

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640
Fax: +86-755-26648637
Website: www.cqa-cert.com

Report Template Version: V05
Report Template Revision Date: 2021-11-03

RF Exposure Evaluation Report

Report No.: CQASZ20240300513E-02

Applicant: Shenzhen Xlink Electronics Co. Ltd

Address of Applicant: RM1202 12F, Building 5C, Huaqiang ECO-Science Park, Guangming, Shenzhen

Equipment Under Test (EUT):

EUT Name: TPMS Sensor

Test Model No.: TCS-100, TCS110, TCS-120, TCS130, TCS-140, TCS150, TCS-160, TCS170, TCS-180, TCS190,

Model No.: TCS-100

Brand Name: XCLASS/讯联安

FCC ID: 2BFHUTCS100

Standards: 47 CFR Part 1.1307

47 CFR Part 2.1093

447498 D04 Interim General RF Exposure Guidance v01

Date of Receipt: 2024-03-18

Date of Test: 2024-03-18 to 2025-05-21

Date of Issue: 2025-05-21

Test Result: PASS*

*In the configuration tested, the EUT complied with the standards specified above

Tested By: lewis zhou
(Lewis Zhou)

Reviewed By: Timo Lei
(Timo Lei)

Approved By: Jack Ai
(Jack Ai)

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20240300513E-02	Rev.01	Initial report	2025-05-21

2 Contents

	Page
1 VERSION	2
2 CONTENTS	3
.....	3
3 GENERAL INFORMATION	4
3.1 CLIENT INFORMATION	4
3.2 GENERAL DESCRIPTION OF EUT	4
3.3 GENERAL DESCRIPTION OF 314.9MHz	4
4 SAR EVALUATION	5
4.1 RF EXPOSURE COMPLIANCE REQUIREMENT	5
4.1.1 Standard Requirement	5
4.1.2 Limits	5
4.1.3 EUT RF Exposure	7

3 General Information

3.1 Client Information

Applicant:	Shenzhen Xlink Electronics Co. Ltd
Address of Applicant:	RM1202 12F, Building 5C, Huaqiang ECO-Science Park, Guangming, Shenzhen
Manufacturer:	Shenzhen Xlink Electronics Co. Ltd
Address of Manufacturer:	RM1202 12F, Building 5C, Huaqiang ECO-Science Park, Guangming, Shenzhen
Factory:	Shenzhen Xlink Electronics Co. Ltd
Address of Factory:	RM1202 12F, Building 5C, Huaqiang ECO-Science Park, Guangming, Shenzhen

3.2 General Description of EUT

Product Name:	TPMS Sensor
Model No.:	TCS-100, TCS110, TCS-120, TCS130, TCS-140, TCS150, TCS-160, TCS170, TCS-180, TCS190,
Test Model No	TCS-100
Trade Mark:	XLASS/讯联安
EUT Supports Radios application:	315MHz
Software Version:	V2.3.15
Hardware Version:	V6.1.1
Sample Type:	<input type="checkbox"/> Mobile <input checked="" type="checkbox"/> Portable
EUT Power Supply:	Power supply computer

3.3 General Description of 314.9MHz

Operation Frequency:	314.9MHz
Modulation Type:	FSK
Number of Channel:	1
Antenna Type:	internal antenna
Antenna Gain:	-16.36 dBi

4 SAR Evaluation

4.1 RF Exposure Compliance Requirement

4.1.1 Standard Requirement

447498 D04 Interim General RF Exposure Guidance v01

3.2. SAR Test Reduction Guidance

SAR test reduction procedures [Glossary] allow using a particular set of test data as representative of other, similar, test conditions. This may be applied for data within different test positions (e.g. body, head, extremity), wireless modes (e.g. Wi-Fi, cellular), and frequency bands. This test reduction process provides for the use of test data for one specific channel, while referencing to those data for demonstrating compliance in other required channels for each test position of an exposure condition, within the operating mode of a frequency band. This is limited specifically to when the reported 1-g or 10-g SAR for the mid-band or highest output power channel meets any of the following conditions.

4.1.2 Limits

SAR-based thresholds are derived based on frequency, power, and separation distance of the RF source. The formula defines the thresholds in general for either available maximum time averaged power or maximum time-averaged ERP, whichever is greater.

If the ERP of a device is not easily determined, such as for a portable device with a small form factor, the applicant may use the available maximum time-averaged power exclusively if the device antenna or radiating structure does not exceed an electrical length of $\lambda/4$.

As for devices with antennas of length greater than $\lambda/4$ where the gain is not well defined, but always less than that of a half-wave dipole (length $\lambda/2$), the available maximum time-averaged power generated by the device may be used in place of the maximum time-averaged ERP, where that value is not known.

The separation distance is the smallest distance from any part of the antenna or radiating structure for all persons, during operation at the applicable ERP. In the case of mobile or portable devices, the separation distance is from the outer housing of the device where it is closest to the antenna.

The SAR-based exemption formula of § 1.1307(b)(3)(i)(B), repeated here as Formula (B.2), applies for single fixed, mobile, and portable RF sources with available maximum time-averaged power or effective radiated power (ERP), whichever is greater, of less than or equal to the threshold P_{th} (mW).

This method shall only be used at separation distances from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive). P_{th} is given by Formula (B.2).

$$P_{th} \text{ (mW)} = \begin{cases} ERP_{20 \text{ cm}}(d/20 \text{ cm})^x & d \leq 20 \text{ cm} \\ ERP_{20 \text{ cm}} & 20 \text{ cm} < d \leq 40 \text{ cm} \end{cases} \quad (\text{B.2})$$

where

$$x = -\log_{10} \left(\frac{60}{ERP_{20 \text{ cm}} \sqrt{f}} \right)$$

and f is in GHz, d is the separation distance (cm), and $ERP_{20\text{cm}}$ is per Formula (B.1). The example values shown in Table B.2 are for illustration only.

Table B.2—Example Power Thresholds (mW)

Frequency (MHz)	Distance (mm)									
	5	10	15	20	25	30	35	40	45	50
300	39	65	88	110	129	148	166	184	201	217
450	22	44	67	89	112	135	158	180	203	226
835	9	25	44	66	90	116	145	175	207	240
1900	3	12	26	44	66	92	122	157	195	236
2450	3	10	22	38	59	83	111	143	179	219
3600	2	8	18	32	49	71	96	125	158	195
5800	1	6	14	25	40	58	80	106	136	169

4.1.3 EUT RF Exposure

Measurement Data

$$\text{EIRP} = E_{\text{Meas}} + 20 \log(d_{\text{Meas}}) - 104.7$$

where

E_{Meas} is the equivalent isotropically radiated power, in dBm
 E_{Meas} is the field strength of the emission at the measurement distance, in dB μ V/m
 d_{Meas} is the measurement distance, in m

Channel	EIRP (dBm)	ERP (dBm)	Maximum tune-up Power (mW)	Exclusion threshold (mW)
Lowest (314.9MHz)	-33.48	-35.63	0.0003	39

Remark: The Max Conducted Peak Output Power data refer to report Report No.: CQASZ20240300513E-01.

*** END OF REPORT ***