

TEST REPORT

Reference No...... : WTD24D04085741W003
FCC ID : 2BG82-WONDER-PHONE
Applicant : Lighko Corp
Address : 131 Rt 306, Monsey, NY, 10952, USA
Manufacturer : Ying Tai Electronics Co., Ltd
Address : lingang Industrial Park, Enyang Dist., Bazhong, Sichuan, China
Product : Wonder Phone
Model(s) : WP01
Brand Name : Wonder
Standards : FCC 47CFR Part 15.247
Date of Receipt sample : 2024-04-19
Date of Test : 2024-04-28 to 2024-07-17
Date of Issue : 2024-07-24
Test Result : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:
Waltek Testing Group Co., Ltd.

Address: No. 77, Houjie Section, Guantai Road, Houjie Town, Dongguan City, Guangdong, China
Tel: +86-769-2267 6998
Fax: +86-769-2267 6828

Compiled by:

James Cheng / Project Engineer

Approved by:

Deval Qin / Designated Reviewer

2 Contents

	Page
1 COVER PAGE.....	1
2 CONTENTS.....	2
3 REVISION HISTORY.....	4
4 GENERAL INFORMATION.....	5
4.1 General Description of E.U.T.....	5
4.2 Details of E.U.T.....	5
4.3 Channel List.....	5
4.4 Test Facility.....	6
4.5 Subcontracted.....	6
4.6 Abnormalities from Standard Conditions.....	6
4.7 Test Mode.....	6
5 TEST SUMMARY	7
6 EQUIPMENT USED DURING TEST.....	8
6.1 Equipments List	8
6.2 Measurement Uncertainty	9
7 DUTY CYCLE.....	10
8 CONDUCTED EMISSION.....	11
8.1 E.U.T. Operation.....	11
8.2 EUT Setup	11
8.3 Measurement Description.....	11
8.4 Conducted Emission Test Result	12
9 RADIATED EMISSIONS	14
9.1 EUT Operation.....	14
9.2 Test Setup	15
9.3 Spectrum Analyzer Setup	16
9.4 Test Procedure	17
9.5 Corrected Amplitude & Margin Calculation	17
9.6 Summary of Test Results	18
10 CONDUCTED SPURIOUS EMISSIONS.....	21
10.1 Test Procedure	21
10.2 Test Result.....	22
11 BAND EDGE MEASUREMENT.....	28
11.1 Test Produce	28
11.2 Test Result.....	29
12 6 DB BANDWIDTH MEASUREMENT	30
12.1 Test Procedure	30
12.2 Test Result.....	30
13 MAXIMUM PEAK OUTPUT POWER.....	33
13.1 Test Procedure	33
13.2 Test Result.....	33
14 POWER SPECTRAL DENSITY.....	36
14.1 Test Procedure	36
14.2 Test Result.....	36

15	ANTENNA REQUIREMENT	39
16	RF EXPOSURE	39
17	PHOTOGRAPHS OF TEST SETUP AND EUT	39

3 Revision History

Test Report No.	Date of Receipt Sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTD24D04085741W003	2024-04-19	2024-04-28 to 2024-07-17	2024-07-24	Original	-	Valid

4 General Information

4.1 General Description of E.U.T.

Product: Wonder Phone
 Model(s): WP01
 Model Description: N/A
 Test Sample No.: 1-1/1
 Bluetooth Version: 5.0
 Hardware Version: P61-MB-V1.1-A
 Software Version: mt6761_P61-v228_20240625

4.2 Details of E.U.T.

Operation Frequency: 2402~2480MHz
 Max. RF output power: -0.72dBm
 Type of Modulation: GFSK
 Antenna installation: PIFA Antenna
 Antenna Gain: 0.29dBi

Note:

#: The antenna gain is provided by the applicant, and the applicant should be responsible for its authenticity, WALTEK lab has not verified the authenticity of its information.

Ratings: Battery: DC 3.8V, 2850mAh, 10.83Wh

4.3 Channel List

Channel No.	Frequency (MHz)						
0	2402	1	2404	2	2406	3	2408
4	2410	5	2412	6	2414	7	2416
8	2418	9	2420	10	2422	11	2424
12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	18	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

4.4 Test Facility

The test facility has a test site registered with the following organizations:

ISED CAB identifier: CN0013. Test Firm Registration No.: 7760A.

Waltek Testing Group Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A, October 15, 2016.

FCC Designation No.: CN1201. Test Firm Registration No.: 523476.

Waltek Testing Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration number 523476, September 10, 2019.

4.5 Subcontracted

Whether parts of tests for the product have been subcontracted to other labs:

Yes No

If Yes, list the related test items and lab information:

Test Lab: N/A

Lab address: N/A

Test items: N/A

4.6 Abnormalities from Standard Conditions

None.

4.7 Test Mode

Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
Maximum Peak Output Power	BT BLE	1 Mbps	0/19/39	TX
Power Spectral Density	BT BLE	1 Mbps	0/19/39	TX
6dB Bandwidth	BT BLE	1 Mbps	0/19/39	TX
Band Edge	BT BLE	1 Mbps	0/19/39	TX
Transmitter Spurious Emissions	BT BLE	1 Mbps	0/19/39	TX

Note: Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product.

5 Test Summary

Test Items	Test Requirement	Result
Radiated Spurious Emissions	15.247(d) 15.205(a) 15.209(a)	PASS
Conducted Spurious Emissions	15.247(d)	PASS
Conducted Emissions	15.207(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

6 Equipment Used during Test

6.1 Equipments List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date	Calibration Due Date
Conducted Emissions 2#						
1	EMI Test Receiver	R&S	ESCI	101155	2023-07-27	2024-07-26
2	LISN	SCHWARZBECK	NSLK 8128	8128-259	2023-10-31	2024-10-30
3	Pulse Limiter	CYBERTEK	EM5010	261115-001-0024	2023-07-27	2024-07-26
4	Cable	Laplace	RF300	-	2023-07-27	2024-07-26
3m Semi-anechoic Chamber for Radiation Emissions 1#						
1	Spectrum Analyzer	R&S	FSP30	100091	2024-04-22	2025-04-21
2	Amplifier	Agilent	8447D	2944A10178	2023-07-27	2024-07-26
3	Tri-log Broadband Antenna	SCHWARZBECK	VULB9163	336	2023-08-07	2024-08-06
4	Coaxial Cable	Top	TYPE16(13M)	-	2024-04-22	2025-04-21
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120D	667	2024-01-23	2025-01-22
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2023-07-27	2024-07-26
7	Broadband Preamplifier	COMPLIANCE	PAP-1G18	2004	2023-08-08	2024-08-07
8	Coaxial Cable	Top	ZT26-NJ-NJ-8M/FA	-	2024-04-22	2025-04-21
9	Microwave Amplifier	SCHWARZBECK	BBV 9721	100472	2023-07-27	2024-07-26
10	Coaxial Cable	Top	ZT40-2.92J-2.92J-2.0M	17100919	2024-04-22	2025-04-21
3m Semi-anechoic Chamber for Radiation Emissions 2#						
1	Test Receiver	R&S	ESCI	101296	2024-04-22	2025-04-21
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2023-11-04	2024-11-03
3	Active Loop Antenna	Com-Power	AL-130R	10160007	2024-04-27	2025-04-26
4	Amplifier	ANRITSU	MH648A	M43381	2024-04-22	2025-04-21
5	Cable	HUBER+SUHNER	CBL2	525178	2024-04-22	2025-04-21
RF Conducting						
1	Spectrum Analyzer	R&S	FSP40	100501	2023-07-27	2024-07-26
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023-07-27	2024-07-26

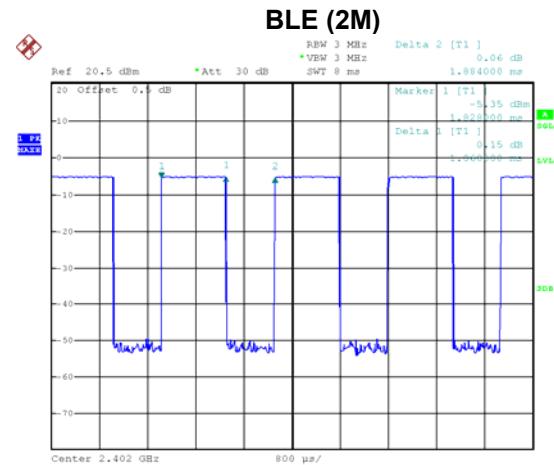
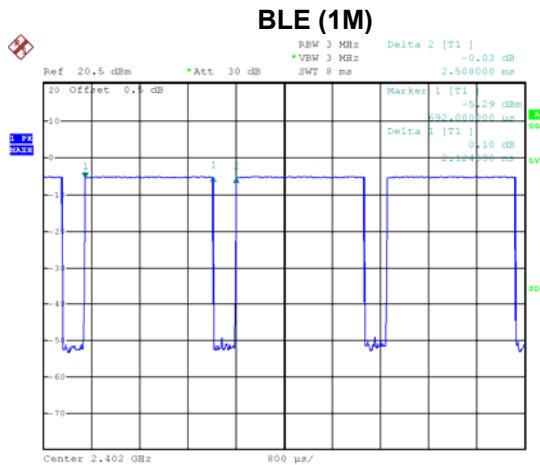
Test Software:

Test Item	Software name	Software version
Conduction disturbance Radiated Emission(3m)	EZ-EMC	EZ-EMC(RA-03A1-1)

6.2 Measurement Uncertainty

Parameter	Uncertainty
Conducted Emission	± 3.64 dB(AC mains 150KHz~30MHz)
Radiated Spurious Emissions	± 5.08 dB (Bilog antenna 30M~1000MHz) ± 5.47 dB (Horn antenna 1000M~25000MHz)
Radio Frequency	$\pm 1 \times 10^{-7}$ Hz
RF Power	± 0.42 dB
RF Power Density	± 0.7 dB
Conducted Spurious Emissions	± 2.76 dB (9kHz~26500MHz)
Confidence interval: 95%. Confidence factor:k=2	

7 Duty Cycle



Operation mode	On time ms	Period ms	Duty Cycle linear	Duty Cycle %	Duty Cycle Factor(dB)	Average Factor(dB)
BLE (1M)	2.124	2.508	0.85	84.69	0.72	-1.44
BLE (1M)	1.068	1.884	0.57	56.69	2.47	-4.93

Remark:

Duty cycle=On Time/period;

Duty cycle factor= $10 \log(1/\text{Duty cycle})$;

Average factor= $20 \log_{10} \text{Duty cycle}$

Date: 29.APR.2024 14:53:04

Date: 29.APR.2024 14:52:16

8 Conducted Emission

Test Requirement: 47CFR FCC Part15 Subpart C §15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Limit:

Frequency (MHz)	Conducted	Limit (dB μ V)
	Quasi-peak	Average
0.15 to 0.5	66 to 56*	56 to 46*
0.5 to 5.0	56	46
5.0 to 30	60	50

8.1 E.U.T. Operation

Operating Environment:

Temperature: 26.9°C

Humidity: 53.7%RH

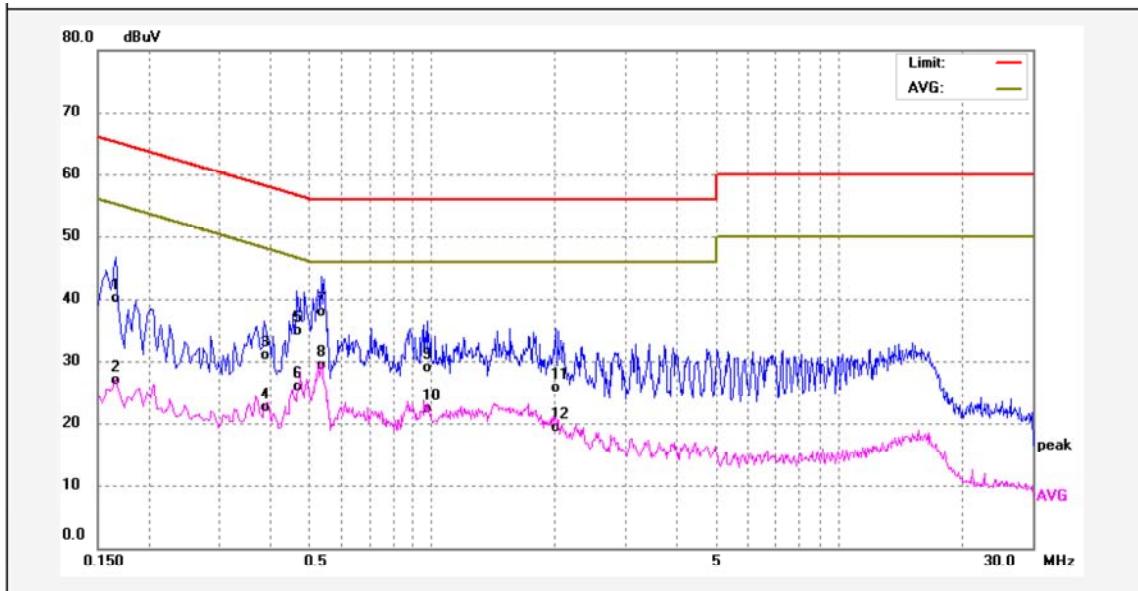
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode, the worst test data were shown in the report.

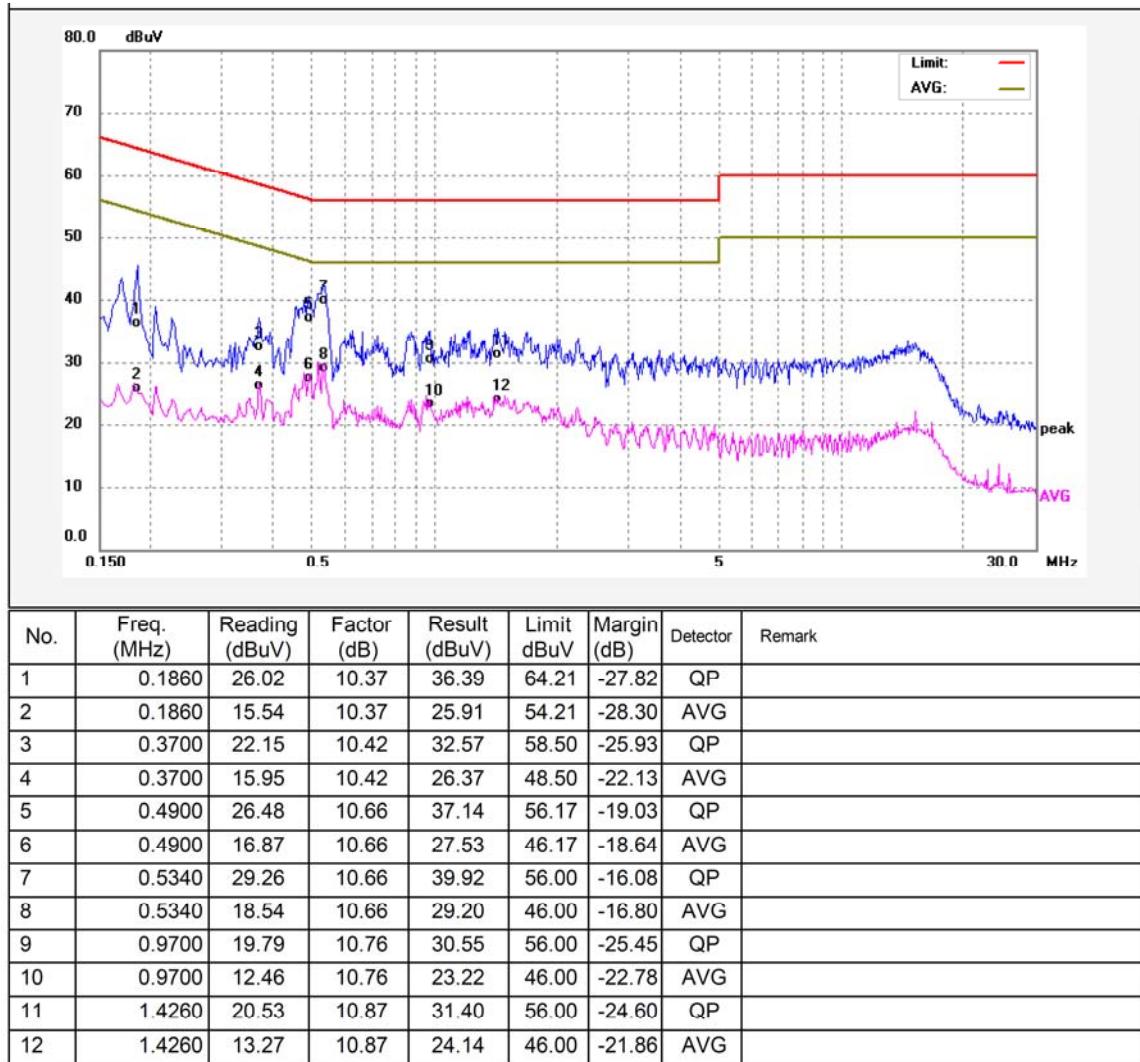
8.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.


8.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

8.4 Conducted Emission Test Result


Remark: only the worst data (High channel mode) were reported

Live line:

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Margin (dB)	Detector	Remark
1	0.1660	29.93	10.25	40.18	65.15	-24.97	QP	
2	0.1660	16.56	10.25	26.81	55.15	-28.34	AVG	
3	0.3860	20.32	10.59	30.91	58.15	-27.24	QP	
4	0.3860	11.94	10.59	22.53	48.15	-25.62	AVG	
5	0.4660	24.14	10.71	34.85	56.58	-21.73	QP	
6	0.4660	15.14	10.71	25.85	46.58	-20.73	AVG	
7	0.5340	27.06	10.75	37.81	56.00	-18.19	QP	
8	0.5340	18.65	10.75	29.40	46.00	-16.60	AVG	
9	0.9700	17.75	11.10	28.85	56.00	-27.15	QP	
10	0.9700	11.30	11.10	22.40	46.00	-23.60	AVG	
11	2.0220	14.34	11.31	25.65	56.00	-30.35	QP	
12	2.0220	8.00	11.31	19.31	46.00	-26.69	AVG	

Neutral line:

9 Radiated Emissions

Test Requirement: FCC 47CFR Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS

Measurement Distance: 3m

Limit:

Frequency (MHz)	Field Strength		Field Strength Limit at 3m Measurement Dist	
	uV/m	Distance (m)	uV/m	dBuV/m
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾

9.1 EUT Operation

Operating Environment:

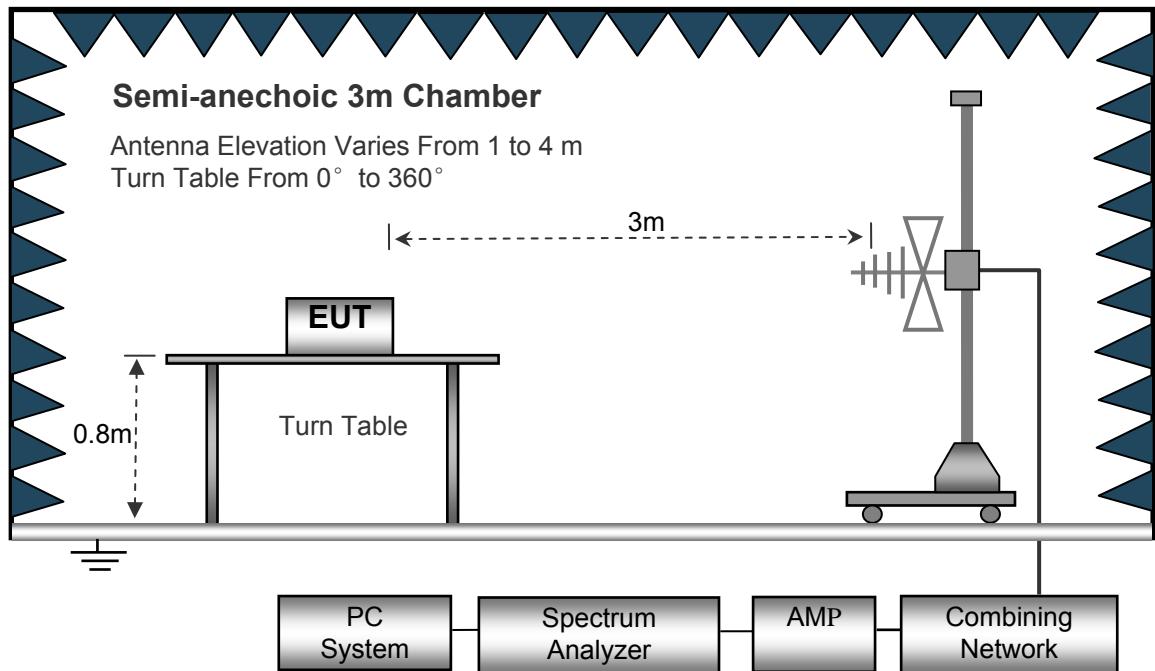
Temperature: 25.6 °C

Humidity: 66.8 % RH

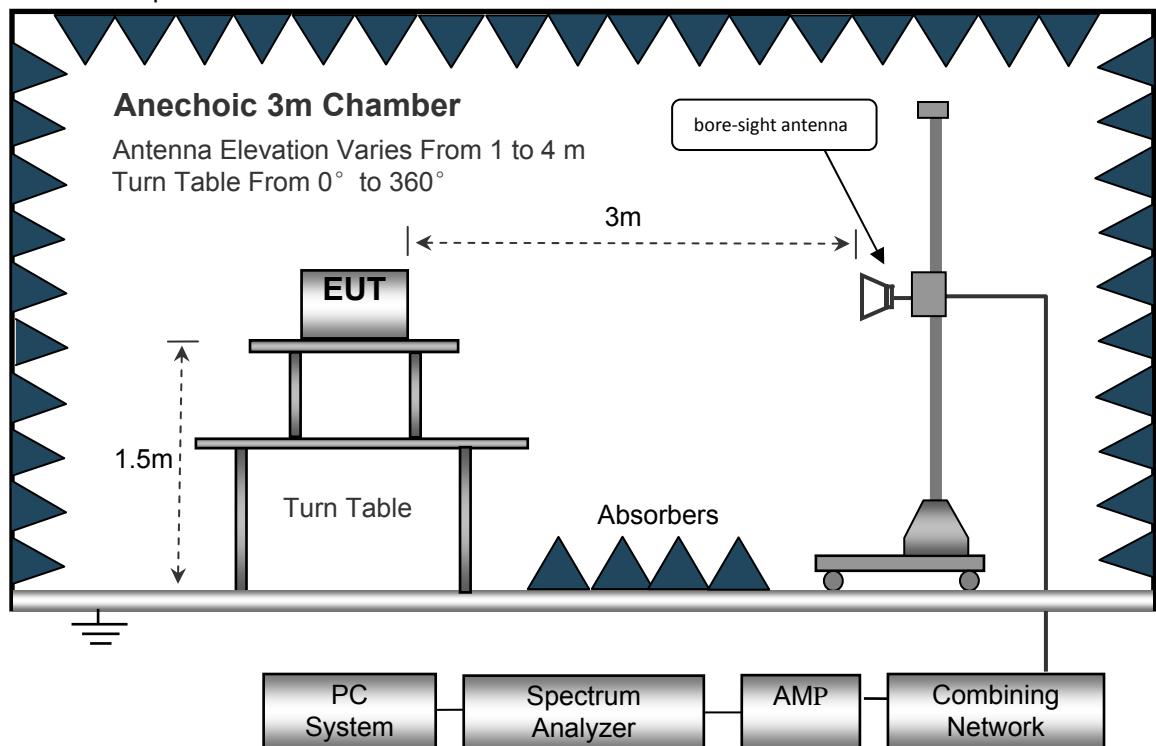
Atmospheric Pressure: 101.3kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.


9.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.


The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

9.3 Spectrum Analyzer Setup

Below 30MHz

Sweep Speed	Auto
IF Bandwidth.....	10kHz
Video Bandwidth.....	10kHz
Resolution Bandwidth.....	10kHz

30MHz ~ 1GHz

Sweep Speed	Auto
Detector	PK
Resolution Bandwidth.....	100kHz
Video Bandwidth.....	300kHz

Above 1GHz

Sweep Speed	Auto
Detector	PK
Resolution Bandwidth.....	1MHz
Video Bandwidth.....	3MHz
Detector	Ave.
Resolution Bandwidth.....	1MHz
Video Bandwidth.....	10Hz

9.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
6. Repeat above procedures until the measurements for all frequencies are complete.
7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in Z axis,so the worst data were shown as follow.
8. A 2.4GHz high –pass filter is used during radiated emissions above 1GHz measurement.

9.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$\text{Corr. Ampl.} = \text{Indicated Reading} + \text{Antenna Factor} + \text{Cable Factor} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corr. Ampl.} - \text{Limit}$$

9.6 Summary of Test Results

Test Frequency: 9kHz~30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 8GHz

Remark: only the worst data (BLE (1M) mode) were reported.

Frequency (MHz)	Receiver Reading (dB μ V)	Detector (PK/QP/Ave)	Turn table Angle Degree	RX Antenna		Corrected Factor (dB)	Corrected Amplitude (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
				Height (m)	Polar (H/V)				
BLE (1M) Low Channel 2402MHz									
152.85	43.87	QP	98	1.3	H	-11.88	31.99	43.50	-11.51
152.85	48.33	QP	305	1.3	V	-11.88	36.45	43.50	-7.05
4804.00	56.79	PK	7	1.1	V	-1.06	55.73	74.00	-18.27
4804.00	41.87	Ave	7	1.1	V	-1.06	40.81	54.00	-13.19
7206.00	57.96	PK	32	1.8	H	1.33	59.29	74.00	-14.71
7206.00	39.04	Ave	32	1.8	H	1.33	40.37	54.00	-13.63
2345.93	45.47	PK	59	1.1	V	-13.19	32.28	74.00	-41.72
2345.93	39.46	Ave	59	1.1	V	-13.19	26.27	54.00	-27.73
2375.03	43.85	PK	229	1.5	H	-13.14	30.71	74.00	-43.29
2375.03	38.54	Ave	229	1.5	H	-13.14	25.40	54.00	-28.60
2495.61	42.84	PK	120	1.6	V	-13.08	29.76	74.00	-44.24
2495.61	38.17	Ave	120	1.6	V	-13.08	25.09	54.00	-28.91

Frequency	Receiver Reading	Detector	Turn table Angle	RX Antenna		Corrected Factor	Corrected Amplitude	Limit	Margin
				Height	Polar				
(MHz)	(dB μ V)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)
BLE (1M) Middle Channel 2440MHz									
152.85	44.63	QP	291	1.3	H	-13.35	31.28	43.50	-12.22
152.85	47.69	QP	296	1.2	V	-13.35	34.34	43.50	-9.16
4880.00	57.62	PK	130	1.2	V	-0.62	57.00	74.00	-17.00
4880.00	41.04	Ave	130	1.2	V	-0.62	40.42	54.00	-13.58
7320.00	59.07	PK	237	1.9	H	2.21	61.28	74.00	-12.72
7320.00	39.29	Ave	237	1.9	H	2.21	41.50	54.00	-12.50
2334.88	46.98	PK	309	1.4	V	-13.19	33.79	74.00	-40.21
2334.88	39.27	Ave	309	1.4	V	-13.19	26.08	54.00	-27.92
2379.37	43.09	PK	119	1.9	H	-13.14	29.95	74.00	-44.05
2379.37	38.53	Ave	119	1.9	H	-13.14	25.39	54.00	-28.61
2485.43	43.24	PK	42	1.8	V	-13.08	30.16	74.00	-43.84
2485.43	38.59	Ave	42	1.8	V	-13.08	25.51	54.00	-28.49

Frequency	Receiver Reading	Detector	Turn table Angle	RX Antenna		Corrected Factor	Corrected Amplitude	Limit	Margin
				Height	Polar				
(MHz)	(dB μ V)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dB μ V/m)	(dB μ V/m)	(dB)
BLE (1M) High Channel 2480MHz									
152.85	44.04	QP	325	1.1	H	-13.35	30.69	43.50	-12.81
152.85	47.81	QP	236	1.3	V	-13.35	34.46	43.50	-9.04
4960.00	58.62	PK	270	1.2	V	-0.24	58.38	74.00	-15.62
4960.00	39.98	Ave	270	1.2	V	-0.24	39.74	54.00	-14.26
7440.00	59.22	PK	324	1.8	H	2.84	62.06	74.00	-11.94
7440.00	40.70	Ave	324	1.8	H	2.84	43.54	54.00	-10.46
2312.85	46.69	PK	254	2.0	V	-13.19	33.50	74.00	-40.50
2312.85	39.38	Ave	254	2.0	V	-13.19	26.19	54.00	-27.81
2360.28	43.03	PK	248	1.7	H	-13.14	29.89	74.00	-44.11
2360.28	36.23	Ave	248	1.7	H	-13.14	23.09	54.00	-30.91
2483.70	44.71	PK	297	1.5	V	-13.08	31.63	74.00	-42.37
2483.70	37.60	Ave	297	1.5	V	-13.08	24.52	54.00	-29.48

Test Frequency: 8GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

10 Conducted Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019;
ANSI C63.10:2013

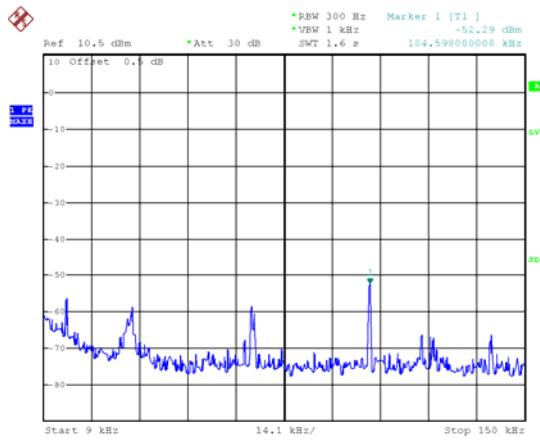
Test Result: PASS

Limit:

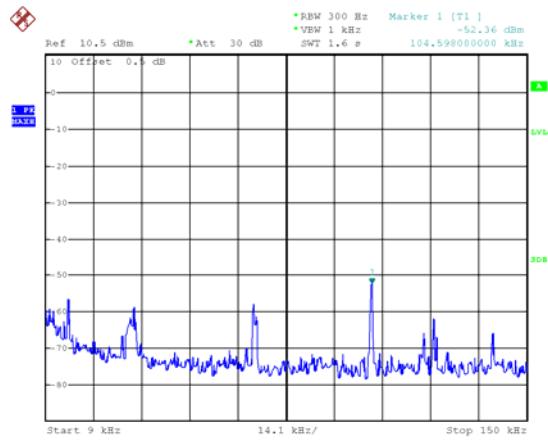
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
2. Set the spectrum analyzer:
 - a) Set instrument center frequency to DTS channel center frequency.
 - b) Set the span to ± 1.5 times the DTS bandwidth.
 - c) Set the RBW = 100 kHz.
 - d) Set the VBW $\pm [3 \times \text{RBW}]$.
 - e) Detector = peak.
 - f) Sweep time = auto couple.
 - g) Trace mode = max hold.
 - h) Allow trace to fully stabilize.
 - i) Use the peak marker function to determine the maximum PSD level.

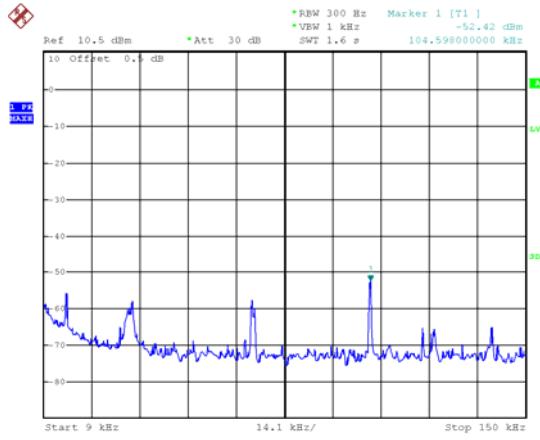

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

10.2 Test Result


BLE (1M)

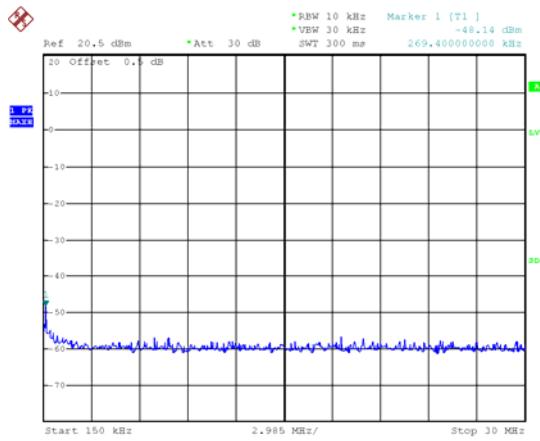
9kHz – 150kHz

Mode: channel 0

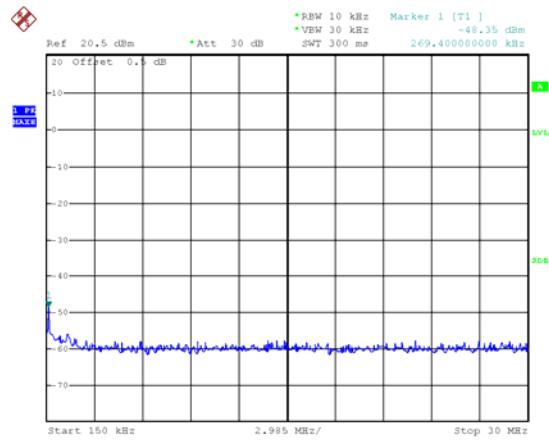

Mode: channel 19

Date: 29.APR.2024 15:37:20

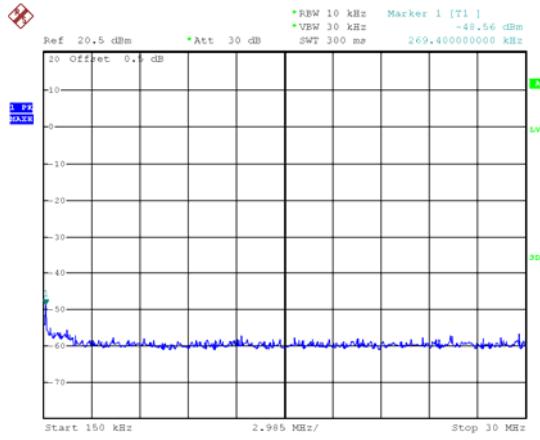
Date: 29.APR.2024 15:36:54


Mode: channel 39

Date: 29.APR.2024 15:36:32

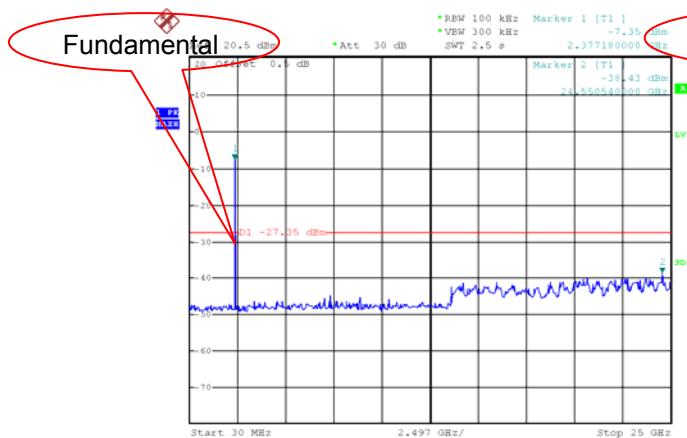

150kHz – 30MHz

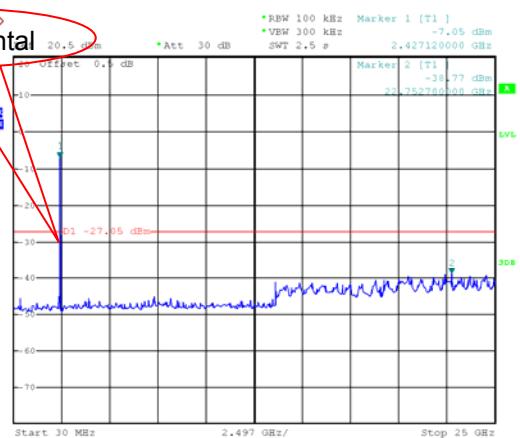
Mode: channel 0


Date: 29.APR.2024 15:19:26

Mode: channel 19

Date: 29.APR.2024 15:19:54


Mode: channel 39


Date: 29.APR.2024 15:25:52

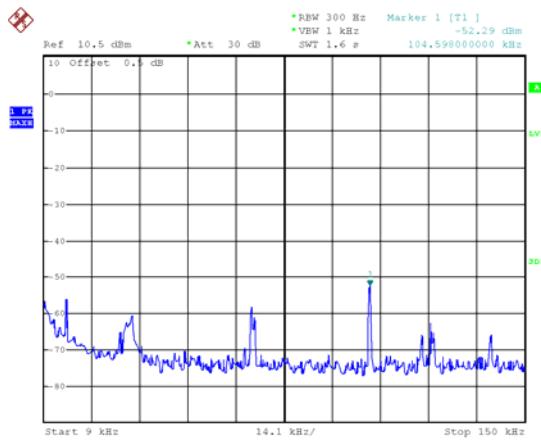
Above 30MHz

Mode: channel 0

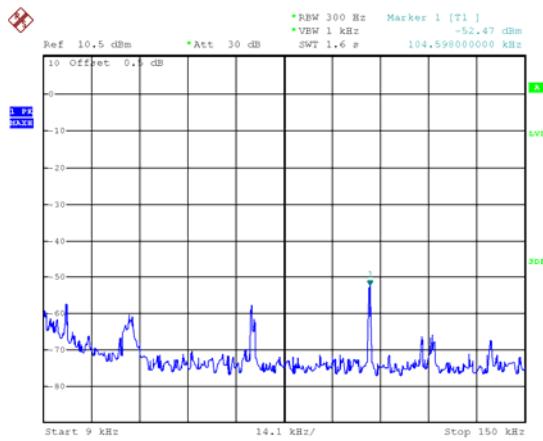
Mode: channel 19

Date: 29.APR.2024 15:05:58

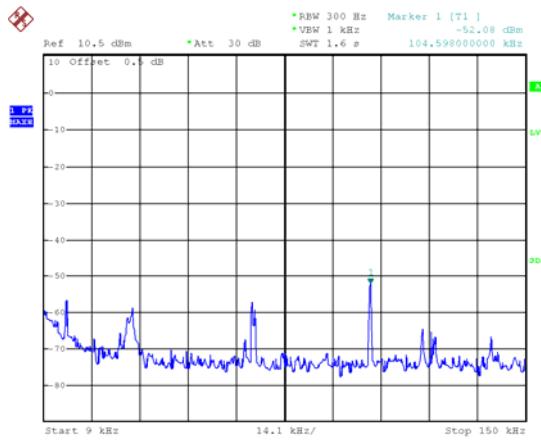
Date: 29.APR.2024 15:05:07


Mode: channel 39

Date: 6.MAY.2024 14:21:26

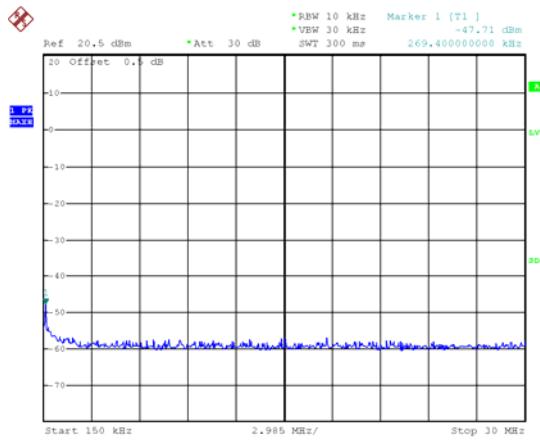

BLE (2M)**9kHz – 150kHz**

Mode: channel 0

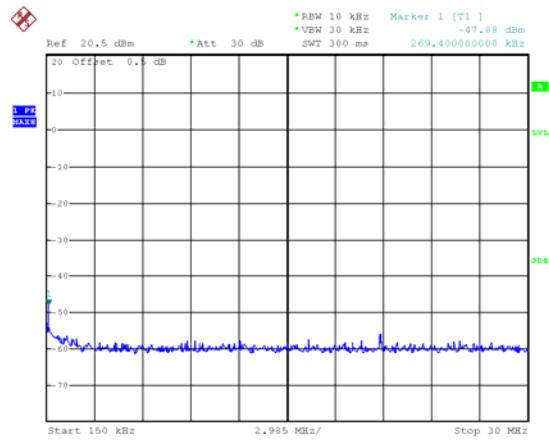

Date: 29.APR.2024 15:37:58

Mode: channel 19

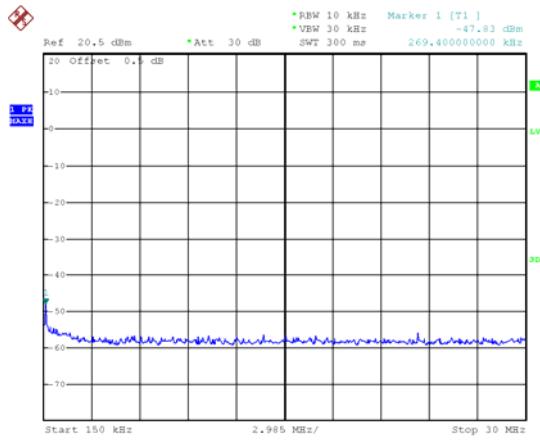
Date: 29.APR.2024 15:38:31


Mode: channel 39

Date: 29.APR.2024 15:39:30

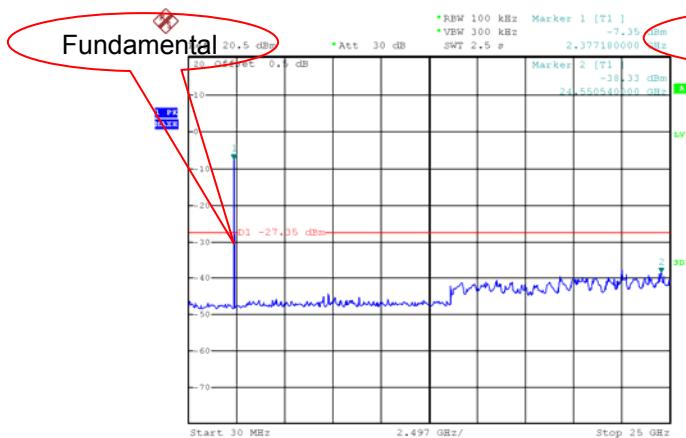

150kHz – 30MHz

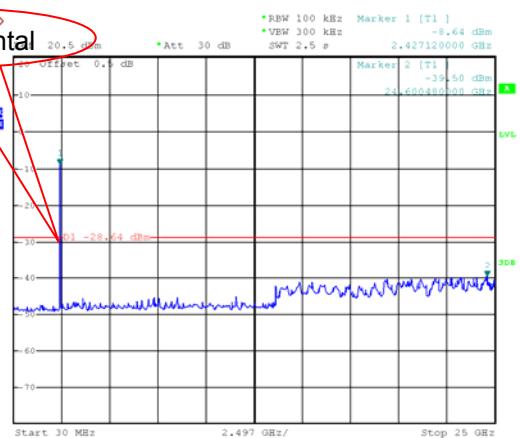
Mode: channel 0


Date: 29.APR.2024 15:18:48

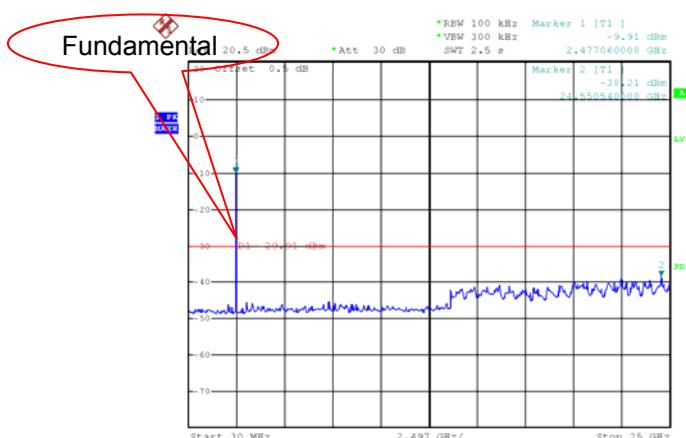
Mode: channel 19

Date: 29.APR.2024 15:17:56


Mode: channel 39


Date: 29.APR.2024 15:17:35

Above 30MHz


Mode: channel 0

Mode: channel 19

Mode: channel 39

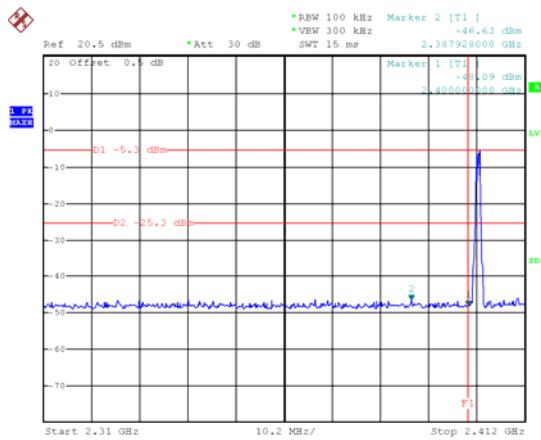
11 Band Edge Measurement

Test Requirement: FCC 47CFR Part 15 Section 15.247

Test Method: KDB 558074 D01 15.247 Meas Guidance v05r02, April 2, 2019

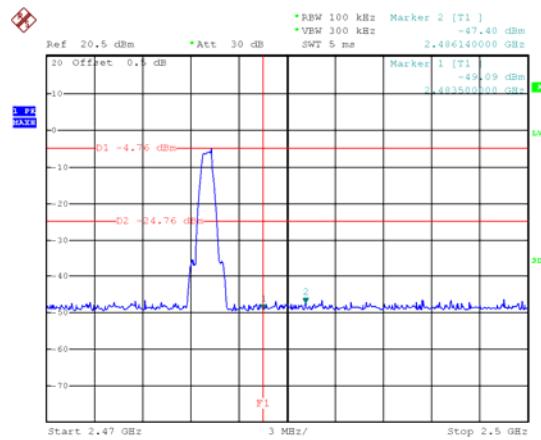
Regulation 15.247 (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

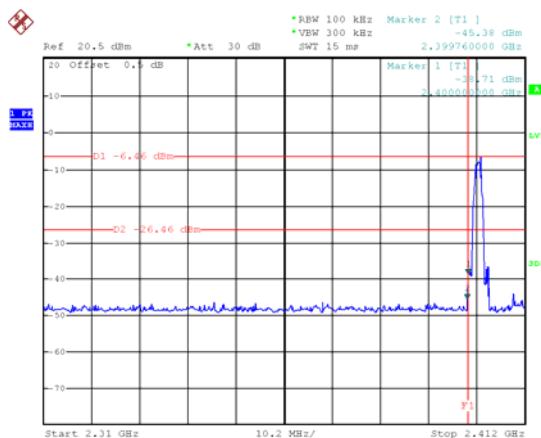

11.1 Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
5. Repeat above procedures until all measured frequencies were complete.

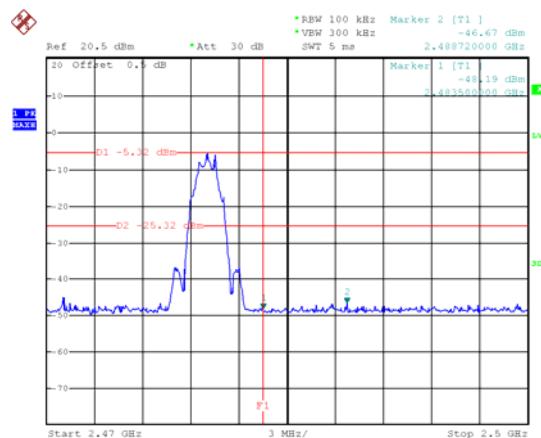
11.2 Test Result


Test result plots shown as follows:

BLE (1M): Band edge-left side


Date: 29.APR.2024 14:57:24

BLE (1M): Band edge-right side


Date: 29.APR.2024 15:02:24

BLE (2M): Band edge-left side

Date: 29.APR.2024 14:58:59

BLE (2M): Band edge-right side

Date: 29.APR.2024 15:00:57

12 6 dB Bandwidth Measurement

Test Requirement: FCC 47CFR Part 15 Section 15.247

Test Method: ANSI C63.10:2013

KDB 558074 D01 15.247 Meas Guidance v05r02, April 2, 2019

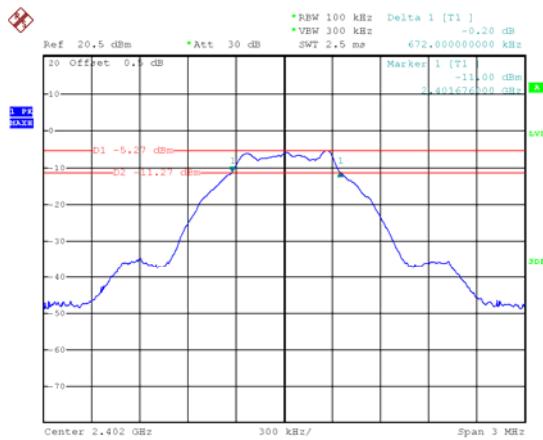
Test Limit: §15.247(a)(2)

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

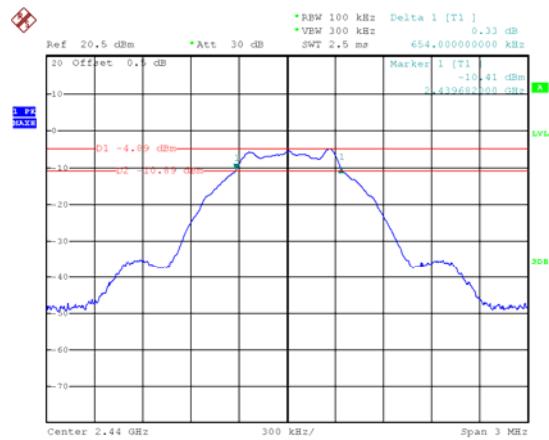
Test Mode: Transmitting

12.1 Test Procedure

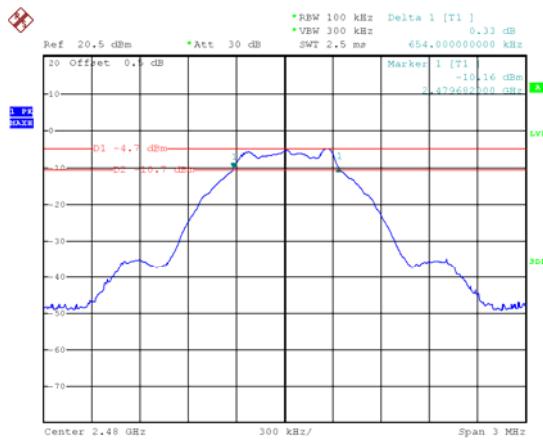
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
2. 6dB Bandwidth Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz


12.2 Test Result

Operation mode	Test Channel	6dB Bandwidth (MHz)
BLE (1M)	Channel 0	0.672
	Channel 19	0.654
	Channel 39	0.654
BLE (2M)	Channel 0	1.176
	Channel 19	1.128
	Channel 39	1.176

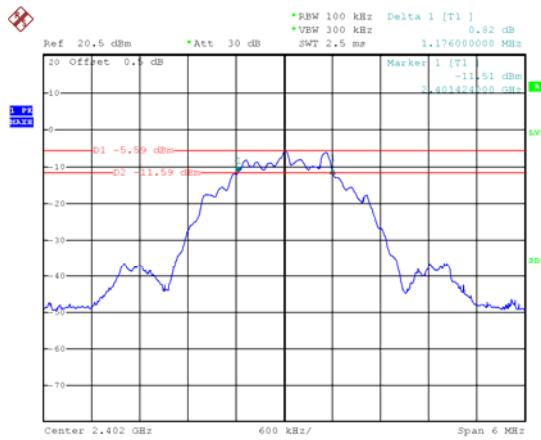

Note: please refer to next page for test plot.

Test result plot:**BLE (1M)**


Mode: TX GFSK channel 0

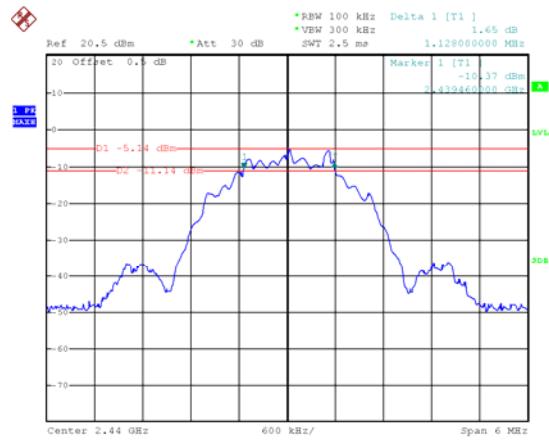
Date: 29.APR.2024 14:32:07

Mode: TX GFSK channel 19

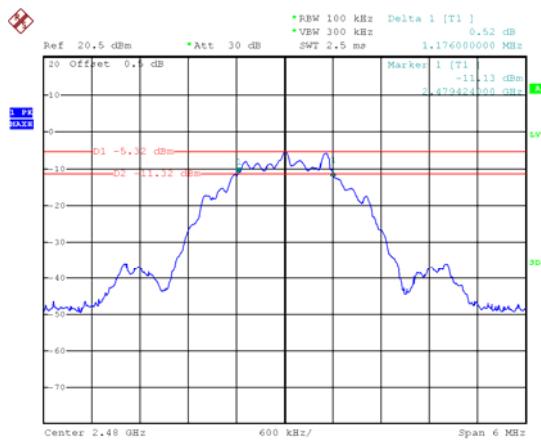

Date: 29.APR.2024 14:34:37

Mode: TX GFSK channel 39

Date: 29.APR.2024 14:36:17


BLE (2M)

Mode: TX GFSK channel 0


Date: 6.MAY.2024 14:28:59

Mode: TX GFSK channel 19

Date: 6.MAY.2024 14:30:25

Mode: TX GFSK channel 39

Date: 29.APR.2024 14:39:14

13 Maximum Peak Output Power

Test Requirement: FCC 47CFR Part 15 Section 15.247

Test Method: ANSI C63.10:2013

KDB 558074 D01 15.247 Meas Guidance v05r02, April 2, 2019

Test Limit: §15.247(b)

The maximum peak conducted output power of the intentional radiator shall not exceed 1W.

Test Mode: Transmitting

13.1 Test Procedure

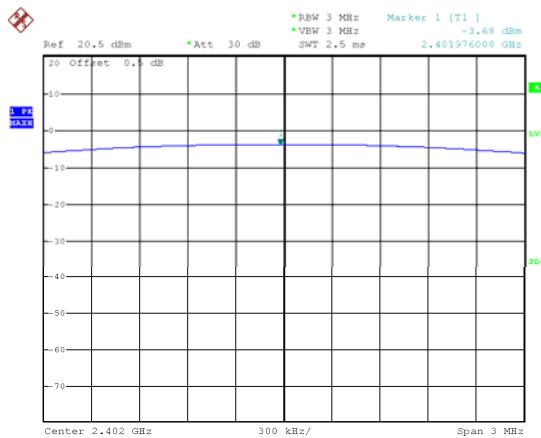
According to KDB 558074 D01 15.247 Meas Guidance v05r02, April 2, 2019

Section 8.3.1.1 RBW \geq DTS bandwidth

Subclause 11.9.1.1 of ANSI C63.10 is applicable.

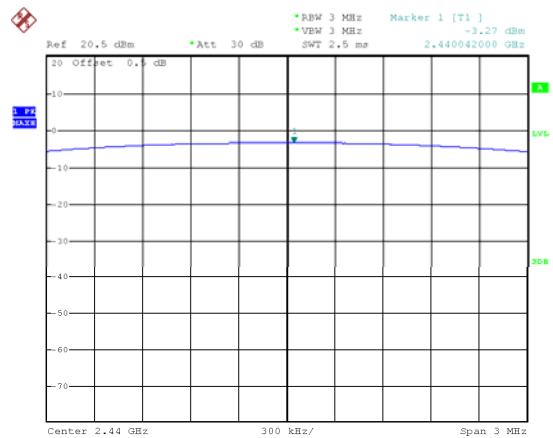
Section 8.3.1.2 Integrated band power method

For measuring the output power of a device transmitting a wide-band noise-like signal where the peak power amplitude is a statistical parameter, the preferred methodology is to use an integrated average power measurement, as described in 8.3.2. The peak integrated band power method of 11.9.1 in ANSI C63.10 is not applicable.

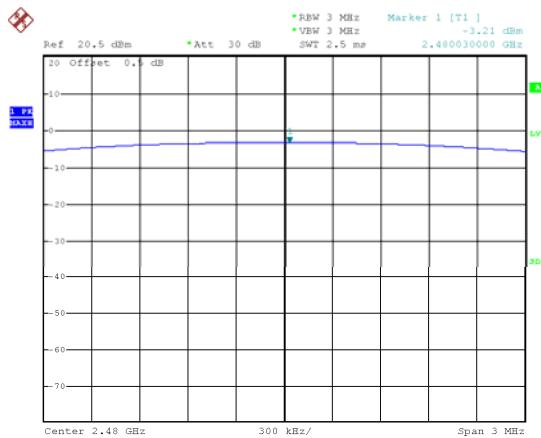

Subclause 11.9.2 of ANSI C63.10 is applicable.

13.2 Test Result

Operation mode	Channel Frequency (MHz)	Measurements (dBm)	Duty Cycle Factor (dB)	Conducted Output Power (dBm)	Limit
BLE (1M)	Low-2402	-3.68	0.72	-2.96	1W/30dBm
	Middle-2440	-3.27		-2.55	1W/30dBm
	High-2480	-3.21		-2.49	1W/30dBm
BLE (2M)	Low-2402	-3.69	2.47	-1.22	1W/30dBm
	Middle-2440	-3.20		-0.73	1W/30dBm
	High-2480	-3.19		-0.72	1W/30dBm

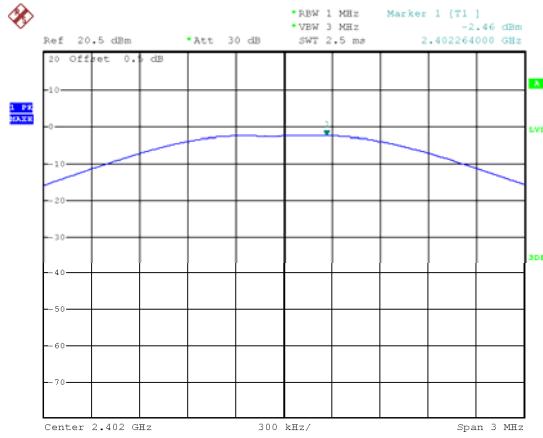

Test Plot**BLE (1M)**

Mode: TX GFSK channel 0

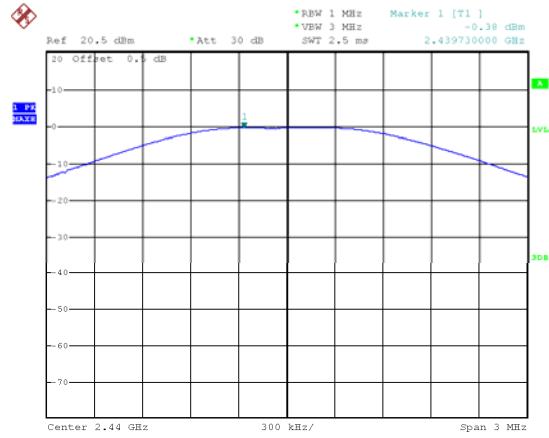

Date: 1.JUL.2024 11:12:03

Mode: TX GFSK channel 19

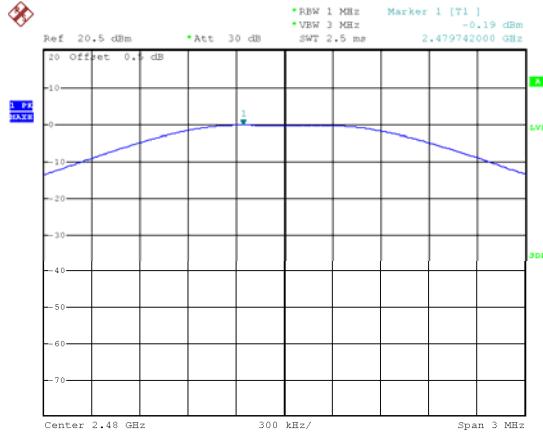
Date: 1.JUL.2024 11:13:01


Mode: TX GFSK channel 39

Date: 1.JUL.2024 11:13:30


BLE (2M)

Mode: TX GFSK channel 0


Date: 24.JUN.2024 15:53:36

Mode: TX GFSK channel 19

Date: 24.JUN.2024 15:54:08

Mode: TX GFSK channel 39

Date: 24.JUN.2024 15:55:30

14 Power Spectral density

Test Requirement: FCC 47CFR Part 15 Section 15.247

Test Method: ANSI C63.10:2013

KDB 558074 D01 15.247 Meas Guidance v05r02, April 2, 2019

Test Limit: §15.247(e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Mode: Transmitting

14.1 Test Procedure

According to KDB 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019 section 8.4

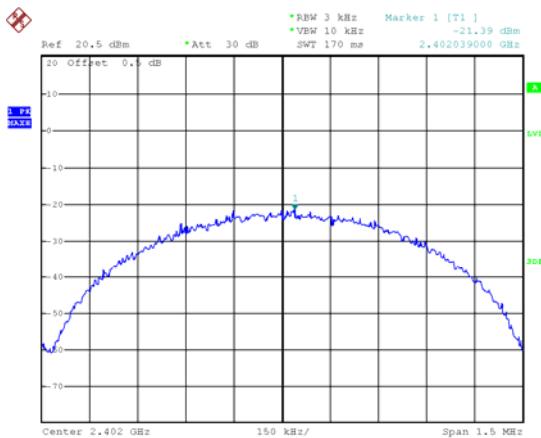
Subclause 11.10 of ANSI C63.10 is applicable.

Choose the test procedure according to the product type

Peak PSD

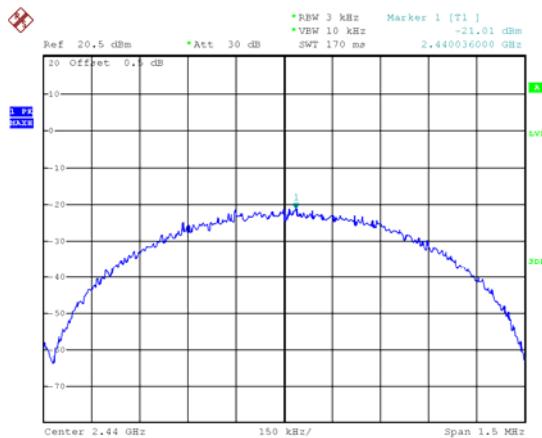
Subclause 11.10.2 of ANSI C63.10 is applicable.

AVG PSD

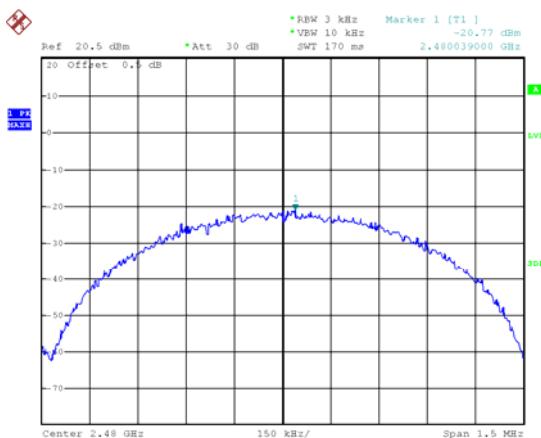

Subclause 11.10.3/4/5/6/7/8 of ANSI C63.10 is applicable.

14.2 Test Result

Operation mode	Channel Frequency (MHz)	Measurements (dBm per 3kHz)	Duty Cycle Factor (dB)	Power Spectral density (dBm per 3kHz)	Limit
BLE (1M)	Low-2402	-21.39	0.72	-20.67	8dBm per 3kHz
	Middle-2440	-21.01		-20.29	8dBm per 3kHz
	High-2480	-20.77		-20.05	8dBm per 3kHz
BLE (2M)	Low-2402	-23.89	2.47	-21.42	8dBm per 3kHz
	Middle-2440	-23.40		-20.93	8dBm per 3kHz
	High-2480	-23.24		-20.77	8dBm per 3kHz

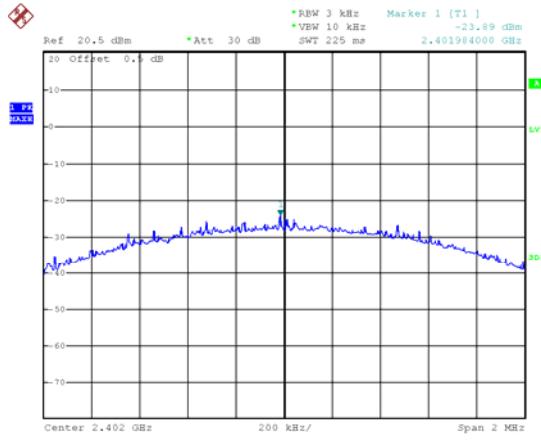

Test Plot**BLE (1M)**

Mode: TX GFSK channel 0

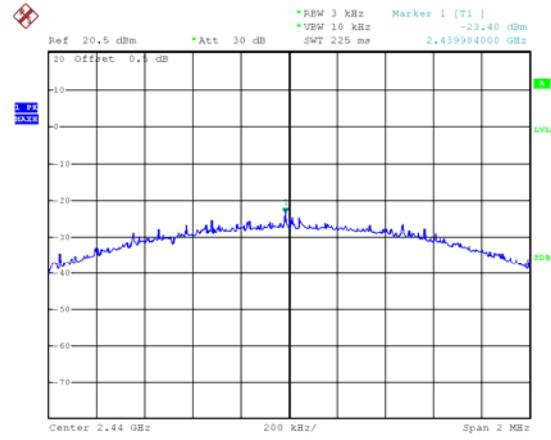

Date: 29.APR.2024 15:47:45

Mode: TX GFSK channel 19

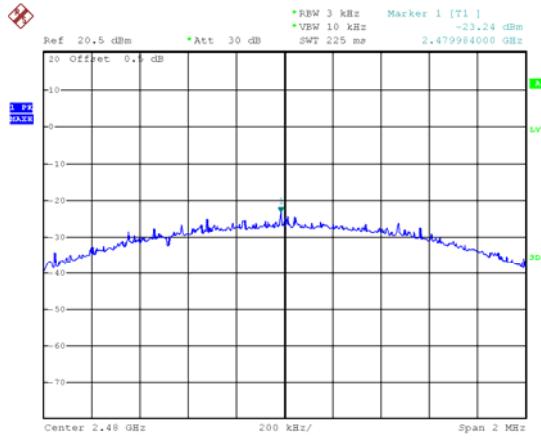
Date: 29.APR.2024 15:48:21


Mode: TX GFSK channel 39

Date: 29.APR.2024 15:48:53


BLE (2M)

Mode: TX GFSK channel 0


Date: 29.APR.2024 15:55:01

Mode: TX GFSK channel 19

Date: 29.APR.2024 15:54:30

Mode: TX GFSK channel 39

Date: 29.APR.2024 15:52:45

15 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a PIFA Antenna fulfil the requirement of this section.

Note: Please refer to EUT photos for more details.

16 RF Exposure

Remark: Please refer to SAR test report: WTD24D04085741W007.

17 Photographs of test setup and EUT.

Note: Please refer to appendix: Appendix-WP01-Photos.

=====End of Report=====