

Address:

Zhou Kui

TEST REPORT

Product Name: Baby Monitor

FCC ID: 2BGQL-BM01-MONITOR

Trademark: Le**Viewlity**

leviewlity

Model Number: BM-01

Prepared For: Shenzhen Shangmei E-Commerce Co., Ltd

Address: Room 621, Building 1, D Area, Huameiju Business Center, Xinhu Road, Baoan

District, Shenzhen, Guangdong, China

Manufacturer: DONGGUAN HDKING SMART TECHNOLOGY CO.,LTD

Address: Room 201, Building 3, No. 47, Shayong Road, Shatou, Chang 'an Town

Prepared By: Shenzhen CTB Testing Technology Co., Ltd.

1&2/F., Building A, No.26, Xinhe Road, Xingiao, Xingiao Street, Bao'an District,

Shenzhen, Guangdong, China

Sample Received Date: Sep. 20, 2024

Sample tested Date: Sep. 20, 2024 to Oct. 10, 2024

Issue Date: Oct. 10, 2024

Report No.: CTB241010014RFX

Test Standards FCC CFR Title 47 Part 15 Subpart C Section 15.247

ANSI C63.10:2013

Test Results PASS

Remark: This is WIFI-below 1G band radio test report.

Compiled by: Reviewed by: Approved by:

Arron Liu

Zhou kui Arron 2iu

Bin Mei / Director

Note: If there is any objection to the inspection results in this report, please submit a written report to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen CTB Testing Technology Co., Ltd. this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client. "*" indicates the testing items were fulfilled by subcontracted lab. "#" indicates the items are not in CNAS accreditation scope.

TABLE OF CONTENT

Test Re	eport Declaration	Page
1.	VERSION	4
2.	TEST SUMMARY	
3.	MEASUREMENT UNCERTAINTY	6
4.	PRODUCT INFORMATION AND TEST SETUP	
4.1	Product Information	7
4.2	3	
4.3	Support Equipment	
4.4	Channel List	8
4.5	Test Mode	8
4.6		
5.	TEST FACILITY AND TEST INSTRUMENT USED	9
5.1	Test Facility	9
5.2		9
6.	AC POWER LINE CONDUCTED EMISSION	12
6.1	Block Diagram Of Test Setup	
6.2		
6.3		
6.4		
7.	RADIATED SPURIOUS EMISSION	
7.1	Block Diagram Of Test Setup	
7.2		
7.3		
7.4		
8.	BAND EDGE AND RF COUNDUCTED SPURIOUS EMISSIONS	
8.1	Block Diagram Of Test Setup	
8.2		
8.3		
8.4		24
9.	COUDUCTED OUTPUT POWER	
9.1	Block Diagram Of Test Setup	
9.2		
9.3		
9.4		
10.	* X * X * X * X * X * X * X * X * X * X	
10.		
10.2		27
10.3		27
10.4		
11.		
11.	• • • • • • • • • • • • • • • • • • • •	
11.2	2 Limit	30

Shenzhen CTB Testing Technology Co															
		-							chnolog						
		11.4													
		12.													
			EU	T TES	T SET	UP PH	HOTO	SRAPI	HS						
			(NO	TE: N/A	MEAN	SNOT	APPLIC	ABLE)							

Chr. Chr. Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 3 of 35

CEB

c's B

CFP.

CRIP CRIP

Cha

CEB C

C^{r, to}

CEB

1. VERSION

Report No.	Issue Date	Description	Approved
CTB241010014RFX	Oct. 10, 2024	Original	Valid

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 4 of 35

2. TEST SUMMARY

The Product has been tested according to the following specifications:

Test Item	Test Requirement	Test method	Result
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Band edge and RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)/15.205(a)	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D05v02	PASS
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (b)	(A C)	PASS
RF Exposure Evaluation	47 CFR Part 15 Subpart C Section 15.247 (i)/1.1310/2.1091	KDB447498D01v06	PASS

Remark:

Test according to ANSI C63.10-2013.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 5 of 35

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item C C C C	Uncertainty
Occupancy bandwidth	U=±54.3Hz
Conducted output power Above 1G	U=±1.0dB
Conducted output power below 1G	U=±0.9dB
Power Spectral Density , Conduction	U=±1.0dB
Conduction spurious emissions	U=±2.8dB
Out of band emission	U=±54Hz
3m camber Radiated spurious emission(9KHz-30MHz)	U=±4.8dB
3m camber Radiated spurious emission(30MHz-1GHz)	U=±4.3dB
3m chamber Radiated spurious emission(1GHz-18GHz)	U=±4.5dB
3m chamber Radiated spurious emission(18GHz-40GHz)	U=±3.4dB
humidity uncertainty	U=±5.3%
Temperature uncertainty	U=±0.59°C
Supply voltages	U=±3%
Time O O O O	U=±5%

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 6 of 35

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model(s): BM-01

Model Description: N/A

Wi-Fi Specification: IEEE 802.11 b

Hardware Version: V1.0

Software Version: V1.0

Operation Frequency: IEEE 802.11 b 906-926MHz/ 6 channel

Max. RF output power: 7.77dBm

Type of Modulation: OFDM

Antenna installation: External antenna

Antenna Gain: 1.81dBi

Ratings: Input:5V=2A

DC 3.7V by battery

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

	Item	Equipment	Mfr/Brand	Model/TypeNo.	SeriesNo.	Note
4	1	Adapter	JIYIN	JY-05100C	N/A	AE

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 7 of 35

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
40-1	906	2	910	3	914	4	918
5	922	6	926	1	4. 4.	- S	4. 4.

4.5 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting(802.11b)	906MHz	918MHz	926MHz

NOTE: Dutycycle>98%.

Test mode	Rate
802.11b	MCS10

4.6 Test Environment

Humidity(%):	54
Atmospheric Pressure(kPa):	101
Normal Voltage(AC):	120V
Normal Temperature(°C)	23
Low Temperature(°C)	
High Temperature(°C)	50

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 8 of 35

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at 1&2F., Building A, No. 26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

No.	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Calibrated until
1	Spectrum Analyzer	Agilent	N9020A	MY52090073	A.14.16	2025/6/28
2	Power Sensor	Agilent	U2021XA	MY56120032	010	2025/6/28
3	Power Sensor	Agilent	U2021XA	MY56120034	()	2025/6/28
4	Communication test set	R&S	CMW500	108058	V3.5.80	2025/6/28
5	Spectrum Analyzer	KEYSIGHT	N9020A	MY51289897	A.14.16	2025/6/28
6	Signal Generator	Agilent	N5181A	MY50140365	A.01.60	2025/6/28
7	Vector signal generator	Agilent	N5182A	MY47420195	A.01.87	2025/6/28
8	Communication test set	Agilent	E5515C	MY50102567	B.19.07 (E1962B)	2025/6/28
9	2.4 GHz Filter	Shenxiang	MSF2400-24 83.5MS-1154	20181015001		2025/6/30
10	5 GHz Filter	Shenxiang	MSF5150-58 50MS-1155	20181015001	1 ch	2025/6/30
11	Filter	Xingbo	XBLBQ-DZA 120	190821-1-1		2025/6/30
12	BT&WI-FI Automatic test software	Micowave	MTS8310	Ver. 2.0.0.0	A SP S	57 5
13	Rohde & Schwarz SFU Broadcast Test System	R&S	SFU	101017	♦ 10 €	2025/6/28
14	Temperature humidity chamber	Hongjing	TH-80CH	DG-15174		2025/6/28
15	234G Automatic test software	Micowave	MTS8200	Ver. 2.0.0.0		
16	966 chamber	C.R.T.	966	1	Y 51 5	2027/6/21
17	Receiver	R&S	ESPI	100362	RF_ATTEN_7 (104489/003)	2025/6/28
18	Amplifier	HP	8447E	2945A02747		2025/6/28
19	Amplifier	Agilent	8449B	3008A01838	♦ 10	2025/6/28
20	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869		2025/6/28
21	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA9120D	01911		2025/6/28

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 9 of 35

CTB

Shenzhen CTB Testing Technology Co., Ltd. Report No.: CTB241010014RFX

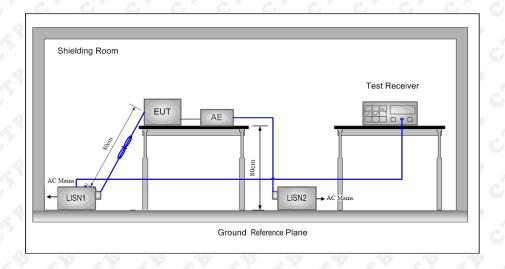
22	EMI test software	Fala	EZ-EMC	FA-03A2 RE		6716
23	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-224		2025/6/28
24	loop antenna	ZHINAN	ZN30900A	GTS534	<u></u>	1
25	40G Horn antenna	A/H/System	SAS-574	588		2025/6/28
26	Amplifier	AEROFLEX	Aeroflex	097	<u> </u>	2025/6/28
27	Power Metter	KEYSIGHT	N1912AP	N/A	A.05.00	2025/6/28

		Continu	uous disturband	ce		
No.	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Calibrated until
1	843 Shield Room	C/ R/ T	843	1		2027/6/21
2	AMN	ROHDE&SCHWARZ	ESH3-Z5	831551852	CA 1 CA	2025/6/30
3	Pulse limiter	ROHDE&SCHWARZ	ESH3Z2	357881052	7	2025/6/28
4	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100428	V4.42.SP3	2025/6/30
5	Coaxial cable	ZDECL	Z302S	18091904	\$ 1 \$	2025/6/30
6	ISN	Schwarzbeck	NTFM8158	183		2025/6/30
7	Voltage sensor	Schwarzbeck	TK 9420	01189	A 160	2024/11/16
8	EZ-EMC	Frad	EMC-con3A1.1	7	9	9
9	Current Probe	FCC	F-52B	199453	15	2025/5/27
10	Communication test set	R&S	CMW500	108058	B.19.07 (E1962B)	2025/6/28
11	Communication test set	Agilent	E5515C	MY50102567	V3.5.80	2025/6/28

		Radiated	d emission(No.	2 Chamber)		
No.	Equipment	Manufacturer	Model No.	Serial No.	Firmware version	Calibrated until
1	966 Chamber	C/ R/ T	966	3 13	\$ A &	2026/11/14
2	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA 9120 D	01911	0,0	2026/7/07
3	Broadband Antenna	Schwarzbeck	VULB 9168	1471	~ ~ /	2025/7/06
4	Amplifier	Agilent	8449B	3008A01838	\$ 15 S	2025/6/30
5 (Preamplifier	Schwarzbeck	BBV 9743 B	00500	616	2025/5/23
6	EMI TEST RECEIVER	R&S	ESCI7	100861	TO AP	2024/11/27
7	Spectrum Analyzer	KEYSIGHT	N9020A	MY51289897	A.14.16	2025/6/28
8	EMI test software	Farad	EZ-EMC	1	Ver. FARAD-3A1+	1
9	Coaxial cable	Rosenberg	8m	8 18	& 4 &	2024/11/27
10	Coaxial cable	Times	2m	010	67/67	2024/11/27
11	Coaxial cable	Times	2m	3 13	TO A	2024/11/27

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 10 of 35

Shenzhen CTB Testing Technology Co., Ltd. Report No.: CTB241010014RFX


12	Coaxial cable	Times	1m		7 57	2024/11/27
13	loop antenna	Schwarzbeck	FMZB 1519B	1519B-224	\$ 6 \$	2025/6/29
14	Communication test set	R&S	CMW500	108058	B.19.07 (E1962B)	2025/6/28
15	Communication test set	Agilent	E5515C	MY50102567	V3.5.80	2025/6/28

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 11 of 35

6. AC POWER LINE CONDUCTED EMISSION

6.1 Block Diagram Of Test Setup

6.2 Limit

requency (MHz)	Conducted limit (dBµV)	
	Quasi-peak	Average
15 - 0.5	66 to 56 ^{Note 1}	56 to 46 ^{Note 1}
5 – 5	56	46
∙ 30	60	50

6.3 Test procedure

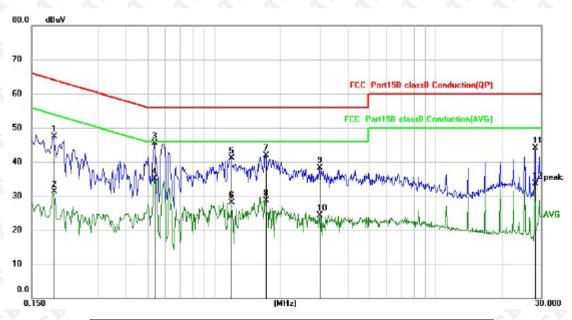
- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 12 of 35

^{*} Decreasing linearly with the logarithm of the frequency

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 13 of 35



6.4 Test Result

Test Specification: Line

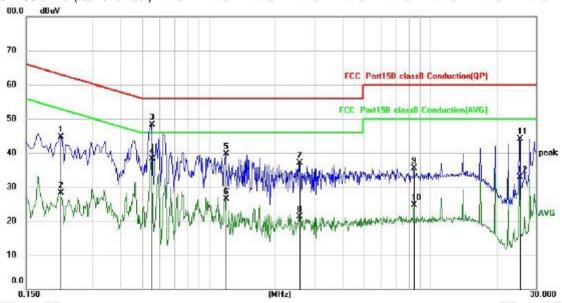
AC 120V 60Hz

the worst: 802.11b (low channel)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1900	36.69	10.75	47.44	64.04	-16.60	QP
2		0.1900	20.49	10.75	31.24	54.04	-22.80	AVG
3	*	0.5380	35.06	10.54	45.60	56.00	-10.40	QP
4		0.5380	24.48	10.54	35.02	46.00	-10.98	AVG
5		1.1940	30.03	11.07	41.10	56.00	-14.90	QP
6		1.1940	17.04	11.07	28.11	46.00	-17.89	AVG
7		1.7100	30.53	11.40	41.93	56.00	-14.07	QP
8		1.7100	17.39	11.40	28.79	46.00	-17.21	AVG
9		2.9980	26.59	11.80	38.39	56.00	-17.61	QP
10		2.9980	12.51	11.80	24.31	46.00	-21.69	AVG
11		28.0980	29.87	14.31	44.18	60.00	-15.82	QP
12		28.0980	19.32	14.31	33.63	50.00	-16.37	AVG

Remark:

Factor = Cable loss + LISN factor, Margin = Measurement - Limit


Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 14 of 35

Test Specification: Neutral

AC 120V 60Hz

the worst: 802.11b (low channel)

Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
MHz	dBuV	dB	dBuV	dBuV	dB	Detector
0.2140	34.07	10.70	44.77	63.05	-18.28	QP
0.2140	17.61	10.70	28.31	53.05	-24.74	AVG
0.5540	37.73	10.56	48.29	56.00	-7.71	QP
0.5540	27.72	10.56	38.28	46.00	-7.72	AVG
1.1940	28.54	11.07	39.61	56.00	-16.39	QP
1.1940	15.34	11.07	26.41	46.00	-19.59	AVG
2.5540	25.43	11.70	37.13	56.00	-18.87	QP
2.5540	9.60	11.70	21.30	46.00	-24.70	AVG
8.4059	22.43	13.08	35.51	60.00	-24.49	QP
8.4059	11.56	13.08	24.64	50.00	-25.36	AVG
25.2420	30.15	14.04	44.19	60.00	-15.81	QP
25.2420	18.80	14.04	32.84	50.00	-17.16	AVG
	MHz 0.2140 0.5540 0.5540 1.1940 1.1940 2.5540 2.5540 8.4059 8.4059	MHz dBuV 0.2140 34.07 0.2140 17.61 0.5540 37.73 0.5540 27.72 1.1940 28.54 1.1940 15.34 2.5540 25.43 2.5540 9.60 8.4059 22.43 8.4059 11.56 25.2420 30.15	MHz dBuV dB 0.2140 34.07 10.70 0.2140 17.61 10.70 0.5540 37.73 10.56 0.5540 27.72 10.56 1.1940 28.54 11.07 1.1940 15.34 11.07 2.5540 25.43 11.70 2.5540 9.60 11.70 8.4059 22.43 13.08 8.4059 11.56 13.08 25.2420 30.15 14.04	MHz dBuV dB dBuV 0.2140 34.07 10.70 44.77 0.2140 17.61 10.70 28.31 0.5540 37.73 10.56 48.29 0.5540 27.72 10.56 38.28 1.1940 28.54 11.07 39.61 1.1940 15.34 11.07 26.41 2.5540 25.43 11.70 37.13 2.5540 9.60 11.70 21.30 8.4059 22.43 13.08 35.51 8.4059 11.56 13.08 24.64 25.2420 30.15 14.04 44.19	MHz dBuV dB dBuV dBuV 0.2140 34.07 10.70 44.77 63.05 0.2140 17.61 10.70 28.31 53.05 0.5540 37.73 10.56 48.29 56.00 0.5540 27.72 10.56 38.28 46.00 1.1940 28.54 11.07 39.61 56.00 1.1940 15.34 11.07 26.41 46.00 2.5540 25.43 11.70 37.13 56.00 2.5540 9.60 11.70 21.30 46.00 8.4059 22.43 13.08 35.51 60.00 8.4059 11.56 13.08 24.64 50.00 25.2420 30.15 14.04 44.19 60.00	MHz dBuV dB dBuV dBuV dB 0.2140 34.07 10.70 44.77 63.05 -18.28 0.2140 17.61 10.70 28.31 53.05 -24.74 0.5540 37.73 10.56 48.29 56.00 -7.71 0.5540 27.72 10.56 38.28 46.00 -7.72 1.1940 28.54 11.07 39.61 56.00 -16.39 1.1940 15.34 11.07 26.41 46.00 -19.59 2.5540 25.43 11.70 37.13 56.00 -18.87 2.5540 9.60 11.70 21.30 46.00 -24.70 8.4059 22.43 13.08 35.51 60.00 -24.49 8.4059 11.56 13.08 24.64 50.00 -25.36 25.2420 30.15 14.04 44.19 60.00 -15.81

Remark:

Factor = Cable loss + LISN factor, Margin = Measurement - Limit

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 15 of 35

7. RADIATED SPURIOUS EMISSION

7.1 Block Diagram Of Test Setup

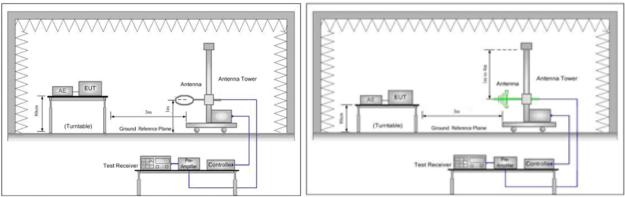


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

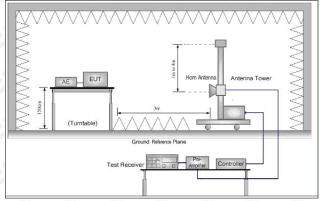


Figure 3. Above 1GHz

7.2 Limit

Spurious Emissions:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	2 (-9)	40 -40	300
0.490MHz-1.705MHz	24000/F(kHz)	0'- 0	0.0	30
1.705MHz-30MHz	30	7 2 0	9 .0	30
30MHz-88MHz	100	40.0	Quasi-peak	3 C
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 16 of 35

7.3 Test procedure

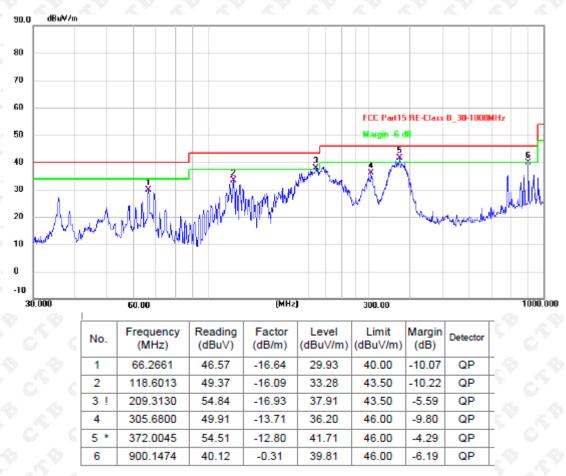
Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f.If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g.Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h.Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i.Repeat above procedures until all frequencies measured was complete.

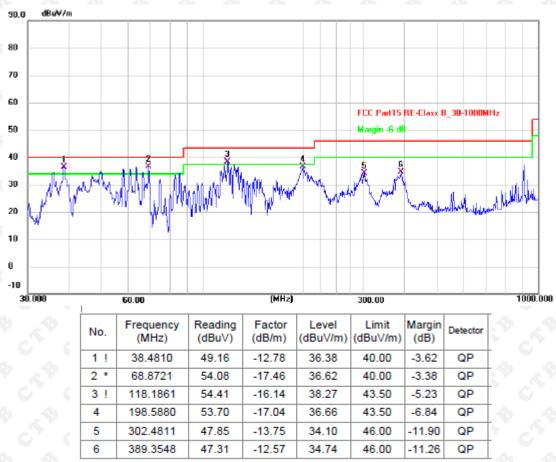
Receiver set:


Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30KHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30KHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300KHz	Quasi-peak
Ab 4011-	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 17 of 35

7.4 Test Result

Below 1GHz Test Results: Antenna polarity: H



Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Limit – Level

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 18 of 35

Antenna polarity: V

Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Limit - Level

- The margin of 9K-30MH measurement exceeds 20dB, so the test chart is not included. Test Mode: 802.11b low channel (the worst)
- All modes have been tested, and the test results show that b-mode data is the worst, only b-mode test chart is put. Test Mode: 802.11b low channel (the worst)
- 3. After pre-scanning three directions, the report recorded the worst case Test Mode: 802.11b low channel (the worst)

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 19 of 35

Above 1 GHz Test Results:

LOW CH1 (802.11b Mode)/906

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
1812	64.58	-3.64	60.94	74	-13.06	peak
2718	49.76	-3.64	46.12	54	-7.88	AVG
1812	57.78	-0.95	56.83	74	-17.17	peak
2718	46.25	-0.95	45.30	54	-8.70	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission level = Reading Result + Factor, Margin = Emission level - Limits

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
1812	64.86	-3.64	61.22	74	-12.78	peak
2718	46.85	-3.64	43.21	54	-10.79	AVG
1812	57.11	-0.95	56.16	74	-17.84	peak
2718	45.08	-0.95	44.13	54	-9.87	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission level = Reading Result + Factor, Margin = Emission level - Limits

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 20 of 35

MID CH6 (802.11b Mode)/918

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
1836	64.75	-3.51	61.24	74	-12.76	peak
2754	48.00	-3.51	44.49	54	-9.51	AVG
1836	60.31	-0.82	59.49	74	-14.51	peak
2754	43.14	-0.82	42.32	54	-11.68	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission level = Reading Result + Factor, Margin = Emission level - Limits

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
1836	64.06	-3.51	60.55	74	-13.45	peak
2754	48.14	-3.51	44.63	54	-9.37	AVG
1836	60.39	-0.82	59.57	74	-14.43	peak
2754	43.00	-0.82	42.18	54	-11.82	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission level = Reading Result + Factor, Margin = Emission level - Limits

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 21 of 35

HIGH CH11 (802.11b Mode)/926

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
1852	63.61	-3.43	60.18	74	-13.82	peak
2778	46.52	-3.43	43.09	54	-10.91	AVG
1852	57.92	-0.75	57.17	74	-16.83	peak
2778	44.99	-0.75	44.24	54	-9.76	AVG

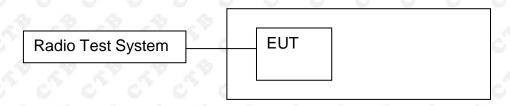
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission level = Reading Result + Factor, Margin = Emission level - Limits

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
1852	63.35	-3.43	59.92	74	-14.08	peak
2778	46.81	-3.43	43.38	54	-10.62	AVG
1852	56.97	-0.75	56.22	74	-17.78	peak
2778	42.75	-0.75	42.00	54	-12.00	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission level = Reading Result + Factor, Margin = Emission level - Limits

Remark:


- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (4) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 22 of 35

8. BAND EDGE AND RF COUNDUCTED SPURIOUS EMISSIONS

8.1 Block Diagram Of Test Setup

8.2 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

8.3 Test procedure

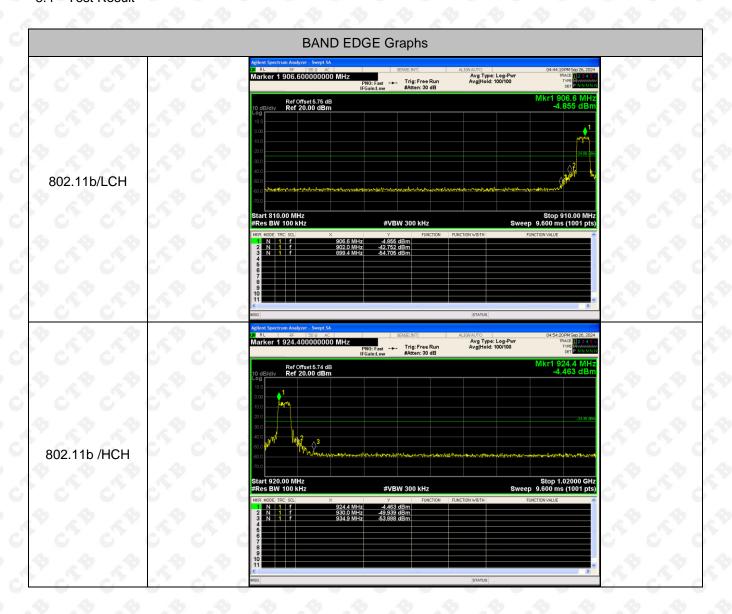
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer:

Blow 30MHz:

RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

Above 30MHz:


RBW = 100KHz, VBW = 300KHz, Sweep = auto

Detector function = peak, Trace = max hold


Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 23 of 35

8.4 Test Result

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 25 of 35

9. COUDUCTED OUTPUT POWER

9.1 Block Diagram Of Test Setup

EUT	POWER METER	1
-----	-------------	---

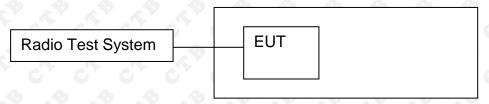
92 Limit

	FCC P	art15 (15.247) , Subpa	art C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Maximum Conducted Output Power	1 watt or 30dBm	902-928	PASS

9.3 Test procedure

1. The EUT was directly connected to the Power meter

9.4 Test Result


Mode	Channel.	Maximum Peak Output Power [dBm]	Limit [dBm]	Verdict
0 0 0	LCH	7.77	30	PASS
802.11b	MCH	7.424	30	PASS
0 0 0	HCH	7.434	30	PASS

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 26 of 35

10. 6DB OCCUPIED BANDWIDTH

10.1 Block Diagram Of Test Setup

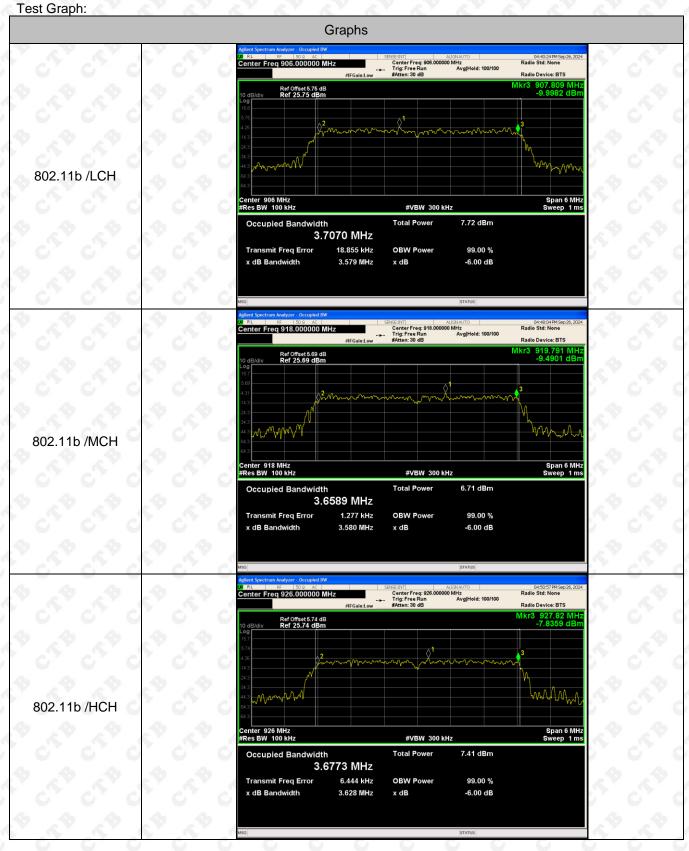
10.2 Limit

FCC Part15 (15.247), Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	902-928	PASS

10.3 Test procedure

- 1. Rem1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 27 of 35



10.4 Test Result

Test Mode	Frequency	6dB Bandwidth (MHz)	Limit(kHz)	Result
	LCH	3.579	500	PASS
802.11b	MCH	3.58	500	PASS
4 4 4	НСН	3.628	500	PASS

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 28 of 35

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 29 of 35

11. POWER SPECTRAL DENSITY

11.1 Block Diagram Of Test Setup

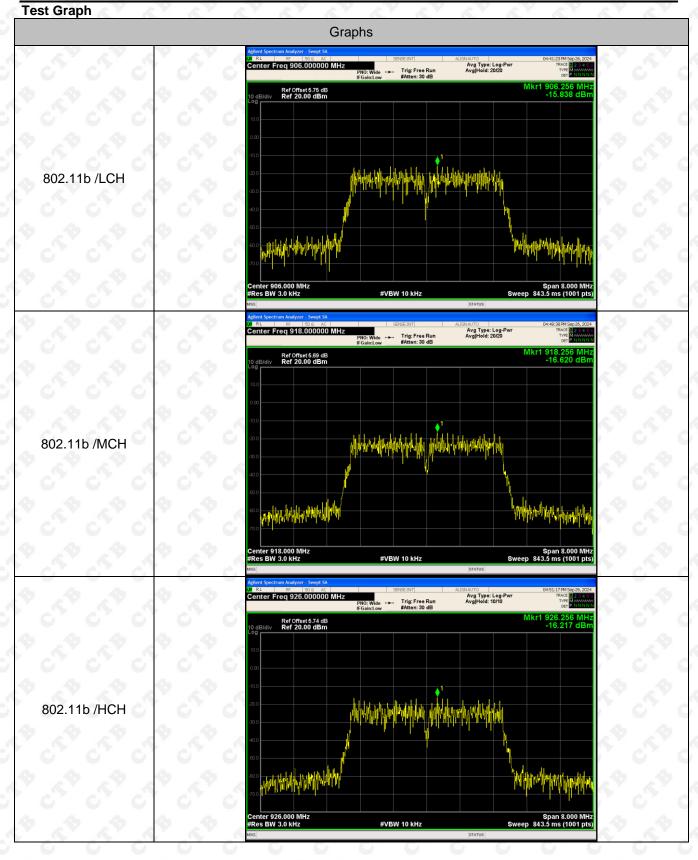
11.2 Limit

	FCC Part15 (15.	247) , Subpart C		
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS

11.3 Test procedure

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = PEAK.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 30 of 35



11.4 Test Result

Mode	Channel.	Power Spectral Density [dBm /3KHz]	Limit(8 dBm (in any 3KHz))	Verdict
A CLA	LCH	-15.838	8	PASS
802.11b	MCH	-16.62	8	PASS
6 6	НСН	-16.217	8	PASS

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 31 of 35

12. ANTENNA REQUIREMENT

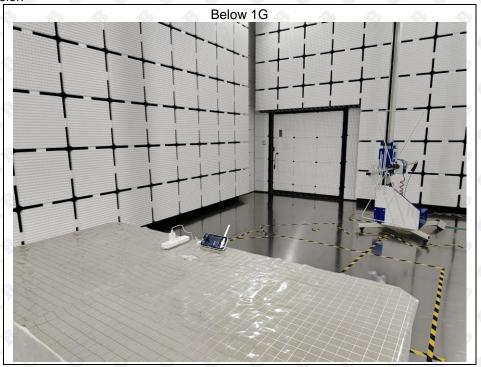
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:


The antenna is External antenna and no consideration of replacement. The best case gain of the antenna is 1.81dBi

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 33 of 35

13. EUT TEST SETUP PHOTOGRAPHS

Radiated Emission

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 34 of 35

Conducted Emission

**** END OF REPORT ****

Report Tel: 4008-707-283 Web: http://www.ctb-lab.net Page 35 of 35