

Radio Test Report

Report No.: STS2507188W03

Issued for

Apex Tool Group, LLC

910 Ridgebrook Road, Suite 200 Sparks, Maryland 21152

Product Name: Tire-Pressure Sensor

Brand Name: GEARWRENCH

Model Name: GWTPMSM

Series Model(s): GWTPMSR

FCC ID: 2BGBLTPMS1

Test Standards: FCC Part 15.231

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

TEST REPORT

Applicant's Name: Apex Tool Group, LLC

Address: 910 Ridgebrook Road, Suite 200 Sparks, Maryland 21152

Manufacturer's Name: Shenzhen Xtooltech Intelligent Co., Ltd.

Address: 17&18/F, A2 Building, Creative City, Liuxian Avenue, Nanshan District, Shenzhen, China

Product Description

Product Name: Tire-Pressure Sensor

Brand Name: GEARWRENCH

Model Name: GWTPMSM

Series Model(s): GWTPMSR

Test Standards: FCC Part 15.231

Test Procedure: ANSI C63.10-2020

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

Date of Test:

Date of Receipt of Test Item ...: 11 Oct. 2024

Date of performance of tests ...: 11 Oct. 2024 ~ 27 Nov. 2024

Date of Issue: 30 July 2025

Test Result: **Pass**

Testing Engineer :

(Aaron Bu)

Technical Manager :

(Skylar Li)

Authorized Signatory :

(Bovey Yang)

TABLE OF CONTENTS	Page
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	6
1.2 MEASUREMENT UNCERTAINTY	6
2. GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF THE EUT	7
2.2 DESCRIPTION OF THE TEST MODES	7
2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	9
2.5 EQUIPMENTS LIST	10
3. EMC EMISSION TEST	11
3.1 CONDUCTED EMISSION MEASUREMENT	11
3.2 TEST PROCEDURE	12
3.3 TEST SETUP	12
3.4 TEST RESULTS	12
4. RADIATED EMISSION MEASUREMENT	13
4.1 RADIATED EMISSION LIMITS	13
4.2 TEST PROCEDURE	15
4.3 DEVIATION FROM TEST STANDARD	15
4.4 TEST SETUP	16
4.5 EUT OPERATING CONDITIONS	17
4.6 TEST RESULTS	17
4.7 FIELD STRENGTH CALCULATION	18
4.8 TEST RESULTS (EMISSION)	18
5. BANDWIDTH TEST	29
5.1 LIMIT	29
5.2 TEST REQUIREMENTS	29
5.3 TEST PROCEDURE	29
5.4 TEST SETUP	29
5.5 EUT OPERATION CONDITIONS	29
5.6 TEST RESULTS	30
6. TRANSMITTER TIMEOUT	34
6.1 LIMIT	34
6.2 TEST PROCEDURE	34

TABLE OF CONTENTS	Page
6.3 TEST SETUP	34
6.4 TEST RESULTS	35
7. PERIODIC OPERATION	39
7.1 TEST PROCEDURE	39
7.2 TEST SETUP	39
7.3 EUT OPERATION CONDITIONS	39
7.4 TEST RESULTS	40
8. ANTENNA REQUIREMENT	46
8.1 STANDARD REQUIREMENT	46
8.2 EUT ANTENNA	46
APPENDIX 1-PHOTOS OF TEST SETUP	47

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents
00	27 Nov. 2024	STS2410043W03	ALL	Initial Issue
01	30 July 2025	STS2507188W03	ALL	Update the applicant, brand name, model, appearance silk screen, battery information, and add air valve accessories, and FCC ID

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part 15.231,Subpart C			
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	N/A	--
15.205(a)/15.209/ 15.231(e)	Radiated Spurious Emission	PASS	--
15.231(e)	Transmission requirement	PASS	--
15.231(C)	20 dB Bandwidth	PASS	--
15.203	Antenna Requirement	PASS	--

NOTE: (1) "N/A" denotes test is not applicable in this Test Report.

(2) All tests are according to ANSI C63.10-2020.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD

Add. : 101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China

FCC test Firm Registration Number: 625569

IC test Firm Registration Number: 12108A

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	$\pm 0.755\text{dB}$
2	Unwanted Emissions, conducted	$\pm 2.874\text{dB}$
3	All emissions, radiated 9K-30MHz	$\pm 3.80\text{dB}$
4	All emissions, radiated 30M-1GHz	$\pm 4.18\text{dB}$
5	All emissions, radiated 1G-6GHz	$\pm 4.90\text{dB}$
6	All emissions, radiated>6G	$\pm 5.24\text{dB}$
7	Conducted Emission (9KHz-150KHz)	$\pm 2.19\text{dB}$
8	Conducted Emission (150KHz-30MHz)	$\pm 2.53\text{dB}$
9	Occupied Channel Bandwidth	$\pm 3.5\%$
10	Power Spectral Density, conducted	$\pm 1.245\text{dB}$
11	Duty Cycle	$\pm 3.2\%$

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Tire-Pressure Sensor									
Trade Name	GEARWRENCH									
Model Name	GWTPMSM									
Series Model	GWTPMSR									
Model Difference	The only difference between these two models lies in the material of the valve cover. The valve cover of GWTPMSM is made of metal, while that of GWTPMSR is made of rubber. Apart from this, all other aspects are exactly the same.									
Product Description	<p>The EUT is a Tire-Pressure Sensor</p> <table border="1"><tr><td>Operation Frequency:</td><td>315MHz, 433.92MHz</td></tr><tr><td>Modulation Type:</td><td>ASK, FSK</td></tr><tr><td>Antenna Designation:</td><td>Spring Antenna</td></tr><tr><td>Antenna Gain(Peak)</td><td>315MHz: -20.75dBi 433.92MHz: -20.55 dBi</td></tr></table> <p>More details of EUT technical specification, please refer to the User Manual.</p>		Operation Frequency:	315MHz, 433.92MHz	Modulation Type:	ASK, FSK	Antenna Designation:	Spring Antenna	Antenna Gain(Peak)	315MHz: -20.75dBi 433.92MHz: -20.55 dBi
Operation Frequency:	315MHz, 433.92MHz									
Modulation Type:	ASK, FSK									
Antenna Designation:	Spring Antenna									
Antenna Gain(Peak)	315MHz: -20.75dBi 433.92MHz: -20.55 dBi									
Rating	Input: DC 3.0V CR2032HR (Manganese dioxide Lithium Battery)									
Battery	<p>Model: CR2032HR Brand: Rated Voltage:3V Charge Limit Voltage: N/A Capacity: 200mAh</p>									
Hardware version number	TS100_MB_V3.0									
Software version number	N/A									
Serial Numbers	241010016-2									
Connecting I/O Port(s)	Please refer to Note 1.									

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
2. Table for filed Antenna

Fre.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
315MHz	XTOOL	TS101	Spring	N/A	-20.75	Antenna
433MHz	XTOOL	TS101	Spring	N/A	-20.55	Antenna

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT

operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX Mode(315MHz, ASK)
Mode 2	TX Mode(433.92MHz, ASK)
Mode 3	TX Mode(315MHz, FSK)
Mode 4	TX Mode(433.92MHz, FSK)

	For Radiated Emission
Final Test Mode	Description
Mode 1	TX Mode(315MHz, ASK)
Mode 2	TX Mode(433.92MHz, ASK)
Mode 3	TX Mode(315MHz, FSK)
Mode 4	TX Mode(433.92MHz, FSK)

Note:

(1)The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
N/A	N/A	N/A	N/A	N/A	N/A

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
N/A	N/A	N/A	N/A	N/A	N/A

Note:

(1)For detachable type I/O cable should be specified the length in cm in 『Length』 column.

2.5 EQUIPMENTS LIST

RF Radiation Test Equipment					
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
Temperature & Humidity	SW-108	SuWei	N/A	2024.03.15	2025.03.14
Pre-Amplifier(0.1M-3GHz)	EM	EM330	060665	2024.02.23	2025.02.22
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2024.09.23	2025.09.22
Positioning Controller	MF	MF-7802	MF-780208587	N/A	N/A
Signal Analyzer	R&S	FSV 40-N	101823	2024.09.23	2025.09.22
Filter Box	BALUN Technology	SU319E	BL-SZ1530051	N/A	N/A
Bilog Antenna	TESEQ	CBL6111D	34678	2024.09.30	2025.09.29
Active loop Antenna	ZHINAN	ZN30900C	16035	2023.02.28	2025.02.27
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2023.09.24	2025.09.23
Antenna Mast	MF	MFA-440H	N/A	N/A	N/A
Turn Table	EM	SC100_1	60531	N/A	N/A
AC Power Source	APC	KDF-11010G	F214050035	N/A	N/A
DC power supply	HONGSHENGFENG	DPS-305AF	17064939	2024.09.23	2025.09.22
Test SW	EZ-EMC	Ver.STSLAB-03A1 RE			
RF Connected Test					
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Signal Analyzer	Agilent	N9020A	MY51510623	2024.02.23	2025.02.22
Temperature & Humidity	SW-108	SuWei	N/A	2024.03.15	2025.03.14

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

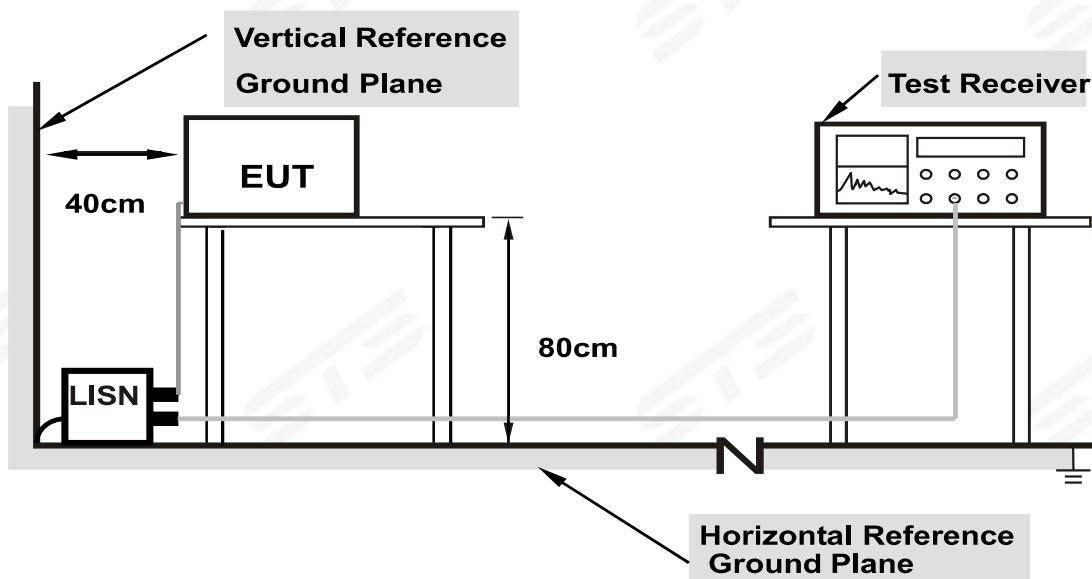
The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

FREQUENCY (MHz)	Class B (dBuV)		Standard
	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	56.00	46.00	CISPR
5.0 -30.0	60.00	50.00	CISPR

0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.3 TEST SETUP

Note:

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.4 TEST RESULTS

Temperature:	N/A	Relative Humidity:	N/A
Phase:	L/N	Test Mode:	N/A

Note: EUT is only power by Button cell battery, So it is not applicable for this test.

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In case the emission fall within the restricted band specified on Part 15.205(a), then the Part 15.209(a), Part 15.231(e) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100**	3
88~216	150**	3
216~960	200**	3
Above 960	500	3

Fundamental Frequency (MHz)	Field Strength of fundamental (microvolts/meter)	Field Strength of Unwanted Emissions (microvolts/meter)
40.66 - 40.70	1,000	100
70 - 130	500	50
130 - 174	500 to 1,500 **	50 to 1,50 **
174 - 260	1,500	1,50
260 - 470	1,500 to 5,000 **	1,50 to 5,00 **
Above 470	5,000	5,00

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class B (dBuV/m) (at 3M)	
	PEAK	AVERAGE
Above 1000	74	54

NOTE:** linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental

field strengths are as follows: for the band 130-174 MHz, uV/m at 3 meters = 22.72727(F) - 2454.545; for the band 260-470 MHz, uV/m at 3 meters = 16.6667(F) - 2833.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in93 Section 15.209, whichever limit permits a higher field strength.

LIMITS OF RESTRICTED FREQUENCY BANDS

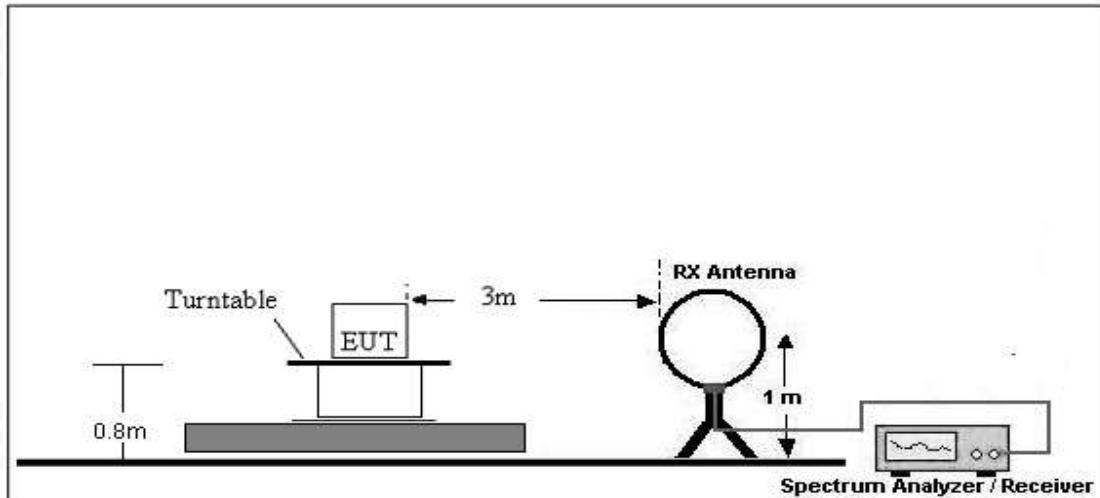
FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Spectrum Parameter	Setting
Detector	Peak
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1MHz / 3MHz

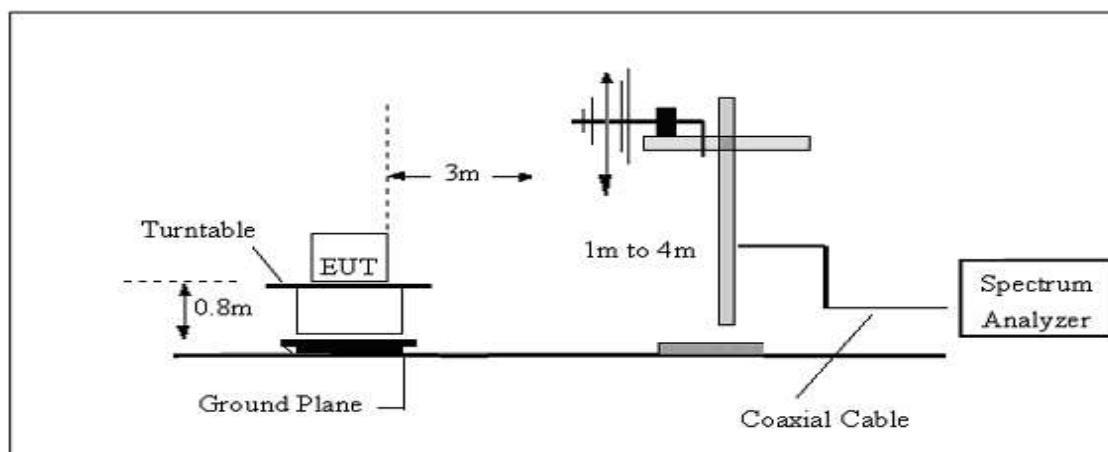
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

4.2 TEST PROCEDURE

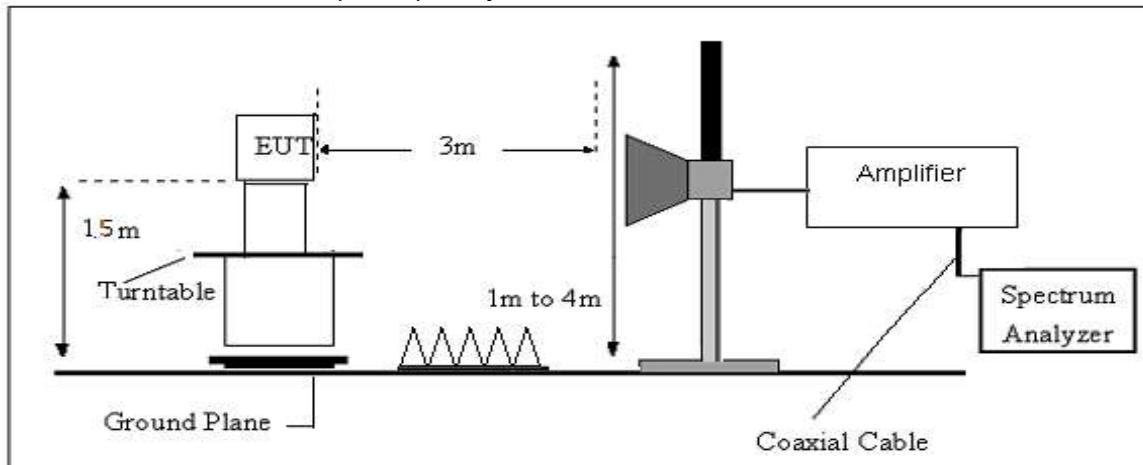
- a. The test is performed in a 3m Semi-Anechoic Chamber; the antenna factor, cable loss and so on of the site (factors) is calculated to correct the reading. The EUT is placed on a 0.8m high insulating Turn Table, and keeps 3m away from the Test Antenna, which is mounted on a variable-height antenna master tower.
During test, the table was rotated 360 degrees to determine the position of the highest radiation.
- b. In the frequency range of 9KHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 3m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- c. In the frequency range 30MHz-1GHz, Bi-Log Test Antenna used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.
- d. In the frequency above 1GHz, place the measurement antenna 3m away from the EUT for each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- f. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- h. For the actual test configuration, please refer to the related Item –EUT Test Photos.


Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.3 DEVIATION FROM TEST STANDARD


No deviation

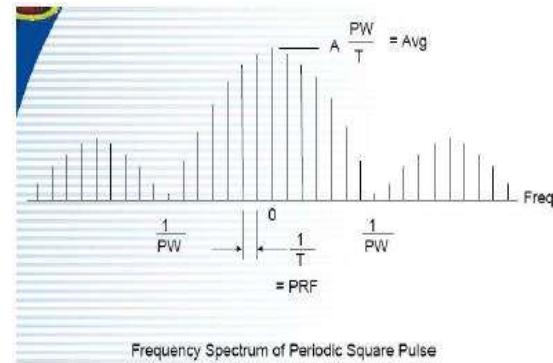
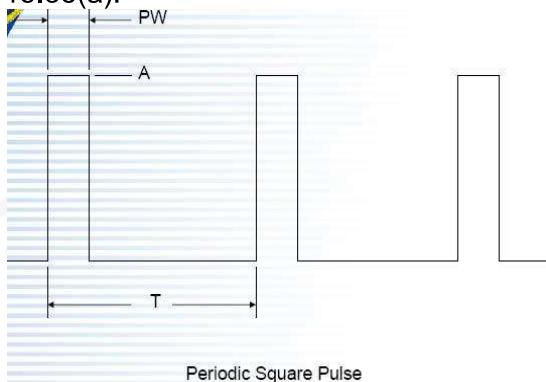
4.4 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.5 EUT OPERATING CONDITIONS



The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.6 TEST RESULTS

INTRODUCTION TO PDCF

Reference: (§15.35 Measurement detector functions and bandwidths.)

- a. Part 15 of the FCC Rules provides for the operation of low power communication devices without an individual license (e.g., intrusion detectors, pulsed water tank level gauges, etc.), subject to certain requirements. Some of these devices use extremely narrow pulses to generate wideband emissions, which are measured to determine compliance with the rules. These measurements are typically performed with a receiver or spectrum analyzer. Depending on a number of factors (e.g., resolution bandwidth, pulsewidth, etc.), the spectrum analyzer may not always display the true peak value of the measured emission. This effect, called "pulse desensitization," relates to the capabilities of the measuring instrument. For the measurement and reporting of the true peak of pulsed emissions, it may be necessary to apply a "pulse desensitization correction factor" (PDCF) to the measured value, pursuant to 47 CFR 15.35(a).

If using spectrum analyzer to measure pulse signal, it have to make sure the RBW use is at least $2/PW$.

•When RBW is less than $2/PW$, you are able to measure the true peak level of the pulse signal. If this is the case, PDCF is required to compensate to determine true peak value.

Pulse desensitization:

315MHz, FSK

PW =29600usec, Period=100000usec, Level=A

RBW>2/PW=0.068K , PRF=1/T=0.01K ,

433.92MHz,ASK

PW =17600usec, Period=100000usec, Level=A

RBW>2/PW=0.1K , PRF=1/T=0.01K

NOTE: $2 / PW < RBW$, first don't need

- b. For the actual test, please refer to the ANSI C63.10,Annex C
refer to section 7 for more detail

4.7 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency (MHz)	FS (dB μ V/m)	RA (dB μ V/m)	AF (dB)	CL (dB)	AG (dB)	Factor (dB)
300	40	58.1	12.2	1.6	31.9	-18.1

$$\text{Factor} = AF + CL - AG$$

4.8 TEST RESULTS (EMISSION)

(Radiated Emission<30MHz (9KHz-30MHz, H-field))

Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode 1	Polarization:	--

Freq. (MHz)	Reading (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	State
--	--	--	--	P/F
--	--	--	--	PASS
--	--	--	--	PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

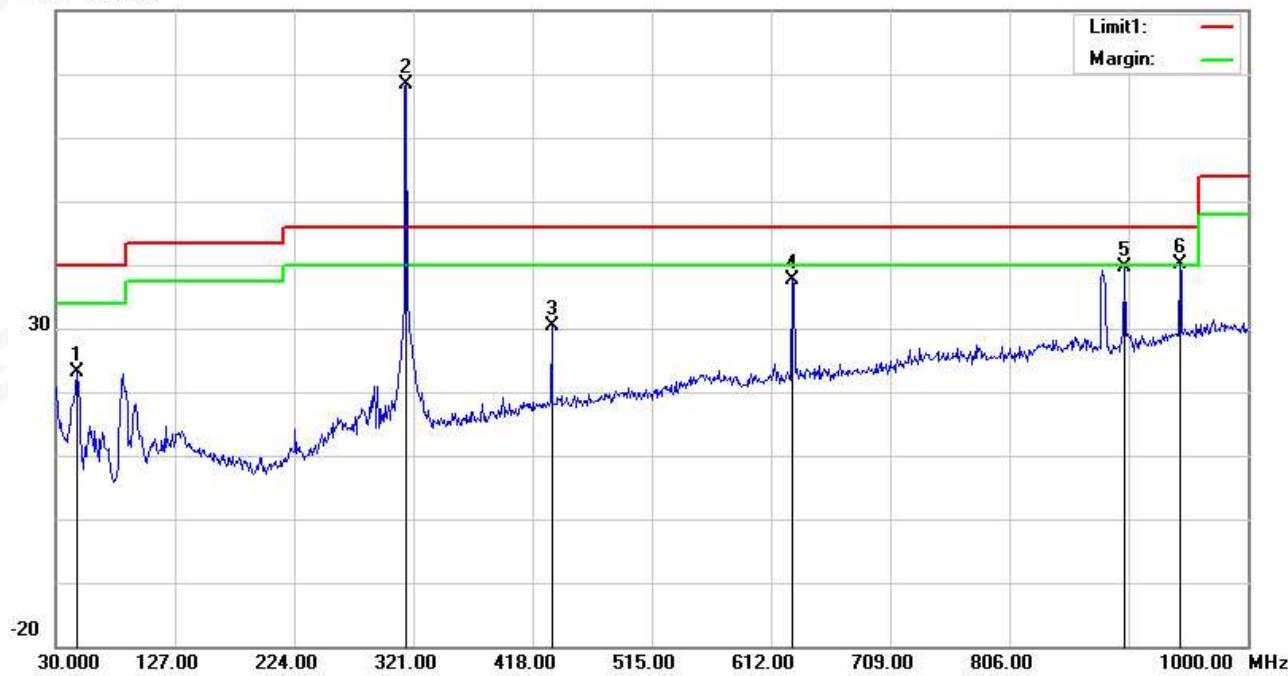
Distance extrapolation factor = $40 \log(\text{specific distance}/\text{test distance})$ (dB);

Limit line = specific limits (dB μ V) + distance extrapolation factor.

Between 30MHz – 5000 MHz

Temperature:	23.4°C	Relative Humidity:	60%
Phase:	Horizontal	Test Mode:	Mode 1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	47.4600	45.03	-21.92	23.11	40.00	-16.89	peak
3	433.5200	40.55	-10.13	30.42	46.00	-15.58	peak
4	629.4600	42.67	-5.07	37.60	46.00	-8.40	peak
5	900.0900	40.20	-0.45	39.75	46.00	-6.25	peak
6	944.7100	38.62	1.48	40.10	46.00	-5.90	peak


Fundamental Frequency

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor(dB/m)	Duty cycle	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2	315.0000	82.58	-14.22	-	68.36	87.67	-19.31	Peak
2	315.0000	82.58	-14.22	-15.76	52.6	67.67	-15.07	Avg

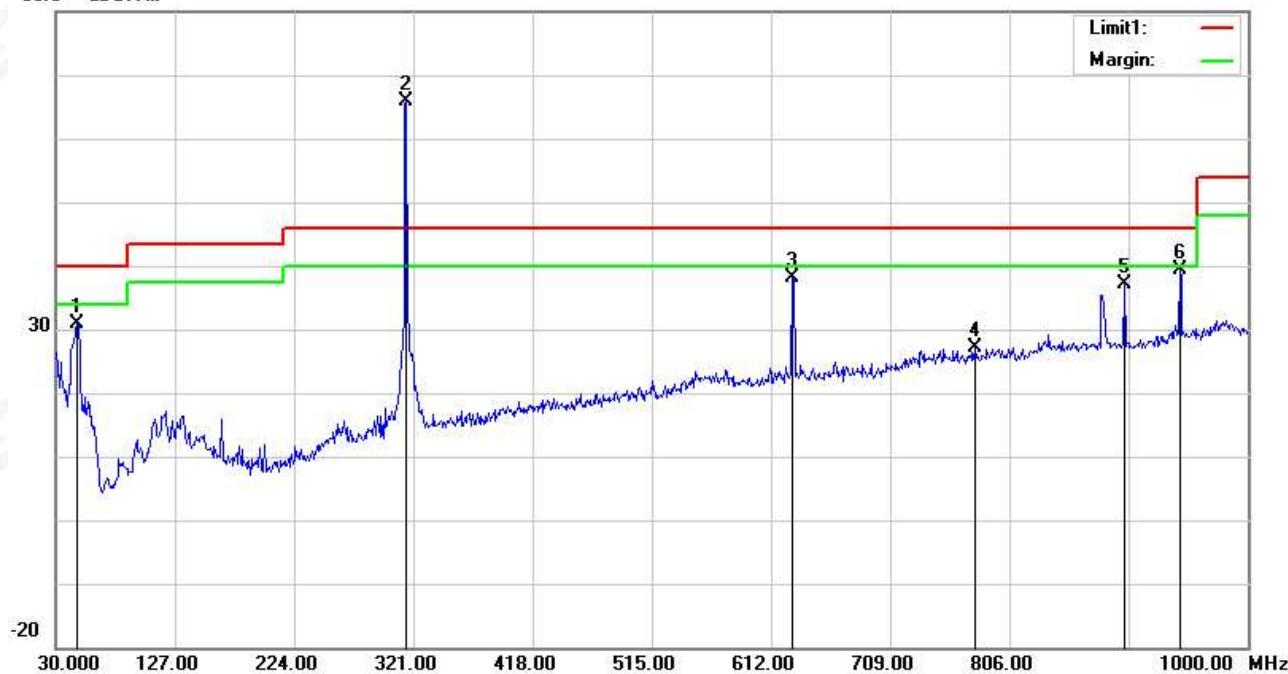
Remark:

- Margin = Result (Result =Reading + Factor)–Limit
- Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

80.0 dBuV/m

Temperature:	23.4°C	Relative Humidity:	60%
Phase:	Vertical	Test Mode:	Mode 1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	47.4600	52.90	-21.92	30.98	40.00	-9.02	peak
3	629.4600	43.08	-5.07	38.01	46.00	-7.99	peak
4	777.8700	29.49	-2.24	27.25	46.00	-18.75	peak
5	900.0900	37.54	-0.45	37.09	46.00	-8.91	peak
6	944.7100	37.84	1.48	39.32	46.00	-6.68	peak


Fundamental Frequency

No.	Frequency	Reading	Correct	Duty cycle	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
2	315.0000	80.08	-14.22	-	65.86	87.67	-21.81	Peak
2	315.0000	80.08	-14.22	-15.76	50.1	67.67	-17.57	AVG

Remark:

- Margin = Result (Result =Reading + Factor)-Limit
- Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

80.0 dBuV/m

