

FCC ID - TEST REPORT

Report Number : **709502403281-00A** Date of Issue: July 1, 2024

Model : Joy6.0BL, Joy6.0BS, Joy6.0FS, Joy6.0FL, Joy3.0BL, Joy3.0BS, Joy3.0FS, Joy3.0FL

Product Type : Electric Outboard Motor

Applicant : Suzhou Parsun Power Technology Co., Ltd.

Address : 3rd Floor, BLD 2, Block 1, District 3. No. 20 Datong Road, SND, Suzhou, JiangSu CHINA

Manufacturer : Suzhou Parsun Power Technology Co., Ltd.

Address : 3rd Floor, BLD 2, Block 1, District 3. No. 20 Datong Road, SND, Suzhou, JiangSu CHINA

Factory : Suzhou Parsun Power Technology Co., Ltd.
Suzhou Parsun Power Machine Co., Ltd.

Address : 3rd Floor, BLD 2, Block 1, District 3. No. 20 Datong Road, SND, 215129 Suzhou, Jiangsu, PEOPLE'S REPUBLIC OF CHINA
No. 567 Liangang Road, Xushuguan Development Zone, 215129 Suzhou, Jiangsu, PEOPLE'S REPUBLIC OF CHINA

Test Result : **Positive** **Negative**

Total pages including Appendices : 34

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	Table of Contents	2
2	Details about the Test Laboratory	3
3	Description of the Equipment under Test	4
4	Summary of Test Standards	5
5	Summary of Test Results	6
6	General Remarks	7
7	Test Setups	8
8	Systems test configuration	9
9	Technical Requirement	10
9.1	Conducted peak output power	10
9.2	6dB Occupied Bandwidth	12
9.3	Power spectral density	14
9.4	Spurious RF conducted emissions	16
9.5	Band edge	20
9.6	Spurious radiated emissions for transmitter	23
10	Test Equipment List	31
11	System Measurement Uncertainty	32
12	Photographs of Test Set-ups	33
13	Photographs of EUT	34

2 Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch
No.16 Lane, 1951 Du Hui Road,
Shanghai 201108,
P.R. China

Test Firm FCC 820234
Registration
Number:

Designation
number: CN1183

Telephone: +86 21 6141 0123
Fax: +86 21 6140 8600

3 Description of the Equipment under Test

Description of the Equipment Under Test

Product: Electric Outboard Motor
 Model No.: Joy6.0BL, Joy6.0BS, Joy6.0FS, Joy6.0FL, Joy3.0BL,
 Joy3.0BS, Joy3.0FS, Joy3.0FL
 FCC ID: 2BGKI-JOY60
 Rating: DC 48V
 RF Transmission Frequency: Bluetooth LE: 2402~2480MHz
 No. of Operated Channel: Bluetooth LE: 40
 Modulation: GFSK
 Channel list:

Bluetooth Low Energy							
Ch	Fre(MHz)	Ch	Fre(MHz)	Ch	Fre(MHz)	Ch	Fre(MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

Antenna Type: PCB Antenna
 Antenna Gain: 1.82 dBi (Max.)
 Description of the EUT: The EUT is an Electric Outboard Motor supports BT functions: 2402MHz - 2480MHz for BLE (only support 1Mbps) and GNSS receiver.

The sample's mentioned in this report is/are submitted/ supplied/ manufactured by client. The laboratory therefore assumes no responsibility for accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.

4 Summary of Test Standards

Test Standards	
FCC Part 15 Subpart C 10-1-2023 Edition	PART 15 - RADIO FREQUENCY DEVICES Subpart C - Intentional Radiators

All the test methods were according to KDB 558074 D01 15.247 Meas Guidance v05r02 and ANSI C63.10 (2013).

5 Summary of Test Results

Technical Requirements						
FCC Part 15 Subpart C		Pages	Test Site	Test Result		
Test Condition				Pass	Fail	N/A
§15.207	Conducted emission AC power port*	---	---	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
§15.247 (b) (3)	Conducted peak output power	10-11	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
§15.247(a)(1)	20dB Bandwidth	---	---	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
§15.247(a)(1)	Carrier frequency separation	---	---	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
§15.247(a)(1)(iii)	Number of hopping frequencies	---	---	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
§15.247(a)(1)(iii)	Dwell Time - Average Time of Occupancy	---	---	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
§15.247(a)(2)	6dB bandwidth	12-13	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
§15.247(e)	Power spectral density	14-15	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
§15.247(d)	Spurious RF conducted emissions	16-19	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
§15.247(d)	Band edge	20-22	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
§15.247(d) & §15.209 & §15.205	Spurious radiated emissions for transmitter	23-30	Site 1	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
§15.203	Antenna requirement	See note 1		<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

Note: * Conducted emission is not apply for battery operated device.

Note 1: N/A – Not Applicable.

Note 2: The EUT uses a PCB antenna, which gain is 1.82dBi. In accordance to §15.203, It is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

The EUT is Electric Outboard Motor. All the models have the same electrical structures, only model Joy6.0BS was chosen to perform test, other models are deemed to fulfill all the requirement without further testing.

This submittal(s) (test report) is intended for FCC ID: 2BGKI-JOY60 complies with Section 15.207, 15.209, 15.231, 15.247 of the FCC Part 15C.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed

- **Not** Performed

The Equipment under Test

- **Fulfills** the general approval requirements.

- **Does not** fulfill the general approval requirements.

Sample Received Date: April 25, 2024

Testing Start Date: April 25, 2024

Testing End Date: May 14, 2024

-TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

Reviewed by:

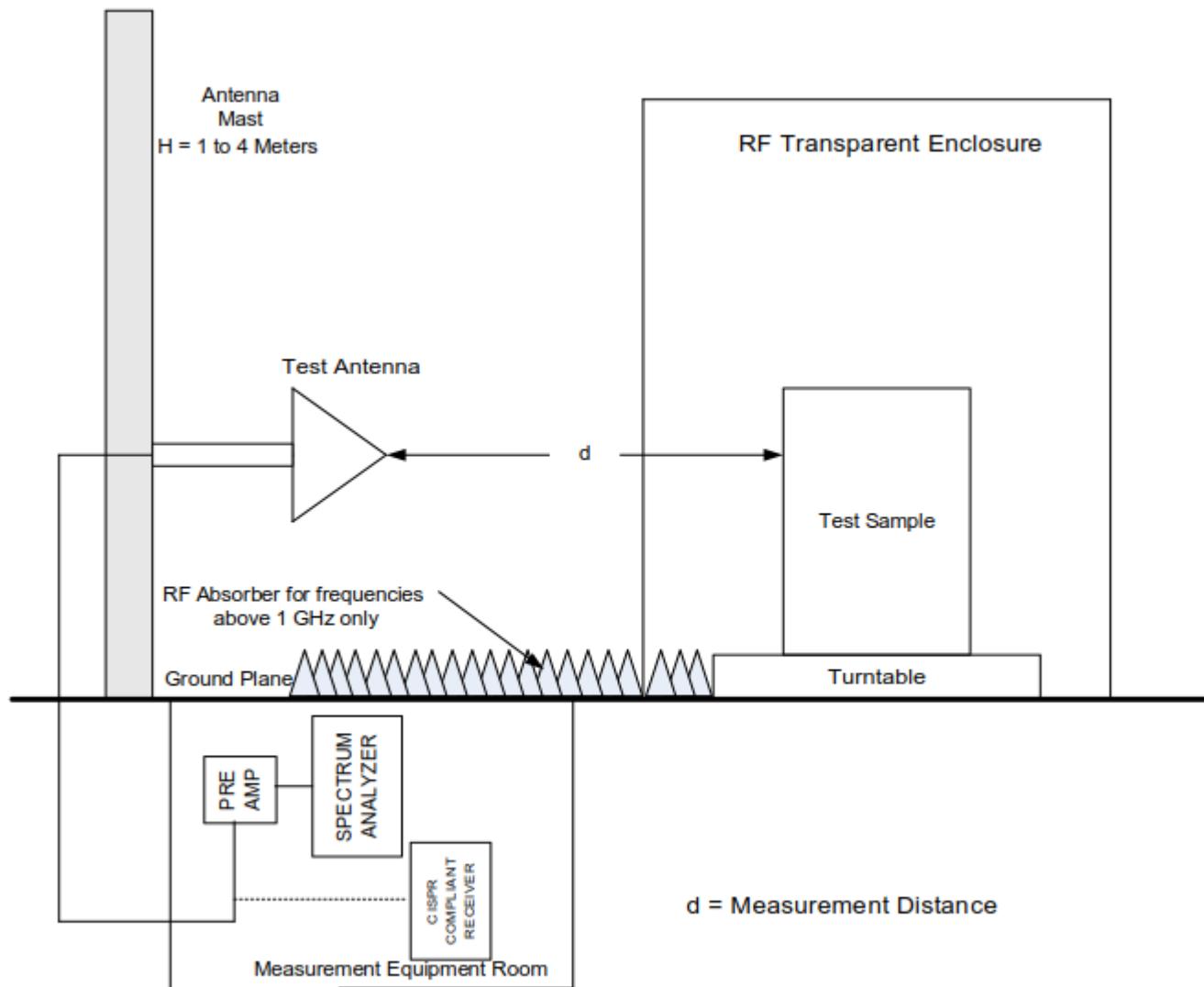
A handwritten signature in blue ink, appearing to read "Hui TONG".

Hui TONG
Review EMC Manager

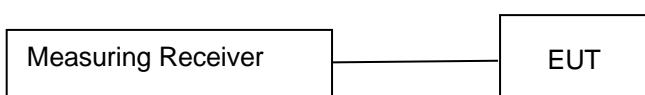
Prepared by:

A handwritten signature in blue ink, appearing to read "Jiaxi XU".

Jiaxi XU
Project Manager


Tested by:

A handwritten signature in blue ink, appearing to read "Chengjie GUO".


Chengjie GUO
Test Engineer

7 Test Setups

7.2 Radiated test setups

7.3 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Notebook	Lenovo	E470	PF-OU5TS7 17/09

Test software: 662x test command Rev1.3.exe

Test Mode Applicability and Tested Channel Detail:

Mode	Tested Channel	Data Rate (Mbps)	Modulation	Power level setting
Bluetooth LE	0	1	GFSK	Default
	19	1	GFSK	Default
	39	1	GFSK	Default

The system was configured to channel 0, 19, and 39 for the test.

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power.

9 Technical Requirement

9.1 Conducted peak output power

Test Method

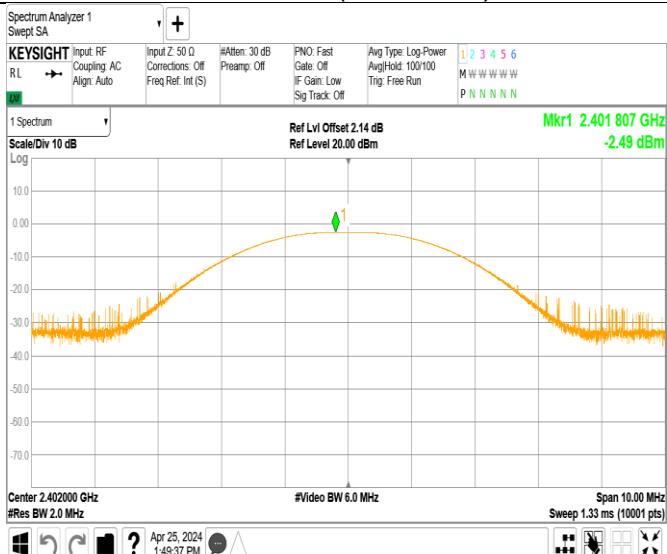
1. Use the following spectrum analyzer settings:
RBW > the 6 dB bandwidth of the emission being measured, $VBW \geq 3RBW$, $Span \geq 3RBW$
Sweep = auto, Detector function = peak, Trace = max hold.
2. Add a correction factor to the display.
3. Use a power meter to measure the conducted peak output power.

Limits

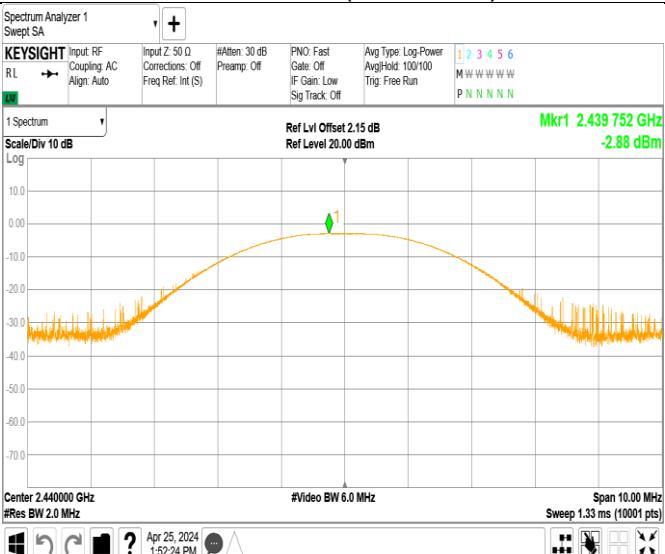
According to §15.247 (b) (3), conducted peak output power limit as below:

Conducted peak output power

Frequency Range MHz	Limit W	Limit dBm
2400-2483.5	≤1	≤30


Test result as below table

Data transmission Rate	Frequency (MHz)	Conducted Peak Output Power (dBm) §15.247 (b) (3)		
		Result	limit	Verdict
1Mbps	2402MHz	-2.49	≤30	Pass
	2440MHz	-2.88	≤30	Pass
	2480MHz	-3.4	≤30	Pass



Peak output power (1Mbps)

Channel 0 (2402MHz)

Channel 19 (2440MHz)

Channel 39 (2480MHz)

9.2 6dB Occupied Bandwidth

Test Method

1. Use the following spectrum analyzer settings:
RBW=100K, VBW \geq 3RBW, Sweep = auto, Detector function = peak, Trace = max hold
2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.
3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit

Limit [kHz]

\geq 500

Test result

Data transmission rate	Frequency MHz	6dB bandwidth (MHz)		Result
		result	limit	
1Mbps	2402	0.659	\geq 0.5	Pass
	2440	0.656	\geq 0.5	Pass
	2480	0.656	\geq 0.5	Pass

6dB Bandwidth

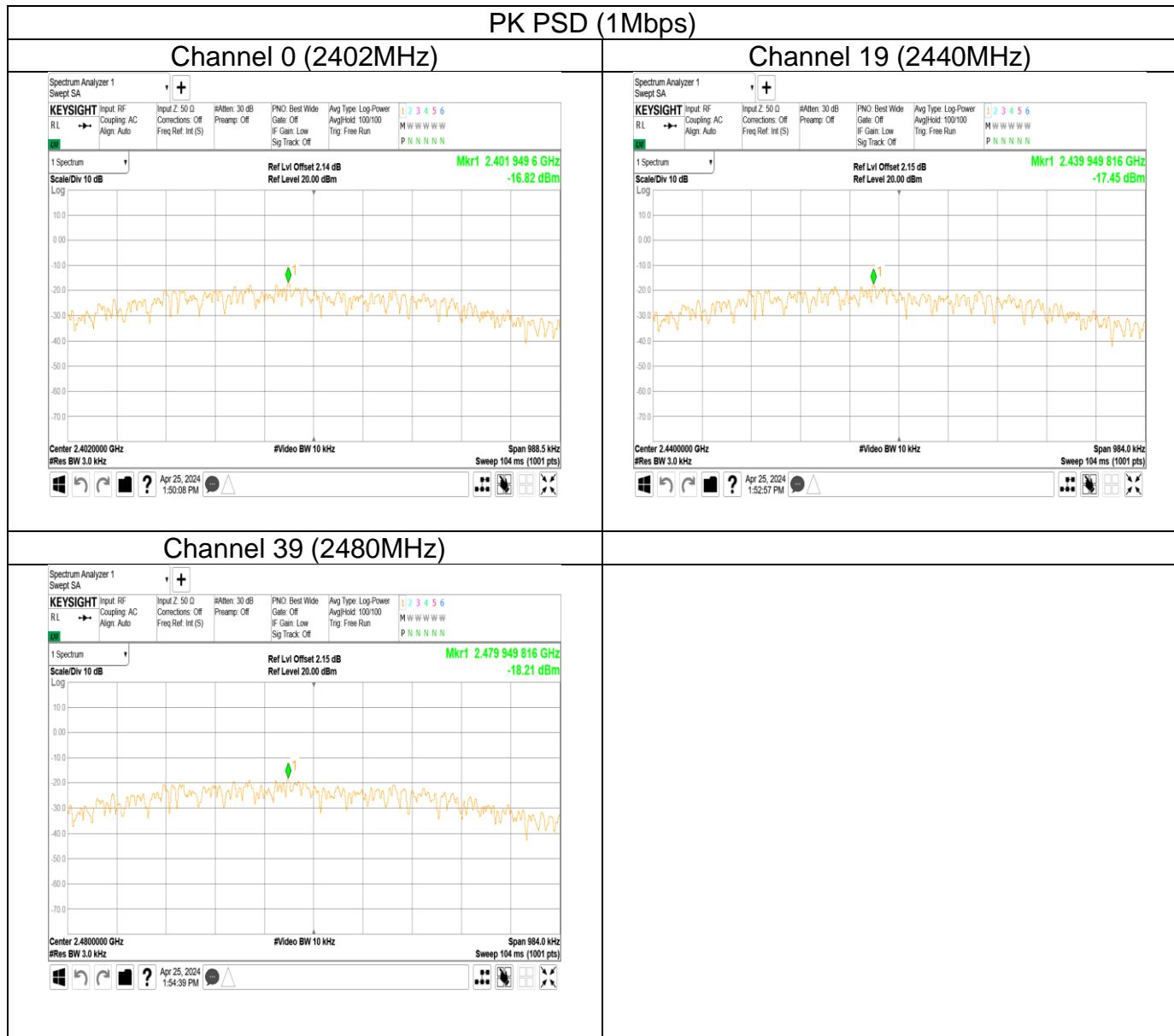
9.3 Power spectral density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

1. Set analyzer center frequency to DTS channel center frequency.
RBW=3kHz, VBW \geq 3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
3. Repeat above procedures until other frequencies measured were completed.

Limit


According to §15.247 (e), power spectral density limit as below:

Limit [dBm/3kHz]

≤ 8

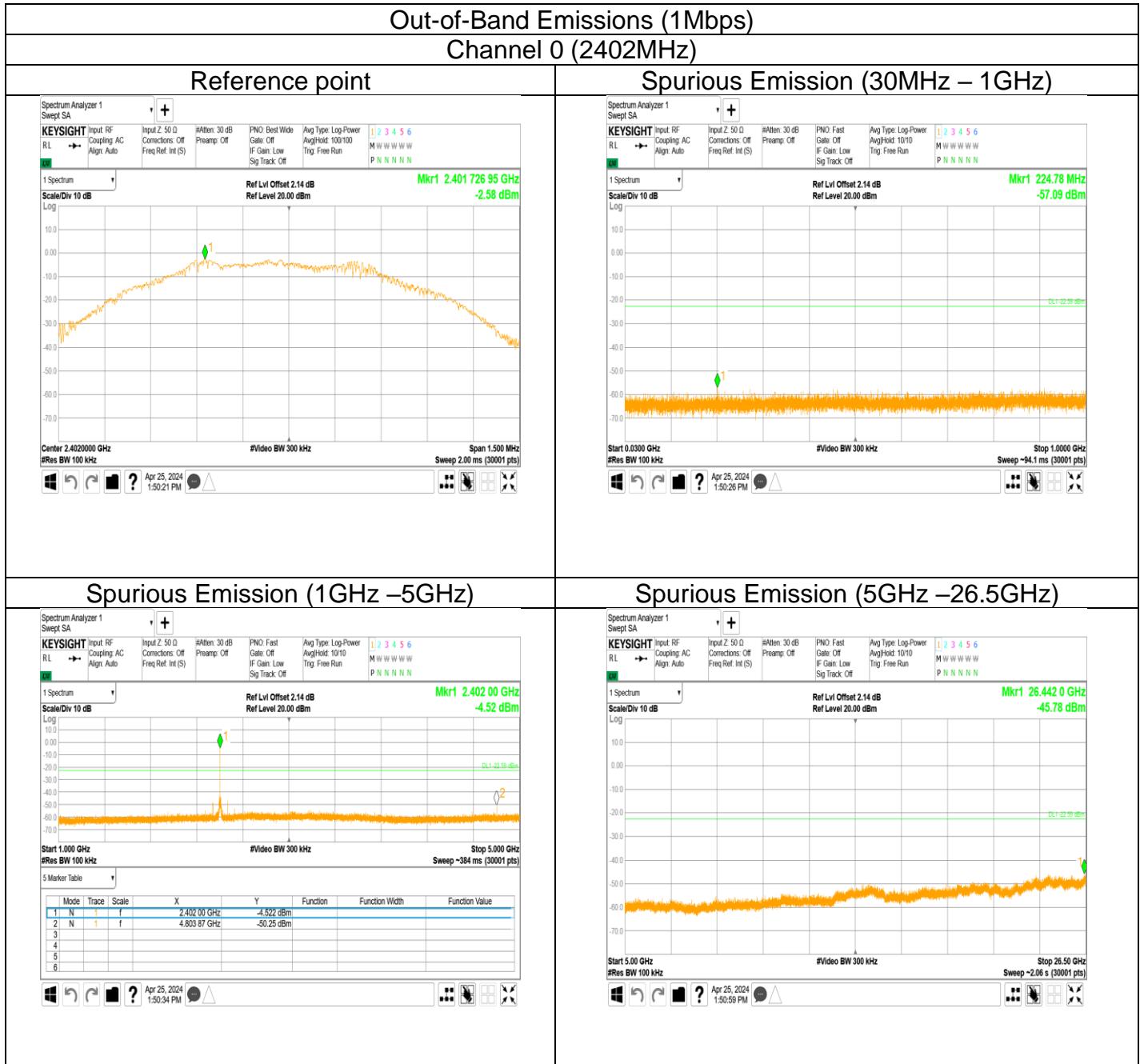
Test result

Data transmission rate	Frequency	Power spectral density	Result
1Mbps	MHz	dBm/3kHz	
	Top channel 2402MHz	-16.82	Pass
	Middle channel 2440MHz	-17.45	Pass
	Bottom channel 2480MHz	-18.21	Pass

9.4 Spurious RF conducted emissions

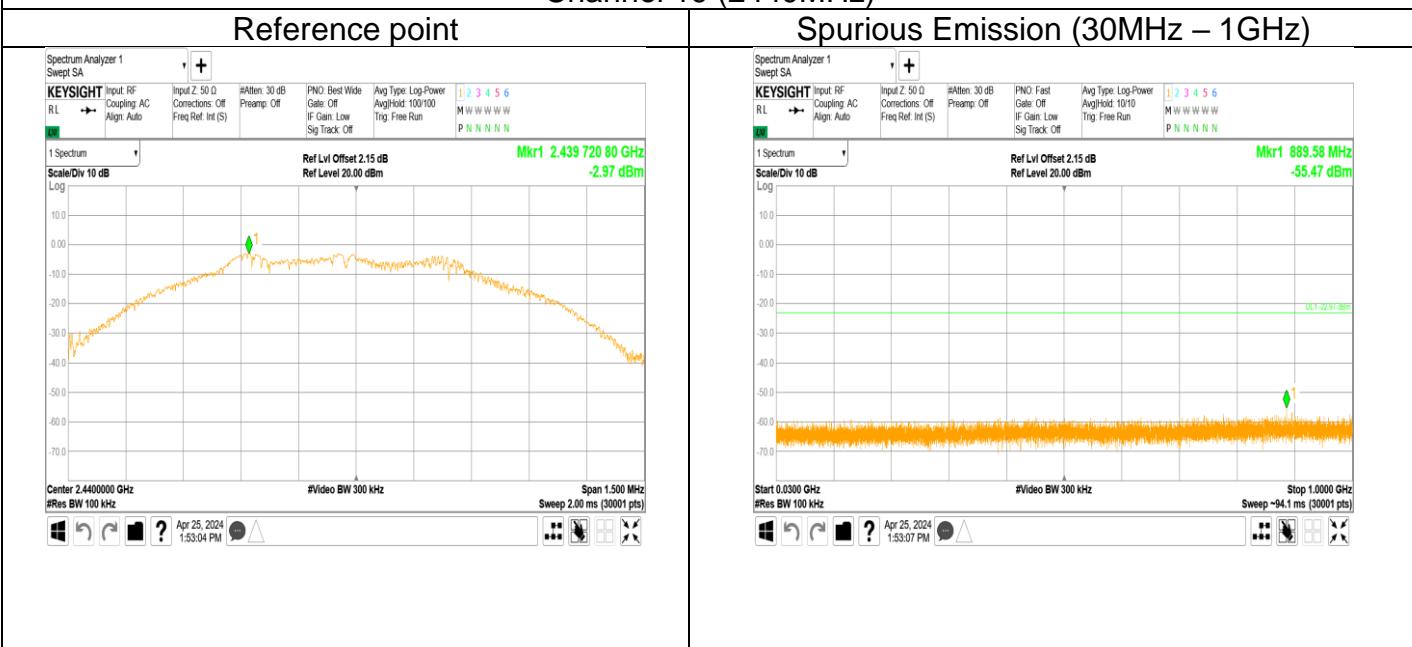
Test Method

1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW \geq 3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
3. Repeat above procedures until other frequencies measured were completed.

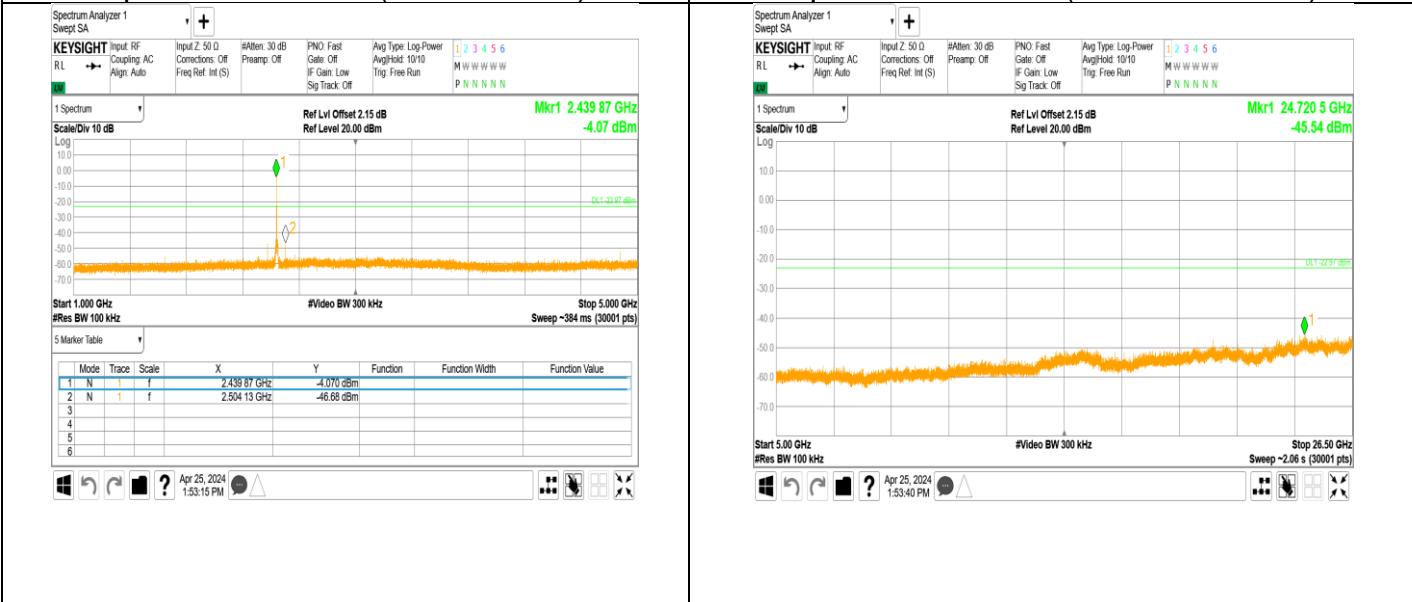

Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Frequency Range MHz	Limit (dBc)
30-25000	-20

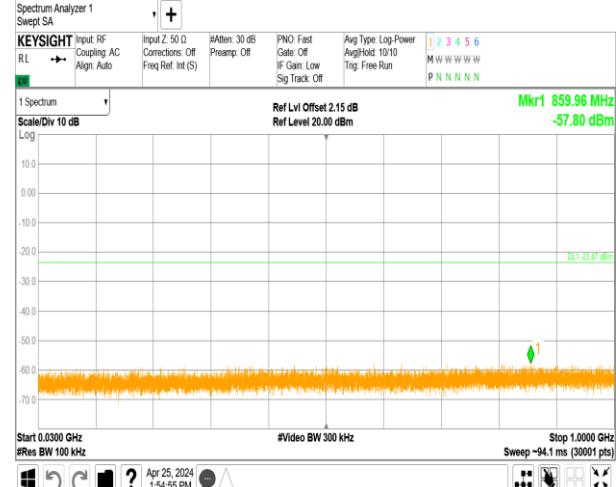


Spurious RF conducted emissions



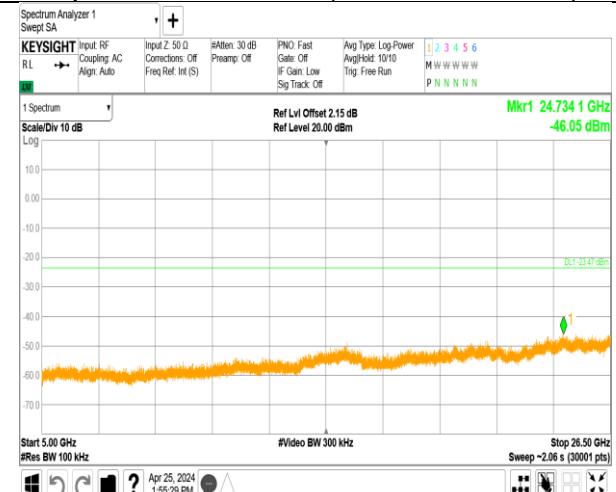
Out-of-Band Emissions (1Mbps) Channel 19 (2440MHz)

Spurious Emission (1GHz – 5GHz)



Out-of-Band Emissions (1Mbps)

Channel 39 (2480MHz)


Reference point

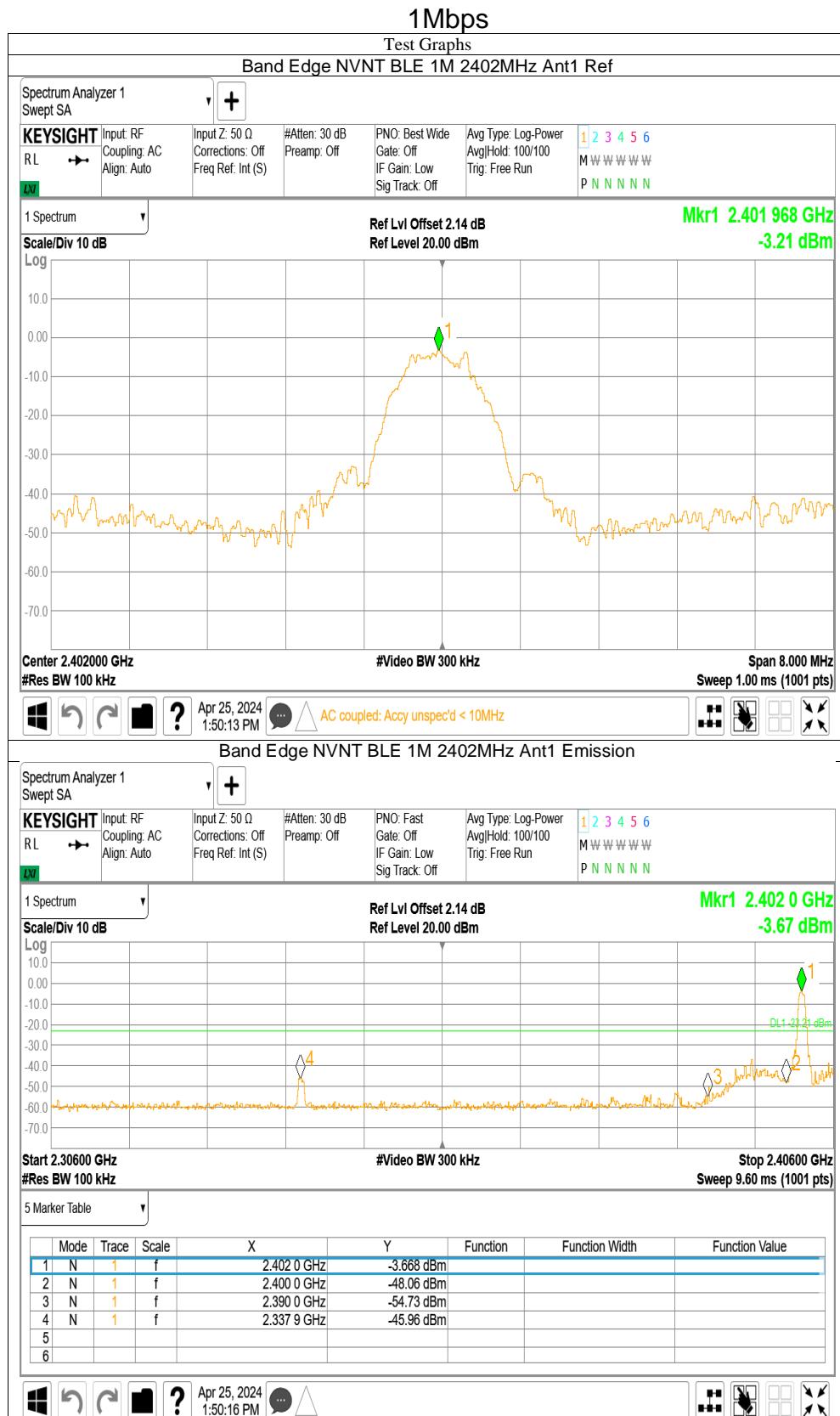
Spurious Emission (30MHz – 1GHz)

Spurious Emission (1GHz –5GHz)

Spurious Emission (5GHz –26.5GHz)

9.5 Band edge

Test Method


- 1 Use the following spectrum analyzer settings:
Span = wide enough to capture the peak level of the in-band emission and all spurious
RBW = 100 kHz, VBW \geq RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Test result

9.6 Spurious radiated emissions for transmitter

Test Method

1. The EUT was placed on a 12mm thick insulating material above the reference ground plane.
2. The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.
3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
5. Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious
 RBW = 100 kHz to 120 kHz, VBW \geq RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious
 RBW = 1MHz, VBW \geq RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz

- a) RBW = 1MHz.
- b) VBW \geq [3 \times RBW].
- c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \leq RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:

- 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is $[10 \log (1 / D)]$, where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
- 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is $[20 \log (1 / D)]$, where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.
- 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section 15.205 and RSS-GEN 8.10 must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Measured Distance Meters
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30	30	30

Frequency MHz	Field Strength uV/m	Field Strength dB μ V/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit. The only worse case test result is listed in the report.

Test result

Test mode:GFSK 1Mbps (2402MHz)					
Frequency MHz	Measure Level (dBuV/m)	Limit (dBuV/M)	Margin (dB)	Detector	Polarization
2386.04	48.74	74.00	25.26	PK	Horiznotal
4804.81	44.34	74.00	29.66	PK	Horiznotal
2386.08	50.98	74.00	23.02	PK	Vertical
4652.87	46.73	74.00	27.27	PK	Vertical
4803.75	43.73	74.00	30.27	PK	Vertical

Test mode:GFSK 1Mbps (2440MHz)					
Frequency MHz	Measure Level (dBuV/m)	Limit (dBuV/M)	Margin (dB)	Detector	Polarization
4880.25	46.59	74.00	27.41	PK	Horiznotal
4651.81	44.51	74.00	29.49	PK	Vertical
4879.18	43.08	74.00	30.92	PK	Vertical

Test mode:GFSK 1Mbps (2480MHz)					
Frequency MHz	Measure Level (dBuV/m)	Limit (dBuV/M)	Margin (dB)	Detector	Polarization
2483.50	62.25	74.00	11.75	PK	Horiznotal
2483.50	47.70	54.00	6.30	RMS	Horiznotal
4959.40	43.41	74.00	30.59	PK	Horiznotal
2483.50	63.72	74.00	10.28	PK	Vertical
2483.50	51.30	54.00	2.70	RMS	Vertical
4959.40	49.22	74.00	24.78	PK	Vertical
4959.40	43.41	74.00	30.59	PK	Vertical

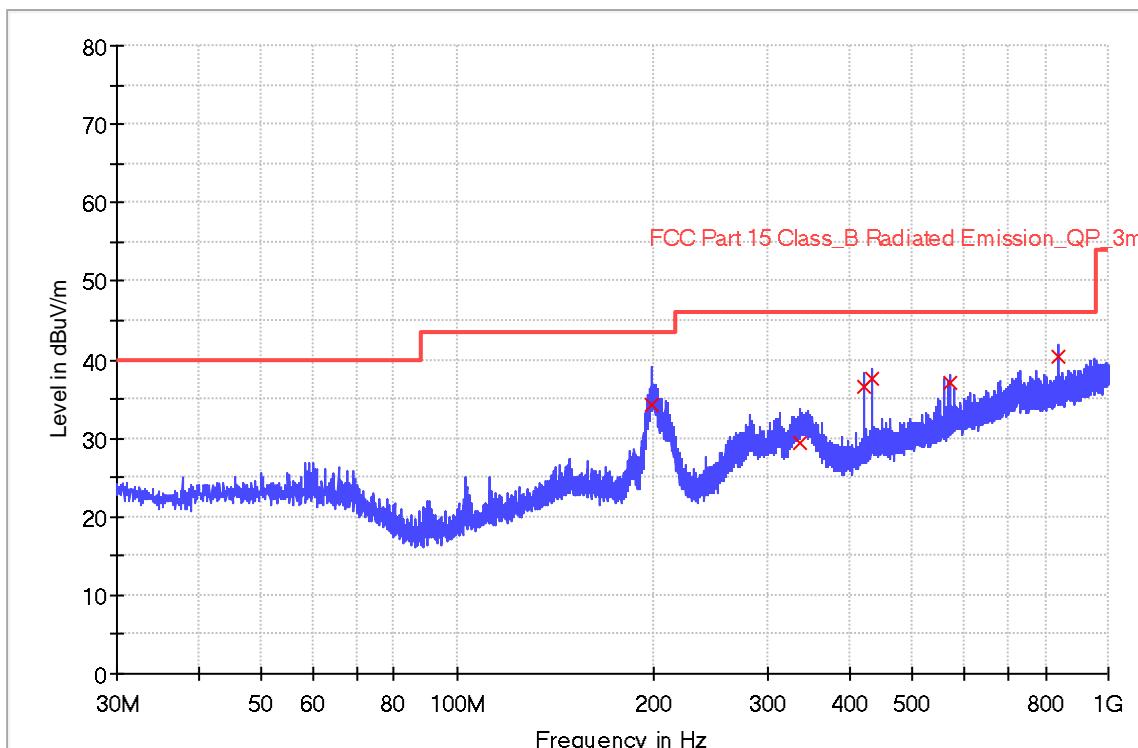
Remark:

- (1) Emission level= Original Receiver Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss -Amplifier gain
- (3) Margin = limit – Corrected Reading

The worst case of Radiated Emission below 1GHz:

30-1000MHz Radiated Emission

EUT Information


EUT Name: Electric Outboard Motor
 Model: Joy6.0FS
 Client: Suzhou Parsun Power Technology Co., Ltd.
 Op Cond: Power on and transmit, TX_2402MHz at 1Mbps mode,
 DC 48.0V, T22.5, H46.1%, P103.1kPa
 Operator: Chengjie GUO
 Test Spec: FCC Part 15.207(a)
 Comment: Horizontal
 Sample No: SHA-808524-1

Sweep Setup: RE_VULB9168_pre_Cont_30-1000 [EMI radiated]

Hardware Setup: RE_VULB9168
 Receiver: [ESR 3]
 Level Unit: dBuV/m

Subrange	Step Size	Detectors	Bandwidth	Sweep Time	Preamp
30 MHz - 1 GHz	48.5 kHz	PK+	120 kHz	0.2 s	20 dB

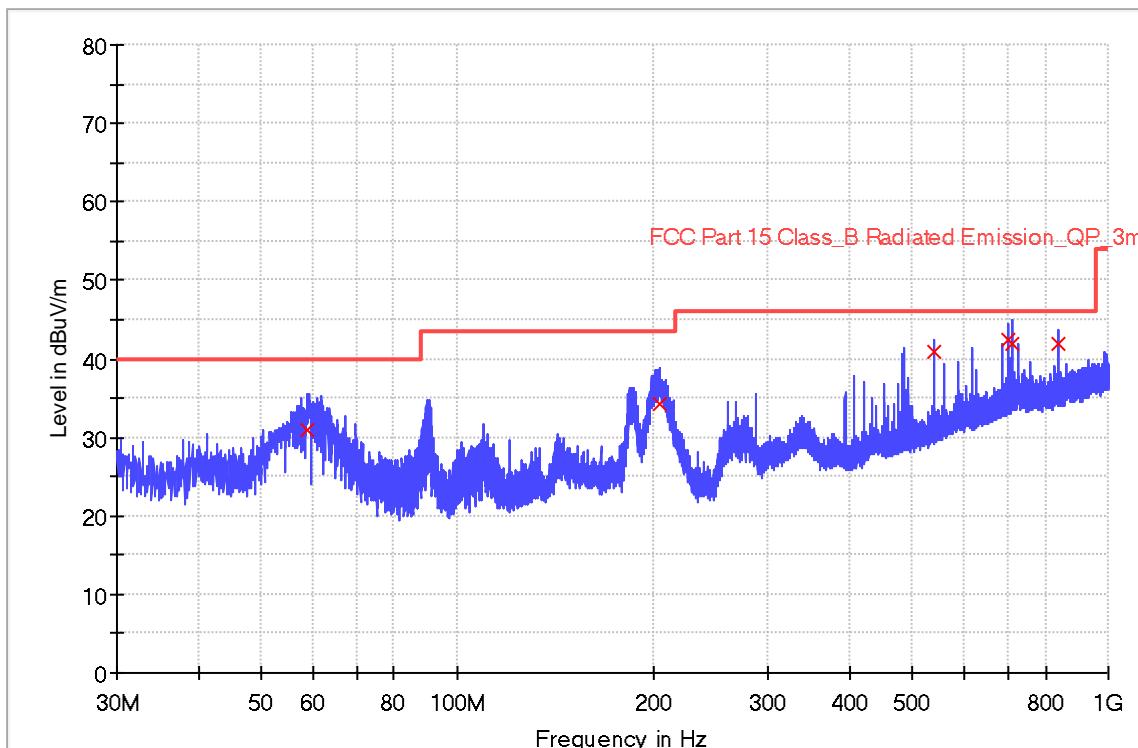
RE_VULB9168_pre_Cont_30-1000

Limit and Margin

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
199.120000	34.4	1000.0	120.000	152.0	H	86.0	17.7	9.2	43.5
335.400000	29.3	1000.0	120.000	114.0	H	0.0	22.6	16.7	46.0
420.040000	36.6	1000.0	120.000	141.0	H	106.0	24.7	9.4	46.0
433.040000	37.5	1000.0	120.000	144.0	H	264.0	25.4	8.6	46.0
573.040000	37.0	1000.0	120.000	125.0	H	356.0	27.9	9.0	46.0
840.040000	40.4	1000.0	120.000	105.0	H	34.0	32.5	5.6	46.0

30-1000MHz Radiated Emission

EUT Information


EUT Name: Electric Outboard Motor
 Model: Joy6.0FS
 Client: Suzhou Parsun Power Technology Co., Ltd.
 Op Cond: Power on and transmit, TX_2402MHz at 1Mbps mode,
 Operator: Chengjie GUO
 Test Spec: FCC Part 15.207(a)
 Comment: Vertical
 Sample No: SHA-808524-1

Sweep Setup: RE_VULB9168_pre_Cont_30-1000 [EMI radiated]

Hardware Setup: RE_VULB9168
 Receiver: [ESR 3]
 Level Unit: dBuV/m

Subrange	Step Size	Detectors	Bandwidth	Sweep Time	Preamp
30 MHz - 1 GHz	48.5 kHz	PK+	120 kHz	0.2 s	20 dB

RE_VULB9168_pre_Cont_30-1000

Limit and Margin

Frequency (MHz)	QuasiPeak (dBuV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Margin - QPK (dB)	Limit - QPK (dBuV/m)
58.840000	30.9	1000.0	120.000	147.0	V	359.0	20.3	9.1	40.0
204.760000	34.4	1000.0	120.000	111.0	V	1.0	17.6	9.1	43.5
540.520000	41.0	1000.0	120.000	147.0	V	359.0	27.2	5.0	46.0
700.040000	42.4	1000.0	120.000	114.0	V	359.0	30.4	3.6	46.0
713.080000	42.0	1000.0	120.000	111.0	V	154.0	30.7	4.0	46.0
840.080000	41.9	1000.0	120.000	125.0	V	18.0	32.5	4.1	46.0

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: 9kHz ~ 30MHz, 18GHz ~ 25GHz), therefore no data appear in the report.

10 Test Equipment List

List of Test Instruments
Test Site1

	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE	CAL. DUE DATE
C	Signal spectrum analyzer	Agilent	N9020B	MY59050168	2024-2-19	2025-2-18
RE	Signal Analyzer	Rohde & Schwarz	FSV40	101091	2023-8-1	2024-7-31
	Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9168	961	2021-9-23	2024-9-22
	Double-ridged waveguide horn antenna	Rohde & Schwarz	HF907	102868	2024-4-14	2027-4-13
	Pre-amplifier	Shenzhen HzEMC	HPA-081843	HYPA23026	2024-4-16	2025-4-15
	Loop antenna	Rohde & Schwarz	HFH2-Z2	100443	2023-6-15	2024-6-14
	Double Ridged Horn Antenna	ETS-Lindgren	3116C	00246076	2023-7-7	2026-7-6
	3m Semi-anechoic chamber	TDK	9X6X6	----	2025-4-15	2027-5-7

Measurement Software Information

Test Item	Software	Manufacturer	Version
C	MTS 8310	MWRFtest	2.0.0.0
RE	EMC 32	Rohde & Schwarz	V10.50.40
CE	EMC 32	Rohde & Schwarz	V9.15.03

C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth and 99% Occupied Bandwidth
- Power spectral density*
- Spurious RF conducted emissions
- Band edge

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

Items	Extended Uncertainty
Conducted Disturbance at Mains Terminals	150kHz to 30MHz, LISN, 3.16dB
Radiated Disturbance	9kHz to 30MHz, 3.52dB 30MHz to 1GHz, 5.03dB (Horizontal) 5.12dB (Vertical) 1GHz to 18GHz, 5.49dB 18GHz to 40GHz, 5.63dB
RF Conducted Measurement	Power related: 1.16dB Frequency related: 6.00×10^{-8}

Measurement Uncertainty Decision Rule:

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2023, clause 4.3.3.

12 Photographs of Test Set-ups

Refer to the < Test Setup photos >.

13 Photographs of EUT

Refer to the < External Photos > & < Internal Photos >.

-----End of Test Report-----