

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT2025031360F01

TEST Report

Applicant: DONGGUANSHI PADI DIANZI KEJI YOUXIAN GONGSI

Address of Applicant: Room 1327-1328, 3rd Floor, Block A, No.7 Xinji Road,

Nancheng Street, Dongguan, Guangdong, CHINA 518000

Manufacturer: DONGGUANSHI PADI DIANZI KEJI YOUXIAN GONGSI

Address of Room 1327-1328, 3rd Floor, Block A, No.7 Xinji Road, Manufacturer: Nancheng Street, Dongguan, Guangdong, CHINA 518000

Equipment Under Test (EUT)

Product Name: MP3 player

Model No.: MP3-03B

Series model: MP3-01C, MP3-16, MP3-01D, HIFI-01, MP3-01A, MP3-20,

MP3-10MP3-11, MP3-16, MIP3-12, MP3-07, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, U1, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, DVR8818, S1, S2, S3, S4,

S5, S6, S7, S8

Trade Mark: keenplus

FCC ID: 2BH2N-MP3-03B

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Mar. 28, 2025

Date of Test: Mar. 28, 2025 ~ Apr. 07, 2025

Date of report issued: Apr. 07, 2025

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Apr. 07, 2025	Original

Tested/ Prepared By	Heber He	Date:	Apr. 07, 2025
	Project Engineer		
Check By:	Bruce Zhu	Date:	Apr. 07, 2025
	Reviewer	_	
Approved By :	Kein Yang	Date:	Apr. 07, 2025
	Authorized Signature		

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT	
4.2. TEST MODE	
4.3. DESCRIPTION OF SUPPORT UNITS	7
4.4. DEVIATION FROM STANDARDS	
4.5. ABNORMALITIES FROM STANDARD CONDITIONS	
4.7. TEST LOCATION	
4.8. ADDITIONAL INSTRUCTIONS	
5. TEST INSTRUMENTS LIST	8
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS	9
6.2. CONDUCTED PEAK OUTPUT POWER	
6.3. 20DB EMISSION BANDWIDTH	
6.5. HOPPING CHANNEL NUMBER	
6.6. DWELL TIME	
6.7. BAND EDGE	
6.7.1. Conducted Emission Method	
6.8. SPURIOUS EMISSION	
6.8.1. Conducted Emission Method	
6.8.2. Radiated Emission Method	
6.9. Antenna Requirement	
7. TEST SETUP PHOTO	45
8. EUT CONSTRUCTIONAL DETAILS	45

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.12 dB	(1)
Radiated Emission	30~1000MHz	4.37 dB	(1)
Radiated Emission	1~18GHz	5.40 dB	(1)
Radiated Emission	18-40GHz	5.45 dB	(1)
Conducted Disturbance	0.15~30MHz	2.68 dB	(1)
Note (1): The measurement unco	ertainty is for coverage factor of ka	=2 and a level of confidence of 9	95%.

4. General Information

4.1. General Description of EUT

Product Name:	MP3 player			
Model No.:	MP3-03B			
Series model:	MP3-01C, MP3-16, MP3-01D, HIFI-01, MP3-01A, MP3-20, MP3-10MP3-11, MP3-16, MIP3-12, MP3-07, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16, T17, T18, U1, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, M1, M2, M3, M4, M5, M6, M7, M8, M9, M10, DVR8818, S1, S2, S3, S4, S5, S6, S7, S8			
Test sample(s) ID:	HTT2025031360-1(Engineer sample) HTT2025031360-2(Normal sample) 2402MHz~2480MHz 79			
Operation Frequency:				
Channel numbers:				
Channel separation:	1MHz			
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK			
Antenna Type:	FPC Antenna			
Antenna gain:	1.53 dBi			
Power Supply:	DC 3.7V From Battery and DC 5V From External Circuit			
Adapter Information (Auxiliary test provided by the lab):	Mode: GS-0500200 Input: AC100-240V, 50/60Hz, 0.3A max Output: DC 5V, 2A			

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

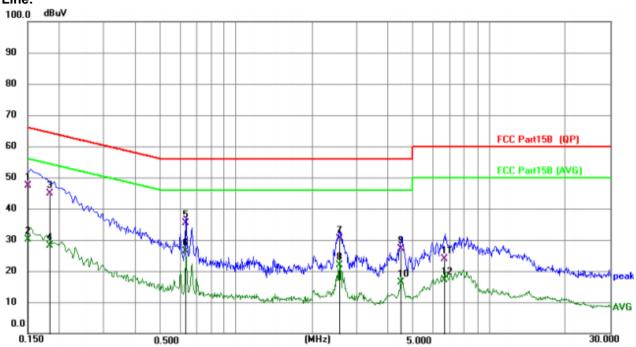
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

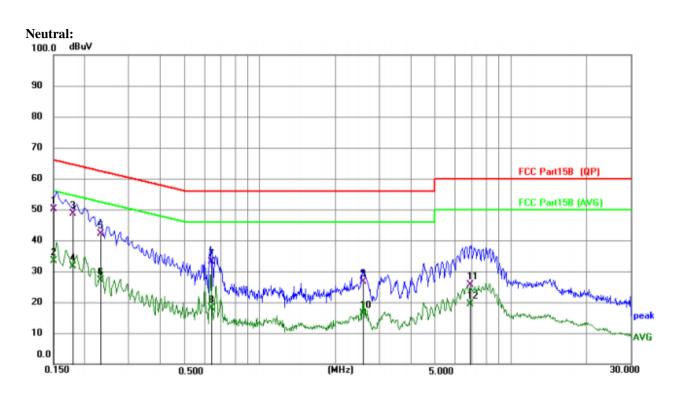
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2024	Aug. 09 2027
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2024	Aug. 09 2027
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2024	Apr. 25 2025
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2024	Apr. 25 2025
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2024	Apr. 25 2025
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2024	Apr. 25 2025
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2024	Apr. 25 2025
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2024	Apr. 25 2025
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2024	May. 20 2025
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2024	May. 19 2025
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2024	Apr. 25 2025
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2024	Apr. 25 2025
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2024	Apr. 25 2025
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2024	Apr. 25 2025
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2024	Apr. 25 2025
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2024	Apr. 25 2025
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2024	May. 22 2025
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2024	May. 22 2025
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2024	Apr. 25 2025
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2024	Apr. 25 2025
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2024	Apr. 25 2025
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2024	Aug. 09 2027
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2024	Apr. 25 2025
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2024	Apr. 25 2025
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2024	Apr. 25 2025
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2024	Apr. 25 2025
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2024	Apr. 25 2025
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2024	Apr. 27 2025
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

6. Test results and Measurement Data

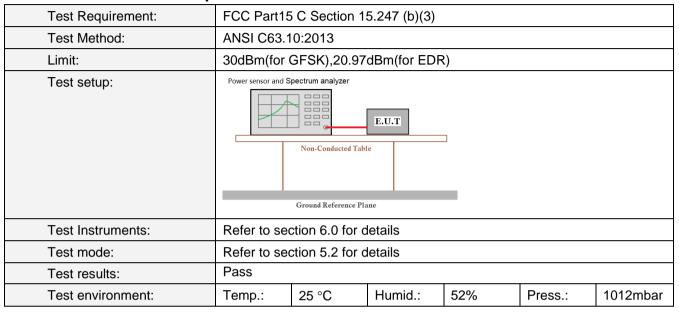
6.1. Conducted Emissions


	<u> </u>						
Test Requirement:	FCC Part15 C Section 15.207	7					
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto					
Limit:	Francisco de la Contractica (NALLE)	Limit	(dBuV)				
	Frequency range (MHz) Quasi-peak Average						
	0.15-0.5	66 to 56*	56 t	o 46*			
	0.5-5	56		46			
	5-30	60		50			
-	* Decreases with the logarith						
Test setup:	Reference Plane	•					
	AUX Equipment E.U.T Remark E.U.T EMI Receiver Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m						
Test procedure:	 The E.U.T and simulators line impedance stabilizatio 50ohm/50uH coupling imp The peripheral devices are LISN that provides a 50oh termination. (Please refer photographs). Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.10 	n network (L.I.S.N.). edance for the meas e also connected to the m/50uH coupling imple to the block diagram checked for maximula the maximum emis d all of the interface of	This provide uring equipme main powedance with of the test some conducted sion, the releables must leables must leable must	es a enent. er through a solution of the solut			
Test Instruments:	Refer to section 6.0 for details	S					
Test mode:	Refer to section 5.2 for details	S					
Test environment:	Temp.: 25 °C Hur	mid.: 52%	Press.:	1012mbar			
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						

Remark: Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:


Measurement data:

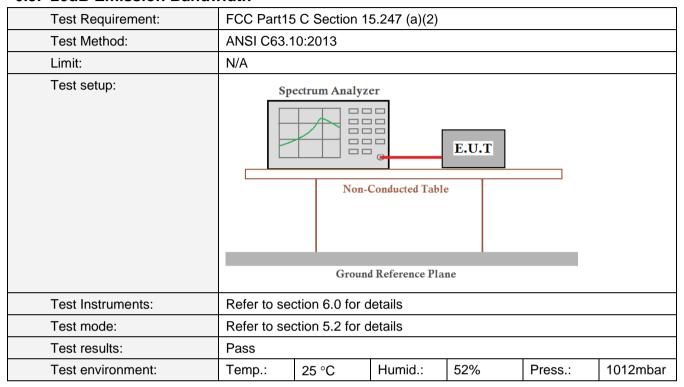
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1	*	0.1514	37.33	10.08	47.41	65.92	-18.51	QP
2		0.1514	20.15	10.08	30.23	55.92	-25.69	AVG
3		0.1839	34.86	10.13	44.99	64.31	-19.32	QP
4		0.1839	17.96	10.13	28.09	54.31	-26.22	AVG
5		0.6322	25.24	10.22	35.46	56.00	-20.54	QP
6		0.6322	16.12	10.22	26.34	46.00	-19.66	AVG
7		2.5665	20.30	10.20	30.50	56.00	-25.50	QP
8		2.5665	11.72	10.20	21.92	46.00	-24.08	AVG
9		4.4670	17.08	10.15	27.23	56.00	-28.77	QP
10		4.4670	6.19	10.15	16.34	46.00	-29.66	AVG
11		6.6622	13.87	10.12	23.99	60.00	-36.01	QP
12		6.6622	7.00	10.12	17.12	50.00	-32.88	AVG


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1505	40.03	10.15	50.18	65.97	-15.79	QP
2	0.1505	23.24	10.15	33.39	55.97	-22.58	AVG
3	0.1802	38.45	10.22	48.67	64.48	-15.81	QP
4	0.1802	21.33	10.22	31.55	54.48	-22.93	AVG
5	0.2322	31.84	10.20	42.04	62.37	-20.33	QP
6	0.2322	17.04	10.20	27.24	52.37	-25.13	AVG
7	0.6416	23.06	10.19	33.25	56.00	-22.75	QP
8	0.6416	7.96	10.19	18.15	46.00	-27.85	AVG
9	2.5765	16.35	10.23	26.58	56.00	-29.42	QP
10	2.5765	6.15	10.23	16.38	46.00	-29.62	AVG
11	6.9188	15.41	10.16	25.57	60.00	-34.43	QP
12	6.9188	9.29	10.16	19.45	50.00	-30.55	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

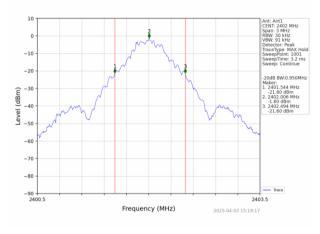
6.2. Conducted Peak Output Power



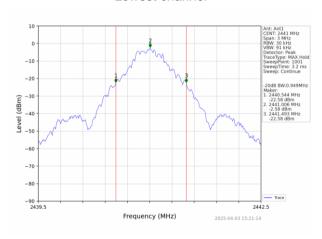
Measurement Data

Mode	TX	Frequency	Packet	Maximum Peak Conduc	ted Output Power (dBm)	Verdict
Mode	Type	(MHz)	Type	ANT1	Limit	verdict
		2402	DH5	0.32	<=30	Pass
GFSK	SISO	2441	DH5	-0.67	<=30	Pass
		2480	DH5	-1.19	<=30	Pass
		2402	2DH5	1.07	<=20.97	Pass
Pi/4DQPSK	SISO	2441	2DH5	0.16	<=20.97	Pass
		2480	2DH5	-0.38	<=20.97	Pass
		2402	3DH5	1.52	<=20.97	Pass
8DPSK	SISO	2441	3DH5	0.57	<=20.97	Pass
		2480	3DH5	0.05	<=20.97	Pass

6.3. 20dB Emission Bandwidth


Measurement Data

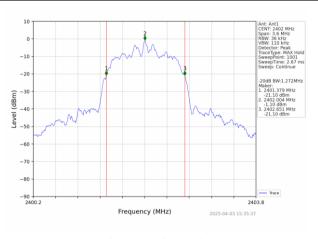
Mode	TX	Frequency	Packet	ANT	20dB Bandy	Verdict	
Mode	Type	(MHz)	Type	ANI	Result	Limit	Verdict
		2402	DH5	1	0.950	/	Pass
GFSK	SISO	2441	DH5	1	0.949	/	Pass
		2480	DH5	1	0.949	/	Pass
		2402	2DH5	1	1.272	/	Pass
Pi/4DQPSK	SISO	2441	2DH5	1	1.272	/	Pass
		2480	2DH5	1	1.274	/	Pass
		2402	3DH5	1	1.289	/	Pass
8DPSK	SISO	2441	3DH5	1	1.291	/	Pass
		2480	3DH5	1	1.292	/	Pass

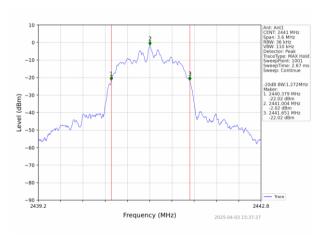


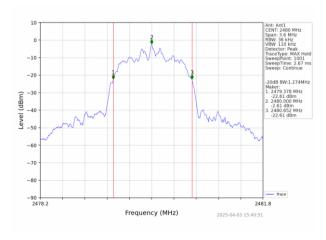
Test plot as follows:

Test mode: GFSK mode

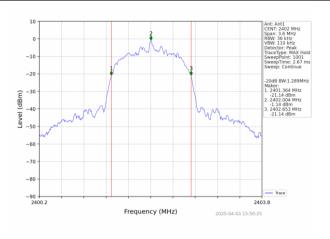
Lowest channel

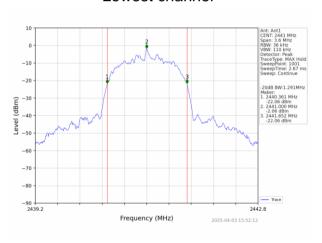

Middle channel

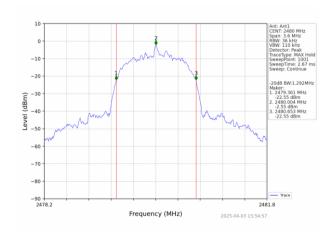

Highest channel


Test mode: $\pi/4$ -DQPSK mode

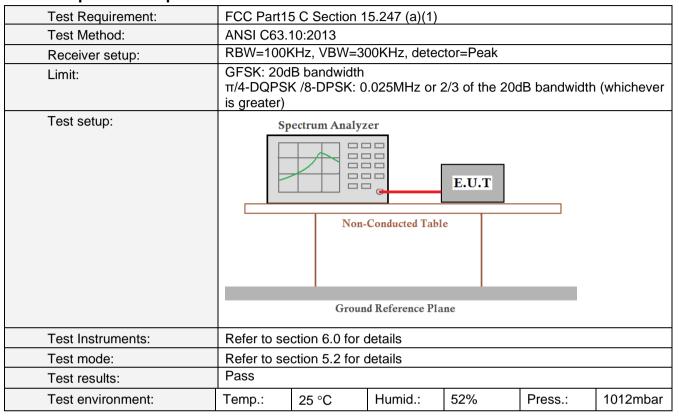
Lowest channel


Middle channel


Highest channel


Test mode: 8-DPSK mode

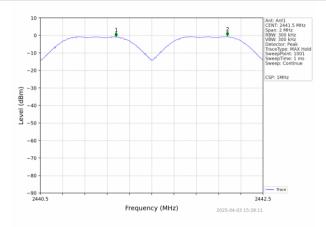
Lowest channel


Middle channel

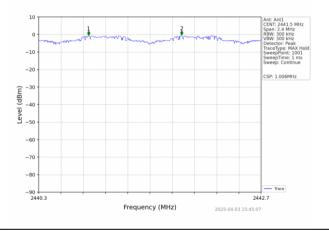
Highest channel

6.4. Frequencies Separation

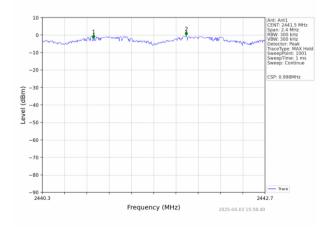
Measurement Data


				Ant1			
Mode	TX	Frequency	Packet	Channel Separation	20dB Bandwidth	Limit	Verdict
iviode	Type	(MHz)	Type	(MHz)	(MHz)	(MHz)	verdict
GFSK	SISO	HOPP	DH5	1.000	0.950	>=0.95	Pass
Pi/4DQPSK	SISO	HOPP	2DH5	1.006	1.274	>=0.849	Pass
8DPSK	SISO	HOPP	3DH5	0.998	1.292	>=0.861	Pass

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



Test plot as follows:

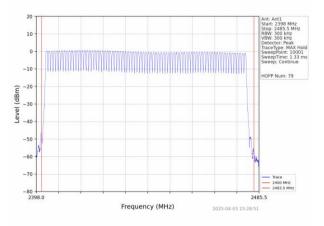

Modulation mode: GFSK

Test mode: π/4-DQPSK

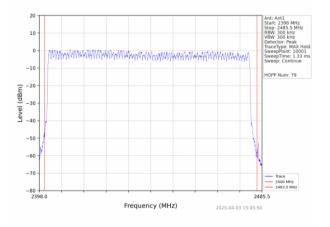
Modulation mode: 8-DPSK

6.5. Hopping Channel Number

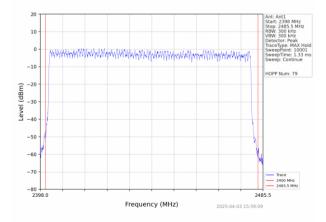
Test Requirement:	FCC Part15	C Section 1	5.247 (a)(1)(i	ii)					
Test Method:	ANSI C63.1	10:2013							
Receiver setup:	RBW=100k Detector=P	Hz, VBW=30 eak	0kHz, Freque	ency range=2	2400MHz-248	33.5MHz,			
Limit:	15 channels	15 channels							
Test setup:	Spe			Z.U.T					
Test Instruments:	Refer to see	ction 6.0 for d	letails	<u> </u>		<u> </u>			
Test mode:	Refer to see	ction 5.2 for d	letails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79		Pass
π/4-DQPSK	79	≥15	Pass
8-DPSK	79		Pass



Test plot as follows:


Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

6.6. Dwell Time

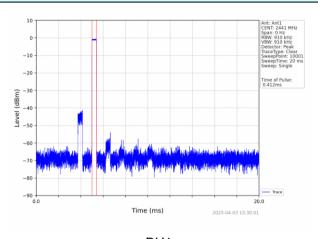
Test Requirement:	FCC Part15	C Section 1	5.247 (a)(1)(iii)					
Test Method:	ANSI C63.1	0:2013							
Receiver setup:	RBW=1MH	z, VBW=1MH	Hz, Span=0H	z, Detector=I	Peak				
Limit:	0.4 Second								
Test setup:	Sp								
Test Instruments:	Refer to see	ction 6.0 for o	details						
Test mode:	Refer to see	ction 5.2 for o	details						
Test results:	Pass	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Measurement Data

Modulation	Packet	Burst time (ms)	Dwell time (ms)	Limit (ms)	Result	
	DH1	0.412	131.84			
GFSK	DH3	1.668	266.88	400	Pass	
	DH5	2.918	311.25			
	2-DH1	0.424	135.68			
π/4DQPSK	2-DH3	1.676	268.16	400	Pass	
	2-DH5	2.920	311.47			
	3-DH1	0.424	135.68			
8DPSK	3-DH3	1.674	267.84	400	Pass	
	3-DH5	2.926	312.11			

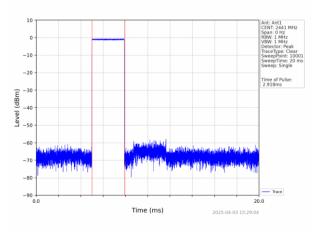
Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

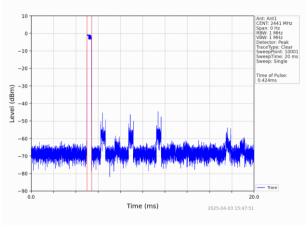
Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1


Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

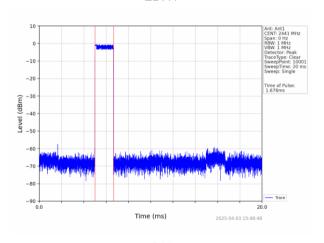
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

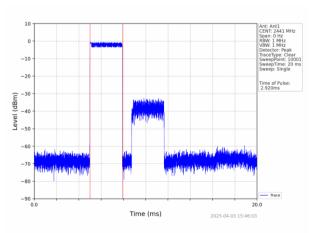
Test plot as follows:


GFSK mode

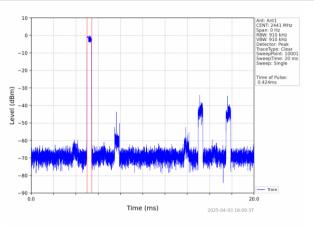


DH3

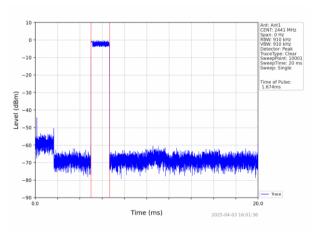


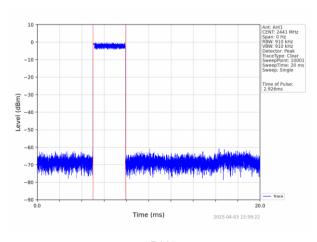

π/4-DQPSK mode

2DH1



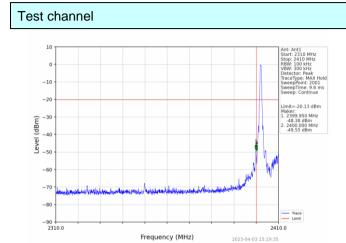
2DH3



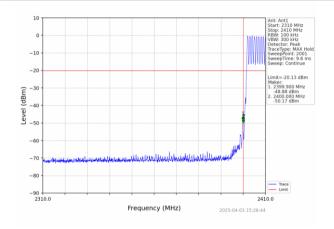

8-DPSK mode

3DH1

3DH3

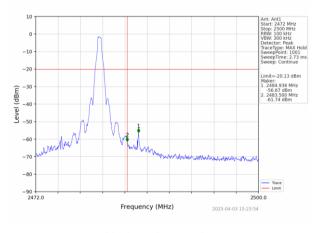

6.7. Band Edge

6.7.1. Conducted Emission Method


·		C Section 1	5.247 (d)							
Test Method:		FCC Part15 C Section 15.247 (d)								
	ANSI C63.10:2013									
Receiver setup:	RBW=100kl	Hz, VBW=30	0kHz, Detect	tor=Peak						
	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.									
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane									
Test Instruments:	Refer to sec	tion 6.0 for c	letails							
Test mode:	Refer to sec	tion 5.2 for c	letails			_				
Test results:	Pass									
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				

Test plot as follows: GFSK Mode:

Lowest channel



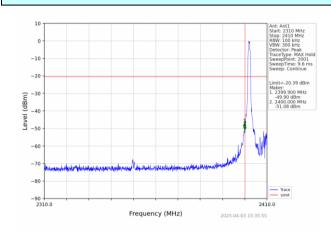
No-hopping mode

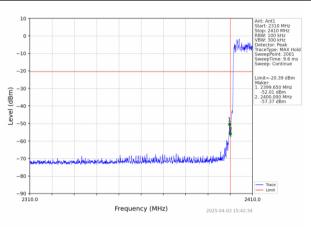
Hopping mode

Test channel:

Highest channel

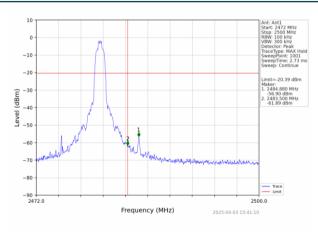
| April April | Start 2472 Mitz Stop: 2500 Mitz Detector: Peak Detector: Peak Detector: Peak Mitseld Receipts Mitseld Stop: 2500 Mitz Detector: Peak Mitseld Sweep Firm: 2.73 ms Sweep Continue Limits - 2.13 dBm mitser: 2.13 dBm mitser: 2.13 dBm mitser: 2.23 dBm 2.23 d

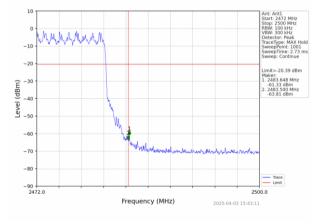

No-hopping mode


Hopping mode

π/4-DQPSK Mode:

Test channel Lowest channel

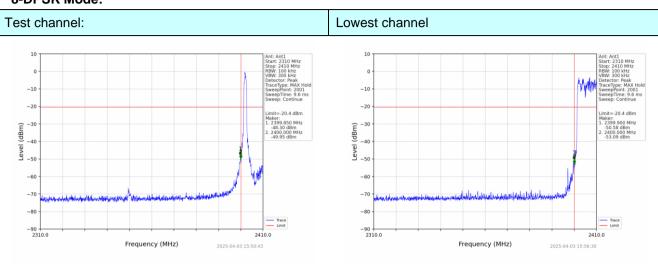



No-hopping mode

Hopping mode

Test channel:

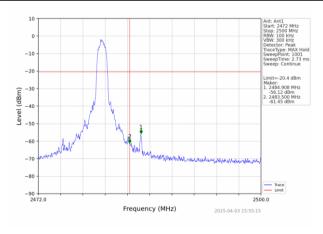
Highest channel



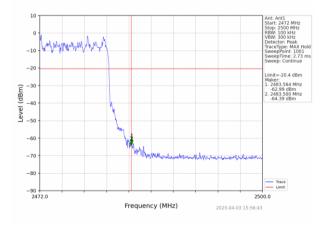
No-hopping mode

Hopping mode

8-DPSK Mode:



No-hopping mode


Hopping mode

Test channel:

Highest channel

Hopping mode

6.7.2. Radiated Emission Method

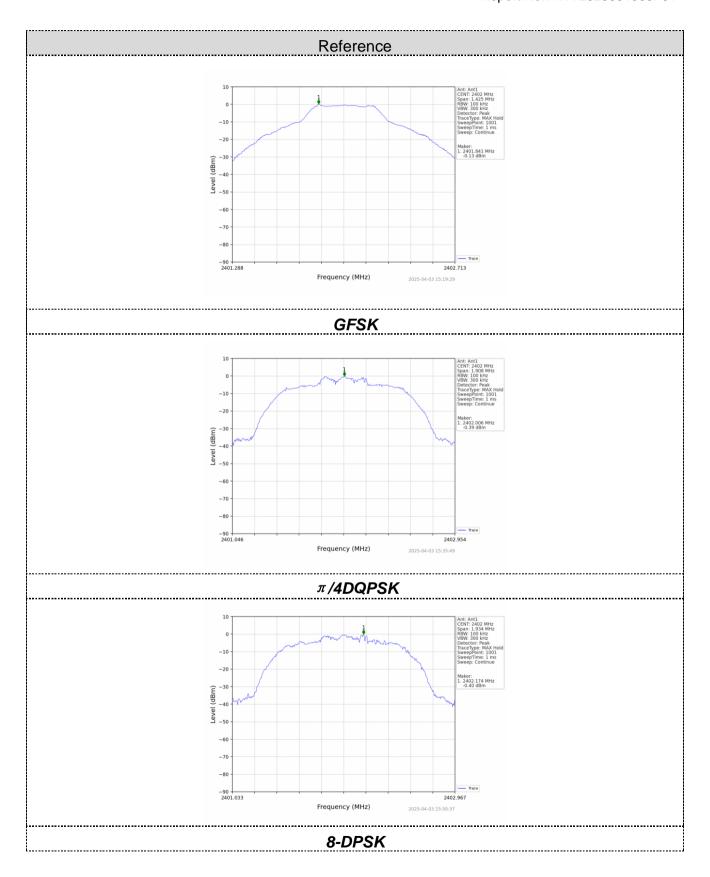
6.7.2. Radiated Emission Method										
Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.1	0:2013								
Test Frequency Range:		estrict bands data was sho		tested, or	nly the wo	orst band's (2	2310MHz to			
Test site:	Measureme	nt Distance:	3m							
Receiver setup:	Frequenc	y Dete	ctor	RBW	VBW	/ Re	mark			
·	Above 1GI	Hz Pea		1MHz 1MHz			k Value ge Value			
Limit:	Fre	equency	L	₋imit (dBu	ıV/m @3m	n) Re	mark			
	Abo	ve 1GHz			1.00 1.00		ge Value k Value			
Test setup:	Turn Table <150cm;	Test Antenna- Tum Table- < 1m 4m > < 150cm > Receiver- Preamplifier- Preamplifier- Tum Table- Receiver- Receiver-								
Test Procedure:	1. The EUT	was placed				ole 1.5 meters	s above the			
	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 									
Test Instruments:	Refer to sec	ction 6.0 for c	letails							
Test mode:	Refer to sec	ction 5.2 for c	letails							
Test results:	Pass									
Test environment:	Temp.:	25 °C	Humi	d.: 52	2%	Press.:	1012mbar			

Measurement Data

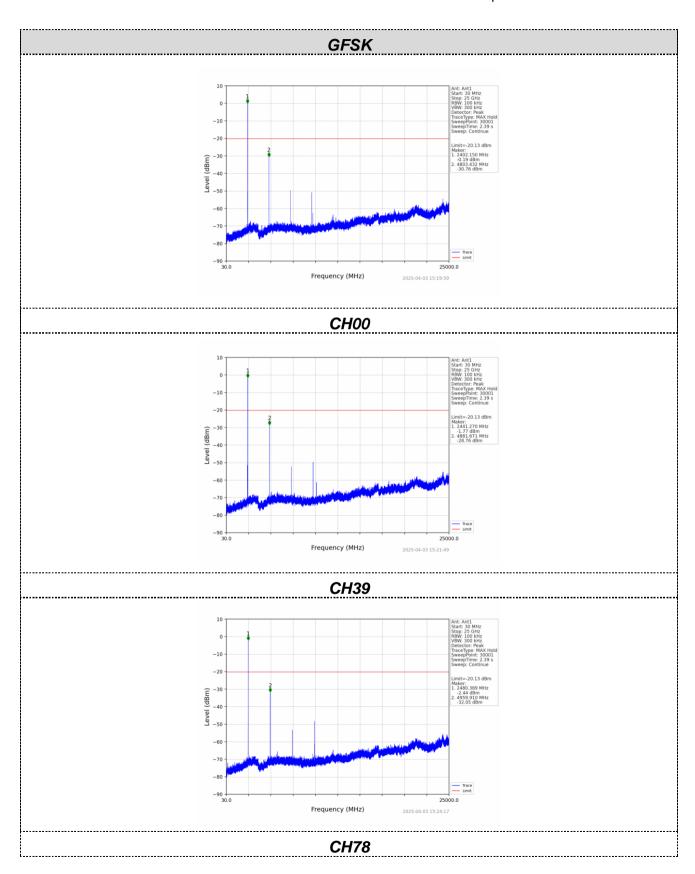
Remark: GFSK, Pi/4 DQPSK,8-DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK

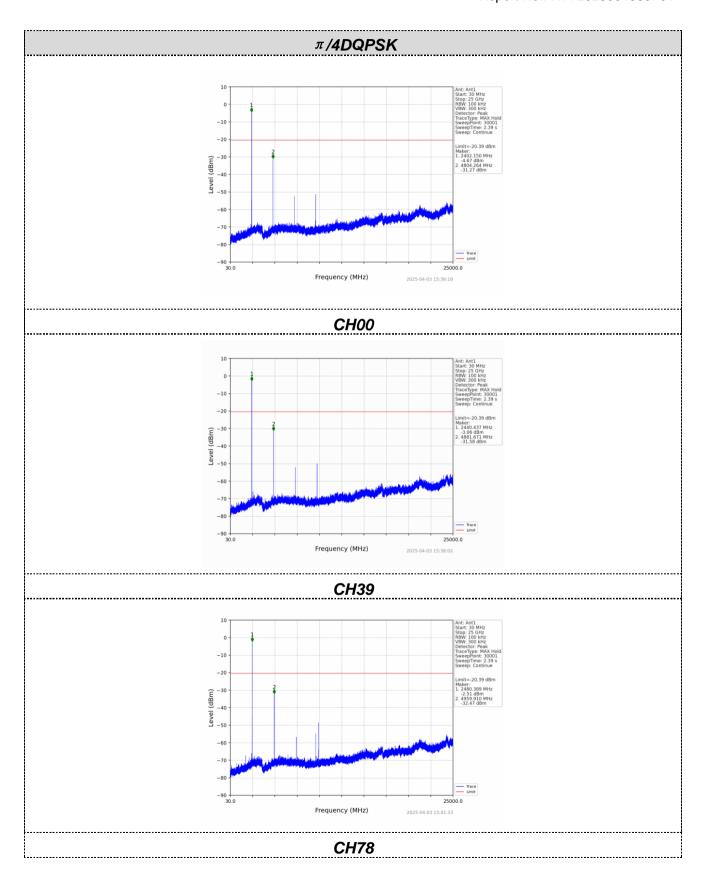
Freque	ncy(MHz)	:	24	02	Pola	arity:	Н	ORIZONTA	\L
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.54	PK	74	14.46	60.93	27.2	4.31	32.9	-1.39
2390.00	45.78	AV	54	8.22	47.17	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	58.70	PK	74	15.30	60.09	27.2	4.31	32.9	-1.39
2390.00	45.92	AV	54	8.08	47.31	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	480 P ol		arity:	н	ORIZONTA	۸L
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.58	PK	74	18.42	56.51	27.4	4.47	32.8	-0.93
2483.50	46.39	AV	54	7.61	47.32	27.4	4.47	32.8	-0.93
Freque	ency(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.60	PK	74	18.40	56.53	27.4	4.47	32.8	-0.93
2483.50	43.32	AV	54	10.68	44.25	27.4	4.47	32.8	-0.93

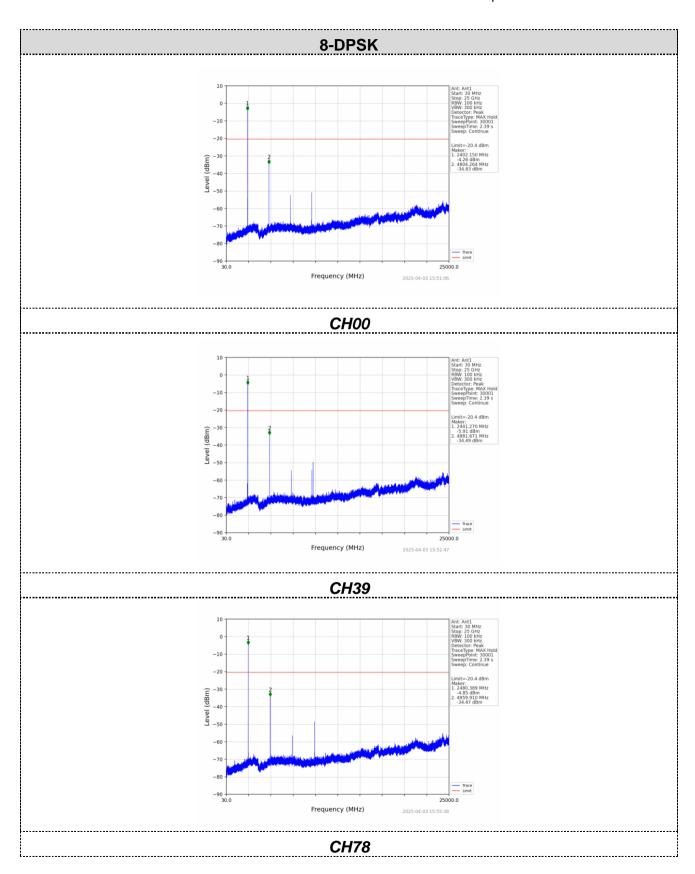


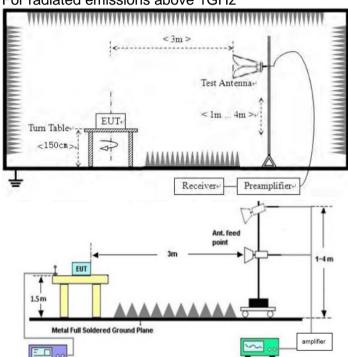
6.8. Spurious Emission


6.8.1. Conducted Emission Method

Test Requirement:	FCC Part15	C Section 1	5.247 (d)					
Test Method:	ANSI C63.1	0:2013						
Limit:	spectrum in is produced the 100 kHz the desired	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Sp	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to see	ction 6.0 for o	details					
Test mode:	Refer to see	ction 5.2 for o	details					
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		






6.8.2. Radiated Emission Method

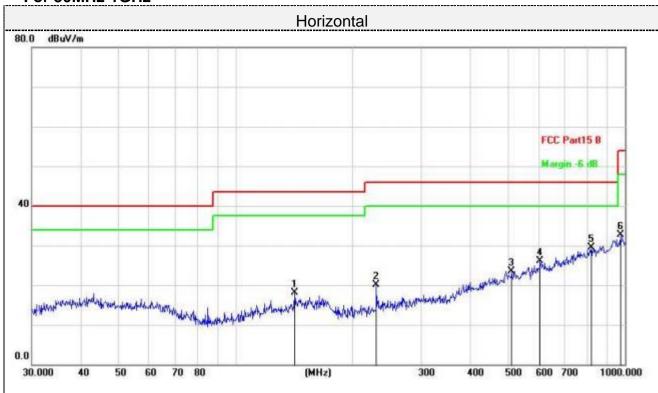
Test Requirement:	FCC Part15 C Section	on 15	5.209							
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement Distar	nce: (3m							
Receiver setup:	Frequency		Detector	RBV	V	VBW	1	Value		
	9KHz-150KHz	Qι	ıasi-peak	200H	Ηz	600H	Z	Quasi-peak		
	150KHz-30MHz	Qι	ıasi-peak	9KH	lz	30KH	Z	Quasi-peak		
	30MHz-1GHz	Qι	ıasi-peak	120K	Hz	300KH	łz	Quasi-peak		
	Above 1GHz		Peak	1M⊦	łz	3MHz	Z	Peak		
	Above 10112		Peak	1MH	łz	10Hz	<u>.</u>	Average		
Limit:	Frequency		Limit (u\	//m)	٧	'alue	N	Measurement Distance		
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP		300m		
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP		30m		
	1.705MHz-30MH	lz	30			QP		30m		
	30MHz-88MHz		100			QP				
	88MHz-216MHz		150			QP				
	216MHz-960MH	Z	200			QP		3m		
	960MHz-1GHz		500		QP			3111		
	Above 1GHz		500		Average					
	Above Toriz		5000		F	Peak				
Test setup:	For radiated emiss	sions	from 9kH	z to 30	МН	Z				
	**********	77777	***********	******	77777	*****				
	Turn Table EUT+ Im Receiver+									

For radiated emissions above 1GHz

Test Procedure:

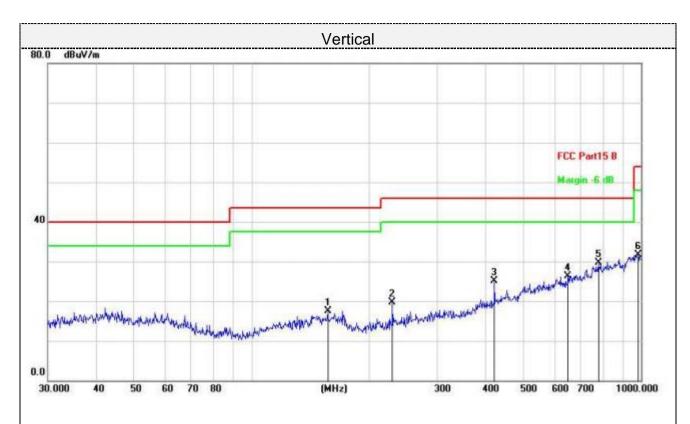
- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

		The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.							
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.								
Test Instruments:	Refer to see	ction 6.0 for o	details						
Test mode:	Refer to see	ction 5.2 for o	details						
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								
Test voltage:	AC 120V, 60Hz								
Test results:	Pass								


Measurement data:

Remarks:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 4. Tested all modes and saved the worst data in DH5 2402MHz as below:


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		141.8262	29.66	-11.65	18.01	43.50	-25.49	peak
2		230.0985	32.63	-12.47	20.16	46.00	-25.84	peak
3		511.8352	28.48	-4.89	23.59	46.00	-22.41	peak
4		605.6592	29.55	-3.40	26.15	46.00	-19.85	peak
5	*	818.8341	28.97	0.51	29.48	46.00	-16.52	peak
6		972.3374	29.25	3.38	32.63	54.00	-21.37	peak

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		157.0074	28.13	-10.59	17.54	43.50	-25.96	peak
2		230.0985	32.25	-12.47	19.78	46.00	-26.22	peak
3		420.5803	32.34	-7.25	25.09	46.00	-20.91	peak
4		649.6597	29.13	-2.87	26.26	46.00	-19.74	peak
5	*	776.8778	29.86	-0.17	29.69	46.00	-16.31	peak
6		982.6200	28.31	3.46	31.77	54.00	-22.23	peak

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK and 8-DPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

Frequency(MHz):			2402		Polarity:		HORIZONTAL			
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	59.67	PK	74	14.33	53.97	31	6.5	31.8	5.7	
4804.00	42.07	AV	54	11.93	36.37	31	6.5	31.8	5.7	
7206.00	52.71	PK	74	21.29	40.06	36	8.15	31.5	12.65	
7206.00	44.81	AV	54	9.19	32.16	36	8.15	31.5	12.65	

Freque	Frequency(MHz):			2402		Polarity:		VERTICAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4804.00	58.98	PK	74	15.02	53.28	31	6.5	31.8	5.7		
4804.00	43.63	AV	54	10.37	37.93	31	6.5	31.8	5.7		
7206.00	52.80	PK	74	21.20	40.15	36	8.15	31.5	12.65		
7206.00	42.74	AV	54	11.26	30.09	36	8.15	31.5	12.65		

Freque	Frequency(MHz):			2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	60.41	PK	74	13.59	54.25	31.2	6.61	31.65	6.16	
4882.00	44.83	AV	54	9.17	38.67	31.2	6.61	31.65	6.16	
7323.00	52.01	PK	74	21.99	39.06	36.2	8.23	31.48	12.95	
7323.00	44.80	AV	54	9.20	31.85	36.2	8.23	31.48	12.95	

Freque	Frequency(MHz):			2441		Polarity:		VERTICAL			
Frequency (MHz)	Emission Level		Limit Margin (dBuV/m) (dB)	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor			
	(dBu	V/m)	(aba v/III)	(GD)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)		
4882.00	61.26	PK	74	12.74	55.10	31.2	6.61	31.65	6.16		
4882.00	43.04	AV	54	10.96	36.88	31.2	6.61	31.65	6.16		
7323.00	54.10	PK	74	19.90	41.15	36.2	8.23	31.48	12.95		
7323.00	43.29	AV	54	10.71	30.34	36.2	8.23	31.48	12.95		

Freque	Frequency(MHz):			2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Le		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)		
4960.00	61.36	PK	74	12.64	54.70	31.4	6.76	31.5	6.66		
4960.00	41.46	AV	54	12.54	34.80	31.4	6.76	31.5	6.66		
7440.00	54.26	PK	74	19.74	40.96	36.4	8.35	31.45	13.3		
7440.00	45.89	AV	54	8.11	32.59	36.4	8.35	31.45	13.3		

Freque	Frequency(MHz):			2480		Polarity:		VERTICAL			
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre-	Correction		
	Frequency		Ü	Value	Factor	Factor	amplifier	Factor			
(MHz)	(dBu	V/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)		
4960.00	63.80	PK	74	10.20	57.14	31.4	6.76	31.5	6.66		
4960.00	42.23	AV	54	11.77	35.57	31.4	6.76	31.5	6.66		
7440.00	54.73	PK	74	19.27	41.43	36.4	8.35	31.45	13.3		
7440.00	45.57	AV	54	8.43	32.27	36.4	8.35	31.45	13.3		

Remark:

⁽¹⁾ Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

⁽²⁾ When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.9. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 1.53 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----