

FCC Test Report

**Test Report
On Behalf of
Guangzhou EF Information Technology Co.,LTD
For
RFID Reader Module
Model No.: JY-LD6900, JY-LD6900M**

FCC ID: 2BGFT-JY-LD6900

Prepared For: **Guangzhou EF Information Technology Co.,LTD**
Floor 4-101, No.2801 Huangpu East Road, Huangpu District, Guangzhou,
China

Prepared By: **Shenzhen HUAK Testing Technology Co., Ltd.**
1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,
Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: **May 09, 2024 ~ Jun. 12, 2024**

Date of Report: **Jun. 12, 2024**

Report Number: **HK2405092296-E**

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.cer-mark.com>

TEL : +86-755 2302 9901 FAX : +86-755 2302 9901 E-mail : service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Test Result Certification

Applicant's Name : Guangzhou EF Information Technology Co.,LTD

Address : Floor 4-101, No.2801 Huangpu East Road, Huangpu District, Guangzhou, China

Manufacture's Name : Guangzhou EF Information Technology Co.,LTD

Address : Floor 4-101, No.2801 Huangpu East Road, Huangpu District, Guangzhou, China

Product Description

Trade Mark : KEZLIY

Product Name : RFID Reader Module

Model and/or Type Reference : JY-LD6900, JY-LD6900M

Standards : FCC Rules and Regulations Part 15 Subpart C (Section 15.209), ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test :

Date (s) of performance of tests : **May 09, 2024 ~ Jun. 12, 2024**

Date of Issue : **Jun. 12, 2024**

Test Result : **Pass**

Testing Engineer

Len Liao

Technical Manager

Sliver Wan

Authorized Signatory

Jason Zhou

Table of Contents

	Page
1 . Test Summary	5
1.1 Test Procedures and Results	5
1.2 Information of the Test Laboratory	5
1.3 Measurement Uncertainty	5
2. General Information	6
2.1 General Description of EUT	6
2.2 Carrier Frequency of Channels	7
2.3 Operation of EUT during testing	7
2.4 Description of Test Setup	7
2.5 Description of Support Units	8
2.6 Measurement Instruments List	9
3. Conducted Emission Test	10
3.1 Block Diagram of Test Setup	10
3.2 Conducted Power Line Emission Limit	10
3.3 Test Procedure	10
3.4. Test Result	11
4. Occupied Bandwidth	13
4.1 Block Diagram of Test Setup	13
4.2 Rules and specifications	13
4.3 Test Procedure	13
4.4 Test Result	13
5. Radiated Emissions	15
5.1 Block Diagram of Test Setup	15
5.2 Rules and specifications	16
5.3 Test Procedure	17
5.4 Test Result	17
6. Antenna Requirement	20
7. Photographs of Test	21
8. Photos of the EUT	23

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.cer-mark.com>.

**** Modified History ****

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Jun. 12, 2024	Jason Zhou

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.cer-mark.com>.

TEL : +86-755 2302 9901 FAX : +86-755 2302 9901 E-mail : service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

1. Test Summary

1.1 Test Procedures and Results

Description of Test	Section Number	Result
Conducted Emissions Test	15.207	Compliant
Radiated Emission Test	15.209	Compliant
Occupied Bandwidth Measurement	15.215	Compliant
Antenna Requirement	15.203	Compliant

Note:

1. PASS: Test item meets the requirement.
2. Fail: Test item does not meet the requirement.
3. N/A: Test case does not apply to the test object.
4. The test result judgment is decided by the limit of test standard.

1.2 Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization

A2LA Accreditation Code is 4781.01.

FCC Designation Number is CN1229.

Canada IC CAB identifier is CN0045.

CNAS Registration Number is L9589.

1.3 Measurement Uncertainty

Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

2. General Information

2.1 General Description of EUT

Equipment:	RFID Reader Module
Model Name:	JY-LD6900
Serial No.:	JY-LD6900M
Model Difference:	All model's the function, software and electric circuit are the same, only with product model named different. Test sample model: JY-LD6900.
Trade Mark:	KEZLIY
FCC ID:	2BGFT-JY-LD6900
Antenna Type:	Coil Antenna
Antenna Gain:	0dBi
Operation frequency:	134.8KHz
Number of Channels:	1
Modulation Type:	ASK
Power Source:	DC Voltage
Power Rating:	DC5V
NOTE:	<ol style="list-style-type: none">1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.2. Antenna gain Refer to the antenna specifications.3. The cable loss data is obtained from the supplier.4. The test results in the report only apply to the tested sample.

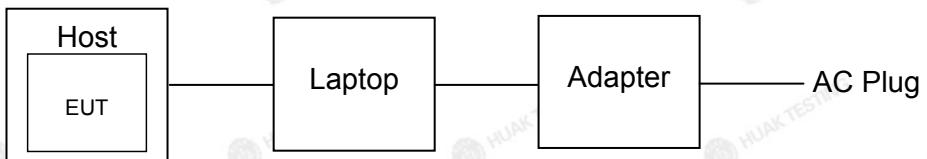
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.cer-mark.com>.

TEL : +86-755 2302 9901 FAX : +86-755 2302 9901 E-mail : service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

2.2 Carrier Frequency of Channels

Operation Frequency each of channel	
Channel	Frequency
1	134.8KHz


2.3 Operation of EUT during testing

Operating Mode

The mode is used: Transmitting mode

2.4 Description of Test Setup

Operation of EUT during Conducted and Radiation Testing:

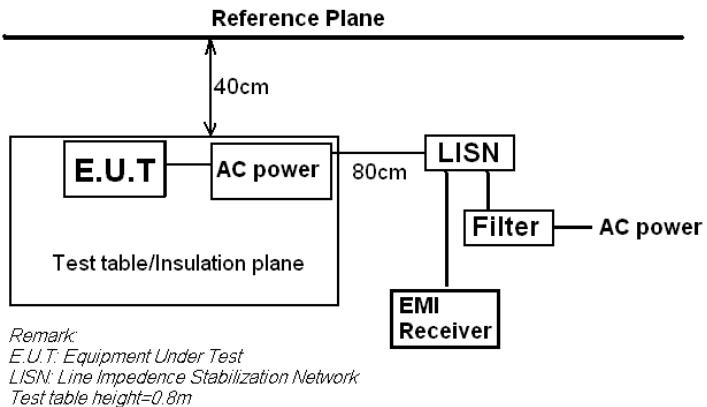
2.5 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Trade Mark	Model/Type No.	Specification	Remark
1	RFID Reader Module	KEZLIY	JY-LD6900	N/A	EUT
2	USB Reader	N/A	N/A	N/A	Host
3	Laptop	Lenovo	TP00096A	Input: DC 20V, 2.25~3.25A Output: 5VDC, 0.5A	Peripheral

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.


2.6 Measurement Instruments List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N.	R&S	ENV216	HKE-002	Feb. 20, 2024	1 Year
2.	L.I.S.N.	R&S	ENV216	HKE-059	Feb. 20, 2024	1 Year
3.	EMI Test Receiver	R&S	ESR	HKE-005	Feb. 20, 2024	1 Year
4.	Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	1 Year
5.	Spectrum analyzer	R&S	FSV3044	HKE-126	Feb. 20, 2024	1 Year
6.	Preamplifier	EMCI	EMC051845S	HKE-006	Feb. 20, 2024	1 Year
7.	Preamplifier	Schwarzbeck	BBV 9743	HKE-016	Feb. 20, 2024	1 Year
8.	Preamplifier	A.H. Systems	SAS-574	HKE-182	Feb. 20, 2024	1 Year
9.	6dB Attenuator	Pasternack	6db	HKE-184	Feb. 20, 2024	1 Year
10.	EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 20, 2024	1 Year
11.	Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	Feb. 21, 2024	2 Year
12.	Loop Antenna	COM-POWER	AL-130R	HKE-014	Feb. 21, 2024	2 Year
13.	Horn Antenna	Schwarzbeck	9120D	HKE-013	Feb. 21, 2024	2 Year
14.	EMI Test Software	Tonscend	JS32-CE 2.5.0.6	HKE-081	/	/
15.	EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	/	/

3. Conducted Emission Test

3.1 Block Diagram of Test Setup

3.2 Conducted Power Line Emission Limit

According to FCC Part 15.207(a)

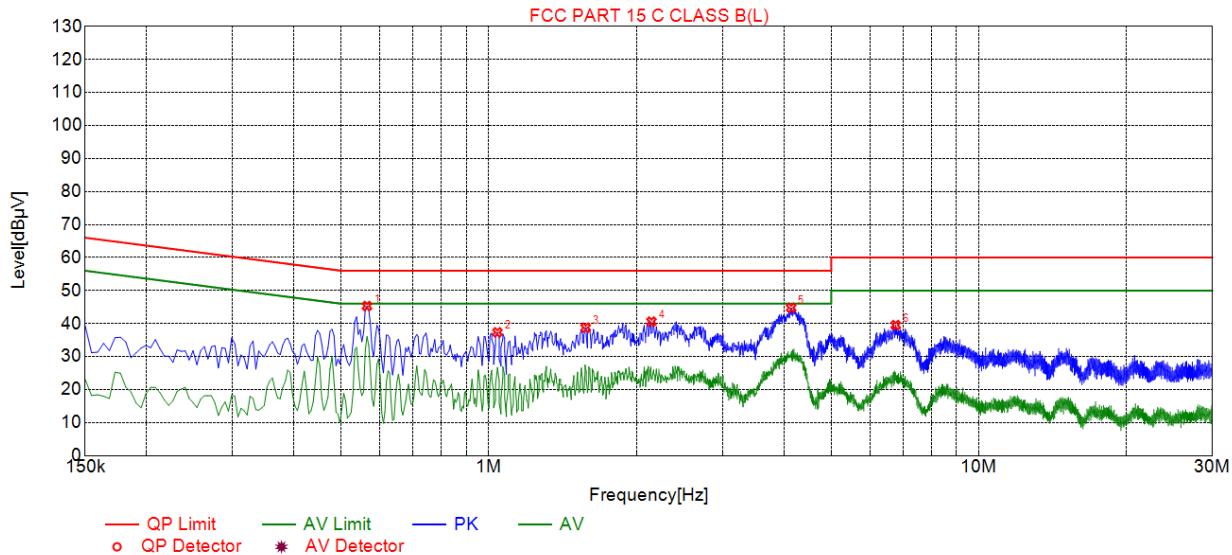
Frequency (MHz)	Maximum RF Line Voltage (dB μ V)			
	CLASS A		CLASS B	
	Q.P.	Ave.	Q.P.	Ave.
0.15 - 0.50	79	66	66-56*	56-46*
0.50 - 5.00	73	60	56	46
5.00 - 30.0	73	60	60	50

* Decreasing linearly with the logarithm of the frequency

For intentional device, according to §15.207 Line Conducted Emission Limit is same as above table.

3.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes



3.4. Test Result

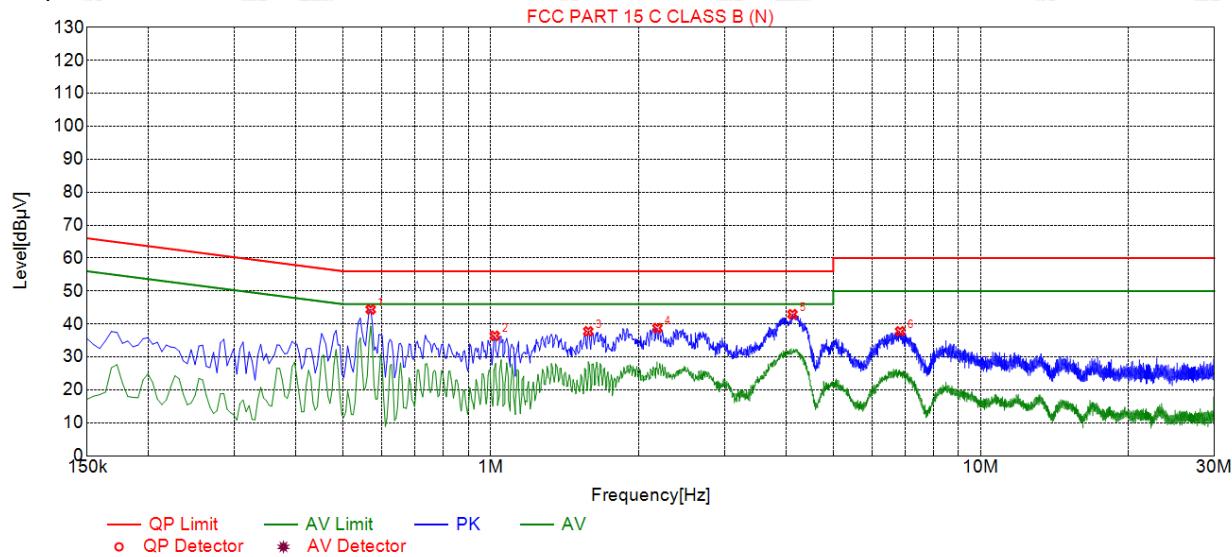
PASS

All the test modes completed for test. Only the worst result was reported as below:

Test Specification: Line

Suspected List

NO.	Freq. [MHz]	Level [dBμV]	Factor [dB]	Limit [dBμV]	Margin [dB]	Reading [dBμV]	Detector	Type
1	0.5640	45.29	19.86	56.00	10.71	25.43	PK	L
2	1.0410	37.33	19.88	56.00	18.67	17.45	PK	L
3	1.5765	38.75	19.93	56.00	17.25	18.82	PK	L
4	2.1480	40.59	19.98	56.00	15.41	20.61	PK	L
5	4.1415	44.76	20.09	56.00	11.24	24.67	PK	L
6	6.7695	39.51	20.07	60.00	20.49	19.44	PK	L


Remark: Margin = Limit – Level

Correction factor = Cable loss + LISN insertion loss

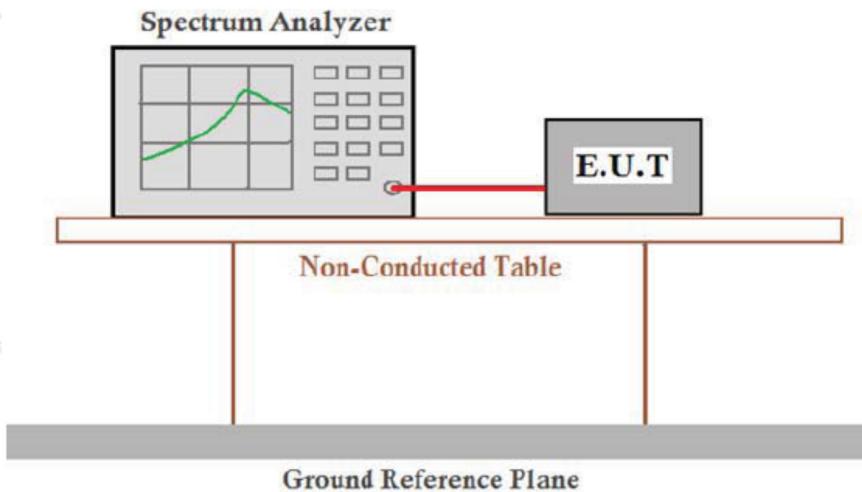
Level=Test receiver reading + correction factor

Test Specification: Neutral

Suspected List

NO.	Freq. [MHz]	Level [dBμV]	Factor [dB]	Limit [dBμV]	Margin [dB]	Reading [dBμV]	Detector	Type
1	0.5685	44.40	19.74	56.00	11.60	24.66	PK	N
2	1.0185	36.41	19.75	56.00	19.59	16.66	PK	N
3	1.5810	37.77	19.80	56.00	18.23	17.97	PK	N
4	2.1885	38.74	19.86	56.00	17.26	18.88	PK	N
5	4.1280	42.96	19.98	56.00	13.04	22.98	PK	N
6	6.8460	37.77	19.97	60.00	22.23	17.80	PK	N

Remark: Margin = Limit – Level


Correction factor = Cable loss + LISN insertion loss

Level=Test receiver reading + correction factor

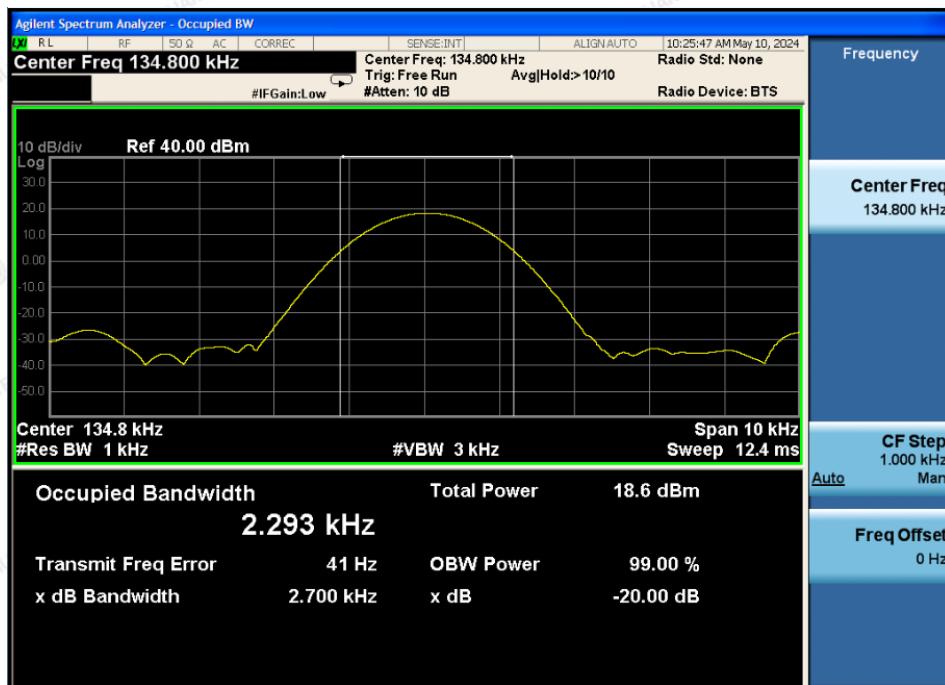
4. Occupied Bandwidth

4.1 Block Diagram of Test Setup

4.2 Rules and specifications

CFR 47 Part 15.215(c)

ANSI C63.10-2013


4.3 Test Procedure

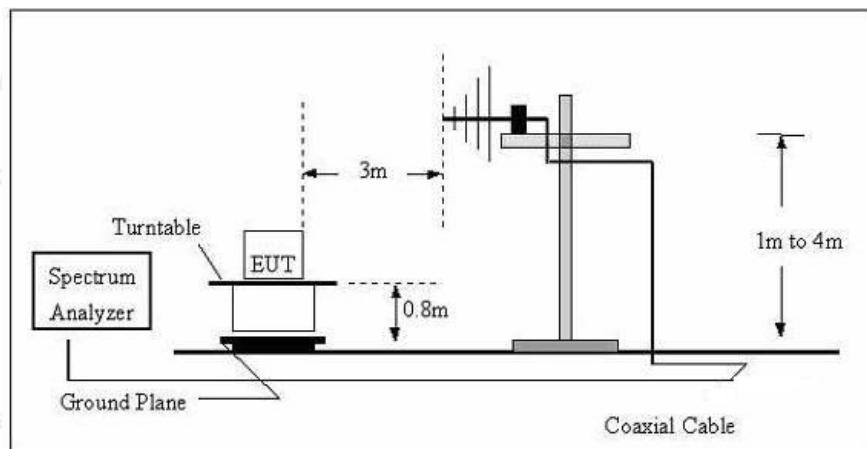
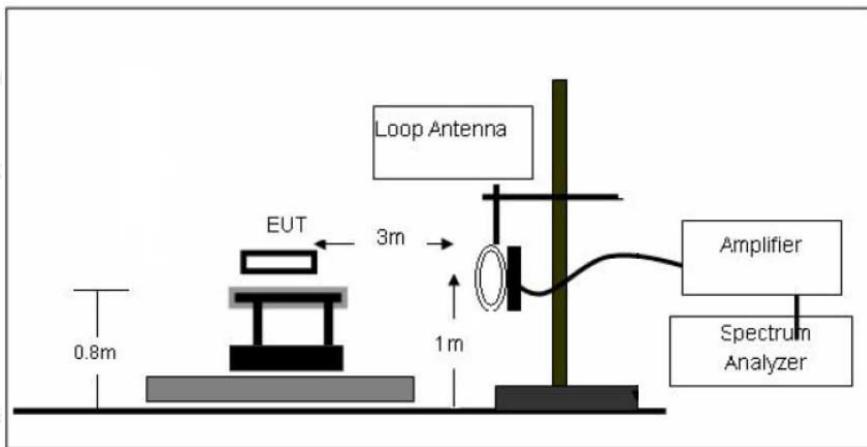
Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equip compliance with the 20dB attenuation specification may base on measurement at the intentional radiator's antenna output terminal unless the intentional radiator uses a permanently attached antenna, in which case compliance shall be demonstrated by measuring the radiated emissions.

4.4 Test Result

PASS

Mode	Freq (KHz)	20dB Bandwidth (KHz)	Limit (kHz)	Conclusion
Tx Mode	134.8	2.700	/	PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.cer-mark.com>.



TEL : +86-755 2302 9901 FAX : +86-755 2302 9901 E-mail : service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

5. Radiated Emissions

5.1 Block Diagram of Test Setup

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.cer-mark.com>.

TEL : +86-755 2302 9901 FAX : +86-755 2302 9901 E-mail : service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

5.2 Rules and specifications

CFR 47 Part 15, section 15.205

Only spurious emissions are permitted in any of the frequency bands listed the tables in these sections.

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2)
13.36-13.41			

CFR 47 Part 15, section 15.209

The emissions from an intentional radiator shall not exceed the limits in the tables in these sections using an average detector

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Limit calculation and transfer to 3m distance as showed in the following table:

Frequency (MHz)	Limit (dBuV/m)	Distance (m)
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	3
0.490-1.705	20log(24000/F(KHz))+40log(30/3)	3
1.705-30.0	69.5	3
30-88	40.0	3
88-216	43.5	3
216-960	46.0	3
Above 960	54.0	3

CFR 47 Part 15, section 15.35

When average radiated emission measurements are specified, the limit on the peak level of the radio Frequency emission is 20dB above the maximum permitted average emission limit.

Transmitter Spurious Emissions 9KHz-30MHz			
	9-150KHz	150-490KHz	490KHz-30MHz
Resolution Bandwidth	200Hz	9KHz	9KHz
Detector	Peak	Peak	Peak
Trace Mode	Max Hold	Max Hold	Max Hold
Sweep Time	Auto	Auto	Auto

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.cer-mark.com>

TEL : +86-755 2302 9901 FAX : +86-755 2302 9901 E-mail : service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

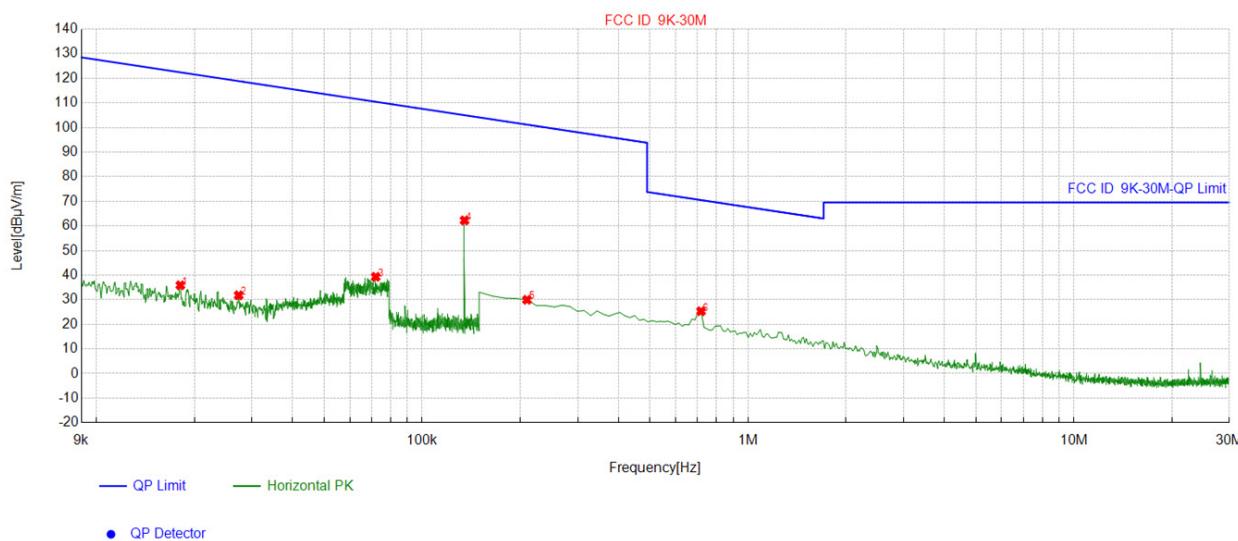
5.3 Test Procedure

Measurement distance 3m

For the measurement range up to 30MHz in the following plots the field strength result from 3m

Distance measurement are extrapolated to 300m and 30m distance respectively, by 40dB/decade, According to part 15.31(f)(2), per antenna factor scaling. Measurements below 1000MHz are performed with a peak detector and compared to average limits, Measurements with an average detector are not required.

Note:


For battery operated equipment, the equipment tests shall be performed using a new battery.

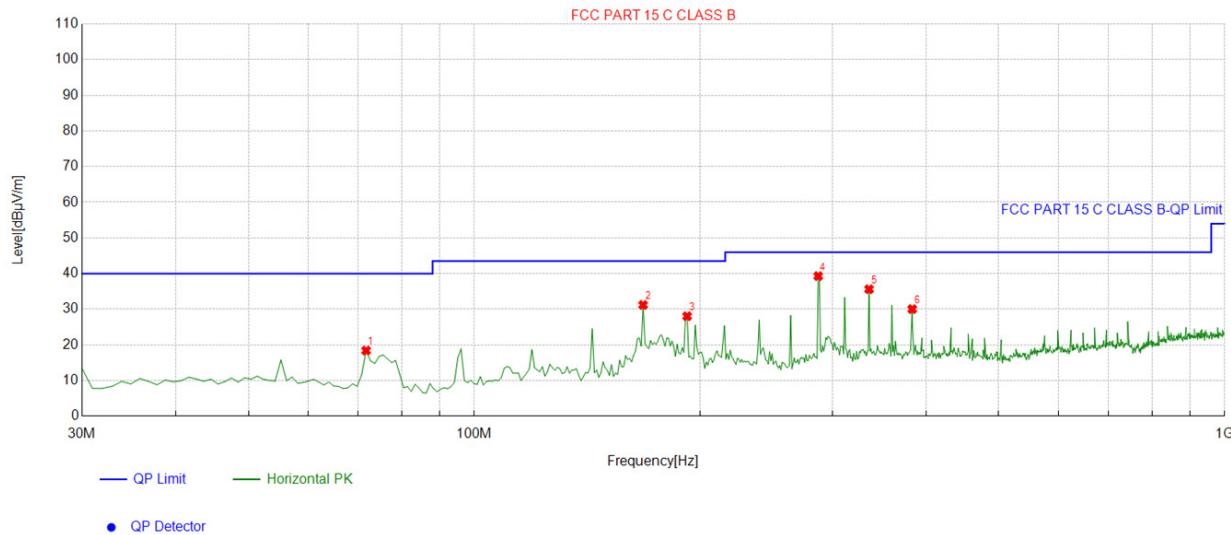
5.4 Test Result

PASS

Note: this EUT was tested for all models and the worst case model data was reported.

For 9KHz-30MHz

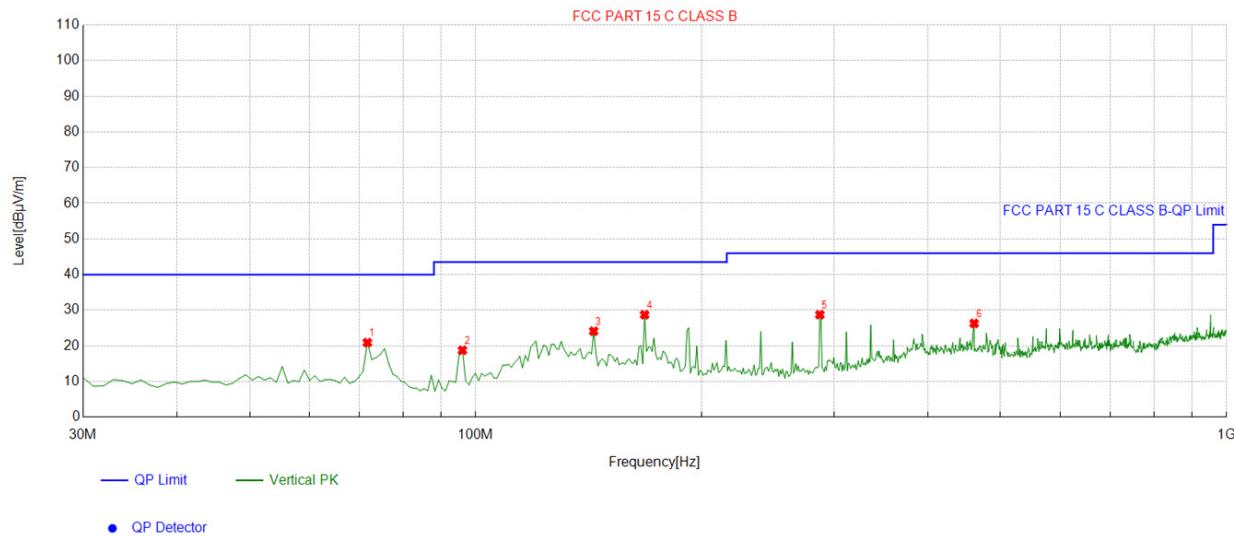
Suspected List


NO.	Freq. [MHz]	Factor [dB]	Reading [dBμV/m]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]
1	0.018099	-10.78	46.65	35.87	122.44	86.57
2	0.027339	-10.73	42.51	31.78	118.85	87.07
3	0.071988	-10.43	49.73	39.30	110.45	71.15
4	0.134835	-10.59	72.83	62.24	105.00	42.76
5	0.20973	-10.66	40.63	29.97	101.17	71.20
6	0.717434	-10.95	36.26	25.31	70.50	45.19

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor;
Margin = Limit – Level;

For 30MHz-1GHz

Antenna polarity: H



Suspected List									
NO.	Freq. [MHz]	Factor [dB]	Reading [dB μ V/m]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	71.751752	-17.38	35.79	18.41	40.00	21.59	100	202	Horizontal
2	167.87787	-17.31	48.51	31.20	43.50	12.30	100	166	Horizontal
3	192.15215	-15.74	43.78	28.04	43.50	15.46	100	22	Horizontal
4	287.30730	-12.28	51.57	39.29	46.00	6.71	100	345	Horizontal
5	335.85585	-10.57	46.18	35.61	46.00	10.39	100	6	Horizontal
6	383.43343	-9.11	39.14	30.03	46.00	15.97	100	3	Horizontal

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

Antenna polarity: V

Suspected List

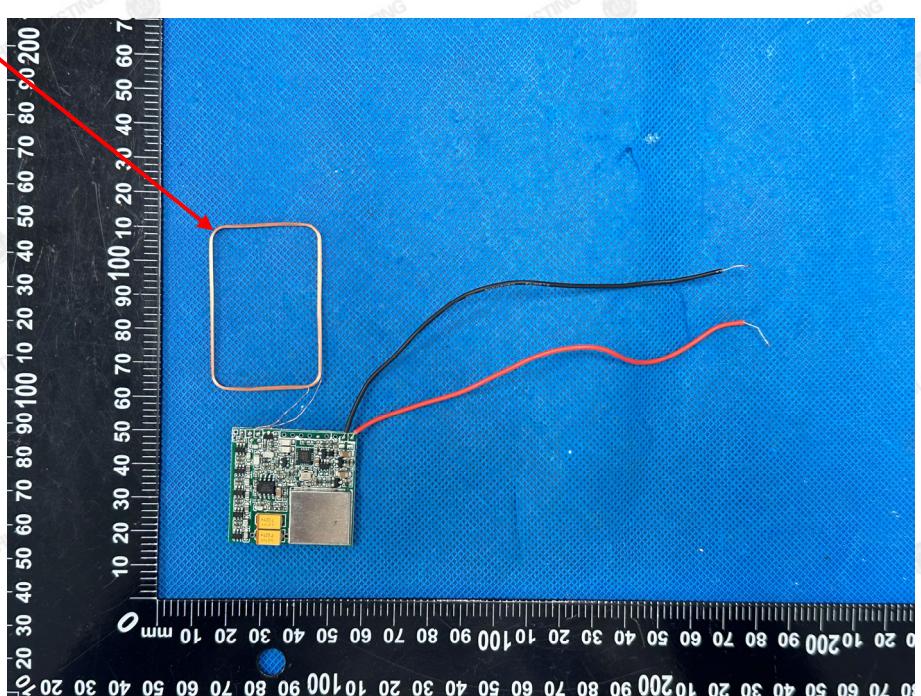
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	71.751752	-17.38	38.30	20.92	40.00	19.08	100	93	Vertical
2	96.026026	-15.55	34.32	18.77	43.50	24.73	100	135	Vertical
3	143.60360	-18.35	42.47	24.12	43.50	19.38	100	107	Vertical
4	167.877787	-17.31	46.04	28.73	43.50	14.77	100	165	Vertical
5	287.30730	-12.28	41.03	28.75	46.00	17.25	100	132	Vertical
6	461.111111	-8.91	35.22	26.31	46.00	19.69	100	146	Vertical

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

6. Antenna Requirement

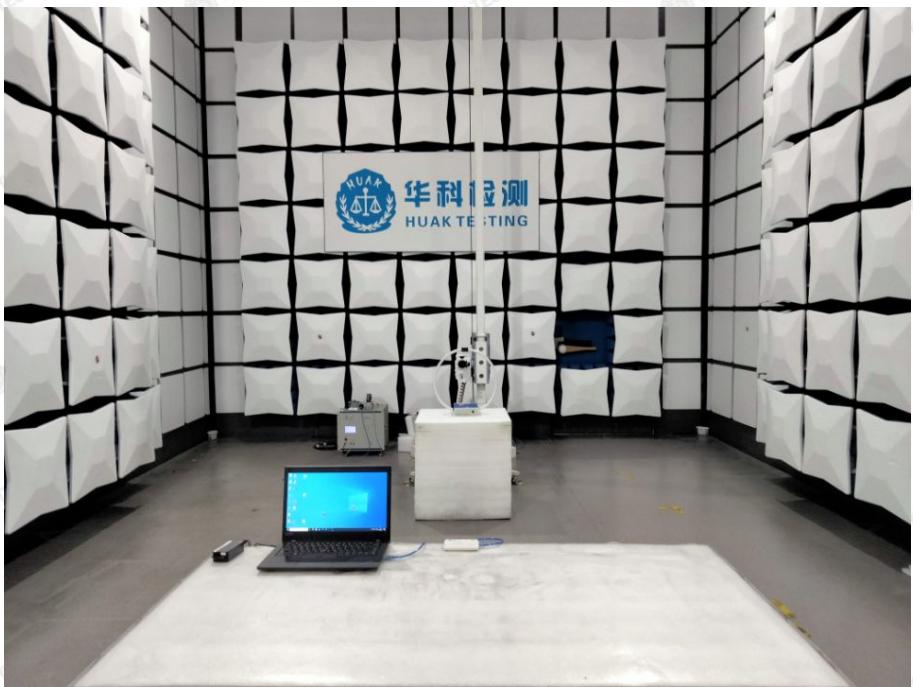
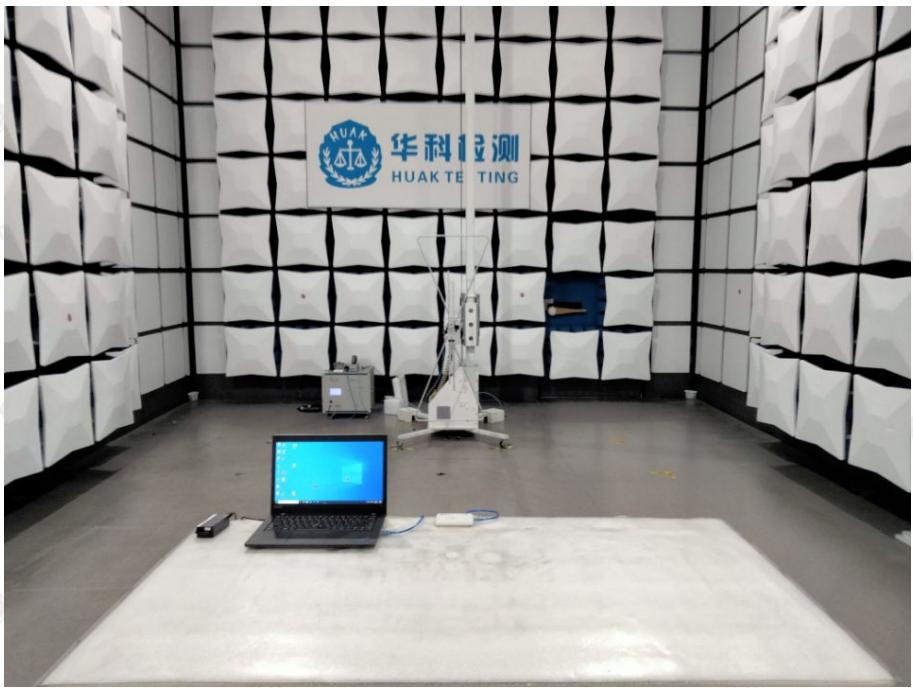
Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.


Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction



The antenna used in this product is a Coil Antenna, which permanently attached. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 0dBi.

Antenna

7. Photographs of Test

Radiated Emissions

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.cer-mark.com>.

TEL : +86-755 2302 9901 FAX : +86-755 2302 9901 E-mail : service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at <http://www.cer-mark.com>.

TEL : +86-755 2302 9901 FAX : +86-755 2302 9901 E-mail : service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

8. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

-----End of test report-----