

FCC §15.247 (i), §2.1091 – RF Exposure

FCC ID: 2BG4Q-CV63

Applied procedures / limit

According to FCC §15.247(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength ϵ (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time $ \mathbf{E} ^2, \mathbf{H} ^2$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

Note: f is frequency in MHz

* = Power density limit is applicable at frequencies greater than 100 MHz

Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength ϵ (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time $ \mathbf{E} ^2, \mathbf{H} ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz

* = Plane-wave equivalent power density

MPE PREDICTION

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna, R=20cm

Test Result of RF Exposure Evaluation

	Tune up Produce power	Maximum peak output power (dBm)	Output power to antenna (mW)	Antenna Gain (numeric)	Power Density (S) (mW/ cm ²)	Limit (mW / cm ²)	Result
2.4G WIFI	27±1	28	5.3827	2.4889 (3.96dBi)	0.313	1	Pass
BLE	20±1	21	125.892 5	2.4889 (3.96dBi)	0.0624	1	Pass
ZigBee	20±1	21	125.892 5	2.4889 (3.96dBi)	0.0624	1	Pass
NFC	2±1	3	1.9953	1.2589 (1dBi)	0.0005	13.3	Pass

NFC Note: $dbm = dbuv/m - 95.2 - 2.15 = 101.11 - 95.2 - 2.15 = 3.76$ dBm (ERP), so the conduct peak power = $3.76 - 1 = 2.76$ dBm

ZigBee/ Bluetooth/2.4GWIFI cannot transmit simultaneously.

supported simultaneous transmission:

NFC+2.4GWIFI: $\sum MPE$ Ratio = $0.0005 + 0.313 = 0.3135 \leq 1$

NFC+BLE: $\sum MPE$ Ratio = $0.0005 + 0.0624 = 0.0629 \leq 1$

NFC+ ZigBee: $\sum MPE$ Ratio = $0.0005 + 0.0624 = 0.0629 \leq 1$,
So passed.