               |
| 1.705-30.0         | 30                                   | 30                               |
| 30-88              | 100                                  | 3                                |
| 88-216             | 150                                  | 3                                |
| 216-960            | 200                                  | 3                                |
| Above 960          | 500                                  | 3                                |

#### LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

| Frequency (MHz) | Band edge/ Harmonic<br>at 3m (dB $\mu$ V/m) |         | Harmonic at 1m (dB $\mu$ V/m) |               |
|-----------------|---------------------------------------------|---------|-------------------------------|---------------|
|                 | Peak                                        | Average | Peak                          | Average       |
| Above 1000      | 74                                          | 54      | 83.5 (Note 5)                 | 63.5 (Note 5) |

Note:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dB $\mu$ V/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

| Reading Level<br>(dB $\mu$ V) |   | Correct Factor<br>(dB/m) |   | Measurement Value<br>(dB $\mu$ V/m) |
|-------------------------------|---|--------------------------|---|-------------------------------------|
| 19.11                         | + | 2.11                     | = | 21.22                               |

| Measurement Value<br>(dB $\mu$ V/m) |   | Limit Value<br>(dB $\mu$ V/m) |   | Margin Level<br>(dB) |
|-------------------------------------|---|-------------------------------|---|----------------------|
| 21.22                               | - | 54                            | = | -32.78               |

(5)

$$FS_{\text{limit}} = FS_{\text{max}} - 20 \log \left( \frac{d_{\text{limit}}}{d_{\text{measure}}} \right)$$

20log (d<sub>limit</sub>/d<sub>measure</sub>)=20log (3/1)=9.5 dB.

FS<sub>limit</sub>: Harmonic at 3m Peak and Average limit.

FS<sub>max</sub>: Harmonic at 1m Peak and Average Maximum value.

d<sub>limit</sub>: Harmonic at 3m test distance.

d<sub>measure</sub>: Harmonic Actual test distance.

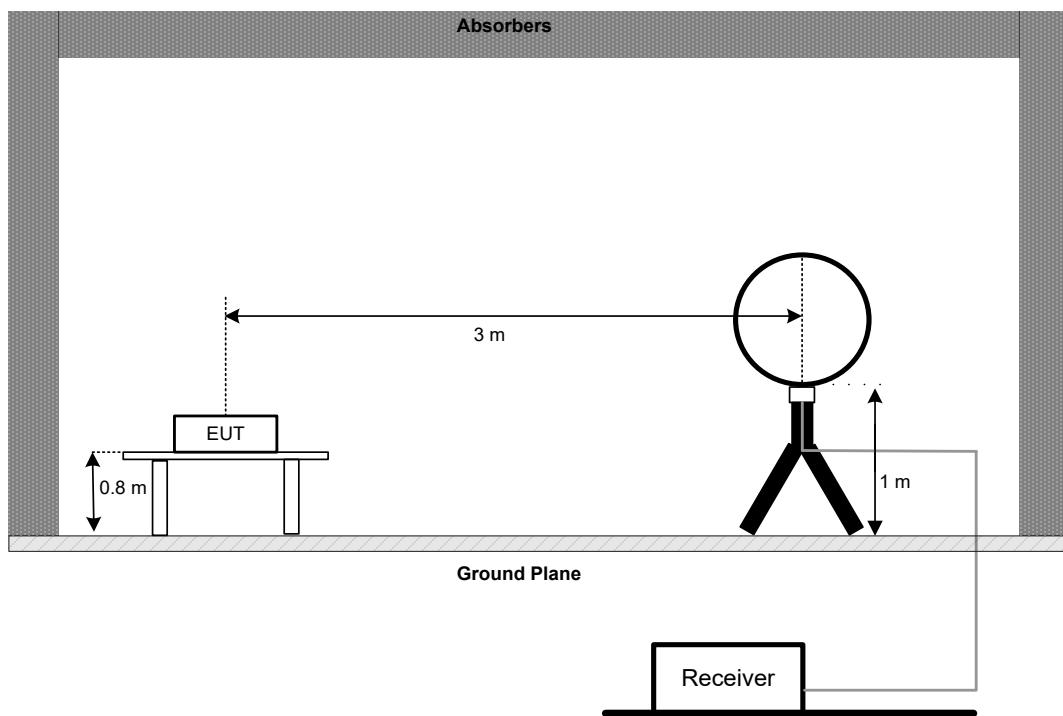
#### 4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m or 1 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item – EUT Test Photos.

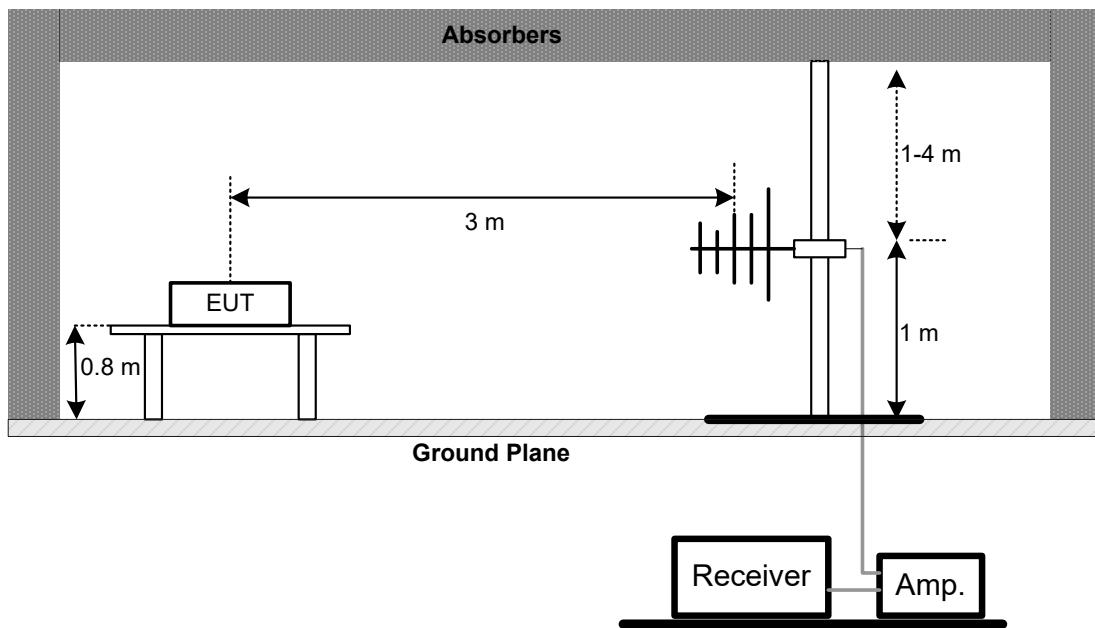
The following table is the setting of the receiver:

| Spectrum Parameters    | Setting                         |
|------------------------|---------------------------------|
| Start ~ Stop Frequency | 9 kHz~150 kHz for RBW 200 Hz    |
| Start ~ Stop Frequency | 0.15 MHz~30 MHz for RBW 9 kHz   |
| Start ~ Stop Frequency | 30 MHz~1000 MHz for RBW 100 kHz |

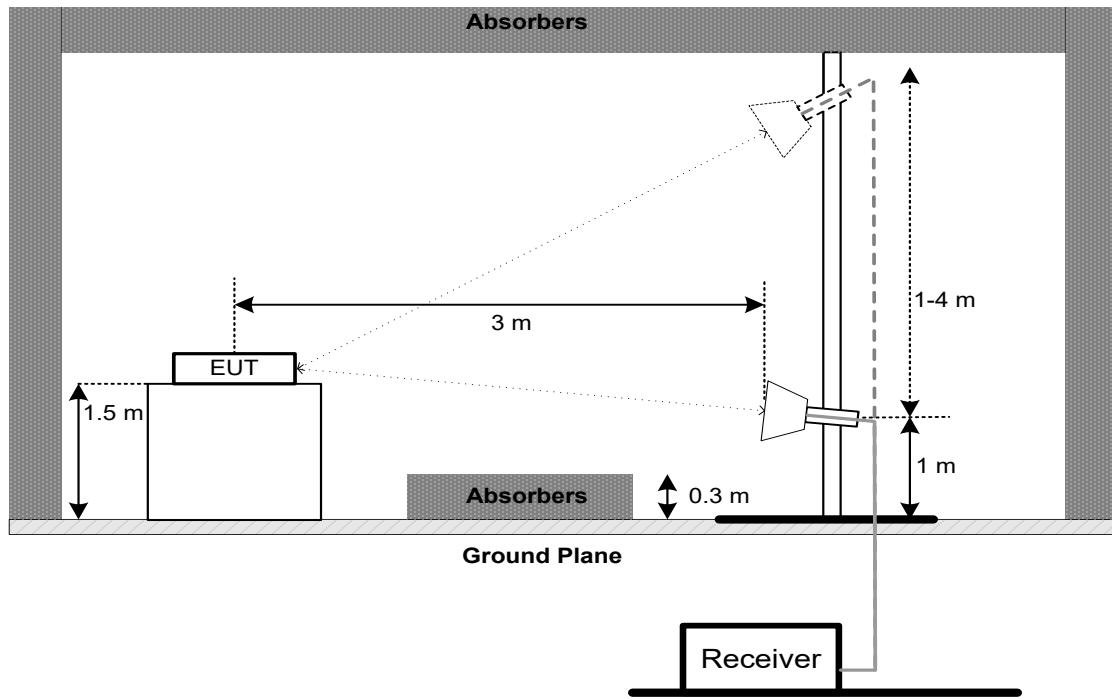
| Spectrum Parameters                        | Setting                                                    |
|--------------------------------------------|------------------------------------------------------------|
| Start Frequency                            | 1000 MHz                                                   |
| Stop Frequency                             | 10th carrier harmonic                                      |
| RBW / VBW<br>(Emission in restricted band) | 1 MHz / 3 MHz for PK value<br>1 MHz / 1/T Hz for AVG value |


| Spectrum Parameters    | Setting                             |
|------------------------|-------------------------------------|
| Start ~ Stop Frequency | 9 kHz~90 kHz for PK/AVG detector    |
| Start ~ Stop Frequency | 90 kHz~110 kHz for QP detector      |
| Start ~ Stop Frequency | 110 kHz~490 kHz for PK/AVG detector |
| Start ~ Stop Frequency | 490 kHz~30 MHz for QP detector      |
| Start ~ Stop Frequency | 30 MHz~1000 MHz for QP detector     |
| Start ~ Stop Frequency | 1 GHz~26.5 GHz for PK/AVG detector  |

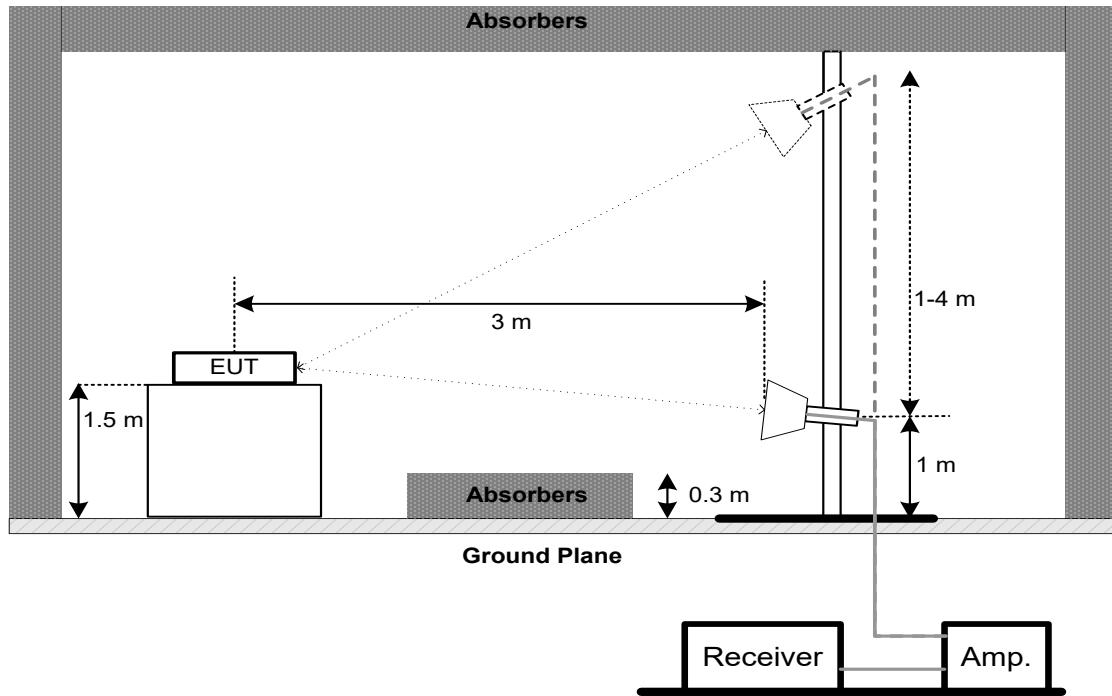
#### 4.3 DEVIATION FROM TEST STANDARD

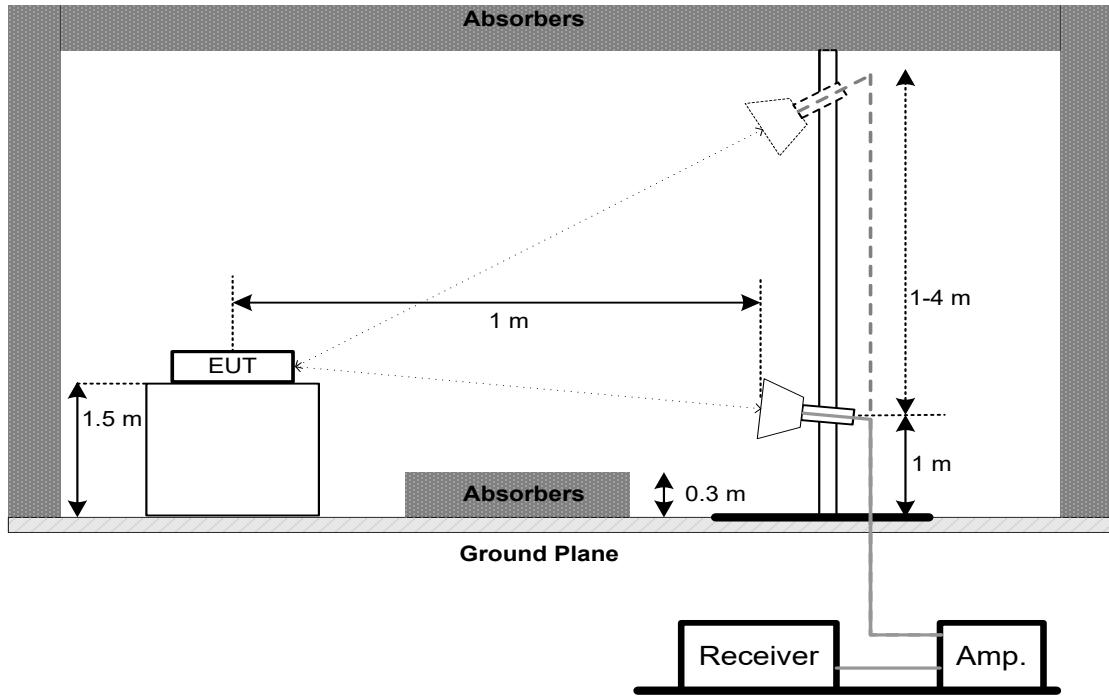

No deviation.

#### 4.4 TEST SETUP


**9 kHz to 30 MHz**




**30 MHz to 1 GHz**




**Above 1 GHz**  
Band edge



**Harmonic(1 GHz to 18 GHz)**



**Harmonic(18 GHz to 26.5 GHz)****4.5 EUT OPERATING CONDITIONS**

The EUT was programmed to be in continuously transmitting mode.

**4.6 TEST RESULT - 9 kHz TO 30 MHz**

There were no emissions found below 30 MHz within 20 dB of the limit.

**4.7 TEST RESULT - 30 MHz TO 1000 MHz**

Please refer to the APPENDIX B.

**4.8 TEST RESULT - ABOVE 1000 MHz**

Please refer to the APPENDIX C.

Remark:

- (1) No limit: This is fundamental signal, the judgment is not applicable.  
For fundamental signal judgment was referred to Peak output test.

## 5. BANDWIDTH

### 5.1 LIMIT

| Section          | Test Item              | Limit      |
|------------------|------------------------|------------|
| FCC 15.247(a)(2) | 6 dB Bandwidth         | >= 500 kHz |
|                  | 99% Emission Bandwidth | -          |

### 5.2 TEST PROCEDURE

- The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- The following table is the setting of the spectrum analyzer:

For 6 dB Bandwidth:

| Spectrum Parameters | Setting                 |
|---------------------|-------------------------|
| Span Frequency      | > Measurement Bandwidth |
| RBW                 | 100 kHz                 |
| VBW                 | 300 kHz                 |
| Detector            | Peak                    |
| Trace               | Max Hold                |
| Sweep Time          | Auto                    |

For 99% Emission Bandwidth:

| Spectrum Parameters | Setting                                 |
|---------------------|-----------------------------------------|
| Span Frequency      | Between 1.5 times and 5.0 times the OBW |
| RBW                 | 30 kHz                                  |
| VBW                 | 100 kHz                                 |
| Detector            | Peak                                    |
| Trace               | Max Hold                                |
| Sweep Time          | Auto                                    |

### 5.3 DEVIATION FROM STANDARD

No deviation.

### 5.4 TEST SETUP



### 5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

### 5.6 TEST RESULTS

Please refer to the APPENDIX D.

## 6. MAXIMUM OUTPUT POWER

### 6.1 LIMIT

| Section          | Test Item            | Limit                    |
|------------------|----------------------|--------------------------|
| FCC 15.247(b)(3) | Maximum Output Power | 1.0000 watt or 30.00 dBm |

### 6.2 TEST PROCEDURE

- The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- The following table is the setting of the spectrum analyzer:

| Spectrum Parameters | Setting                                              |
|---------------------|------------------------------------------------------|
| Span Frequency      | At least 1.5 times the OBW                           |
| RBW                 | 1% to 5% of the OBW, not to exceed 1 MHz             |
| VBW                 | $\geq 3 \times$ RBW                                  |
| Detector            | RMS                                                  |
| Trace               | Max Hold                                             |
| Sweep Time          | $\leq$ (number of points in sweep) $\times$ T (Note) |

Note: Where T is defined in 11.6 of ANSI C63.10-2013.

### 6.3 DEVIATION FROM STANDARD

No deviation.

### 6.4 TEST SETUP



### 6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

### 6.6 TEST RESULTS

Please refer to the APPENDIX E.

## 7. CONDUCTED SPURIOUS EMISSION

### 7.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

### 7.2 TEST PROCEDURE

- The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- The following table is the setting of the spectrum analyzer:

| Spectrum Parameters | Setting  |
|---------------------|----------|
| Start Frequency     | 30 MHz   |
| Stop Frequency      | 26.5 GHz |
| RBW                 | 100 kHz  |
| VBW                 | 300 kHz  |
| Detector            | Peak     |
| Trace               | Max Hold |
| Sweep Time          | Auto     |

### 7.3 DEVIATION FROM STANDARD

No deviation.

### 7.4 TEST SETUP



### 7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

### 7.6 TEST RESULTS

Please refer to the APPENDIX F.

## 8. POWER SPECTRAL DENSITY

### 8.1 LIMIT

| Section       | Test Item              | Limit                   |
|---------------|------------------------|-------------------------|
| FCC 15.247(e) | Power Spectral Density | 8 dBm<br>(in any 3 kHz) |

### 8.2 TEST PROCEDURE

- The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- The following table is the setting of the spectrum analyzer:

| Spectrum Parameters | Setting        |
|---------------------|----------------|
| Span Frequency      | 2 MHz (1 Mbps) |
| RBW                 | 3 kHz          |
| VBW                 | 10 kHz         |
| Detector            | Peak           |
| Trace               | Max Hold       |
| Sweep Time          | Auto           |

### 8.3 DEVIATION FROM STANDARD

No deviation.

### 8.4 TEST SETUP



### 8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

### 8.6 TEST RESULTS

Please refer to the APPENDIX G.

**9. MEASUREMENT INSTRUMENTS LIST**

| AC Power Line Conducted Emissions |                      |              |                               |            |                 |                  |
|-----------------------------------|----------------------|--------------|-------------------------------|------------|-----------------|------------------|
| Item                              | Kind of Equipment    | Manufacturer | Type No.                      | Serial No. | Calibrated Date | Calibrated Until |
| 1                                 | TWO-LINE V-NETWORK   | R&S          | ENV216                        | 101339     | 2024/3/28       | 2025/3/27        |
| 2                                 | Test Cable           | EMCI         | EMCRG142S-SM-SM-5000          | 230609     | 2024/8/10       | 2025/8/9         |
| 3                                 | Test Cable           | EMCI         | EMC104-SM-SM-6000             | 240635     | 2024/7/15       | 2025/7/14        |
| 4                                 | Measurement Software | Farad        | EZ_EMC (Ver.E-LAB-5A2.2 2021) | N/A        | N/A             | N/A              |

| Radiated Emissions - Below 1GHz |                      |              |                          |            |                 |                  |
|---------------------------------|----------------------|--------------|--------------------------|------------|-----------------|------------------|
| Item                            | Kind of Equipment    | Manufacturer | Type No.                 | Serial No. | Calibrated Date | Calibrated Until |
| 1                               | Log-Bicon Antenna    | Schwarzbeck  | VULB 9168                | 01577      | 2024/7/17       | 2025/7/16        |
| 2                               | Attenuator           | EMCI         | EMCI-N-6-05              | AT-N0575   | 2024/7/17       | 2025/7/16        |
| 3                               | Pre-Amplifier        | EMCI         | EMC001330                | 980909     | 2024/8/9        | 2025/8/8         |
| 4                               | Test Cable           | EMCI         | EMC104-SM-SM-6000        | 230540     | 2024/8/10       | 2025/8/9         |
| 5                               | Test Cable           | EMCI         | EMC104-SM-SM-2500        | 230541     | 2024/8/10       | 2025/8/9         |
| 6                               | Test Cable           | EMCI         | EMC104-SM-SM-1000        | 230546     | 2024/8/10       | 2025/8/9         |
| 7                               | MXE EMI Receiver     | Keysight     | N9038A                   | MY50018009 | 2024/8/30       | 2025/8/29        |
| 8                               | Measurement Software | Farad        | EZ_EMC (Ver. NB-03A1-01) | N/A        | N/A             | N/A              |

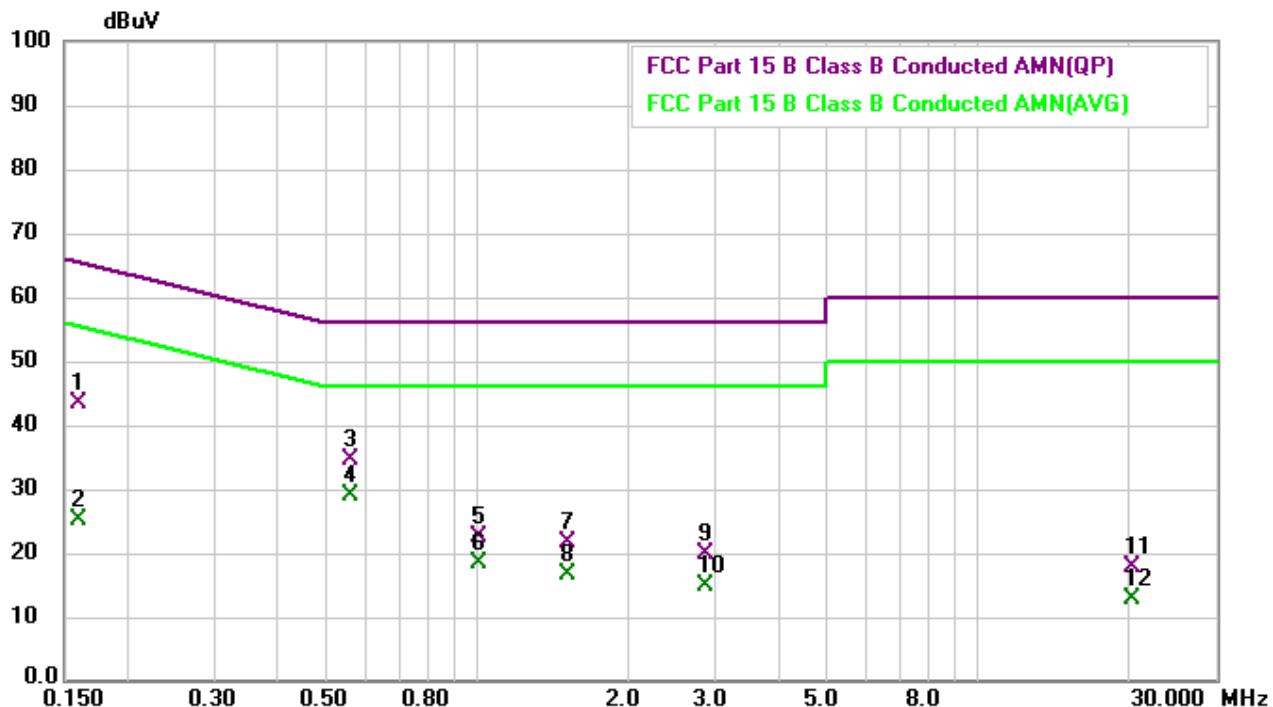
| Radiated Emissions - Above 1GHz |                      |              |                          |             |                 |                  |
|---------------------------------|----------------------|--------------|--------------------------|-------------|-----------------|------------------|
| Item                            | Kind of Equipment    | Manufacturer | Type No.                 | Serial No.  | Calibrated Date | Calibrated Until |
| 1                               | Horn Antenna         | RFSPIN       | DRH18-E                  | KV2D01A18ES | 2024/7/4        | 2025/7/3         |
| 2                               | Pre-Amplifier        | EMCI         | EMC118A45SE              | 980960      | 2024/7/23       | 2025/7/22        |
| 3                               | Test Cable           | EMCI         | EMC104-SM-SM-6000        | 230539      | 2024/7/23       | 2025/7/22        |
| 4                               | Test Cable           | EMCI         | EMC104-SM-SM-2500        | 230542      | 2024/7/23       | 2025/7/22        |
| 5                               | Test Cable           | EMCI         | EMC104-SM-SN-1000        | 230543      | 2024/7/23       | 2025/7/22        |
| 6                               | EXA Signal Analyzer  | Keysight     | N9010A                   | MY52220990  | 2024/10/4       | 2025/10/3        |
| 7                               | Measurement Software | Farad        | EZ_EMC (Ver. NB-03A1-01) | N/A         | N/A             | N/A              |

| <b>Radiated Emissions - Above 18GHz</b> |                      |              |                          |            |                 |                  |
|-----------------------------------------|----------------------|--------------|--------------------------|------------|-----------------|------------------|
| Item                                    | Kind of Equipment    | Manufacturer | Type No.                 | Serial No. | Calibrated Date | Calibrated Until |
| 1                                       | Horn Antenna         | Schwarzbeck  | BBHA 9170                | 01228      | 2024/6/12       | 2025/6/11        |
| 2                                       | Pre-Amplifier        | EMCI         | EMC184045SE              | 980918     | 2024/8/9        | 2025/8/8         |
| 3                                       | Test Cable           | EMCI         | EMC104-35M-35 M-1000     | 230547     | 2024/8/10       | 2025/8/9         |
| 4                                       | Test Cable           | EMCI         | EMC104-35M-35 M-4700     | 230548     | 2024/8/10       | 2025/8/9         |
| 5                                       | EXA Signal Analyzer  | Keysight     | N9010A                   | MY52220990 | 2024/10/4       | 2025/10/3        |
| 6                                       | Measurement Software | Farad        | EZ_EMC (Ver. NB-03A1-01) | N/A        | N/A             | N/A              |

| <b>Bandwidth &amp;<br/>Output Power &amp;<br/>Conducted Spurious Emission &amp;<br/>Power Spectral Density</b> |                   |              |          |            |                 |                  |
|----------------------------------------------------------------------------------------------------------------|-------------------|--------------|----------|------------|-----------------|------------------|
| Item                                                                                                           | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated Date | Calibrated Until |
| 1                                                                                                              | MXE EMI Receiver  | Keysight     | N9038A   | MY50018009 | 2024/8/30       | 2025/8/29        |

Remark: "N/A" denotes no model name, serial no. or calibration specified.  
All calibration period of equipment list is one year.

**10. EUT TEST PHOTO**

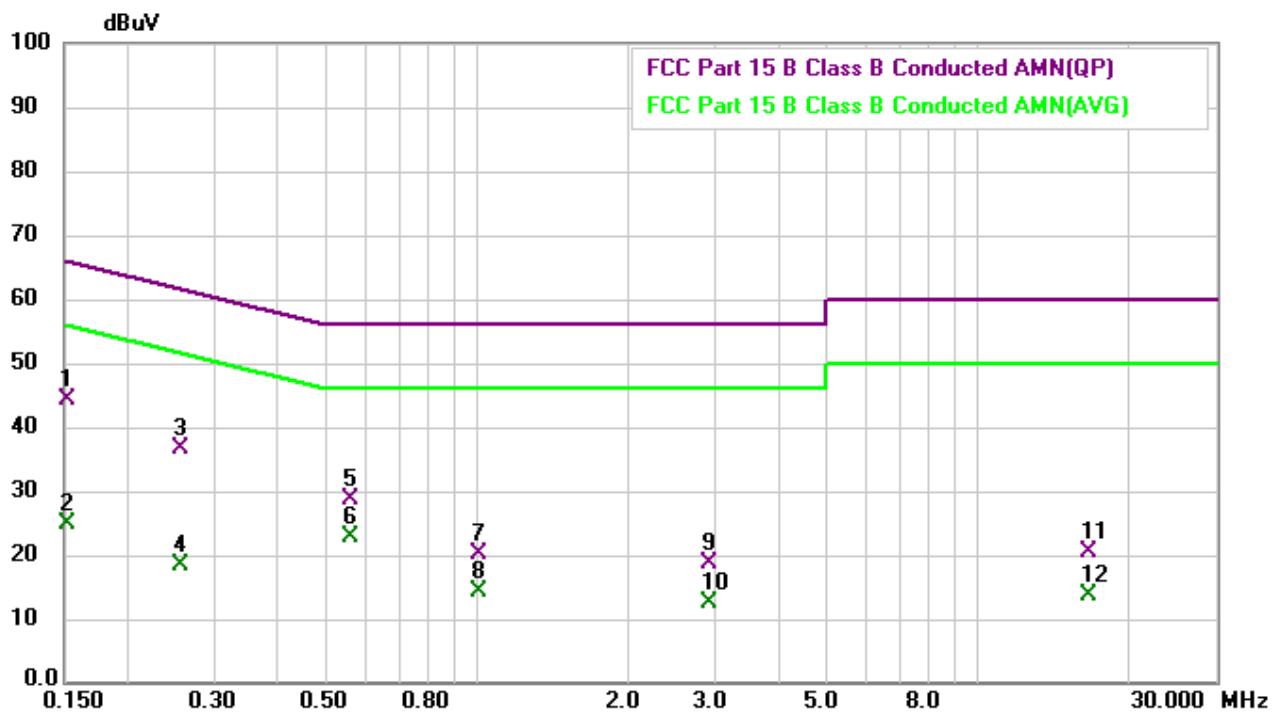

Please refer to document Appendix No.: TP-2410G026-1 (APPENDIX-TEST PHOTOS).

**11. EUT PHOTOS**

Please refer to document Appendix No.: EP-2410G026-1 (APPENDIX-EUT PHOTOS).

## APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

|                |        |             |           |
|----------------|--------|-------------|-----------|
| Test Mode      | Normal | Tested Date | 2025/3/11 |
| Test Frequency | -      | Phase       | Line      |



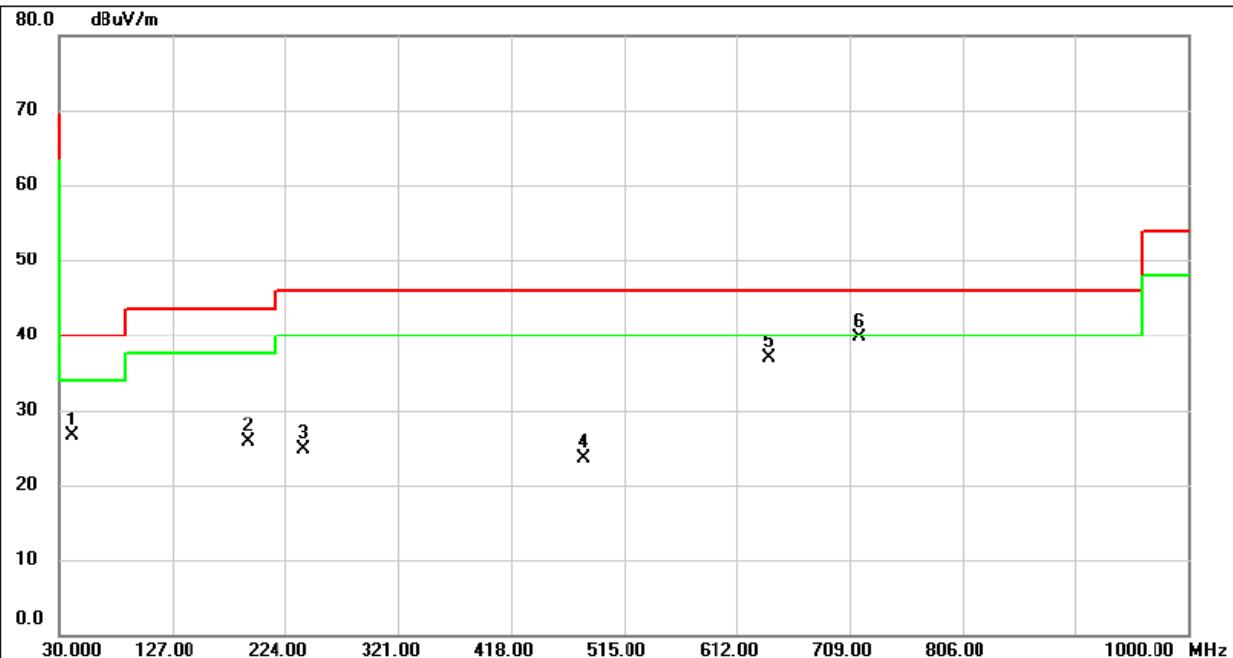

| No. | Freq.      | Reading | Factor | Meas. Level | Limit  | Margin | Detector | Comment |
|-----|------------|---------|--------|-------------|--------|--------|----------|---------|
|     | (MHz)      | (dBuV)  | (dB)   | (dBuV)      | (dBuV) | (dB)   |          |         |
| 1   | 0.160441   | 33.90   | 9.62   | 43.52       | 65.44  | -21.92 | QP       |         |
| 2   | 0.160441   | 15.60   | 9.62   | 25.22       | 55.44  | -30.22 | AVG      |         |
| 3   | 0.557250   | 24.90   | 9.64   | 34.54       | 56.00  | -21.46 | QP       |         |
| 4   | * 0.557250 | 19.20   | 9.64   | 28.84       | 46.00  | -17.16 | AVG      |         |
| 5   | 1.009500   | 12.90   | 9.66   | 22.56       | 56.00  | -33.44 | QP       |         |
| 6   | 1.009500   | 8.60    | 9.66   | 18.26       | 46.00  | -27.74 | AVG      |         |
| 7   | 1.515750   | 11.90   | 9.68   | 21.58       | 56.00  | -34.42 | QP       |         |
| 8   | 1.515750   | 7.00    | 9.68   | 16.68       | 46.00  | -29.32 | AVG      |         |
| 9   | 2.859000   | 10.10   | 9.69   | 19.79       | 56.00  | -36.21 | QP       |         |
| 10  | 2.859000   | 5.20    | 9.69   | 14.89       | 46.00  | -31.11 | AVG      |         |
| 11  | 20.422500  | 7.90    | 9.80   | 17.70       | 60.00  | -42.30 | QP       |         |
| 12  | 20.422500  | 2.90    | 9.80   | 12.70       | 50.00  | -37.30 | AVG      |         |

## REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.

|                |        |             |           |
|----------------|--------|-------------|-----------|
| Test Mode      | Normal | Tested Date | 2025/3/11 |
| Test Frequency | -      | Phase       | Neutral   |



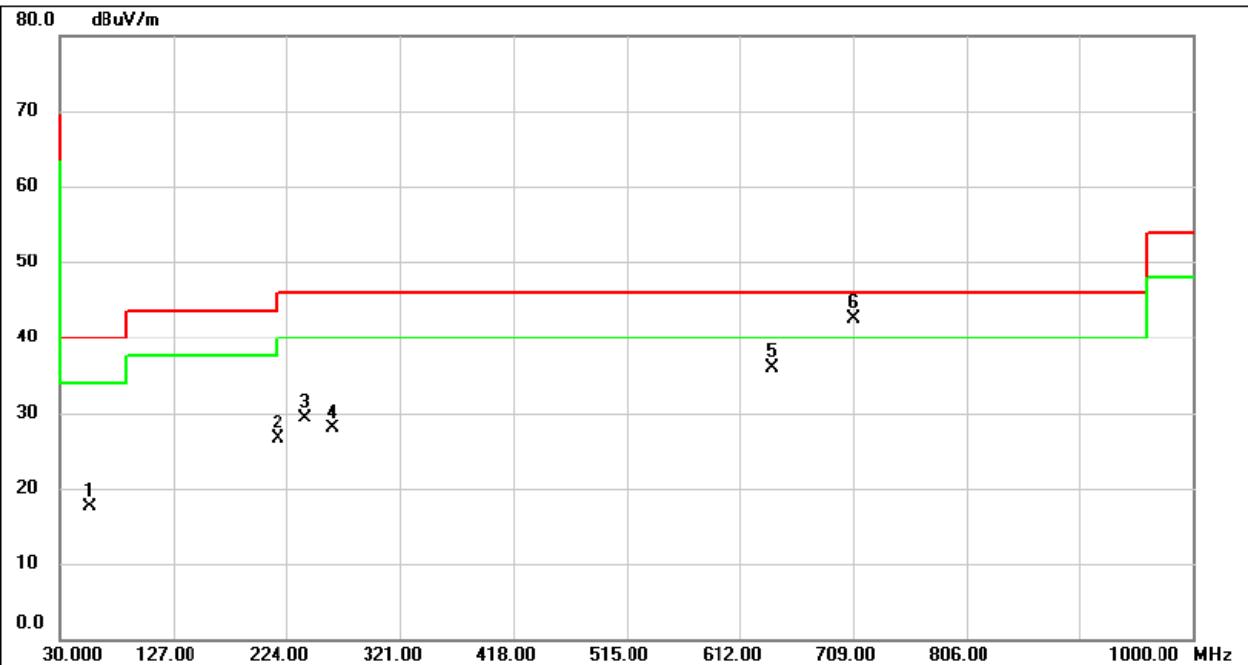

| No. | Freq.     | Reading | Factor | Meas. Level | Limit  | Margin | Detector | Comment |
|-----|-----------|---------|--------|-------------|--------|--------|----------|---------|
|     | (MHz)     | (dBuV)  | (dB)   | (dBuV)      | (dBuV) | (dB)   |          |         |
| 1   | 0.152250  | 34.60   | 9.62   | 44.22       | 65.88  | -21.66 | QP       |         |
| 2   | 0.152250  | 15.10   | 9.62   | 24.72       | 55.88  | -31.16 | AVG      |         |
| 3   | 0.255067  | 27.10   | 9.63   | 36.73       | 61.59  | -24.86 | QP       |         |
| 4   | 0.255067  | 8.70    | 9.63   | 18.33       | 51.59  | -33.26 | AVG      |         |
| 5   | 0.559500  | 19.00   | 9.64   | 28.64       | 56.00  | -27.36 | QP       |         |
| 6   | 0.559500  | 13.20   | 9.64   | 22.84       | 46.00  | -23.16 | AVG      |         |
| 7   | 1.011750  | 10.50   | 9.65   | 20.15       | 56.00  | -35.85 | QP       |         |
| 8   | 1.011750  | 4.70    | 9.65   | 14.35       | 46.00  | -31.65 | AVG      |         |
| 9   | 2.917500  | 8.90    | 9.69   | 18.59       | 56.00  | -37.41 | QP       |         |
| 10  | 2.917500  | 2.90    | 9.69   | 12.59       | 46.00  | -33.41 | AVG      |         |
| 11  | 16.732500 | 10.60   | 9.87   | 20.47       | 60.00  | -39.53 | QP       |         |
| 12  | 16.732500 | 3.90    | 9.87   | 13.77       | 50.00  | -36.23 | AVG      |         |

## REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.  
 (2) Margin Level = Measurement Value - Limit Value.

**APPENDIX B - RADIATED EMISSION - 30 MHZ TO 1000 MHZ**

|                |          |              |           |
|----------------|----------|--------------|-----------|
| Test Mode      | 1Mbps    | Test Date    | 2025/3/21 |
| Test Frequency | 2402 MHz | Polarization | Vertical  |



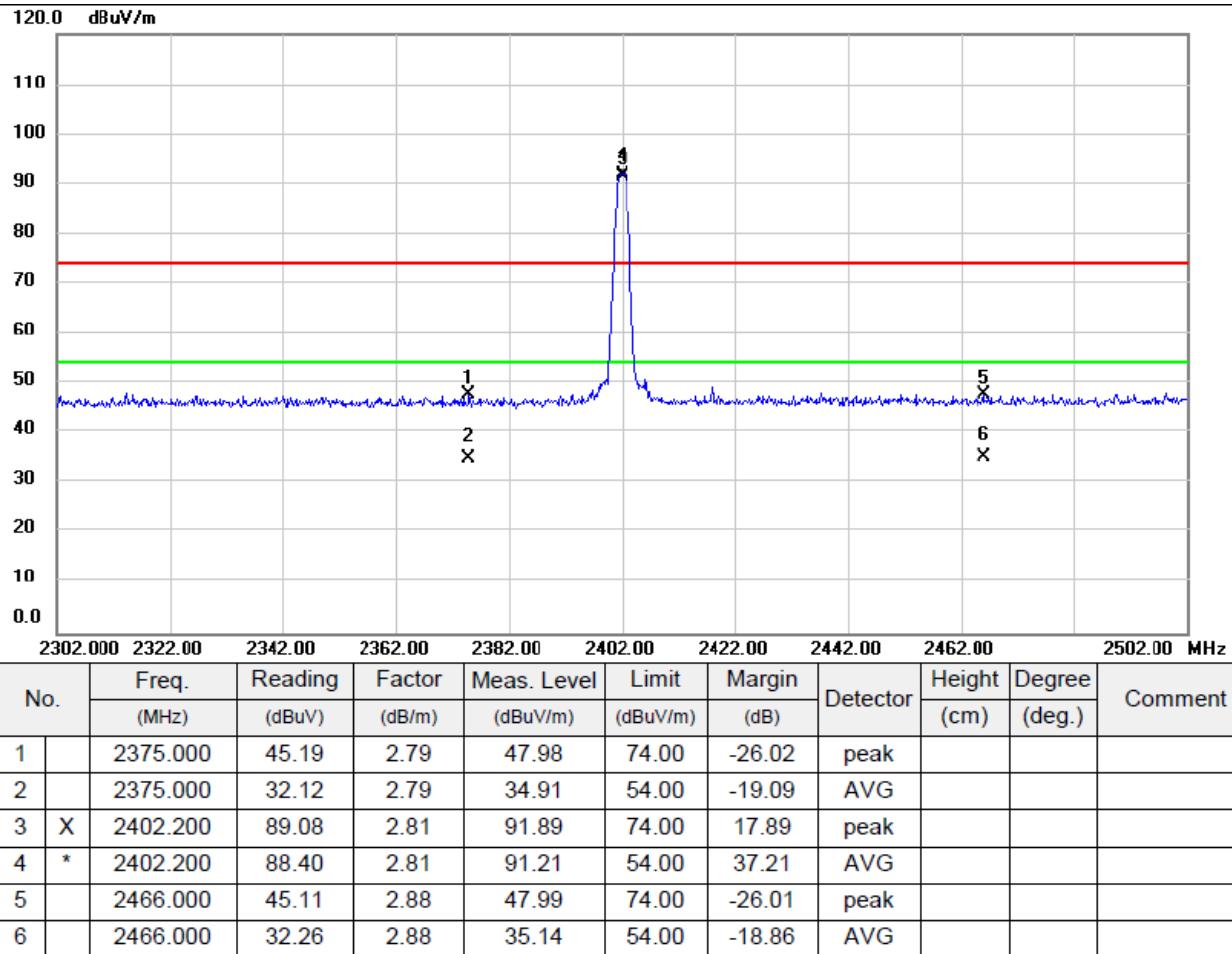

| No. | Freq.    | Reading  | Factor | Meas. Level | Limit    | Margin | Detector | Height<br>(cm) | Degree<br>(deg.) | Comment |  |
|-----|----------|----------|--------|-------------|----------|--------|----------|----------------|------------------|---------|--|
|     | (MHz)    | (dBuV)   | (dB)   | (dBuV/m)    | (dBuV/m) | (dB)   |          |                |                  |         |  |
| 1   | 40.6700  | 39.64    | -13.19 | 26.45       | 40.00    | -13.55 | peak     | 100            | 204              |         |  |
| 2   | 191.9900 | 40.96    | -15.33 | 25.63       | 43.50    | -17.87 | peak     | 100            | 344              |         |  |
| 3   | 240.4900 | 38.56    | -13.94 | 24.62       | 46.00    | -21.38 | peak     | 100            | 275              |         |  |
| 4   | 480.0800 | 31.24    | -7.75  | 23.49       | 46.00    | -22.51 | peak     | 100            | 281              |         |  |
| 5   | 640.1300 | 41.59    | -4.77  | 36.82       | 46.00    | -9.18  | peak     | 100            | 110              |         |  |
| 6   | *        | 716.7600 | 43.44  | -3.64       | 39.80    | 46.00  | -6.20    | peak           | 100              | 176     |  |

## REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.

|                |          |              |            |
|----------------|----------|--------------|------------|
| Test Mode      | 1Mbps    | Test Date    | 2025/3/21  |
| Test Frequency | 2402 MHz | Polarization | Horizontal |

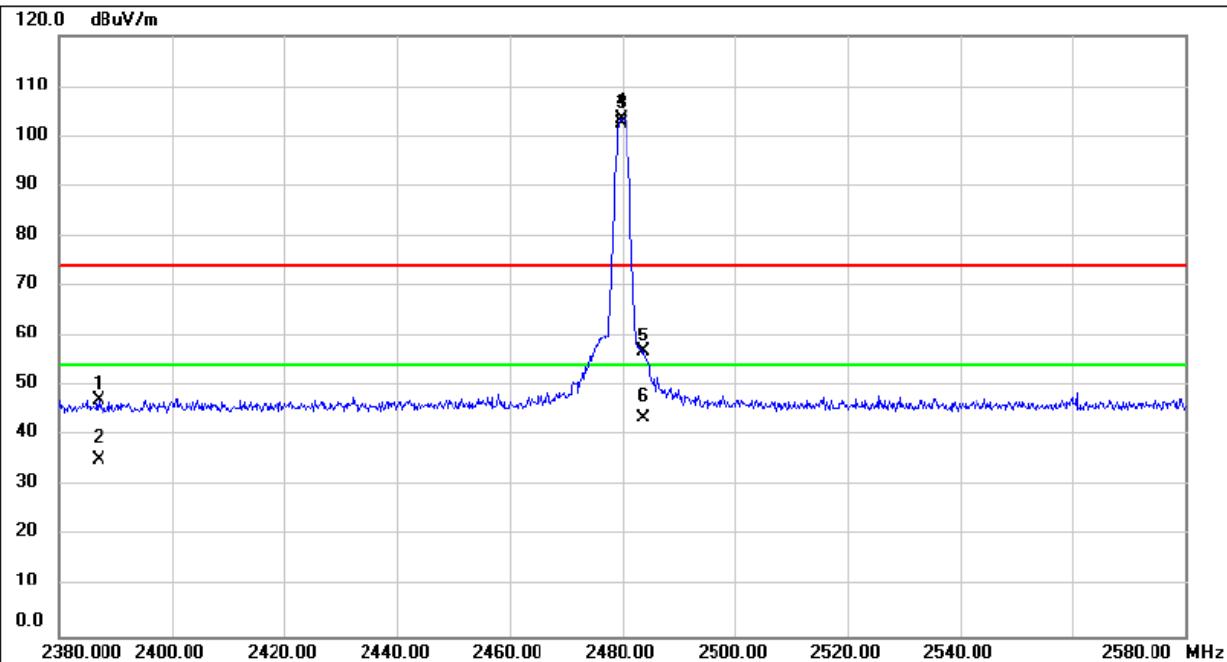



| No. | Freq.    | Reading  | Factor | Meas. Level | Limit    | Margin | Detector | Height<br>(cm) | Degree<br>(deg.) | Comment |  |
|-----|----------|----------|--------|-------------|----------|--------|----------|----------------|------------------|---------|--|
|     | (MHz)    | (dBuV)   | (dB)   | (dBuV/m)    | (dBuV/m) | (dB)   |          |                |                  |         |  |
| 1   | 55.2200  | 30.31    | -12.75 | 17.56       | 40.00    | -22.44 | peak     | 100            | 6                |         |  |
| 2   | 216.2400 | 42.34    | -15.89 | 26.45       | 46.00    | -19.55 | peak     | 100            | 256              |         |  |
| 3   | 239.5200 | 43.26    | -14.02 | 29.24       | 46.00    | -16.76 | peak     | 100            | 262              |         |  |
| 4   | 263.7700 | 41.14    | -13.23 | 27.91       | 46.00    | -18.09 | peak     | 100            | 114              |         |  |
| 5   | 640.1300 | 40.65    | -4.77  | 35.88       | 46.00    | -10.12 | peak     | 100            | 166              |         |  |
| 6   | *        | 709.0000 | 46.37  | -3.83       | 42.54    | 46.00  | -3.46    | peak           | 100              | 92      |  |

## REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.

**APPENDIX C - RADIATED EMISSION - ABOVE 1000 MHZ**


|                |          |              |            |
|----------------|----------|--------------|------------|
| Test Mode      | 1Mbps    | Test Date    | 2025/3/15  |
| Test Frequency | 2402 MHz | Polarization | Horizontal |



## REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.  
 (2) Margin Level = Measurement Value - Limit Value.

|                |          |              |            |
|----------------|----------|--------------|------------|
| Test Mode      | 1Mbps    | Test Date    | 2025/3/15  |
| Test Frequency | 2480 MHz | Polarization | Horizontal |



| No. | Freq.      | Reading | Factor | Meas. Level | Limit    | Margin | Detector | Height<br>(cm) | Degree<br>(deg.) | Comment |
|-----|------------|---------|--------|-------------|----------|--------|----------|----------------|------------------|---------|
|     | (MHz)      | (dBuV)  | (dB/m) | (dBuV/m)    | (dBuV/m) | (dB)   |          |                |                  |         |
| 1   | 2387.000   | 44.46   | 2.80   | 47.26       | 74.00    | -26.74 | peak     |                |                  |         |
| 2   | 2387.000   | 32.34   | 2.80   | 35.14       | 54.00    | -18.86 | AVG      |                |                  |         |
| 3   | X 2479.800 | 100.53  | 2.89   | 103.42      | 74.00    | 29.42  | peak     |                |                  |         |
| 4   | * 2479.800 | 99.56   | 2.89   | 102.45      | 54.00    | 48.45  | AVG      |                |                  |         |
| 5   | 2483.800   | 53.82   | 2.89   | 56.71       | 74.00    | -17.29 | peak     |                |                  |         |
| 6   | 2483.800   | 40.63   | 2.89   | 43.52       | 54.00    | -10.48 | AVG      |                |                  |         |

## REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.  
 (2) Margin Level = Measurement Value - Limit Value.

|                |          |              |           |
|----------------|----------|--------------|-----------|
| Test Mode      | 1Mbps    | Test Date    | 2025/3/15 |
| Test Frequency | 2402 MHz | Polarization | Vertical  |



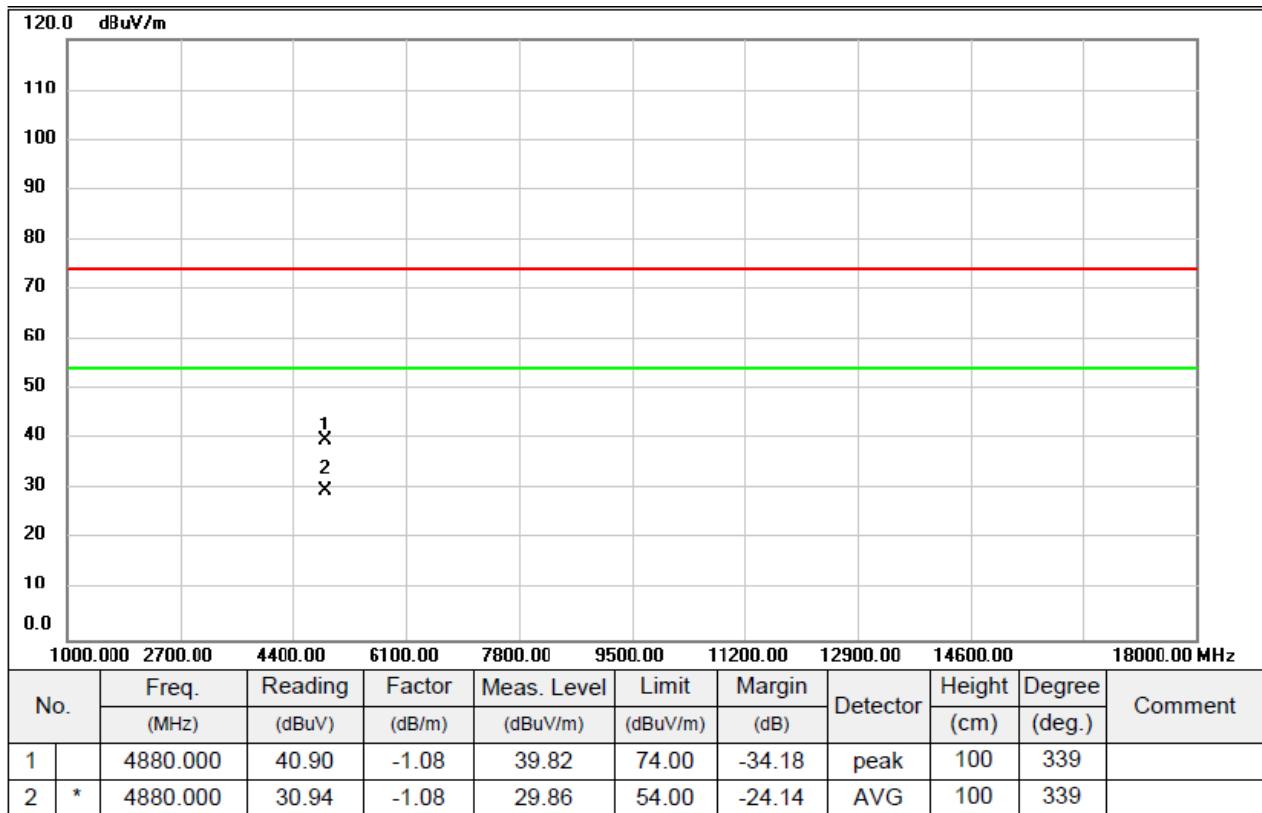
## REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.  
 (2) Margin Level = Measurement Value - Limit Value.

|                |          |              |            |
|----------------|----------|--------------|------------|
| Test Mode      | 1Mbps    | Test Date    | 2025/3/15  |
| Test Frequency | 2402 MHz | Polarization | Horizontal |

**REMARKS:**

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.


|                |          |              |           |
|----------------|----------|--------------|-----------|
| Test Mode      | 1Mbps    | Test Date    | 2025/3/15 |
| Test Frequency | 2440 MHz | Polarization | Vertical  |



## REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.

|                |          |              |            |
|----------------|----------|--------------|------------|
| Test Mode      | 1Mbps    | Test Date    | 2025/3/15  |
| Test Frequency | 2440 MHz | Polarization | Horizontal |

**REMARKS:**

(1) Measurement Value = Reading Level + Correct Factor.  
(2) Margin Level = Measurement Value - Limit Value.

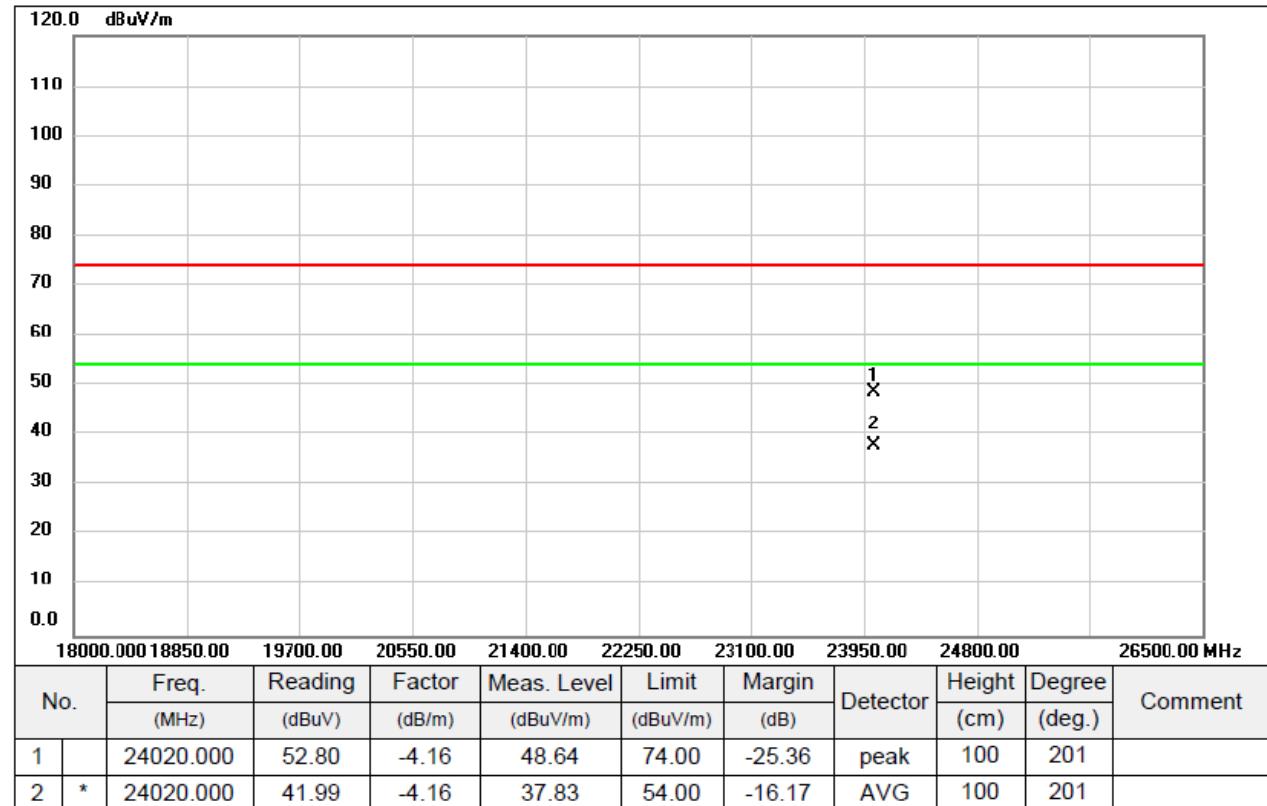
|                |          |              |           |
|----------------|----------|--------------|-----------|
| Test Mode      | 1Mbps    | Test Date    | 2025/3/15 |
| Test Frequency | 2480 MHz | Polarization | Vertical  |

**REMARKS:**

(1) Measurement Value = Reading Level + Correct Factor.  
(2) Margin Level = Measurement Value - Limit Value.

|                |          |              |            |
|----------------|----------|--------------|------------|
| Test Mode      | 1Mbps    | Test Date    | 2025/3/15  |
| Test Frequency | 2480 MHz | Polarization | Horizontal |


**REMARKS:**


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.

|                |          |              |           |
|----------------|----------|--------------|-----------|
| Test Mode      | 1Mbps    | Test Date    | 2025/3/15 |
| Test Frequency | 2402 MHz | Polarization | Vertical  |


**REMARKS:**

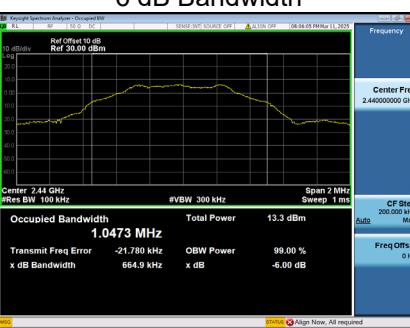
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.

|                |          |              |            |
|----------------|----------|--------------|------------|
| Test Mode      | 1Mbps    | Test Date    | 2025/3/15  |
| Test Frequency | 2402 MHz | Polarization | Horizontal |


**REMARKS:**

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.

## APPENDIX D - BANDWIDTH


Test Mode TX Mode \_1Mbps

| Channel | Frequency (MHz) | 6 dB Bandwidth (MHz) | 99 % Occupied Bandwidth (MHz) | 6 dB Bandwidth Min. Limit (MHz) | Test Result |
|---------|-----------------|----------------------|-------------------------------|---------------------------------|-------------|
| 00      | 2402            | 0.668                | 1.028                         | 0.5                             | Pass        |
| 19      | 2440            | 0.665                | 1.028                         | 0.5                             | Pass        |
| 39      | 2480            | 0.669                | 1.024                         | 0.5                             | Pass        |

CH00



CH19  
6 dB Bandwidth

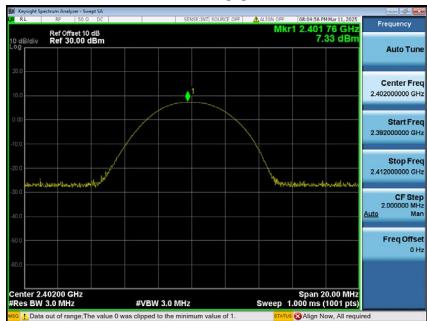


CH39

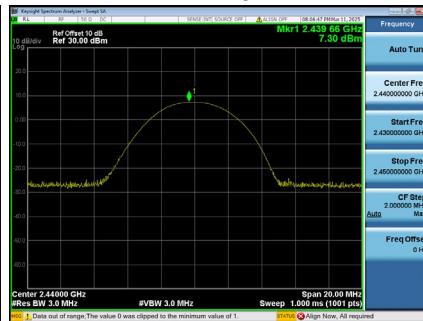


99 % Occupied Bandwidth




## APPENDIX E - MAXIMUM OUTPUT POWER

|           |                |
|-----------|----------------|
| Test Mode | TX Mode _1Mbps |
|-----------|----------------|


| Frequency (MHz) | Output Power (dBm) | Output Power (W) | Max. Limit (dBm) | Max. Limit (W) | Test Result |
|-----------------|--------------------|------------------|------------------|----------------|-------------|
| 2402            | 7.33               | 0.0054           | 30.00            | 1.0000         | Pass        |
| 2440            | 7.30               | 0.0054           | 30.00            | 1.0000         | Pass        |
| 2480            | 7.21               | 0.0053           | 30.00            | 1.0000         | Pass        |

Note: Output power = Measure result + Cable loss

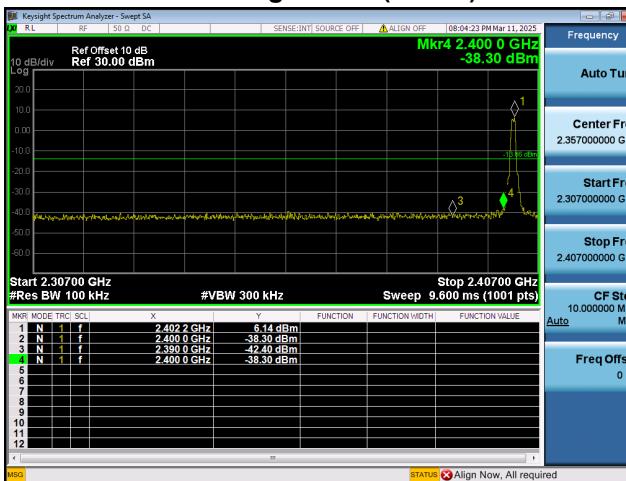
CH00



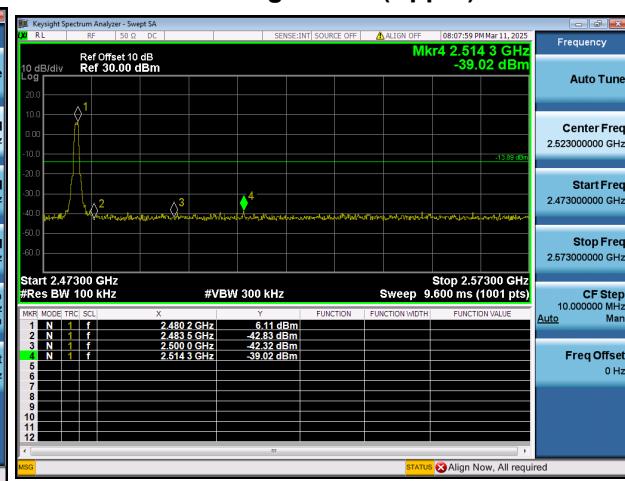
CH19



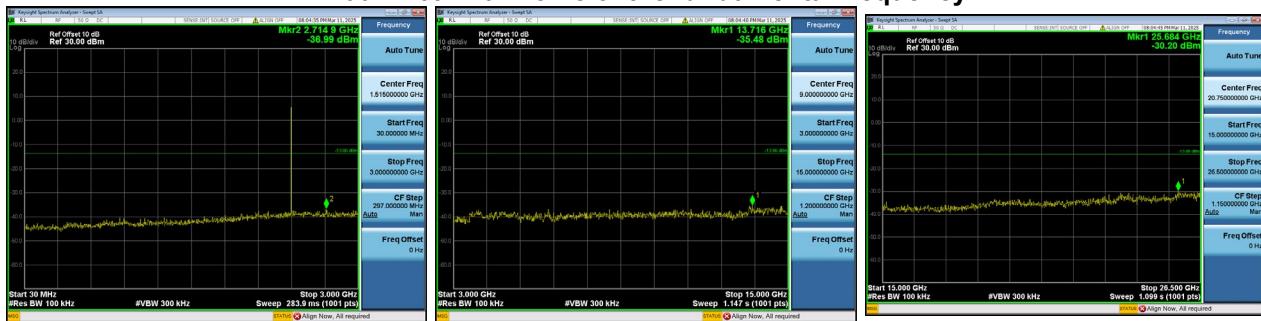
CH39



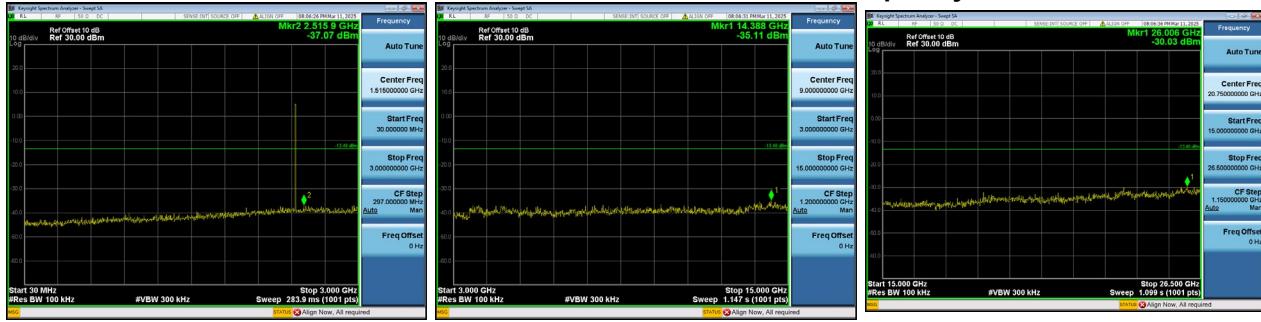

## APPENDIX F - CONDUCTED SPURIOUS EMISSION


Test Mode

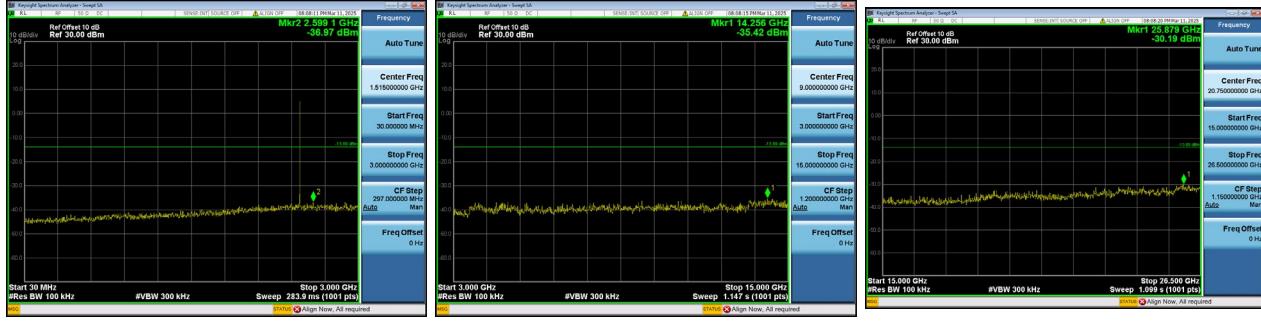
TX Mode \_1Mbps


## Bandedge CH00 (Lower)




## Bandedge CH39 (Upper)

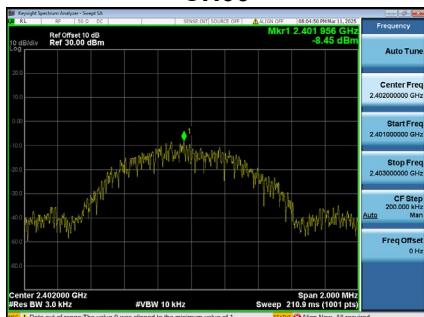



## CH00 – 10th Harmonic of the fundamental frequency



## CH19 – 10th Harmonic of the fundamental frequency





## CH39 – 10th Harmonic of the fundamental frequency



## APPENDIX G - POWER SPECTRAL DENSITY

Test Mode TX Mode \_1Mbps

| Channel | Frequency (MHz) | Power Spectral Density (dBm/3 kHz) | Max. Limit (dBm/3 kHz) | Test Result |
|---------|-----------------|------------------------------------|------------------------|-------------|
| 00      | 2402            | -8.45                              | 8.00                   | Pass        |
| 19      | 2440            | -8.46                              | 8.00                   | Pass        |
| 39      | 2480            | -8.53                              | 8.00                   | Pass        |

**CH00****CH19****CH39****End of Test Report**