



# SAR Test Report

Report No.: LCSA03254143E

Issued for

POC SWEDEN AB

Nackagatan 4, 11649 Stockholm, Sweden

Product Name: OBEX CONNECT

Brand Name: POC

Model Name: OBEX CONNECT HEADSET

Series Model(s): N/A

FCC ID: 2BFFJ-PC70204

ANSI/IEEE Std. C95.1-2019

Test Standards: FCC 47 CFR Part 2 ( 2.1093)

IEC/IEEE 62209-1528

Helmet Inside:0.295W/kg(1g)

Max. SAR

Helmet Outside: 0.079W/kg(10g)

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.



Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity



## Test Report Certification

**Applicant's name** .....: POC SWEDEN AB

Address .....: Nackagatan 4, 11649 Stockholm, Sweden

**Manufacturer's Name** .....: Guoguang Electric Co., Ltd.

Address .....: No.8 Jinghu Road, Xinya Street, Huadu Reg, Guangzhou, Guangdong, P.R. China

### Product description

Product name .....: OBEX CONNECT

Brand name .....: POC

Model name .....: OBEX CONNECT HEADSET

Series Model.....: N/A

ANSI/IEEE Std. C95.1-2019

**Standards** .....: FCC 47 CFR Part 2 ( 2.1093)  
IEC/IEEE 62209-1528

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

**Date of Test** .....:

Date (s) of performance of tests .....: 26 Mar 2024

Date of Issue .....: 26 Mar 2024

Test Result.....: **Pass**

**Compiled by:**

*Jay zhan*

**Supervised by:**

*Cary Luo*

**Approved by:**

*Gavin Liang*

---

Jay Zhan / File administrators

Cary Luo / Technique principal

Gavin Liang/ Manager



## Table of Contents

|                                                       |           |
|-------------------------------------------------------|-----------|
| <b>1. General Information</b>                         | <b>6</b>  |
| 1.1 EUT Description                                   | 6         |
| 1.3 Test Environment                                  | 7         |
| 1.4 Test Factory                                      | 7         |
| <b>2. Test Standards and Limits</b>                   | <b>8</b>  |
| <b>3. SAR Measurement System</b>                      | <b>9</b>  |
| 3.1 SAR Measurement Set-up                            | 9         |
| 3.2OPENSAR E-field Probe System                       | 10        |
| 3.3Phantoms                                           | 11        |
| 3.4Device Holder                                      | 12        |
| 3.5Scanning Procedure                                 | 12        |
| 3.6Data Storage and Evaluation                        | 14        |
| <b>4. Tissue Simulating Liquids</b>                   | <b>16</b> |
| 4.1 Simulating Liquids Parameter Check                | 16        |
| <b>5. SAR System Validation</b>                       | <b>18</b> |
| 5.1 Validation System                                 | 18        |
| 5.2 Validation Result                                 | 19        |
| <b>6. SAR Evaluation Procedures</b>                   | <b>19</b> |
| <b>7. EUT Antenna Location Sketch</b>                 | <b>20</b> |
| 7.1 SAR test exclusion consider table                 | 21        |
| <b>8. EUT Test Position</b>                           | <b>23</b> |
| 8.1 Body-worn Position Conditions                     | 23        |
| <b>9. Uncertainty</b>                                 | <b>24</b> |
| 9.1 Measurement Uncertainty                           | 24        |
| <b>10. Conducted Power Measurement</b>                | <b>26</b> |
| 10.1 Test Result                                      | 26        |
| <b>11. EUT and Test Setup Photo</b>                   | <b>27</b> |
| 11.1 EUT Photo                                        | 27        |
| 11.2 Setup Photo                                      | 31        |
| <b>12. SAR Result Summary</b>                         | <b>33</b> |
| 12.1 Head SAR                                         | 33        |
| 12.2 Limb SAR                                         | 33        |
| 12.3 Simultaneous Multi-band Transmission Evaluation: | 34        |
| <b>13. Equipment List</b>                             | <b>35</b> |
| <b>Appendix A. System Validation Plots</b>            | <b>36</b> |



|                                       |           |
|---------------------------------------|-----------|
| <b>Appendix B. SAR Test Plots</b>     | <b>38</b> |
| <b>CALIBRATION CERTIFICATES</b>       | <b>40</b> |
| Probe-EPGO376 Calibration Certificate | 40        |
| SID2450 Dipole Calibration Ceriticate | 51        |
| <b>SAR System PHOTOGRAPHS</b>         | <b>63</b> |
| <b>SETUP PHOTOGRAPHS</b>              | <b>64</b> |
| <b>EUT PHOTOGRAPHS</b>                | <b>65</b> |

**Revision History**

| Rev. | Issue Date  | Report No.    | Effect Page | Contents      |
|------|-------------|---------------|-------------|---------------|
| 00   | 26 Mar 2024 | LCSA03254143E | ALL         | Initial Issue |
|      |             |               |             |               |



## 1. General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

### 1.1 EUT Description

|                                                                                                                              |                                                                                                     |                          |                      |                       |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------|----------------------|-----------------------|
| Product Name                                                                                                                 | OBEX CONNECT                                                                                        |                          |                      |                       |
| Brand Name                                                                                                                   | POC                                                                                                 |                          |                      |                       |
| Model Name                                                                                                                   | OBEX CONNECT HEADSET                                                                                |                          |                      |                       |
| Series Model                                                                                                                 | N/A                                                                                                 |                          |                      |                       |
| Model Difference                                                                                                             | N/A                                                                                                 |                          |                      |                       |
| Battery                                                                                                                      | Rated Voltage: 3.8V<br>Charge Limit Voltage: 4.35V<br>Capacity: 630mAh                              |                          |                      |                       |
| Device Category                                                                                                              | Portable                                                                                            |                          |                      |                       |
| Product stage                                                                                                                | Production unit                                                                                     |                          |                      |                       |
| RF Exposure Environment                                                                                                      | General Population / Uncontrolled                                                                   |                          |                      |                       |
| Hardware Version                                                                                                             | V1.3                                                                                                |                          |                      |                       |
| Software Version                                                                                                             | POC_DVT_01.00.77                                                                                    |                          |                      |                       |
| Frequency Range                                                                                                              | Bluetooth: 2402 MHz to 2480 MHz<br>2.4G: 2402MHz~2480MHz                                            |                          |                      |                       |
| Max. Reported                                                                                                                | Band                                                                                                | Mode                     | Helmet Inside (W/kg) | Helmet Outside (W/kg) |
|                                                                                                                              | DSS                                                                                                 | BT                       | 0.295                | 0.079                 |
|                                                                                                                              | DXX                                                                                                 | 2.4G <small>Note</small> | 0.652                | 0.652                 |
|                                                                                                                              | Sum SAR                                                                                             |                          | 0.947                | 0.731                 |
|                                                                                                                              | Limit                                                                                               |                          | SAR(1g):1.6W/kg      | SAR(10g):2.0W/kg      |
| FCC Equipment Class                                                                                                          | Part 15 Spread Spectrum Transmitter(DSS)<br>Part 15 Low Power Communication Device Transmitter(DXX) |                          |                      |                       |
| Operating Mode:                                                                                                              | Bluetooth: GFSK +π/4DQPSK+8DPSK<br>BLE: GFSK<br>2.4G: GFSK                                          |                          |                      |                       |
| Antenna Specification:                                                                                                       | BT: PCB Antenna<br>2.4G: Dipole antenna                                                             |                          |                      |                       |
| DTM Mode                                                                                                                     | Not Support                                                                                         |                          |                      |                       |
| <b>Note:</b><br>1. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power |                                                                                                     |                          |                      |                       |



### 1.3 Test Environment

Ambient conditions in the SAR laboratory:

| Items            | Required |
|------------------|----------|
| Temperature (°C) | 18-25    |
| Humidity (%RH)   | 30-70    |

### 1.4 Test Factory

Shenzhen LCS Compliance Testing Laboratory Ltd..

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China FCC test Firm Registration No.: 625569

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

Test Firm Registration Number: 254912.



## 2. Test Standards and Limits

| No. | Identity                            | Document Title                                                                                                                                                                                                                                                                     |
|-----|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | 47 CFR Part 2                       | Frequency Allocations and Radio Treaty Matters; General Rules and Regulations                                                                                                                                                                                                      |
| 2   | ANSI/IEEE Std. C95.1-2019           | IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz                                                                                                                                                         |
| 3   | IEC/IEEE 62209-1528                 | Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices -<br>Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz) |
| 4   | FCC KDB 447498 D04 v01              | RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices                                                                                                                                                                                        |
| 5   | FCC KDB 865664 D01 v01r04           | SAR Measurement 100 MHz to 6 GHz                                                                                                                                                                                                                                                   |
| 6   | FCC KDB 865664 D02 v01r02           | RF Exposure Reporting                                                                                                                                                                                                                                                              |
| 7   | FCC KDB 648474 D04 v01r03           | SAR Evaluation Considerations for Wireless Handsets                                                                                                                                                                                                                                |
| 8   | FCC KDB 248227 D01 Wi-Fi SAR v02r02 | SAR Considerations for 802.11 Devices                                                                                                                                                                                                                                              |

(A). Limits for Occupational/Controlled Exposure (W/kg)

|            |              |                                |
|------------|--------------|--------------------------------|
| Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles |
| 0.4        | 8.0          | 20.0                           |

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

|            |              |                                |
|------------|--------------|--------------------------------|
| Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles |
| 0.08       | 1.6          | 4.0                            |

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

**Population/Uncontrolled Environments:**

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

**Occupational/Controlled Environments:**

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

**NOTE**

**GENERAL POPULATION/UNCONTROLLED EXPOSURE**

**PARTIAL BODY LIMIT**

**1.6W/kg**



### 3. SAR Measurement System

#### 3.1 SAR Measurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

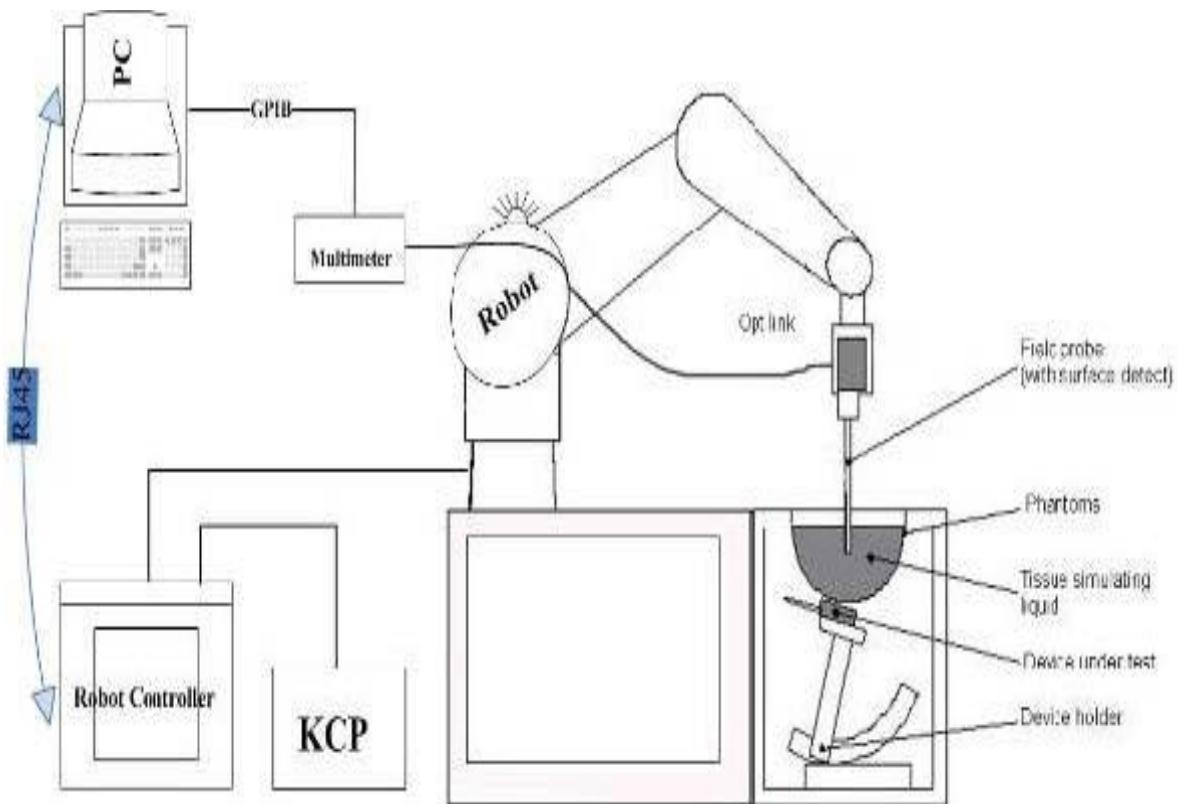
KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch,It sends an “Emergency signal” to the robot controller that to stop robot’s moves

A computer operating Windows XP.

OPENSAR software


Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.

The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.



### 3.2 OPEN SAR E-field Probe System

The SAR measurements were conducted with the dosimetric probe EPGO376 (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

#### Probe Specification

**Construction** Symmetrical design with triangular core  
Interleaved sensors  
Built-in shielding against static charges  
PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

**Calibration** ISO/IEC 17025 calibration service available.

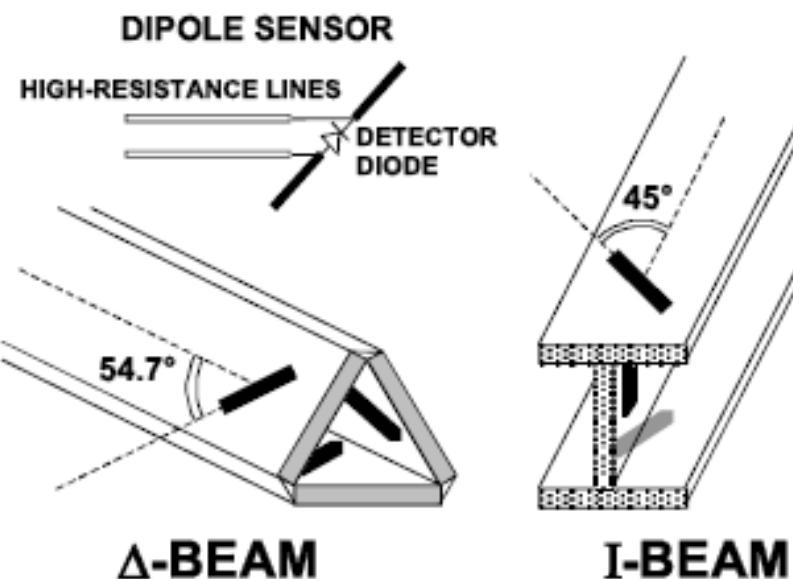
**Frequency** 450 MHz to 6 GHz;  
Linearity: 0.25 dB (450 MHz to 6 GHz)

**Directivity** 0.25 dB in HSL (rotation around probe axis)  
0.5 dB in tissue material (rotation normal to probe axis)

**Dynamic** 0.01 W/kg to > 100 W/kg;  
Linearity: 0.25 dB

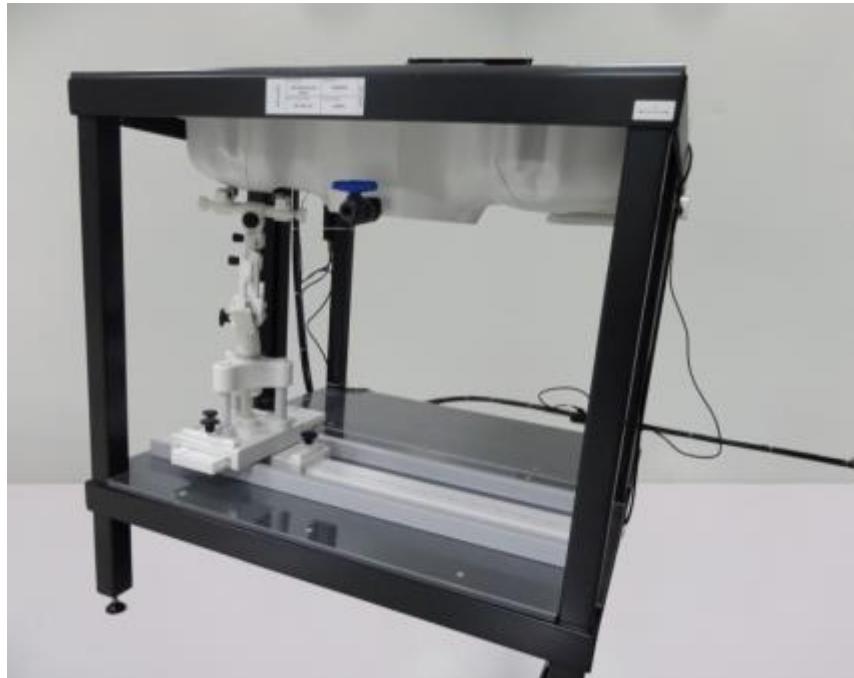
**Dimensions**

Overall length: 330 mm (Tip: 16mm)  
Tip diameter: 5 mm (Body: 8 mm)  
Distance from probe tip to sensor centers: 2.5 mm


**Application**

General dosimetry up to 6 GHz  
Dosimetry in strong gradient fields  
Compliance tests of Mobile Phones

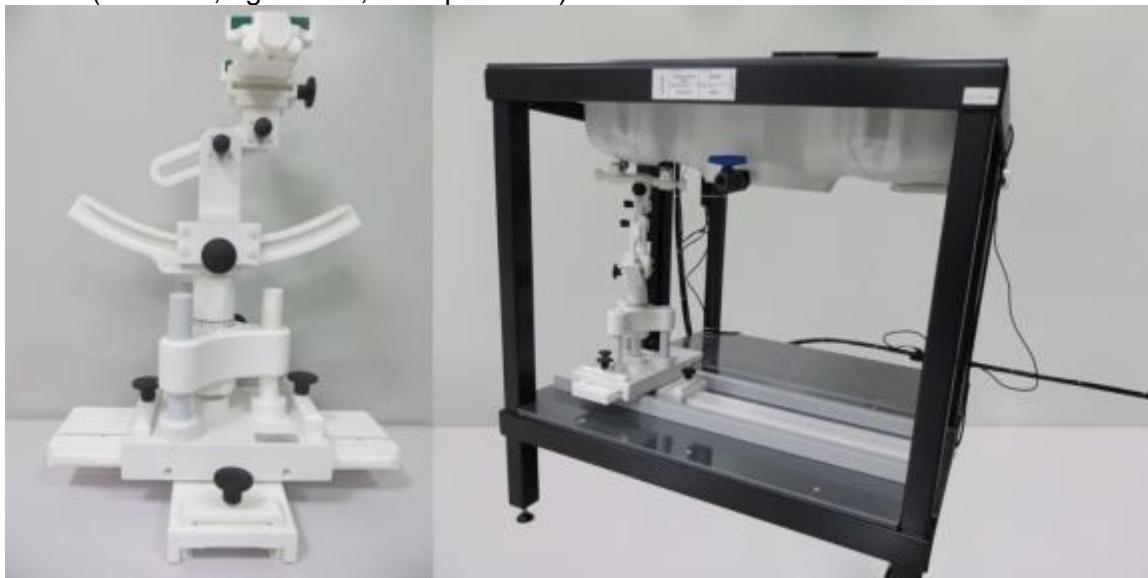
**Isotropic E-Field Probe**


The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

**3.3Phantoms**

The SAM Phantom SAM117 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robo


System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.



SAM Twin Phantom

### 3.4 Device Holder

In combination with the Generic Twin Phantom SAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).



Device holder supplied by SATIMO

### 3.5 Scanning Procedure

**The procedure for assessing the peak spatial-average SAR value consists of the following steps**

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test



in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

### Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

|                                                                                                        | $\leq 3$ GHz                                                                                                                                                                                                                                                           | $> 3$ GHz                                                                            |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | $5 \text{ mm} \pm 1 \text{ mm}$                                                                                                                                                                                                                                        | $\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$                |
| Maximum probe angle from probe axis to phantom surface normal at the measurement location              | $30^\circ \pm 1^\circ$                                                                                                                                                                                                                                                 | $20^\circ \pm 1^\circ$                                                               |
|                                                                                                        | $\leq 2 \text{ GHz: } \leq 15 \text{ mm}$<br>$2 - 3 \text{ GHz: } \leq 12 \text{ mm}$                                                                                                                                                                                  | $3 - 4 \text{ GHz: } \leq 12 \text{ mm}$<br>$4 - 6 \text{ GHz: } \leq 10 \text{ mm}$ |
| Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$                 | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be $\leq$ the corresponding x or y dimension of the test device with at least one measurement point on the test device. |                                                                                      |

### Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

|                                                                                        |                                           |                                                                                            |                                                                                                                                  |
|----------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Maximum zoom scan spatial resolution: $\Delta x_{\text{Zoom}}, \Delta y_{\text{Zoom}}$ |                                           | $\leq 2 \text{ GHz: } \leq 8 \text{ mm}$<br>$2 - 3 \text{ GHz: } \leq 5 \text{ mm}^*$      | $3 - 4 \text{ GHz: } \leq 5 \text{ mm}^*$<br>$4 - 6 \text{ GHz: } \leq 4 \text{ mm}^*$                                           |
|                                                                                        | uniform grid: $\Delta z_{\text{Zoom}}(n)$ | $\leq 5 \text{ mm}$                                                                        | $3 - 4 \text{ GHz: } \leq 4 \text{ mm}$<br>$4 - 5 \text{ GHz: } \leq 3 \text{ mm}$<br>$5 - 6 \text{ GHz: } \leq 2 \text{ mm}$    |
| Maximum zoom scan spatial resolution, normal to phantom surface                        | graded grid                               | $\Delta z_{\text{Zoom}}(1):$ between 1 <sup>st</sup> two points closest to phantom surface | $\leq 4 \text{ mm}$                                                                                                              |
|                                                                                        |                                           | $\Delta z_{\text{Zoom}}(n > 1):$ between subsequent points                                 | $\leq 1.5 \cdot \Delta z_{\text{Zoom}}(n-1) \text{ mm}$                                                                          |
| Minimum zoom scan volume                                                               | x, y, z                                   | $\geq 30 \text{ mm}$                                                                       | $3 - 4 \text{ GHz: } \geq 28 \text{ mm}$<br>$4 - 5 \text{ GHz: } \geq 25 \text{ mm}$<br>$5 - 6 \text{ GHz: } \geq 22 \text{ mm}$ |

### Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

### 3.6 Data Storage and Evaluation

#### Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm<sup>2</sup>], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

#### Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

|                    |                           |                      |
|--------------------|---------------------------|----------------------|
| Probe parameters:  | - Sensitivity             | Normi, ai0, ai1, ai2 |
|                    | - Conversion factor       | ConvFi               |
|                    | - Diode compression point | Dcp <i>i</i>         |
| Device parameters: | - Frequency               | f                    |
|                    | - Crest factor            | cf                   |
| Media parameters:  | - Conductivity            | σ                    |
|                    | - Density                 | ρ                    |

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcpi}$$

With  $V_i$  = compensated signal of channel  $i$  ( $i = x, y, z$ )

$U_i$  = input signal of channel  $i$  ( $i = x, y, z$ )

cf = crest factor of exciting field

dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

$$E - \text{fieldprobes} : \quad E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H - \text{fieldprobes} : \quad H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

With  $V_i$  = compensated signal of channel  $i$  ( $i = x, y, z$ )  
 $Norm_i$  = sensor sensitivity of channel  $i$  ( $i = x, y, z$ )



|       |                                                 |
|-------|-------------------------------------------------|
|       | [mV/(V/m)2] for E-field Probes                  |
| ConvF | = sensitivity enhancement in solution           |
| aij   | = sensor sensitivity factors for H-field probes |
| f     | = carrier frequency [GHz]                       |
| Ei    | = electric field strength of channel i in V/m   |
| Hi    | = magnetic field strength of channel i in A/m   |

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

|      |          |                                          |
|------|----------|------------------------------------------|
| with | SAR      | = local specific absorption rate in mW/g |
|      | Etot     | = total field strength in V/m            |
|      | $\sigma$ | = conductivity in [mho/m] or [Siemens/m] |
|      | $\rho$   | = equivalent tissue density in g/cm3     |

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.



## 4. Tissue Simulating Liquids

### 4.1 Simulating Liquids Parameter Check

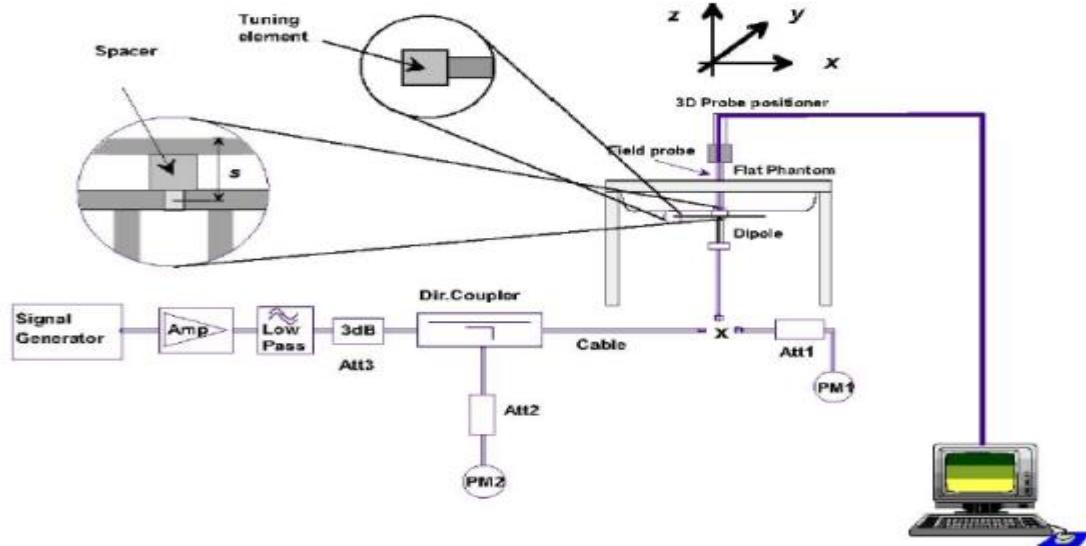
The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

The composition of the tissue simulating liquid

| Ingredient   | 750MHz |      | 835MHz |      | 1800MHz |       | 1900MHz |       | 2450MHz |       | 2600MHz |       | 5000MHz |      |
|--------------|--------|------|--------|------|---------|-------|---------|-------|---------|-------|---------|-------|---------|------|
| (% Weight)   | Head   | Body | Head   | Body | Head    | Body  | Head    | Body  | Head    | Body  | Head    | Body  | Head    | Body |
| Water        | 39.28  | 51.3 | 41.45  | 52.5 | 54.5    | 40.2  | 54.9    | 40.4  | 62.7    | 73.2  | 60.3    | 71.4  | 65.5    | 78.6 |
| Preventol    | 0.10   | 0.10 | 0.10   | 0.10 | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.00 |
| HEC          | 1.00   | 1.00 | 1.00   | 1.00 | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.00 |
| DGBE         | 0.00   | 0.00 | 0.00   | 0.00 | 45.33   | 59.31 | 44.92   | 59.10 | 36.80   | 26.70 | 39.10   | 28.40 | 0.00    | 0.00 |
| Triton X-100 | 0.00   | 0.00 | 0.00   | 0.00 | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  | 0.00    | 0.00  | 17.2    | 10.7 |

| Target Frequency<br>(MHz) | Head         |                |
|---------------------------|--------------|----------------|
|                           | $\epsilon_r$ | $\sigma$ (S/m) |
| 450                       | 43.5         | 0.87           |
| 750                       | 41.9         | 0.89           |
| 835                       | 41.5         | 0.90           |
| 900                       | 41.5         | 0.97           |
| 1450                      | 40.5         | 1.20           |
| 1640                      | 40.2         | 1.31           |
| 1800                      | 40.0         | 1.40           |
| 1900                      | 40.0         | 1.40           |
| 2000                      | 40.0         | 1.40           |
| 2450                      | 39.2         | 1.80           |
| 2600                      | 39.0         | 1.96           |
| 3000                      | 38.5         | 2.40           |
| 5200                      | 36.0         | 4.66           |
| 5800                      | 35.3         | 5.27           |

**LIQUID MEASUREMENT RESULTS**


| Date       | Ambient    |            | Simulating Liquid |            | Parameters   | Target | Measured | Deviation % | Limited % |
|------------|------------|------------|-------------------|------------|--------------|--------|----------|-------------|-----------|
|            | Temp. [°C] | Humidity % | Frequency (MHz)   | Temp. [°C] |              |        |          |             |           |
| 2024-03-26 | 20.9       | 56         | 2402              | 20.6       | Permittivity | 39.29  | 39.71    | 1.08        | ±5        |
|            |            |            |                   |            | Conductivity | 1.76   | 1.76     | 0.15        | ±5        |
| 2024-03-26 | 20.9       | 56         | 2441              | 20.6       | Permittivity | 39.22  | 39.56    | 0.88        | ±5        |
|            |            |            |                   |            | Conductivity | 1.79   | 1.82     | 1.56        | ±5        |
| 2024-03-26 | 21.0       | 56         | 2450              | 20.7       | Permittivity | 39.20  | 39.84    | 1.63        | ±5        |
|            |            |            |                   |            | Conductivity | 1.80   | 1.77     | -1.67       | ±5        |
| 2024-03-26 | 21.1       | 57         | 2480              | 20.9       | Permittivity | 39.15  | 39.75    | 1.54        | ±5        |
|            |            |            |                   |            | Conductivity | 1.83   | 1.77     | -3.10       | ±5        |

## 5. SAR System Validation

### 5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.



The output power on dipole port must be calibrated to 20 dBm (100mW) before dipole is connected.



Photo of Dipole Setup



## 5.2 Validation Result

### Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

SID2450 SN 07/14 DIP 2G450-306 Extend Dipole Calibrations

| Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) |
|---------------------|------------------|-----------|----------------------|-------------|---------------------------|-------------|
| 2021-09-29          | -25.59           |           | 44.7                 |             | -1.1                      |             |
| 2022-09-29          | -25.68           | 0.35      | 44.8                 | 0.1         | -1.0                      | 0.1         |
| 2023-09-29          | -25.70           | 0.43      | 44.5                 | -0.2        | -1.1                      | 0.0         |

| Date      | Frequency (MHz) | Power               | SAR <sub>1g</sub> (W/Kg) | SAR <sub>10g</sub> (W/Kg) | Drift (%) | 1W Target                |                           | Difference percentage |        |
|-----------|-----------------|---------------------|--------------------------|---------------------------|-----------|--------------------------|---------------------------|-----------------------|--------|
|           |                 |                     |                          |                           |           | SAR <sub>1g</sub> (W/Kg) | SAR <sub>10g</sub> (W/Kg) | 1g                    | 10g    |
| 2024/3/26 | 2450            | 100 mW              | 5.617                    | 2.301                     | -1.25     | 53.89                    | 24.15                     | 4.23%                 | -4.72% |
|           |                 | Normalize to 1 Watt | 56.17                    | 23.01                     |           |                          |                           |                       |        |

Note:

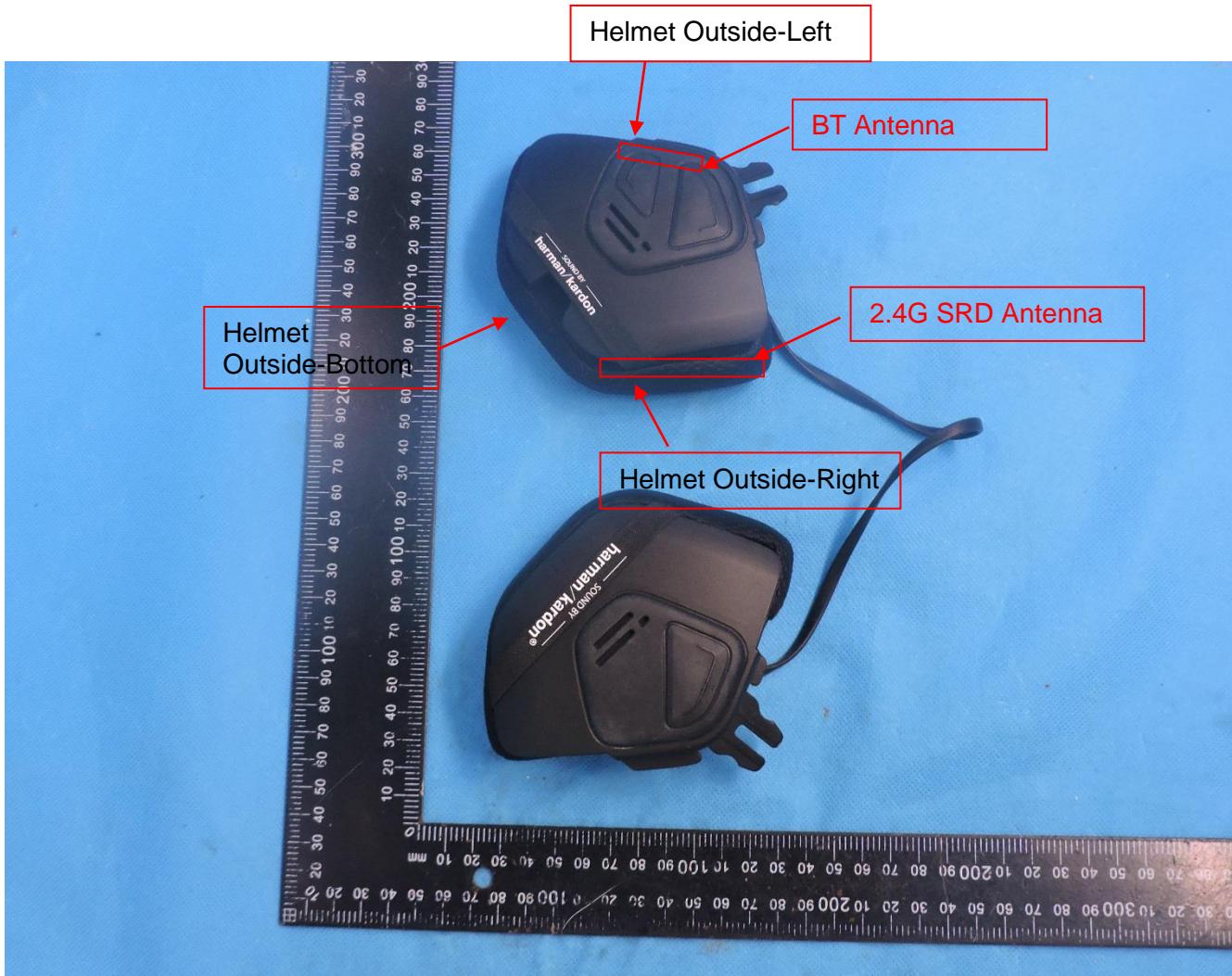
1. The tolerance limit of System validation  $\pm 10\%$ .
2. The dipole input power (forward power) was 100 mW.
3. The results are normalized to 1 W input power.

## 6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps:

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm \* 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 \* 30 \* 30 mm or 32 \* 32 \* 32 mm is assessed by measuring 5 or 8 \* 5 or 8 \* 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.


➤ Area Scan& Zoom Scan

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

## 7. EUT Antenna Location Sketch

It is OBEX CONNECT HEADSET, support BT/2.4G SRD mode.



| Antenna Separation Distance(cm) |               |                |                     |                      |                    |                       |
|---------------------------------|---------------|----------------|---------------------|----------------------|--------------------|-----------------------|
| ANT                             | Helmet Inside | Helmet Outside | Helmet Outside-Left | Helmet Outside-Right | Helmet Outside-Top | Helmet Outside-Bottom |
| BT                              | $\leq 0.5$    | $\leq 0.5$     | 4.5                 | 4                    | $\leq 0.5$         | 8.5                   |
| 2.4G                            | $\leq 0.5$    | $\leq 0.5$     | 7.9                 | 0.7                  | 0.8                | 0.9                   |

Note 1: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.



## 7.1 SAR test exclusion consider table

The BT SAR evaluation of Maximum power (dBm) summing tolerance.

| Exposure Position     | Wireless Interface          | BT         | 2.4G       |
|-----------------------|-----------------------------|------------|------------|
|                       | Calculated Frequency(GHz)   | 2.48       | 2.44       |
|                       | Maximum Turn-up power (dBm) | 12         | 0.5        |
|                       | Maximum rated power(mW)     | 15.85      | 1.12       |
| Helmet Inside         | Separation distance (cm)    | $\leq 0.5$ | $\leq 0.5$ |
|                       | exclusion threshold(mW)     | 2.72       | 2.75       |
|                       | Testing required?           | YES        | NO         |
| Helmet Outside        | Separation distance (cm)    | $\leq 0.5$ | $\leq 0.5$ |
|                       | exclusion threshold(mW)     | 2.72       | 2.75       |
|                       | Testing required?           | YES        | NO         |
| Helmet Outside-Left   | Separation distance (cm)    | 4.5        | 7.9        |
|                       | exclusion threshold(mW)     | 178.55     | 523.29     |
|                       | Testing required?           | NO         | NO         |
| Helmet Outside-Right  | Separation distance (cm)    | 4          | 0.7        |
|                       | exclusion threshold(mW)     | 142.67     | 5.22       |
|                       | Testing required?           | NO         | NO         |
| Helmet Outside-Top    | Separation distance (cm)    | $\leq 0.5$ | 0.8        |
|                       | exclusion threshold(mW)     | 2.72       | 6.73       |
|                       | Testing required?           | YES        | NO         |
| Helmet Outside-Bottom | Separation distance (cm)    | 8.5        | 0.9        |
|                       | exclusion threshold(mW)     | 599.62     | 8.42       |
|                       | Testing required?           | NO         | NO         |

### Note:

1. maximum power is the source-based time-average power and represents the maximum RF output power among production units.
2. Per KDB 447498 D04, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
3. Per KDB 447498 D04, if the maximum time-averaged power available does not exceed 1 mW. This stand-alone SAR exemption test.



4. Per KDB 447498 D04, the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold  $P_{th}$  (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive).  $P_{th}$  is given by:

$$P_{th} \text{ (mW)} = \begin{cases} ERP_{20 \text{ cm}} (d/20 \text{ cm})^x & d \leq 20 \text{ cm} \\ ERP_{20 \text{ cm}} & 20 \text{ cm} < d \leq 40 \text{ cm} \end{cases}$$

Where

$$x = -\log_{10} \left( \frac{60}{ERP_{20 \text{ cm}} \sqrt{f}} \right) \text{ and } f \text{ is in GHz;}$$

and

$$ERP_{20 \text{ cm}} \text{ (mW)} = \begin{cases} 2040f & 0.3 \text{ GHz} \leq f < 1.5 \text{ GHz} \\ 3060 & 1.5 \text{ GHz} \leq f \leq 6 \text{ GHz} \end{cases}$$

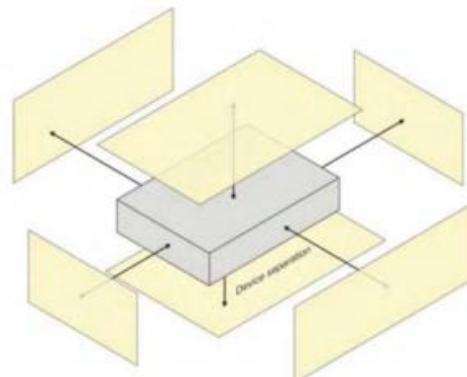
$d$  = the separation distance (cm);

5. Per KDB 447498 D04, An alternative to the SAR-based exemption is using below table and the minimum separation distance ( $R$  in meters) from the body of a nearby person for the frequency ( $f$  in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in below table to apply,  $R$  must be at least  $\lambda/2\pi$ , where  $\lambda$  is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of  $\lambda/4$  or if the antenna gain is less than that of a half-wave dipole (2.01 linear value).

| RF Source frequency (MHz) | Threshold ERP(watts) |
|---------------------------|----------------------|
| 0.3-1.34                  | 1,920 $R^2$ .        |
| 1.34-30                   | 3,450 $R^2/f^2$ .    |
| 30-300                    | 3.83 $R^2$ .         |
| 300-1,500                 | 0.0128 $R^2f$ .      |
| 1,500-100,000             | 19.2 $R^2$ .         |

6. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion 8. for each frequency band ,testing at higher data rates and higher order modulations is not required when the maximum average output power for each of each of these

configurations is less than 1/4db higher than those measured at the lower data rate than 11b mode ,thus the SAR can be excluded.


## 8. EUT Test Position

This EUT was tested in Helmet Inside and Helmet Outside.

### 8.1 Body-worn Position Conditions

Body-worn Position Conditions:

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative *test separation distance* configuration may be used to support both SAR conditions. When the *reported* SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest *reported* SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.





## 9. Uncertainty

### 9.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2020. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

| Uncertainty Component                           | Tol<br>(+- %) | Prob.<br>Dist. | Div.       | Ci (1g)          | Ci (10g)         | 1g Ui<br>(+-%) | 10g Ui<br>(+-%) | Veff     |
|-------------------------------------------------|---------------|----------------|------------|------------------|------------------|----------------|-----------------|----------|
| <b>Measurement System</b>                       |               |                |            |                  |                  |                |                 |          |
| Probe calibration                               | 5.8           | N              | 1          | 1                | 1                | 5.80           | 5.80            | $\infty$ |
| Axial Isotropy                                  | 3.5           | R              | $\sqrt{3}$ | $\sqrt{1 - C_p}$ | $\sqrt{1 - C_p}$ | 1.43           | 1.43            | $\infty$ |
| Hemispherical Isotropy                          | 5.9           | R              | $\sqrt{3}$ | $\sqrt{C_p}$     | $\sqrt{C_p}$     | 2.41           | 2.41            | $\infty$ |
| Boundary effect                                 | 1.0           | R              | $\sqrt{3}$ | 1                | 1                | 0.58           | 0.58            | $\infty$ |
| Linearity                                       | 4.7           | R              | $\sqrt{3}$ | 1                | 1                | 2.71           | 2.71            | $\infty$ |
| System detection limits                         | 1.0           | R              | $\sqrt{3}$ | 1                | 1                | 0.58           | 0.58            | $\infty$ |
| Readout Electronics                             | 0.5           | N              | 1          | 1                | 1                | 0.50           | 0.50            | $\infty$ |
| Response Time                                   | 0.0           | R              | $\sqrt{3}$ | 1                | 1                | 0.00           | 0.00            | $\infty$ |
| Integration Time                                | 1.4           | R              | $\sqrt{3}$ | 1                | 1                | 0.81           | 0.81            | $\infty$ |
| RF ambient Conditions - Noise                   | 3.0           | R              | $\sqrt{3}$ | 1                | 1                | 1.73           | 1.73            | $\infty$ |
| RF ambient Conditions - Reflections             | 3.0           | R              | $\sqrt{3}$ | 1                | 1                | 1.73           | 1.73            | $\infty$ |
| Probe positioner Mechanical Tolerance           | 1.4           | R              | $\sqrt{3}$ | 1                | 1                | 0.81           | 0.81            | $\infty$ |
| Probe positioning with respect to Phantom Shell | 1.4           | R              | $\sqrt{3}$ | 1                | 1                | 0.81           | 0.81            | $\infty$ |
| Max. SAR Evaluation                             | 1.0           | R              | $\sqrt{3}$ | 1                | 1                | 0.6            | 0.6             | $\infty$ |
| <b>Test sample Related</b>                      |               |                |            |                  |                  |                |                 |          |
| Device positioning                              | 2.6           | N              | 1          | 1                | 1                | 2.6            | 2.6             | 11       |
| Device holder                                   | 3.0           | N              | 1          | 1                | 1                | 3.0            | 3.0             | 7        |
| Drift of output power                           | 5.0           | N              | $\sqrt{3}$ | 1                | 1                | 2.89           | 2.89            | $\infty$ |
| <b>System check source(dipole)</b>              |               |                |            |                  |                  |                |                 |          |
| Deviation between experimental dipoles          | 2.0           | N              | 1          | 1                | 1                | 2.0            | 2.0             | $\infty$ |
| Input power and SAR drift measurement           | 4.7           | R              | $\sqrt{3}$ | 1                | 1                | 2.7            | 2.7             | $\infty$ |
| Dipole axis to liquid distance                  | 1.0           | R              | $\sqrt{3}$ | 1                | 1                | 0.6            | 0.6             | $\infty$ |
| <b>System check source</b>                      |               |                |            |                  |                  |                |                 |          |
| Deviation between experimental source           | -             | N              | 1          | 0                | 0                | -              | -               | 7        |
| Input power and SAR drift measurement           | -             | R              | $\sqrt{3}$ | 1                | 1                | -              | -               | $\infty$ |
| Other source contributions                      | -             | R              | $\sqrt{3}$ | 1                | 1                | -              | -               | $\infty$ |



| Phantom and Tissue Parameters                     |                  |     |                                         |      |      |         |         |          |
|---------------------------------------------------|------------------|-----|-----------------------------------------|------|------|---------|---------|----------|
| Phantom uncertainty                               | 4.00             | R   | $\sqrt{3}$                              | 1    | 1    | 2.31    | 2.31    | $\infty$ |
| Liquid conductivity (target)                      | 2.50             | N   | 1                                       | 0.78 | 0.71 | 1.95    | 1.78    | 5        |
| Liquid conductivity (meas)                        | 4.00             | N   | 1                                       | 0.23 | 0.26 | 0.92    | 1.04    | 5        |
| Liquid Permittivity (target)                      | 2.50             | N   | 1                                       | 0.78 | 0.71 | 1.95    | 1.78    | $\infty$ |
| Liquid Permittivity (meas)                        | 5.00             | N   | 1                                       | 0.23 | 0.26 | 1.15    | 1.30    | $\infty$ |
| Combined Standard                                 |                  | RSS | $U_c = \sqrt{\sum_{i=1}^n C_i^2 U_i^2}$ |      |      | 10.63 % | 10.54 % |          |
| Expanded Uncertainty<br>(95% Confidence interval) | $U = k U_c, k=2$ |     |                                         |      |      | 21.26 % | 21.08 % |          |



## 10. Conducted Power Measurement

### 10.1 Test Result

| BT                   |                |                 |                     |                   |
|----------------------|----------------|-----------------|---------------------|-------------------|
| Mode                 | Channel Number | Frequency (MHz) | Average Power (dBm) | Output Power (mW) |
| GFSK(1Mbps)          | 0              | 2402            | 9.60                | 9.12              |
|                      | 39             | 2441            | 9.12                | 8.16              |
|                      | 78             | 2480            | 9.77                | 9.49              |
| $\pi/4$ -QPSK(2Mbps) | 0              | 2402            | 10.95               | 12.45             |
|                      | 39             | 2441            | 10.94               | 12.42             |
|                      | 78             | 2480            | 11.10               | 12.88             |
| 8DPSK(3Mbps)         | 0              | 2402            | 11.58               | 14.38             |
|                      | 39             | 2441            | 11.74               | 14.92             |
|                      | 78             | 2480            | 11.94               | 15.61             |

| BLE         |                |                 |                     |                   |
|-------------|----------------|-----------------|---------------------|-------------------|
| Mode        | Channel Number | Frequency (MHz) | Average Power (dBm) | Output Power (mW) |
| GFSK(1Mbps) | 0              | 2402            | 7.08                | 5.10              |
|             | 19             | 2440            | 6.06                | 4.03              |
|             | 39             | 2480            | 5.67                | 3.69              |

| 2.4G |                 |                     |                   |
|------|-----------------|---------------------|-------------------|
| Mode | Frequency (MHz) | Average Power (dBm) | Output Power (mW) |
| GFSK | 2402            | -0.13               | 0.97              |
|      | 2440            | -1.08               | 0.78              |
|      | 2480            | -0.46               | 0.90              |

## 11. EUT and Test Setup Photo

### 11.1 EUT Photo

Helmet Top



Helmet Bottom



Helmet Front

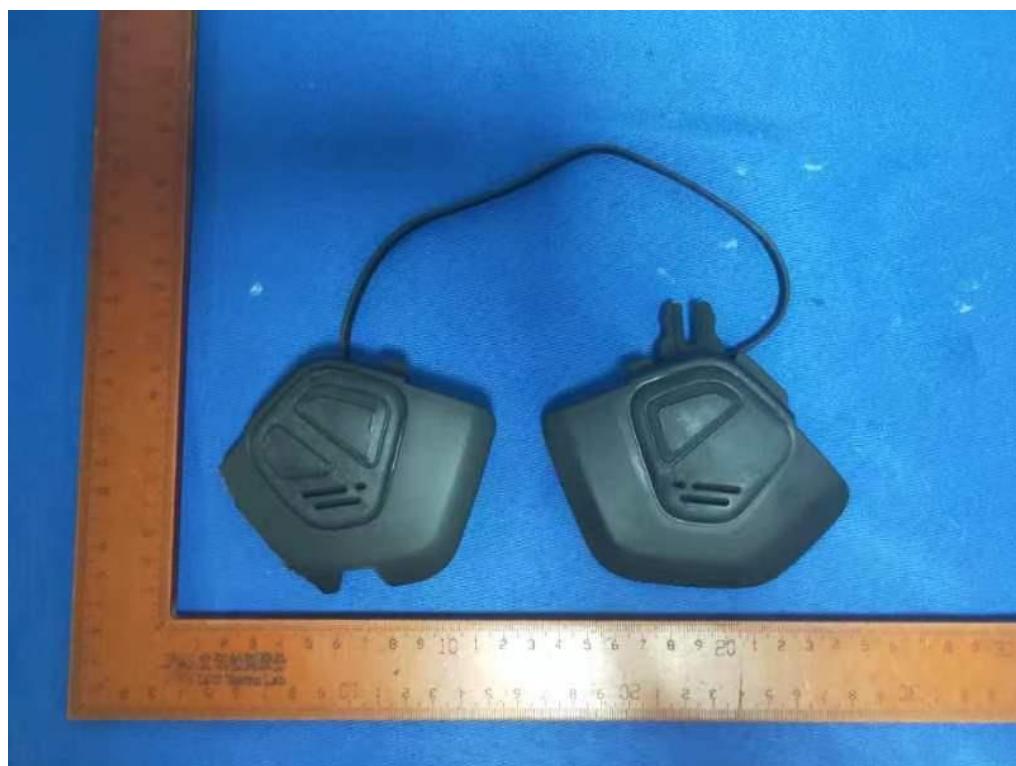


Helmet Back



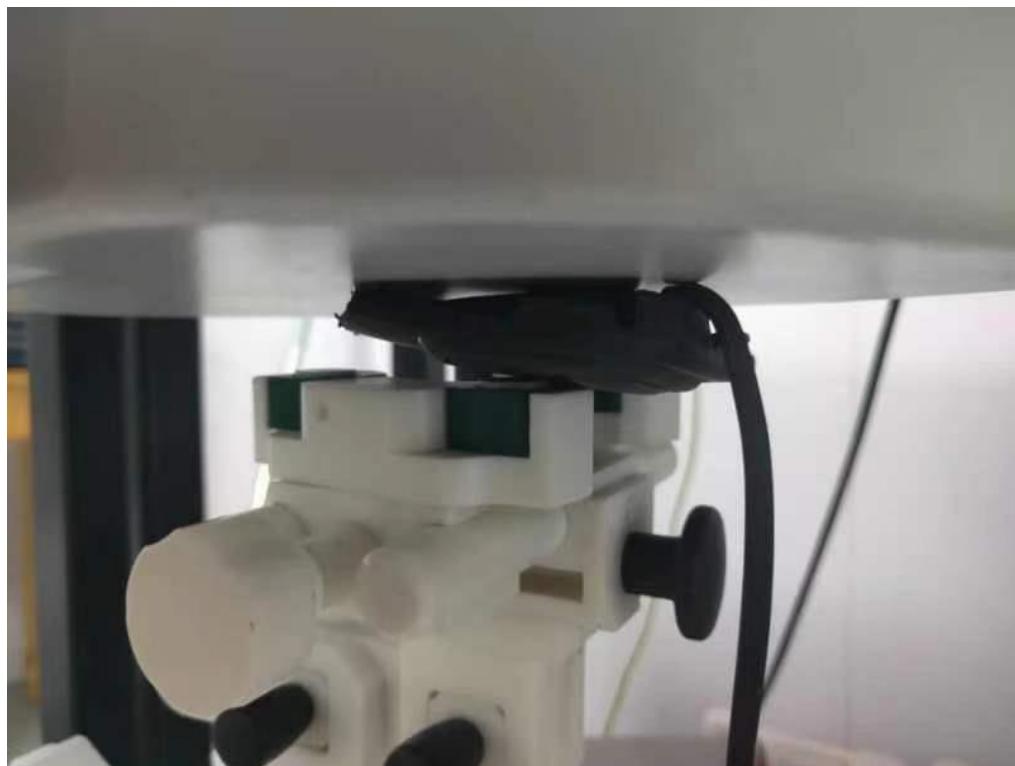
Helmet Right




Helmet Left



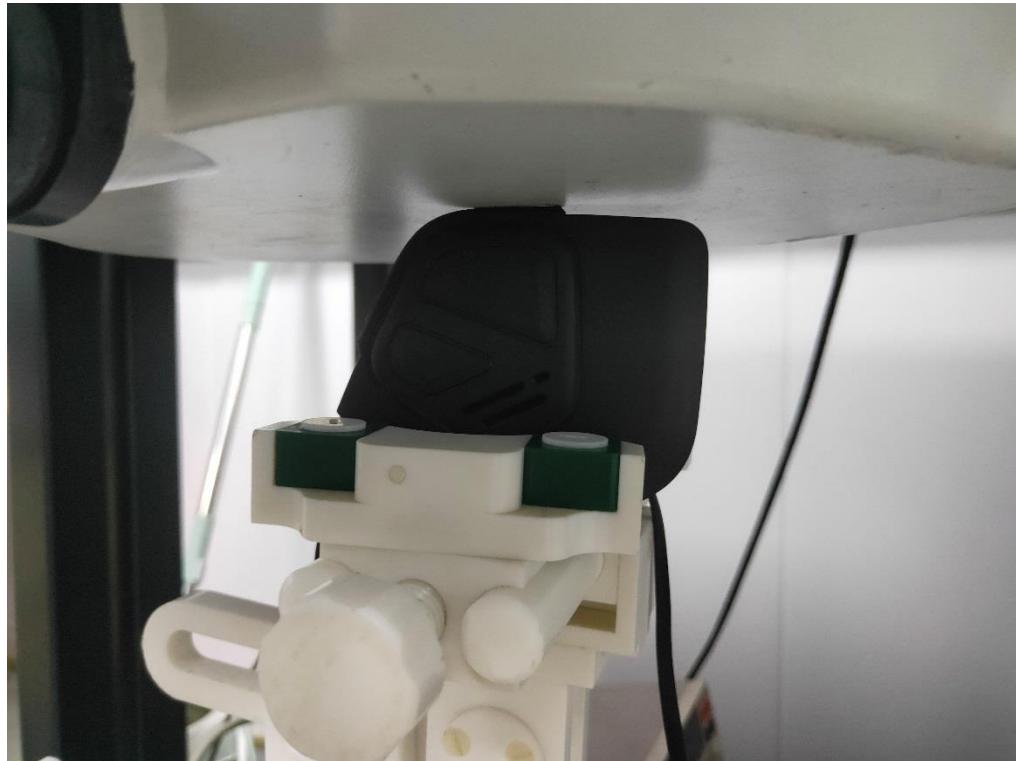
Helmet Inside




Helmet Outside




## 11.2 Setup Photo


Helmet Inside(separation distance is 0mm)



Helmet Outside (separation distance is 0mm)



Helmet Outside -Top(separation distance is 0mm)





## 12. SAR Result Summary

### 12.1 Head SAR

| Band | Model | Test Position | Freq. | SAR (1g)<br>(W/kg) | Power Drift(%) | Max.Turn-up Power(dBm) | Meas.Output Power(dBm) | Scaled SAR (W/Kg) | Meas.No. |
|------|-------|---------------|-------|--------------------|----------------|------------------------|------------------------|-------------------|----------|
| BT   | 8DPSK | Helmet Inside | 2402  | 0.260              | -0.20          | 12.00                  | 11.58                  | 0.286             | /        |
|      |       | Helmet Inside | 2441  | 0.266              | -1.89          | 12.00                  | 11.74                  | 0.282             | /        |
|      |       | Helmet Inside | 2480  | 0.291              | -2.83          | 12.00                  | 11.94                  | 0.295             | 1        |

### 12.2 Limb SAR

| Band | Model | Test Position      | Freq. | SAR (10g)<br>(W/kg) | Power Drift(%) | Max.Turn-up Power(dBm) | Meas.Output Power(dBm) | Scaled SAR (W/Kg) | Meas.No. |
|------|-------|--------------------|-------|---------------------|----------------|------------------------|------------------------|-------------------|----------|
| BT   | 8DPSK | Helmet Outside     | 2402  | 0.056               | -0.70          | 12.00                  | 11.58                  | 0.062             | /        |
|      |       | Helmet Outside     | 2441  | 0.063               | 2.37           | 12.00                  | 11.74                  | 0.067             | /        |
|      |       | Helmet Outside     | 2480  | 0.078               | -2.83          | 12.00                  | 11.94                  | 0.079             | 2        |
|      |       | Helmet Outside-Top | 2480  | 0.066               | -1.22          | 12.00                  | 11.94                  | 0.067             | /        |

Note:

1. The test separation of all above table is 0mm.
2. Per KDB 447498 D04, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
  - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
  - b. For WWAN: Scaled SAR(W/kg)= Measured SAR(W/kg)\*Tune-up Scaling Factor



### 12.3 Simultaneous Multi-band Transmission Evaluation:

Application Simultaneous Transmission information:

| Position    | Simultaneous State |
|-------------|--------------------|
| Limb & Head | 1. BT +2.4G        |

NOTE:

1. For simultaneous transmission at body exposure position, transmitters simultaneous transmission was the worst state.
2. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
3. KDB 447498 Appendix E, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

$$SAR_{est} = 1.6 \cdot P_{ant} / P_{th} \text{ [W/kg]}$$

$P_{ant}$  is maximum time-averaged power or effective radiated power (ERP), whichever is greater, and  $P_{th}$  is defined in Formula KDB 447498 (B.2).

| Estimated SAR |             | Antenna to user(cm) | P <sub>ant</sub> | P <sub>th</sub> | Stand Alone SAR(1g)&(10g) [W/kg] |
|---------------|-------------|---------------------|------------------|-----------------|----------------------------------|
| 2.4G          | Limb & Head | ≤0.5                | 1.12             | 2.75            | 0.652                            |

| Simultaneous Mode | Position | Mode | Max. 1-g SAR  | 1-g Sum SAR  |
|-------------------|----------|------|---------------|--------------|
|                   |          |      | (W/kg)        | (W/kg)       |
| BT +2.4G          | Head     | BT   | 0.295         | 0.947        |
|                   |          | 2.4G | 0.652         |              |
| Simultaneous Mode | Position | Mode | Max. 10-g SAR | 10-g Sum SAR |
|                   |          |      | (W/kg)        | (W/kg)       |
| BT +2.4G          | Limb     | BT   | 0.079         | 0.731        |
|                   |          | 2.4G | 0.652         |              |

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.

When the sum of SAR 1g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR-1g 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR 1g is greater than the SAR limit (SAR-1g 1.6 W/kg), SAR test exclusion is determined by the SPLSR.



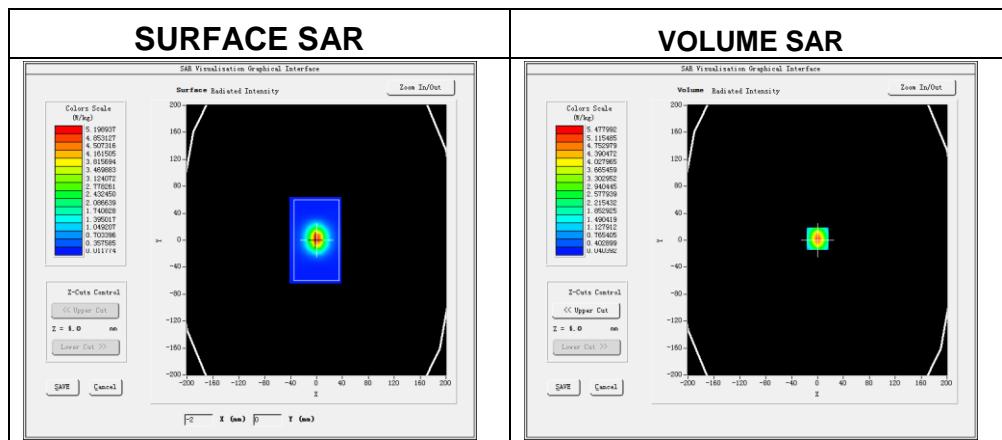
## 13. Equipment List

| Item | Equipment                           | Manufacturer | Model No. | Serial No.             | Cal Date   | Due Date   |
|------|-------------------------------------|--------------|-----------|------------------------|------------|------------|
| 1    | PC                                  | Lenovo       | G5005     | MY42081102             | N/A        | N/A        |
| 2    | SAR Measurement system              | SATIMO       | 4014_01   | SAR_4014_01            | N/A        | N/A        |
| 3    | Signal Generator                    | Agilent      | E4438C    | MY49072627             | 2023-06-09 | 2024-06-08 |
| 4    | S-parameter Network Analyzer        | Agilent      | 8753ES    | US38432944             | 2023-06-09 | 2024-06-08 |
| 5    | Wideband Radio Communication Tester | R&S          | CMW500    | 103818-1               | 2023-10-25 | 2024-10-24 |
| 6    | E-Field PROBE                       | MVG          | SSE2      | SN 25/22 EPGO376       | 2023-06-22 | 2024-06-21 |
| 7    | DIPOLE 2450                         | SATIMO       | SID 2450  | SN 07/14 DIP 2G450-306 | 2021-09-29 | 2024-09-28 |
| 8    | COMOSAR OPENCoaxial Probe           | SATIMO       | OCPG 68   | SN 40/14 OCPG68        | 2023-10-25 | 2024-10-24 |
| 9    | Communication Antenna               | SATIMO       | ANTA57    | SN 39/14 ANTA57        | 2023-10-25 | 2024-10-24 |
| 10   | FEATURE PHONEPOSITIONING DEVICE     | SATIMO       | MSH98     | SN 40/14 MSH98         | N/A        | N/A        |
| 11   | DUMMY PROBE                         | SATIMO       | DP60      | SN 03/14 DP60          | N/A        | N/A        |
| 12   | SAM PHANTOM                         | SATIMO       | SAM117    | SN 40/14 SAM117        | N/A        | N/A        |
| 13   | Liquid measurement Kit              | HP           | 85033D    | 3423A03482             | N/A        | N/A        |
| 14   | Power meter                         | Agilent      | E4419B    | MY45104493             | 2023-10-25 | 2024-10-24 |
| 15   | Power meter                         | Agilent      | E4419B    | MY45100308             | 2023-10-25 | 2024-10-24 |
| 16   | Power sensor                        | Agilent      | E9301H    | MY41495616             | 2023-10-25 | 2024-10-24 |
| 17   | Power sensor                        | Agilent      | E9301H    | MY41495234             | 2023-10-25 | 2024-10-24 |
| 18   | Directional Coupler                 | MCLI/USA     | 4426-20   | 03746                  | 2023-06-09 | 2024-06-08 |

## Appendix A. System Validation Plots

### System Performance Check Data (2450MHz)

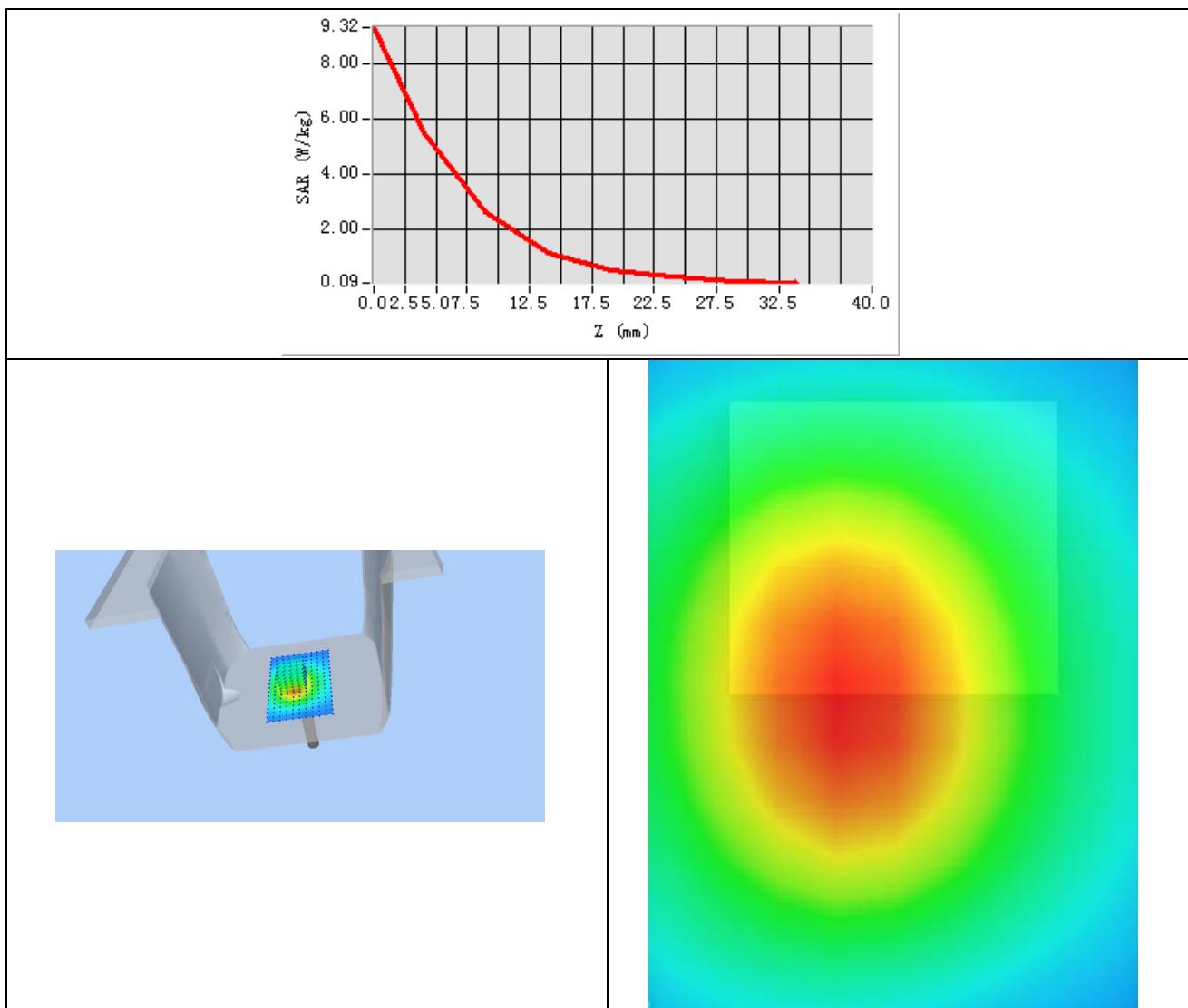
Type: Phone measurement (Complete)


Area scan resolution:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$

Zoom scan resolution:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Date of measurement: 2024-03-26

### Experimental conditions.


| Phantom               | Validation plane |
|-----------------------|------------------|
| Device Position       | -                |
| Band                  | 2450MHz          |
| Channels              | -                |
| Signal                | CW               |
| Frequency (MHz)       | 2450MHz          |
| Relative permittivity | 39.84            |
| Conductivity (S/m)    | 1.77             |
| Probe                 | SN 25/22 EPGO376 |
| ConvF                 | 2.60             |
| Crest factor:         | 1:1              |



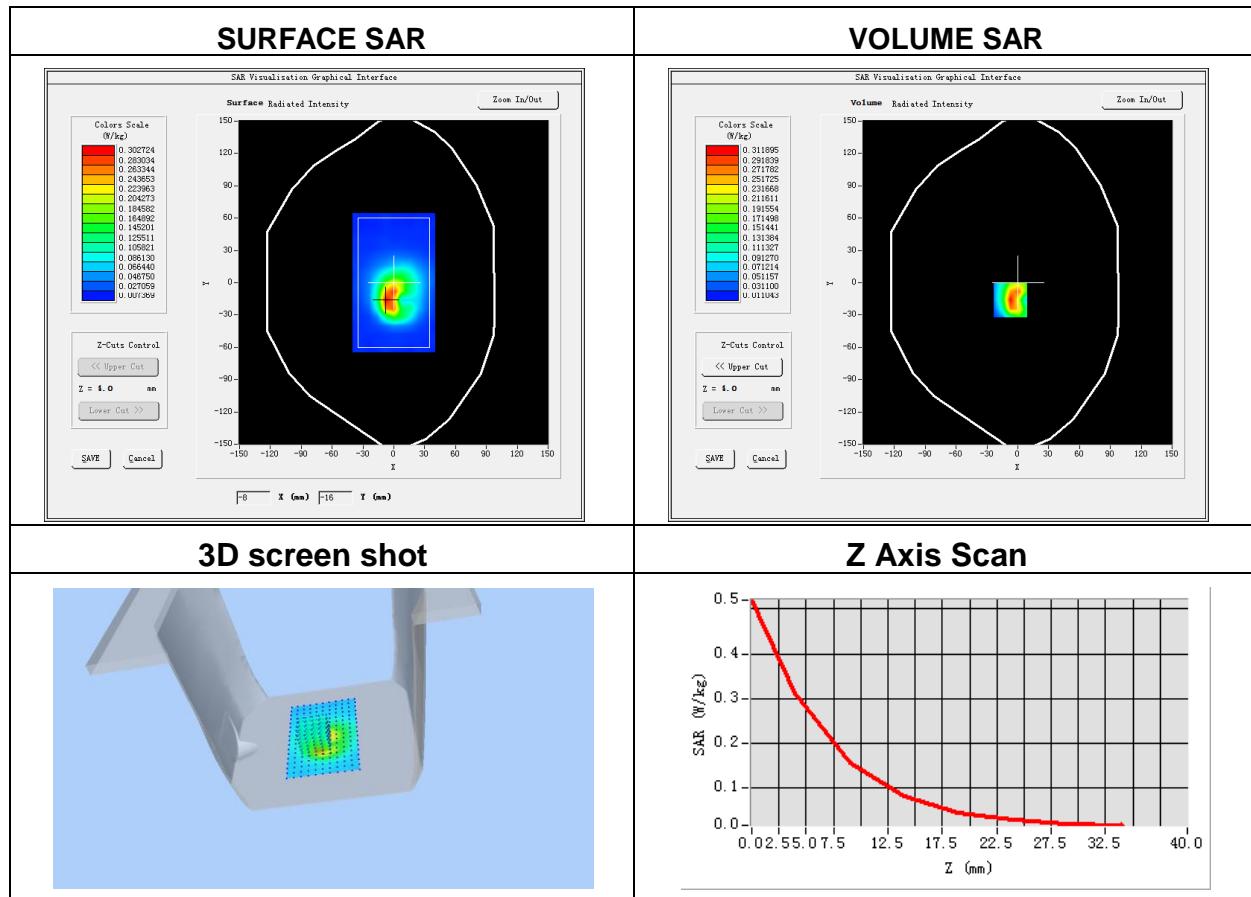
**Maximum location: X=5.00, Y=1.00**

|                |          |
|----------------|----------|
| SAR 10g (W/Kg) | 2.301084 |
| SAR 1g (W/Kg)  | 5.616524 |

### Z Axis Scan



## Appendix B. SAR Test Plots


### Plot 1: DUT: OBEX CONNECT; EUT Model: OBEX CONNECT HEADSET

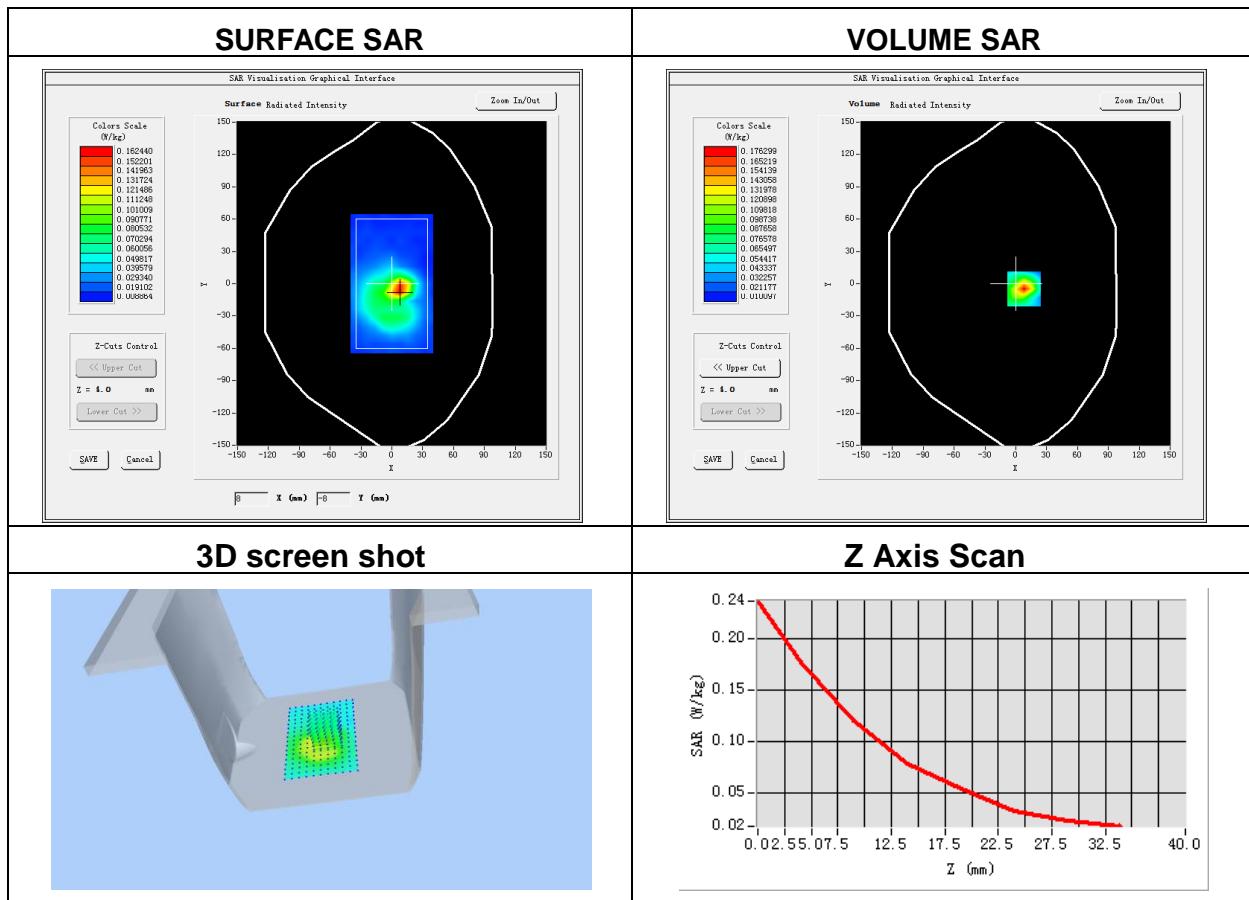
|                                   |                               |
|-----------------------------------|-------------------------------|
| Test Date                         | 2024-03-26                    |
| ConvF                             | 2.60                          |
| Probe                             | SN 25/22 EPGO376              |
| Area Scan                         | dx=8mm, dy=8mm                |
| Zoom Scan                         | 7x7x7, dx=5mm, dy=5mm, dz=5mm |
| Phantom                           | Head                          |
| Device Position                   | Helmet Inside                 |
| Band                              | BT                            |
| Signal                            | 8DPSK                         |
| Frequency (MHz)                   | 2480                          |
| Relative permittivity (real part) | 39.75                         |
| Conductivity (S/m)                | 1.77                          |

Maximum location: X=-7.00, Y=-16.00

SAR Peak: 0.54 W/kg

|                |          |
|----------------|----------|
| SAR 10g (W/Kg) | 0.131317 |
| SAR 1g (W/Kg)  | 0.291057 |




## Plot 2: DUT: OBEX CONNECT; EUT Model: OBEX CONNECT HEADSET

|                                   |                               |
|-----------------------------------|-------------------------------|
| Test Date                         | 2024-03-26                    |
| ConvF                             | 2.60                          |
| Probe                             | SN 25/22 EPGO376              |
| Area Scan                         | dx=8mm, dy=8mm                |
| Zoom Scan                         | 7x7x7, dx=5mm, dy=5mm, dz=5mm |
| Phantom                           | Limb                          |
| Device Position                   | Helmet Outside                |
| Band                              | BT                            |
| Signal                            | 8DPSK                         |
| Frequency (MHz)                   | 2480                          |
| Relative permittivity (real part) | 39.75                         |
| Conductivity (S/m)                | 1.77                          |

Maximum location: X=8.00, Y=-5.00

SAR Peak: 0.25 W/kg

|                |          |
|----------------|----------|
| SAR 10g (W/Kg) | 0.078989 |
| SAR 1g (W/Kg)  | 0.156086 |





## CALIBRATION CERTIFICATES

### Probe-EPGO376 Calibration Certificate



### COMOSAR E-Field Probe Calibration Report

Ref : ACR.180.4.42.BES.A

**SHENZHEN LCS COMPLIANCE TESTING  
LABORATORY LTD.**  
**1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN  
BLVD**  
**BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA**  
**MVG COMOSAR DOSIMETRIC E-FIELD PROBE**  
**SERIAL NO.: SN 25/22 EPGO376**

**Calibrated at MVG**

**Z.I. de la pointe du diable**

**Technopôle Brest Iroise – 295 avenue Alexis de Rochon  
29280 PLOUZANE - FRANCE**

**Calibration date: 06/22/2023**



Accreditations #2-6792  
Scope available on [www.cofrac.fr](http://www.cofrac.fr)

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

#### **Summary:**

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).



## COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.4.42.BES.A

|                        | Name           | Function                | Date      | Signature |
|------------------------|----------------|-------------------------|-----------|-----------|
| Prepared by :          | Jérôme Le Gall | Measurement Responsible | 6/23/2023 |           |
| Checked & approved by: | Jérôme Luc     | Technical Manager       | 6/23/2023 |           |
| Authorized by:         | Yann Toutain   | Laboratory Director     | 6/23/2023 |           |

2023.06.23.  
13:37:50 +02'03'

|                | Customer Name                                         |
|----------------|-------------------------------------------------------|
| Distribution : | Shenzhen LCS<br>Compliance Testing<br>Laboratory Ltd. |

| Issue | Name           | Date      | Modifications   |
|-------|----------------|-----------|-----------------|
| A     | Jérôme Le Gall | 6/23/2023 | Initial release |
|       |                |           |                 |
|       |                |           |                 |
|       |                |           |                 |



## COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.4 42.BES.A

## TABLE OF CONTENTS

|     |                                       |    |
|-----|---------------------------------------|----|
| 1   | Device Under Test .....               | 4  |
| 2   | Product Description .....             | 4  |
| 2.1 | General Information .....             | 4  |
| 3   | Measurement Method .....              | 4  |
| 3.1 | Linearity .....                       | 4  |
| 3.2 | Sensitivity .....                     | 4  |
| 3.3 | Lower Detection Limit .....           | 5  |
| 3.4 | Isotropy .....                        | 5  |
| 3.1 | Boundary Effect .....                 | 5  |
| 4   | Measurement Uncertainty .....         | 6  |
| 5   | Calibration Measurement Results ..... | 6  |
| 5.1 | Sensitivity in air .....              | 6  |
| 5.2 | Linearity .....                       | 7  |
| 5.3 | Sensitivity in liquid .....           | 8  |
| 5.4 | Isotropy .....                        | 9  |
| 6   | List of Equipment .....               | 10 |



## COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.4.42.BESA

**1 DEVICE UNDER TEST**

| Device Under Test                        |                                                                                                                   |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Device Type                              | COMOSAR DOSIMETRIC E FIELD PROBE                                                                                  |
| Manufacturer                             | MVG                                                                                                               |
| Model                                    | SSE2                                                                                                              |
| Serial Number                            | SN 25/22 EPG0376                                                                                                  |
| Product Condition (new / used)           | New                                                                                                               |
| Frequency Range of Probe                 | 0.15 GHz-6GHz                                                                                                     |
| Resistance of Three Dipoles at Connector | Dipole 1: $R1=0.193\text{ M}\Omega$<br>Dipole 2: $R2=0.188\text{ M}\Omega$<br>Dipole 3: $R3=0.198\text{ M}\Omega$ |

**2 PRODUCT DESCRIPTION****2.1 GENERAL INFORMATION**

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

**Figure 1 – MVG COMOSAR Dosimetric E field Probe**

|                                            |        |
|--------------------------------------------|--------|
| Probe Length                               | 330 mm |
| Length of Individual Dipoles               | 2 mm   |
| Maximum external diameter                  | 8 mm   |
| Probe Tip External Diameter                | 2.5 mm |
| Distance between dipoles / probe extremity | 1 mm   |

**3 MEASUREMENT METHOD**

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

**3.1 LINEARITY**

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

**3.2 SENSITIVITY**

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.



### 3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

### 3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

### 3.1 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and  $d_{be} + d_{step}$  along lines that are approximately normal to the surface:

$$\text{SAR}_{\text{uncertainty}} [\%] = \Delta \text{SAR}_{be} \frac{(d_{be} + d_{step})^2 \left( e^{-d_{be}/(\delta/2)} \right)}{2d_{step}} \frac{\delta/2}{\delta/2} \quad \text{for } (d_{be} + d_{step}) < 10 \text{ mm}$$

where

|                          |                                                                                                                                                                                                      |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Delta \text{SAR}_{be}$ | is the uncertainty in percent of the probe boundary effect                                                                                                                                           |
| $d_{be}$                 | is the distance between the surface and the closest <i>zoom-scan</i> measurement point, in millimetre                                                                                                |
| $\Delta_{step}$          | is the separation distance between the first and second measurement points that are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible |
| $\delta$                 | is the minimum penetration depth in millimetres of the head tissue-equivalent liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;                                               |
| $\Delta \text{SAR}_{be}$ | in percent of SAR is the deviation between the measured SAR value, at the distance $d_{be}$ from the boundary, and the analytical SAR value.                                                         |

The measured worst case boundary effect SAR uncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).



## COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.4.42.BES.A

**4 MEASUREMENT UNCERTAINTY**

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of  $k=2$ , traceable to the Internationally Accepted Guides to Measurement Uncertainty.

| Uncertainty analysis of the probe calibration in waveguide |                       |                          |         |    |                          |
|------------------------------------------------------------|-----------------------|--------------------------|---------|----|--------------------------|
| ERROR SOURCES                                              | Uncertainty value (%) | Probability Distribution | Divisor | ei | Standard Uncertainty (%) |
| Expanded uncertainty<br>95 % confidence level $k = 2$      |                       |                          |         |    | 14 %                     |

**5 CALIBRATION MEASUREMENT RESULTS**

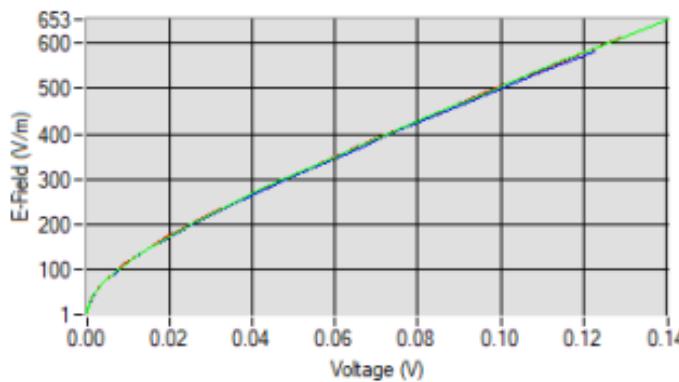
| Calibration Parameters |             |  |
|------------------------|-------------|--|
| Liquid Temperature     | 20 +/- 1 °C |  |
| Lab Temperature        | 20 +/- 1 °C |  |
| Lab Humidity           | 30-70 %     |  |

**5.1 SENSITIVITY IN AIR**

| Normx dipole 1 ( $\mu\text{V}/(\text{V}/\text{m})^2$ ) | Normy dipole 2 ( $\mu\text{V}/(\text{V}/\text{m})^2$ ) | Normz dipole 3 ( $\mu\text{V}/(\text{V}/\text{m})^2$ ) |
|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| 0.76                                                   | 0.78                                                   | 0.76                                                   |

| DCP dipole 1 (mV) | DCP dipole 2 (mV) | DCP dipole 3 (mV) |
|-------------------|-------------------|-------------------|
| 106               | 107               | 108               |

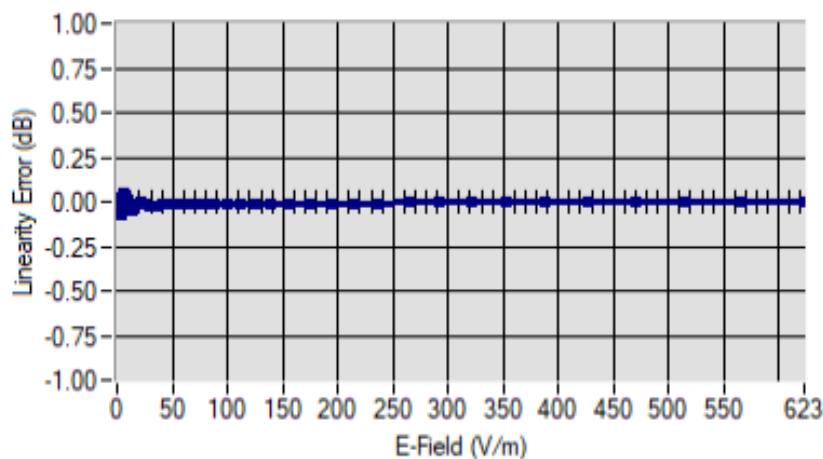
Calibration curves  $ei=f(V)$  ( $i=1,2,3$ ) allow to obtain E-field value using the formula:


$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$



## COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.4.42.BES.A


## Calibration curves



Dipole 1  
Dipole 2  
Dipole 3

5.2 LINEARITY

## Linearity



Linearity: +/-1.81% (+/-0.08dB)



## COMOSAR E-FIELD PROBE CALIBRATION REPORT

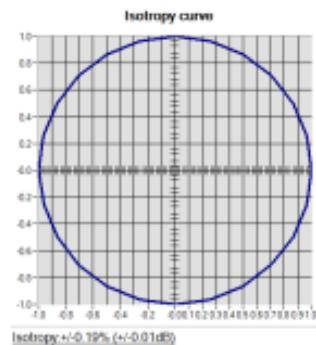
Ref: ACR.180.4.42.BES.A

5.3 SENSITIVITY IN LIQUID

| <u>Liquid</u> | <u>Frequency<br/>(MHz +/-<br/>100MHz)</u> | <u>ConvF</u> |
|---------------|-------------------------------------------|--------------|
| HL450*        | 450*                                      | 1.74*        |
| BL450*        | 450*                                      | 1.67*        |
| HL750         | 750                                       | 1.69         |
| BL750         | 750                                       | 1.73         |
| HL850         | 835                                       | 1.75         |
| BL850         | 835                                       | 1.80         |
| HL900         | 900                                       | 1.87         |
| BL900         | 900                                       | 1.85         |
| HL1800        | 1800                                      | 2.09         |
| BL1800        | 1800                                      | 2.15         |
| HL1900        | 1900                                      | 2.14         |
| BL1900        | 1900                                      | 2.27         |
| HL2000        | 2000                                      | 2.31         |
| BL2000        | 2000                                      | 2.34         |
| HL2300        | 2300                                      | 2.46         |
| BL2300        | 2300                                      | 2.51         |
| HL2450        | 2450                                      | 2.60         |
| BL2450        | 2450                                      | 2.70         |
| HL2600        | 2600                                      | 2.39         |
| BL2600        | 2600                                      | 2.50         |
| HL5200        | 5200                                      | 1.85         |
| BL5200        | 5200                                      | 1.81         |
| HL5400        | 5400                                      | 2.07         |
| BL5400        | 5400                                      | 2.00         |
| HL5600        | 5600                                      | 2.19         |
| BL5600        | 5600                                      | 2.11         |
| HL5800        | 5800                                      | 2.01         |
| BL5800        | 5800                                      | 1.97         |

\* Frequency not cover by COFRAC scope, calibration not accredited

LOWER DETECTION LIMIT: 7mW/kg




## COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.4.42.BES.A

#### 5.4 ISOTROPY

**HL1800 MHz**





## COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.4.42.BES.A

## 6 LIST OF EQUIPMENT

| Equipment Summary Sheet            |                      |                         |                                               |                                               |
|------------------------------------|----------------------|-------------------------|-----------------------------------------------|-----------------------------------------------|
| Equipment Description              | Manufacturer / Model | Identification No.      | Current Calibration Date                      | Next Calibration Date                         |
| CALIPROBE Test Bench               | Version 2            | NA                      | Validated. No cal required.                   | Validated. No cal required.                   |
| Network Analyzer                   | Rohde & Schwarz ZVM  | 100203                  | 08/2021                                       | 08/2024                                       |
| Network Analyzer                   | Agilent 8753ES       | MY40003210              | 10/2022                                       | 10/2025                                       |
| Network Analyzer – Calibration kit | HP 85033D            | 3423A08186              | 06/2021                                       | 06/2027                                       |
| Multimeter                         | Keithley 2000        | 1160271                 | 02/2023                                       | 02/2026                                       |
| Signal Generator                   | Rohde & Schwarz SMB  | 106589                  | 03/2022                                       | 03/2025                                       |
| Amplifier                          | MVG                  | MODU-023-C-0002         | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |
| Power Meter                        | NI-USB 5680          | 170100013               | 06/2021                                       | 06/2024                                       |
| Power Meter                        | Rohde & Schwarz NRVD | 832839-056              | 11/2022                                       | 11/2025                                       |
| Directional Coupler                | Krytar 158020        | 131467                  | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |
| Waveguide                          | MVG                  | SN 32/16 WG4_1          | Validated. No cal required.                   | Validated. No cal required.                   |
| Liquid transition                  | MVG                  | SN 32/16 WGLIQ_0G900_1  | Validated. No cal required.                   | Validated. No cal required.                   |
| Waveguide                          | MVG                  | SN 32/16 WG6_1          | Validated. No cal required.                   | Validated. No cal required.                   |
| Liquid transition                  | MVG                  | SN 32/16 WGLIQ_1G500_1  | Validated. No cal required.                   | Validated. No cal required.                   |
| Waveguide                          | MVG                  | SN 32/16 WG8_1          | Validated. No cal required.                   | Validated. No cal required.                   |
| Liquid transition                  | MVG                  | SN 32/16 WGLIQ_1G800B_1 | Validated. No cal required.                   | Validated. No cal required.                   |
| Liquid transition                  | MVG                  | SN 32/16 WGLIQ_1G800H_1 | Validated. No cal required.                   | Validated. No cal required.                   |
| Waveguide                          | MVG                  | SN 32/16 WG10_1         | Validated. No cal required.                   | Validated. No cal required.                   |
| Liquid transition                  | MVG                  | SN 32/16 WGLIQ_3G500_1  | Validated. No cal required.                   | Validated. No cal required.                   |
| Waveguide                          | MVG                  | SN 32/16 WG12_1         | Validated. No cal required.                   | Validated. No cal required.                   |

Page: 10/11

Template\_ACR.DDD.N.YY.MVGB.ISSUE\_COMOSAR Probe vK

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



## COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.180.4.42.BES.A

|                               |              |                           |                             |                             |
|-------------------------------|--------------|---------------------------|-----------------------------|-----------------------------|
| Liquid transition             | MVG          | SN 32/16<br>WGLIQ_5G000_1 | Validated. No cal required. | Validated. No cal required. |
| Temperature / Humidity Sensor | Testo 184 H1 | 44225320                  | 06/2021                     | 06/2024                     |

**SID2450 Dipole Calibration Ceriticate****SAR Reference Dipole Calibration Report**

Ref : ACR.287.8.14.SATU.A

**SHENZHEN LCS COMPLIANCE TESTING  
LABORATORY LTD.****1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD,  
BAO'AN BLVD****BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA****SATIMO COMOSAR REFERENCE DIPOLE****FREQUENCY: 2450 MHZ****SERIAL NO.: SN 07/14 DIP 2G450-306****Calibrated at SATIMO US****2105 Barrett Park Dr. - Kennesaw, GA 30144****09/29/2021****Summary:**

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.



## SAR REFERENCE DIPOLE CALIBRATION REPORT

ReE ACR.287.8.14.SATU.A

|               | Name          | Function        | Date       | Signature     |
|---------------|---------------|-----------------|------------|---------------|
| Prepared by : | Jérôme LUC    | Product Manager | 10/12/2021 |               |
| Checked by :  | Jérôme LUC    | Product Manager | 10/12/2021 |               |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 10/12/2021 | Kim RUTKOWSKI |

|                | Customer Name                                         |
|----------------|-------------------------------------------------------|
| Distribution : | Shenzhen LCS<br>Compliance Testing<br>Laboratory Ltd. |

| Issue | Date       | Modifications   |
|-------|------------|-----------------|
| A     | 10/12/2021 | Initial release |
|       |            |                 |
|       |            |                 |
|       |            |                 |



## TABLE OF CONTENTS

|     |                                               |    |
|-----|-----------------------------------------------|----|
| 1   | Introduction.....                             | 4  |
| 2   | Device Under Test.....                        | 4  |
| 3   | Product Description .....                     | 4  |
| 3.1 | General Information .....                     | 4  |
| 4   | Measurement Method .....                      | 5  |
| 4.1 | Return Loss Requirements .....                | 5  |
| 4.2 | Mechanical Requirements .....                 | 5  |
| 5   | Measurement Uncertainty.....                  | 5  |
| 5.1 | Return Loss .....                             | 5  |
| 5.2 | Dimension Measurement .....                   | 5  |
| 5.3 | Validation Measurement .....                  | 5  |
| 6   | Calibration Measurement Results.....          | 6  |
| 6.1 | Return Loss and Impedance .....               | 6  |
| 6.2 | Mechanical Dimensions .....                   | 6  |
| 7   | Validation measurement .....                  | 7  |
| 7.1 | Head Liquid Measurement .....                 | 7  |
| 7.2 | SAR Measurement Result With Head Liquid.....  | 7  |
| 7.3 | Body Liquid Measurement .....                 | 9  |
| 7.4 | SAR Measurement Result With Body Liquid ..... | 9  |
| 8   | List of Equipment .....                       | 11 |



## SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref ACR.287.8.14.SATU.A

## 1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

## 2 DEVICE UNDER TEST

| Device Under Test              |                                   |
|--------------------------------|-----------------------------------|
| Device Type                    | COMOSAR 2450 MHz REFERENCE DIPOLE |
| Manufacturer                   | Satimo                            |
| Model                          | SID2450                           |
| Serial Number                  | SN 07/14 DIP 2G450-306            |
| Product Condition (new / used) | New                               |

A yearly calibration interval is recommended.

## 3 PRODUCT DESCRIPTION

### 3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.



**Figure 1 – Satimo COMOSAR Validation Dipole**



#### 4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

##### 4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

##### 4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

### 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of  $k=2$ , traceable to the Internationally Accepted Guides to Measurement Uncertainty.

##### 5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

| Frequency band | Expanded Uncertainty on Return Loss |
|----------------|-------------------------------------|
| 400-6000MHz    | 0.1 dB                              |

##### 5.2 DIMENSION MEASUREMENT

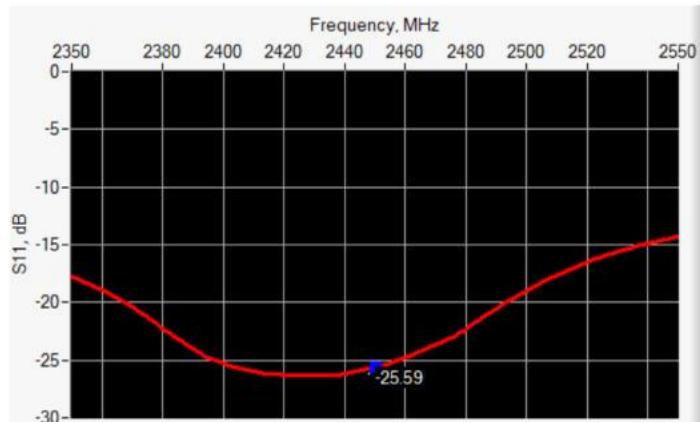
The following uncertainties apply to the dimension measurements:

| Length (mm) | Expanded Uncertainty on Length |
|-------------|--------------------------------|
| 3 - 300     | 0.05 mm                        |

##### 5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

| Scan Volume | Expanded Uncertainty |
|-------------|----------------------|
| 1 g         | 20.3 %               |
| 10 g        | 20.1 %               |


Page: 5/11



## SAR REFERENCE DIPOLE CALIBRATION REPORT

ReE ACR.287.8.14.SATU.A

## 6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

| Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance                   |
|-----------------|------------------|------------------|-----------------------------|
| 2450            | -25.59           | -20              | $44.7 \Omega - 1.1 j\Omega$ |

6.2 MECHANICAL DIMENSIONS

| Frequency MHz | L mm              |          | h mm              |          | d mm             |          |
|---------------|-------------------|----------|-------------------|----------|------------------|----------|
|               | required          | measured | required          | measured | required         | measured |
| 300           | $420.0 \pm 1\%$ . |          | $250.0 \pm 1\%$ . |          | $6.35 \pm 1\%$ . |          |
| 450           | $290.0 \pm 1\%$ . |          | $166.7 \pm 1\%$ . |          | $6.35 \pm 1\%$ . |          |
| 750           | $176.0 \pm 1\%$ . |          | $100.0 \pm 1\%$ . |          | $6.35 \pm 1\%$ . |          |
| 835           | $161.0 \pm 1\%$ . |          | $89.8 \pm 1\%$ .  |          | $3.6 \pm 1\%$ .  |          |
| 900           | $149.0 \pm 1\%$ . |          | $83.3 \pm 1\%$ .  |          | $3.6 \pm 1\%$ .  |          |
| 1450          | $89.1 \pm 1\%$ .  |          | $51.7 \pm 1\%$ .  |          | $3.6 \pm 1\%$ .  |          |
| 1500          | $80.5 \pm 1\%$ .  |          | $50.0 \pm 1\%$ .  |          | $3.6 \pm 1\%$ .  |          |
| 1640          | $79.0 \pm 1\%$ .  |          | $45.7 \pm 1\%$ .  |          | $3.6 \pm 1\%$ .  |          |
| 1750          | $75.2 \pm 1\%$ .  |          | $42.9 \pm 1\%$ .  |          | $3.6 \pm 1\%$ .  |          |
| 1800          | $72.0 \pm 1\%$ .  |          | $41.7 \pm 1\%$ .  |          | $3.6 \pm 1\%$ .  |          |
| 1900          | $68.0 \pm 1\%$ .  |          | $39.5 \pm 1\%$ .  |          | $3.6 \pm 1\%$ .  |          |
| 1950          | $66.3 \pm 1\%$ .  |          | $38.5 \pm 1\%$ .  |          | $3.6 \pm 1\%$ .  |          |
| 2000          | $64.5 \pm 1\%$ .  |          | $37.5 \pm 1\%$ .  |          | $3.6 \pm 1\%$ .  |          |
| 2100          | $61.0 \pm 1\%$ .  |          | $35.7 \pm 1\%$ .  |          | $3.6 \pm 1\%$ .  |          |
| 2300          | $55.5 \pm 1\%$ .  |          | $32.6 \pm 1\%$ .  |          | $3.6 \pm 1\%$ .  |          |
| 2450          | $51.5 \pm 1\%$ .  | PASS     | $30.4 \pm 1\%$ .  | PASS     | $3.6 \pm 1\%$ .  | PASS     |
| 2600          | $48.5 \pm 1\%$ .  |          | $28.8 \pm 1\%$ .  |          | $3.6 \pm 1\%$ .  |          |
| 3000          | $41.5 \pm 1\%$ .  |          | $25.0 \pm 1\%$ .  |          | $3.6 \pm 1\%$ .  |          |
| 3500          | $37.0 \pm 1\%$ .  |          | $26.4 \pm 1\%$ .  |          | $3.6 \pm 1\%$ .  |          |
| 3700          | $34.7 \pm 1\%$ .  |          | $26.4 \pm 1\%$ .  |          | $3.6 \pm 1\%$ .  |          |

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.  
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.



## SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref ACR.287.8.14.SATU.A

## 7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

### 7.1 HEAD LIQUID MEASUREMENT

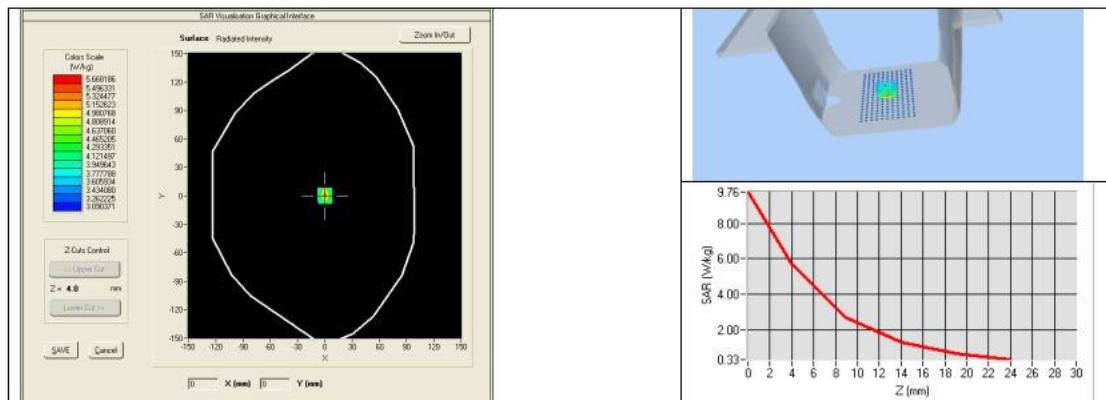
| Frequency<br>MHz | Relative permittivity ( $\epsilon_r'$ ) |          | Conductivity ( $\sigma$ ) S/m |          |
|------------------|-----------------------------------------|----------|-------------------------------|----------|
|                  | required                                | measured | required                      | measured |
| 300              | 45.3 $\pm$ 5 %                          |          | 0.87 $\pm$ 5 %                |          |
| 450              | 43.5 $\pm$ 5 %                          |          | 0.87 $\pm$ 5 %                |          |
| 750              | 41.9 $\pm$ 5 %                          |          | 0.89 $\pm$ 5 %                |          |
| 835              | 41.5 $\pm$ 5 %                          |          | 0.90 $\pm$ 5 %                |          |
| 900              | 41.5 $\pm$ 5 %                          |          | 0.97 $\pm$ 5 %                |          |
| 1450             | 40.5 $\pm$ 5 %                          |          | 1.20 $\pm$ 5 %                |          |
| 1500             | 40.4 $\pm$ 5 %                          |          | 1.23 $\pm$ 5 %                |          |
| 1640             | 40.2 $\pm$ 5 %                          |          | 1.31 $\pm$ 5 %                |          |
| 1750             | 40.1 $\pm$ 5 %                          |          | 1.37 $\pm$ 5 %                |          |
| 1800             | 40.0 $\pm$ 5 %                          |          | 1.40 $\pm$ 5 %                |          |
| 1900             | 40.0 $\pm$ 5 %                          |          | 1.40 $\pm$ 5 %                |          |
| 1950             | 40.0 $\pm$ 5 %                          |          | 1.40 $\pm$ 5 %                |          |
| 2000             | 40.0 $\pm$ 5 %                          |          | 1.40 $\pm$ 5 %                |          |
| 2100             | 39.8 $\pm$ 5 %                          |          | 1.49 $\pm$ 5 %                |          |
| 2300             | 39.5 $\pm$ 5 %                          |          | 1.67 $\pm$ 5 %                |          |
| 2450             | 39.2 $\pm$ 5 %                          | PASS     | 1.80 $\pm$ 5 %                | PASS     |
| 2600             | 39.0 $\pm$ 5 %                          |          | 1.96 $\pm$ 5 %                |          |
| 3000             | 38.5 $\pm$ 5 %                          |          | 2.40 $\pm$ 5 %                |          |
| 3500             | 37.9 $\pm$ 5 %                          |          | 2.91 $\pm$ 5 %                |          |

### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

|                                           |                                                       |
|-------------------------------------------|-------------------------------------------------------|
| Software                                  | OPENSAR V4                                            |
| Phantom                                   | SN 20/09 SAM71                                        |
| Probe                                     | SN 18/11 EPG122                                       |
| Liquid                                    | Head Liquid Values: $\epsilon_r'$ : 39.0 sigma : 1.77 |
| Distance between dipole center and liquid | 10.0 mm                                               |
| Area scan resolution                      | dx=8mm/dy=8mm                                         |

Page: 7/11




## SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref ACR.287.8.14.SATU.A

|                      |                      |
|----------------------|----------------------|
| Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm |
| Frequency            | 2450 MHz             |
| Input power          | 20 dBm               |
| Liquid Temperature   | 21 °C                |
| Lab Temperature      | 21 °C                |
| Lab Humidity         | 45 %                 |

| Frequency<br>MHz | 1 g SAR (W/kg/W) |              | 10 g SAR (W/kg/W) |              |
|------------------|------------------|--------------|-------------------|--------------|
|                  | required         | measured     | required          | measured     |
| 300              | 2.85             |              | 1.94              |              |
| 450              | 4.58             |              | 3.06              |              |
| 750              | 8.49             |              | 5.55              |              |
| 835              | 9.56             |              | 6.22              |              |
| 900              | 10.9             |              | 6.99              |              |
| 1450             | 29               |              | 16                |              |
| 1500             | 30.5             |              | 16.8              |              |
| 1640             | 34.2             |              | 18.4              |              |
| 1750             | 36.4             |              | 19.3              |              |
| 1800             | 38.4             |              | 20.1              |              |
| 1900             | 39.7             |              | 20.5              |              |
| 1950             | 40.5             |              | 20.9              |              |
| 2000             | 41.1             |              | 21.1              |              |
| 2100             | 43.6             |              | 21.9              |              |
| 2300             | 48.7             |              | 23.3              |              |
| 2450             | 52.4             | 53.89 (5.39) | 24                | 24.15 (2.42) |
| 2600             | 55.3             |              | 24.6              |              |
| 3000             | 63.8             |              | 25.7              |              |
| 3500             | 67.1             |              | 25                |              |





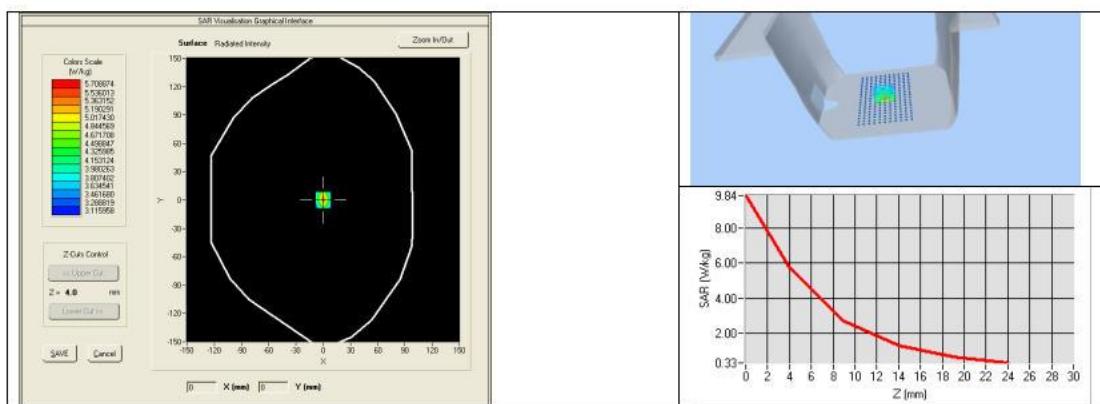
## SAR REFERENCE DIPOLE CALIBRATION REPORT

ReE ACR.287.8.14.SATU.A

7.3 BODY LIQUID MEASUREMENT

| Frequency<br>MHz | Relative permittivity ( $\epsilon_r'$ ) |          | Conductivity ( $\sigma$ ) S/m |          |
|------------------|-----------------------------------------|----------|-------------------------------|----------|
|                  | required                                | measured | required                      | measured |
| 150              | 61.9 $\pm$ 5 %                          |          | 0.80 $\pm$ 5 %                |          |
| 300              | 58.2 $\pm$ 5 %                          |          | 0.92 $\pm$ 5 %                |          |
| 450              | 56.7 $\pm$ 5 %                          |          | 0.94 $\pm$ 5 %                |          |
| 750              | 55.5 $\pm$ 5 %                          |          | 0.96 $\pm$ 5 %                |          |
| 835              | 55.2 $\pm$ 5 %                          |          | 0.97 $\pm$ 5 %                |          |
| 900              | 55.0 $\pm$ 5 %                          |          | 1.05 $\pm$ 5 %                |          |
| 915              | 55.0 $\pm$ 5 %                          |          | 1.06 $\pm$ 5 %                |          |
| 1450             | 54.0 $\pm$ 5 %                          |          | 1.30 $\pm$ 5 %                |          |
| 1610             | 53.8 $\pm$ 5 %                          |          | 1.40 $\pm$ 5 %                |          |
| 1800             | 53.3 $\pm$ 5 %                          |          | 1.52 $\pm$ 5 %                |          |
| 1900             | 53.3 $\pm$ 5 %                          |          | 1.52 $\pm$ 5 %                |          |
| 2000             | 53.3 $\pm$ 5 %                          |          | 1.52 $\pm$ 5 %                |          |
| 2100             | 53.2 $\pm$ 5 %                          |          | 1.62 $\pm$ 5 %                |          |
| 2450             | 52.7 $\pm$ 5 %                          | PASS     | 1.95 $\pm$ 5 %                | PASS     |
| 2600             | 52.5 $\pm$ 5 %                          |          | 2.16 $\pm$ 5 %                |          |
| 3000             | 52.0 $\pm$ 5 %                          |          | 2.73 $\pm$ 5 %                |          |
| 3500             | 51.3 $\pm$ 5 %                          |          | 3.31 $\pm$ 5 %                |          |
| 5200             | 49.0 $\pm$ 10 %                         |          | 5.30 $\pm$ 10 %               |          |
| 5300             | 48.9 $\pm$ 10 %                         |          | 5.42 $\pm$ 10 %               |          |
| 5400             | 48.7 $\pm$ 10 %                         |          | 5.53 $\pm$ 10 %               |          |
| 5500             | 48.6 $\pm$ 10 %                         |          | 5.65 $\pm$ 10 %               |          |
| 5600             | 48.5 $\pm$ 10 %                         |          | 5.77 $\pm$ 10 %               |          |
| 5800             | 48.2 $\pm$ 10 %                         |          | 6.00 $\pm$ 10 %               |          |

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

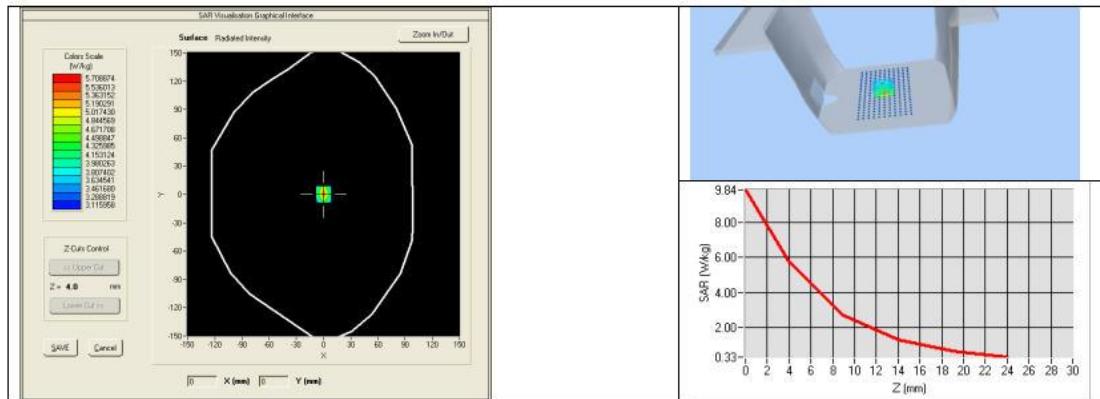

|                                           |                                                       |
|-------------------------------------------|-------------------------------------------------------|
| Software                                  | OPENSAR V4                                            |
| Phantom                                   | SN 20/09 SAM71                                        |
| Probe                                     | SN 18/11 EPG122                                       |
| Liquid                                    | Body Liquid Values: $\epsilon_r'$ : 53.0 sigma : 1.93 |
| Distance between dipole center and liquid | 10.0 mm                                               |
| Area scan resolution                      | dx=8mm/dy=8mm                                         |
| Zoon Scan Resolution                      | dx=8mm/dy=8mm/dz=5mm                                  |
| Frequency                                 | 2450 MHz                                              |
| Input power                               | 20 dBm                                                |
| Liquid Temperature                        | 21 °C                                                 |
| Lab Temperature                           | 21 °C                                                 |
| Lab Humidity                              | 45 %                                                  |



## SAR REFERENCE DIPOLE CALIBRATION REPORT

ReE ACR.287.8.14.SATU.A

| Frequency<br>MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) |
|------------------|------------------|-------------------|
|                  | measured         | measured          |
| 2450             | 54.65 (5.46)     | 24.58 (2.46)      |






## SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref ACR.287.8.14.SATU.A

| Frequency<br>MHz | 1 g SAR (W/kg/W)<br>measured | 10 g SAR (W/kg/W)<br>measured |
|------------------|------------------------------|-------------------------------|
| 2450             | 54.65 (5.46)                 | 24.58 (2.46)                  |





## SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.287.8.14.SATU.A

## 8 LIST OF EQUIPMENT

| Equipment Summary Sheet         |                      |                    |                                               |                                               |
|---------------------------------|----------------------|--------------------|-----------------------------------------------|-----------------------------------------------|
| Equipment Description           | Manufacturer / Model | Identification No. | Current Calibration Date                      | Next Calibration Date                         |
| SAM Phantom                     | Satimo               | SN-20/09-SAM71     | Validated. No cal required.                   | Validated. No cal required.                   |
| COMOSAR Test Bench              | Version 3            | NA                 | Validated. No cal required.                   | Validated. No cal required.                   |
| Network Analyzer                | Rhode & Schwarz ZVA  | SN100132           | 02/2021                                       | 02/2024                                       |
| Calipers                        | Carrera              | CALIPER-01         | 12/2018                                       | 12/2021                                       |
| Reference Probe                 | Satimo               | EPG122 SN 18/11    | 10/2021                                       | 10/2022                                       |
| Multimeter                      | Keithley 2000        | 1188656            | 12/2018                                       | 12/2021                                       |
| Signal Generator                | Agilent E4438C       | MY49070581         | 12/2018                                       | 12/2021                                       |
| Amplifier                       | Aethercomm           | SN 046             | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |
| Power Meter                     | HP E4418A            | US38261498         | 12/2018                                       | 12/2021                                       |
| Power Sensor                    | HP ECP-E26A          | US37181460         | 12/2018                                       | 12/2021                                       |
| Directional Coupler             | Narda 4216-20        | 01386              | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |
| Temperature and Humidity Sensor | Control Company      | 11-661-9           | 8/2021                                        | 8/2024                                        |

## SAR System PHOTOGRAPHS



Liquid depth  $\geq 15\text{cm}$





## SETUP PHOTOGRAPHS

Please refer to separated files for Test Setup Photos of SAR.



## **EUT PHOTOGRAPHS**

Please refer to separated files for Test Setup Photos of SAR

.....**The End of Test Report.**.....