

TEST REPORT

Applicant: NETPRISMA INC.

EUT Description: Multi-mode Smart LTE Module with Wi-Fi & Bluetooth

Model Tested: SUS600-LD

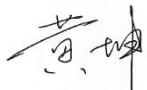
Model Covered: SUS609-LD

Brand: Vrileg

FCC ID: 2BEY3SUS600LDA

Standards: FCC 47 CFR Part 15 Subpart C

Date of Receipt: 2025/03/06


Date of Test: 2025/03/06 to 2025/04/14

Date of Issue: 2025/04/16

TOWE tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

the results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of the model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise. without written approval of TOWE, the test report shall not be reproduced except in full.

Huang Kun

Approved By:

Chen Chengfu

Reviewed By:

Revision History

Rev.	Issue Date	Description	Revised by
01	2025/04/16	Original	Chen Chengfu

Product Differentiation Statement

SUS600-LD and SUS609-LD both use Qualcomm QCM6125 chipset and share the same HW design, they just have different OS and use different EMCP as following:

Designator	SUS600-LD (Part Description)	SUS609-LD (Part Description)
System	Android	Linux
U0901(EMCP)	BWCA2KZC-64G	NE6F8FKAPAXAI-KF

Above changes won't impact the protocol and RF performance.

So, only the test data for Model No.(SUS600-LD) was presented in the report.

Summary of Test Results

Clause	FCC Part	Test Items	Result
4.1	§15.203/15.247(b)	Antenna Requirement	PASS
4.2	§15.207	AC Power Line Conducted Emission	N/A
4.3	§15.247 (b)(1)	Output Power	PASS
4.4	§15.247 (a)(1)	Occupied Bandwidth	Reporting purposes only
4.5	§15.247 (a)(1)	Hopping Frequency Separation	PASS
4.6	§15.247 (a)(1)(iii)	Number Hopping Channels	PASS
4.7	§15.247 (a)(1)(iii)	Dwell Time	PASS
4.8	§15.247(d)	Band Edge for Conducted Emissions	PASS
4.9	§15.247(d)	Spurious RF Conducted Emissions	PASS
4.10	§15.205 §15.209	Radiated Spurious emissions and Band Edge	PASS

Test Method: ANSI C63.10:2020, KDB 558074 D01 15.247 Mesa Guidance v05r02.

Remark:

1. Pass is EUT meets standard requirements.
2. The EUT is DC power supply, "N/A" denotes "not applicable".

Table of Contents

1	General Description	6
1.1	Lab Information.....	6
1.1.1	Testing Location	6
1.1.2	Test Facility / Accreditations	6
1.2	Client Information	6
1.2.1	Applicant.....	6
1.2.2	Manufacturer.....	6
1.3	Product Information.....	7
2	Test Configuration	8
2.1	Test Channel	8
2.2	Worst-case configuration and Mode	9
2.3	Support Unit used in test	9
2.4	Test Environment.....	9
2.5	Test RF Cable.....	9
2.6	Modifications.....	9
2.7	Test Setup Diagram	10
2.7.1	Conducted Configuration	10
2.7.2	Radiated Configuration	11
3	Equipment and Measurement Uncertainty.....	12
3.1	Test Equipment List.....	12
3.2	Measurement Uncertainty	13
4	Test results	14
4.1	Antenna Requirement.....	14
4.2	Output Power	15
4.3	Occupied Bandwidth	16
4.4	Hopping Frequency Separation.....	17
4.5	Number of Hopping Channels	18
4.6	Dwell Time	19
4.7	Band Edge for Conducted Emissions.....	20
4.8	Spurious RF Conducted Emissions	21
4.9	Radiated Spurious Emissions and Band Edge	22
5	Test Setup Photos.....	24
	Appendix.....	25

1 General Description

1.1 Lab Information

1.1.1 Testing Location

These measurements tests were conducted at the Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd. facility located at F401 and F101, Building E, Hongwei Industrial Zone, Liuxian 3rd Road, Bao'an District, Shenzhen, China. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014

Tel.: +86-755-27212361

Contact Email: info@towewireless.com

1.1.2 Test Facility / Accreditations

A2LA (Certificate Number: 7088.01)

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

FCC Designation No.: CN1353

Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd. has been recognized as an accredited testing laboratory. Designation Number: CN1353.

ISED CAB identifier: CN0152

Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd. has been recognized by ISED as an accredited testing laboratory.

CAB identifier: CN0152

Company Number: 31000

1.2 Client Information

1.2.1 Applicant

Applicant:	NETPRISMA INC.
Address:	1301 6TH AVE, SEATTLE, WA, 98101-2304, UNITED STATES

1.2.2 Manufacturer

Manufacturer:	NETPRISMA INC.
Address:	1301 6TH AVE, SEATTLE, WA, 98101-2304, UNITED STATES

1.3 Product Information

EUT Description:	Multi-mode Smart LTE Module with Wi-Fi & Bluetooth	
Model Tested:	SUS600-LD	
Model Covered:	SUS609-LD	
Brand:	Vrileg	
Hardware Version:	R1.0	
Software Version:	SUS600LDNA0201 SUS609LDNA6001	
SN:	RF Conducted	P1C24EQ0D000099
	RSE	D1C25AM1T000064
Bluetooth version:	Bluetooth V5.0	
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	
Frequency Range:	2400 ~ 2483.5MHz	
Channel Frequency:	2402 ~ 2480MHz	
Number of Channel:	79	
Hopping Channel Type:	Adaptive Frequency Hopping systems	
Antenna Type:	<input checked="" type="checkbox"/> External, <input type="checkbox"/> Integrated	
Antenna Gain:	Ant0 (dBi)	
	0.47	
Remark: The above EUT's information was declared by applicant, please refer to the specifications or user's manual for more detailed description.		

2 Test Configuration

2.1 Test Channel

Operation Frequency of each channel for GFSK, π/4DQPSK, 8DPSK							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test Channel	Test Frequency
The Lowest channel (CH0)	2402MHz
The Middle channel (CH39)	2441MHz
The Highest channel (CH78)	2480MHz

2.2 Worst-case configuration and Mode

Modulation Type	GFSK			π/4DQPSK			8DPSK		
	DH1	DH3	DH5	2DH1	2DH3	2DH5	3DH1	3DH3	3DH5
Payload	27	183	339	54	367	679	83	552	1021
Hopping mode	Keep the EUT in hopping mode								
No hopping mode	Keep the EUT was programmed to be in continuously transmitting mode								
Normal Link	Keep the EUT operation to normal function.								

2.3 Support Unit used in test

Description	Manufacturer	Model	Serial Number
Development Board	NETPRISMA INC.	SMART-EVB-G5	/
Development Board	NETPRISMA INC.	SUS600-LD-TE-A	/

Remark: all above the information of table are provided by client.

2.4 Test Environment

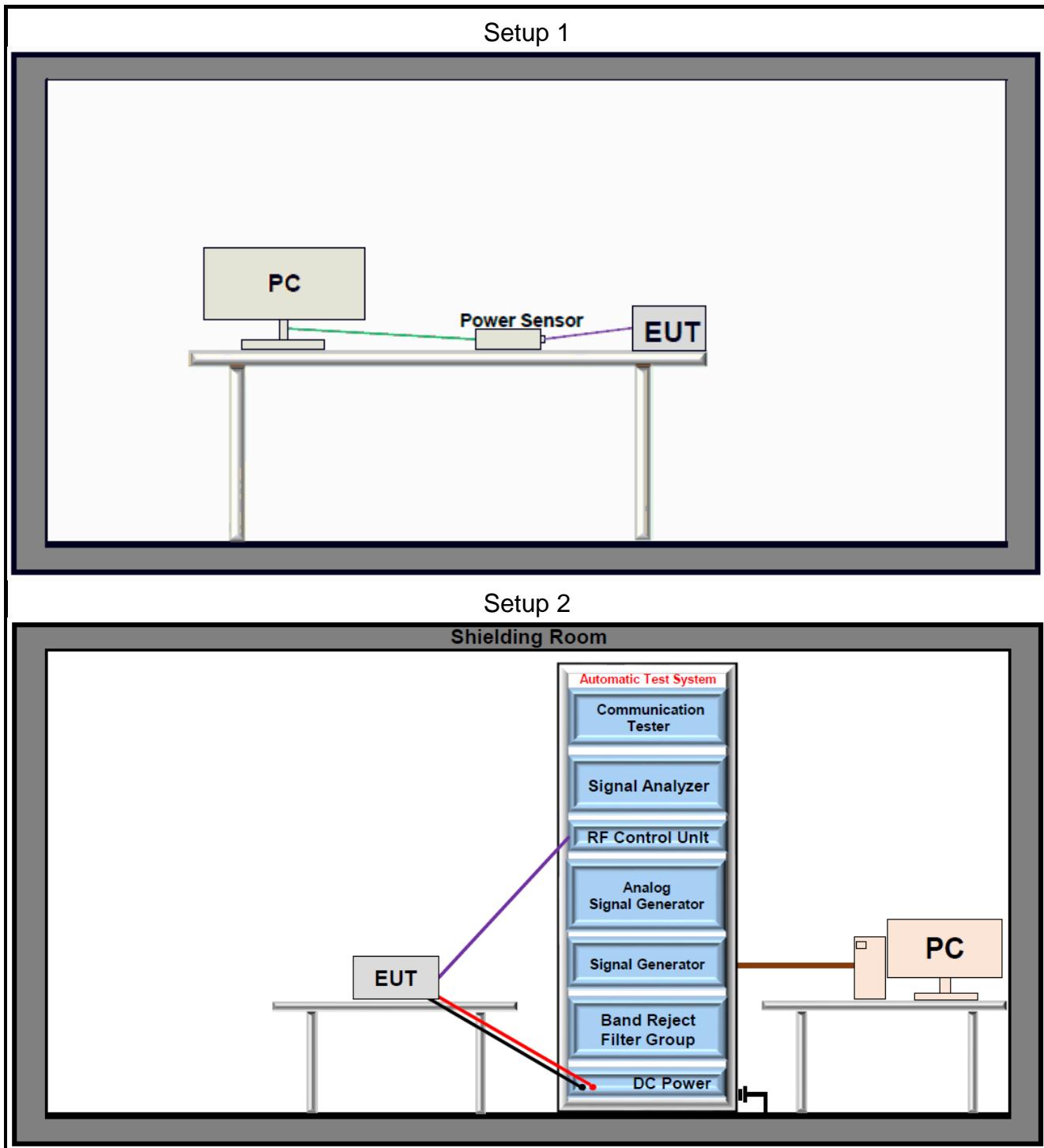
Temperature:	Normal: 15°C ~ 35°C
Humidity:	45-56 % RH Ambient
Voltage:	DC 3.8V (Module Input)

Remark: The testing environment is within the scope of the EUT user manual and meets the requirements of the standard testing environment.

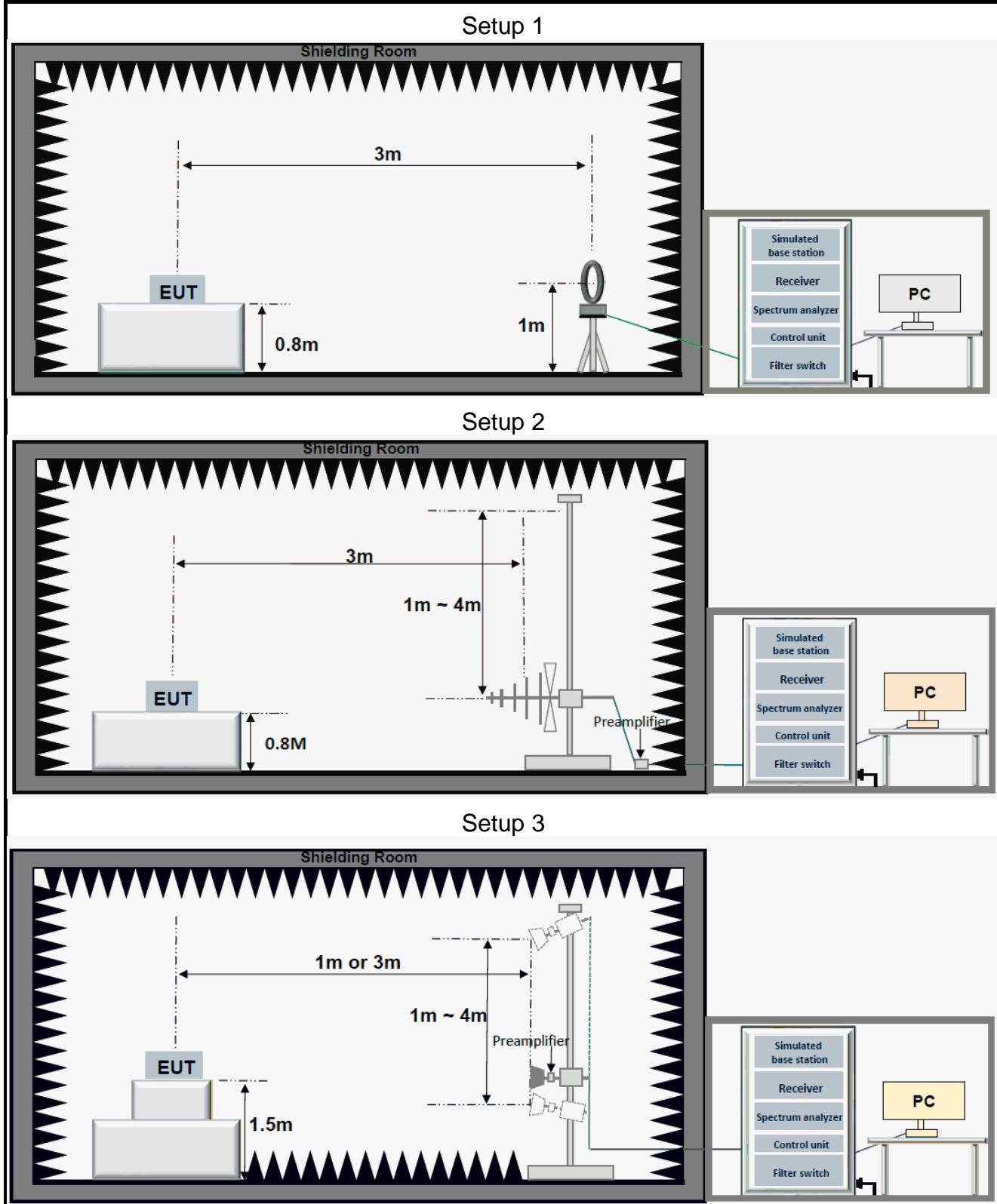
2.5 Test RF Cable

For all conducted test items: The offset level is set spectrum analyzer to compensate the RF cable loss and attenuator factor between RF conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level will be exactly the RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.


Offset = RF cable loss + attenuator factor.

2.6 Modifications


No modifications were made during testing.

2.7 Test Setup Diagram

2.7.1 Conducted Configuration

2.7.2 Radiated Configuration

3 Equipment and Measurement Uncertainty

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, whichever is less, and where applicable is traceable to recognized national standards.

3.1 Test Equipment List

Description	Manufacturer	Model	S.N.	Last Due	Cal Due
Signal Analyzer	Keysight	N9020A	US46470429	2024/03/25	2025/03/24
				2025/03/14	2026/03/13
Power Sensor	Anritsu	MA24408A	12520	2024/05/30	2025/05/29
Measurement Software	Tonscend	TS1120-3	10659	N/A	N/A

Radiated Emission					
Description	Manufacturer	Model	S.N.	Last Due	Cal Due
Biconic Logarithmic Periodic Antennas	Schwarzbeck	VULB9163	1643	2023/06/25	2025/06/24
Double-Ridged Horn Antennas	Schwarzbeck	BBHA 9120D	2809	2023/06/25	2025/06/24
Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	1290	2023/06/25	2025/06/24
Loop Antenna	Schwarzbeck	FMZB 1519C	1519C-028	2023/06/29	2025/06/28
Signal Analyzer	Keysight	N9020A	MY49100252	2024/03/25	2025/03/24
				2025/03/11	2026/03/10
EXA Signal Analyzer, Multi-touch	Keysight	N9010B	MY63440541	2024/05/30	2025/05/29
Wideband Radio Communication Tester	R&S	CMW500	150645	2024/03/25	2025/03/24
				2025/03/11	2026/03/10
Low Noise Amplifier	Tonscend	TAP9K3G40	AP23A8060273	2023/04/08	2025/04/07
				2025/03/11	2027/03/10
Low Noise Amplifier	Tonscend	TAP01018050	AP22G806258	2023/04/08	2025/04/07
				2025/03/11	2027/03/10
Low Noise Amplifier	Tonscend	TAP18040048	AP22G806247	2023/04/08	2025/04/07
				2025/03/11	2027/03/10
Hygrometer	BINGYU	HTC-1	N/A	2023/06/01	2025/05/31
Test Software	Tonscend	TS+	Version: 5.0.0	N/A	N/A

3.2 Measurement Uncertainty

Parameter	U_{lab}
Frequency Error	679.98Hz
Output Power	0.76dB
Conducted Spurious Emissions	2.22dB
Radiated Emissions(9kHz~30MHz)	2.40dB
Radiated Emissions(30MHz~1000MHz)	4.66dB
Radiated Emissions(1GHz~18GHz)	5.42dB
Radiated Emissions(18GHz~40GHz)	5.46dB

Uncertainty figures are valid to a confidence level of 95%

4 Test results

4.1 Antenna Requirement

Standard Applicable:	47 CFR Part 15C Section 15.203 /247(b)
15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.	
15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.	
<p>The antenna gain and type as provided by the manufacturer are as follows: The antenna Type is External. With maximum gain is 0.47dBi. Antenna Anti-Replacement Construction: An embedded-in antenna design is used.</p>	

4.2 Output Power

Limits

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

ANSI C63.10:2020 Section 7.8.5

Test Settings

1. Set to the maximum power setting and enable the EUT transmit continuously.
2. The power output was measured on the EUT antenna port using RF Cable with attenuator connected to a power meter via wideband power sensor.
3. Measure and record the results in the test report.

Test Setup

Refer to section 2.7.1- Setup 1 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

The detailed test data see: **Appendix**.

4.3 Occupied Bandwidth

Limits

None, for reporting purposes only.

Test Procedure

ANSI C63.10:2020 Section 6.9.2 and 6.9.3

Test Settings

1. Set to the maximum power setting and enable the EUT transmit continuously.
2. The transmitter output is connected to a spectrum analyzer.
3. RBW = 1% - 5%OBW
4. VBW = 3 times the RBW
5. Span = Approximately 2 to 5times the 20dB bandwidth
6. Sweep = Auto
7. Detector = Peak
8. Trace = Max hold.
9. The trace was allowed to stabilize
10. Measure and record the results in the test report.

Test Notes

The signal analyzers' automatic bandwidth measurement capability of the spectrum analyzer was used to perform the 20dB bandwidth measurement. The "X" dB bandwidth parameter was set to X= 20. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.

Test Setup

Refer to section 2.7.1- Setup 2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

The detailed test data see: **Appendix**.

4.4 Hopping Frequency Separation

Limits

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

ANSI C63.10:2020 Section 7.8.2

Test Settings

1. Set to the maximum power setting and enable the EUT transmit continuously
2. Enable the EUT hopping function
3. The transmitter output is connected to a spectrum analyzer
4. RBW = 30% of channel spacing. Adjust as necessary to best identify center of each individual channel
5. VBW \geq RBW
6. Span = Wide enough to capture the peaks of two adjacent channels
7. Sweep = Auto
8. Detector = Peak
9. Trace = Max hold
10. The trace was allowed to stabilize
11. Measure and record the results in the test report

Test Setup

Refer to section 2.7.1- Setup 2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

The detailed test data see: **Appendix**.

4.5 Number of Hopping Channels

Limits

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

ANSI C63.10:2020 Section 7.8.3

Test Settings

1. Set to the maximum power setting and enable the EUT transmit continuously
2. Enable the EUT hopping function
3. The transmitter output is connected to a spectrum analyzer
4. RBW < 30% of channel spacing or 20dB bandwidth, whichever is smaller.
5. VBW \geq RBW
6. Span = The frequency band of operation
7. Sweep = Auto
8. Detector = Peak
9. Trace = Max hold
10. The trace was allowed to stabilize
11. Measure and record the results in the test report.

Test Setup

Refer to section 2.7.1- Setup 2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

The detailed test data see: **Appendix**.

4.6 Dwell Time

Limits

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

ANSI C63.10:2020 Section 7.8.4

Test Settings

1. Set to the maximum power setting and enable the EUT transmit continuously
2. Enable the EUT hopping function
3. The transmitter output is connected to a spectrum analyzer
4. $RBW \leq \text{channel spacing}$ and $>> 1/T$, where T is expected dwell time per channel
5. $VBW \geq RBW$
6. Span = Zero span, centered on a hopping channel
7. Sweep = As necessary to capture the entire dwell time per hopping channel
8. Detector = Peak
9. Trace = Max hold
10. The trace was allowed to stabilize
11. Measure and record the results in the test report

Test Setup

1. For Normal mode, The average time of occupancy in the specified 3.16 second. Period time=(79 channels *0.4s), Total Dwell time = Total Hops* Burst width.
2. For AFH mode, The average time of occupancy in the specified 0.8 second. Period time= (20 channels *0.4s), Total Dwell time = Total Hops* Burst width.

Test Setup

Refer to section 2.7.1- Setup 2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

The detailed test data see: **Appendix**.

4.7 Band Edge for Conducted Emissions

Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph 15.247(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Procedure

ANSI C63.10:2020 Section 7.8.7.2

Test Settings

1. Set to the maximum power setting and enable the EUT transmit continuously
2. Activate frequency hopping function if necessary
3. The transmitter output is connected to a spectrum analyzer
4. RBW = 100kHz
5. VBW = 300kHz
6. Point \geq 2 x span/RBW
7. Sweep = Auto
8. Detector = Peak
9. Trace = Max hold
10. The trace was allowed to stabilize
11. Measure and record the results in the test report

Test Setup

Refer to section 2.7.1- Setup 2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

The detailed test data see: **Appendix**.

4.8 Spurious RF Conducted Emissions

Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph 15.247(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Procedure

ANSI C63.10:2020 Section 7.8.7

Test Settings

1. Set to the maximum power setting and enable the EUT transmit continuously.
2. Activate frequency hopping function if necessary.
3. The transmitter output is connected to a spectrum analyzer
4. The spectrum from 30MHz - 26.5GHz
5. RBW = 100kHz
6. VBW = 300kHz
7. Sweep = Auto
8. Detector = Peak
9. Trace = Max hold
10. The trace was allowed to stabilize
11. Measure and record the results in the test report

Test Setup

Refer to section 2.7.1- Setup 2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

The detailed test data see: **Appendix**.

4.9 Radiated Spurious Emissions and Band Edge

Limits

Spurious emissions are permitted in any of the frequency bands:

MHz	MHz	MHz	MHz	GHz	GHz
0.090 - 0.110	12.29 - 12.293	149.9 - 150.05	1660 - 1710	4.5 - 5.15	14.47 - 14.5
0.495 - 0.505	12.51975 - 12.52025	156.52475 - 156.52525	1718.8 - 1722.2	5.35 - 5.46	15.35 - 16.2
2.1735 - 2.1905	12.5767 - 12.57725	156.7 - 156.9	2200 - 2300	7.25 - 7.75	17.7 - 21.4
4.125 - 128	13.36 - 13.41	162.0125 - 167.17	2310 - 2390	8.025 - 8.5	22.01 - 23.12
4.17725 - 4.17775	16.42 - 16.423	167.72 - 173.2	2483.5 - 2500	9.0 - 9.2	23.6 - 24.0
4.20725 - 4.20775	16.69475 - 16.69525	240 - 285	2655 - 2900	9.3 - 9.5	31.2 - 31.8
6.215 - 6.218	1680425 - 1680475	322 - 335.4	3260 - 3267	10.6 - 12.7	36.43 - 36.5
6.26775 - 6.26825	25.5 - 25.67	399.9 - 410	3332 - 3339	13.25 - 13.4	
6.31175 - 6.31225	37.5 - 38.25	608 - 614	3345.8 - 3358		
8.291 - 8.294	73 - 74.6	960 - 1240	3600 - 4400		
8.362 - 8.366	74.8 - 75.2	1300 - 1427			
8.37625 - 8.38675	108 - 121.94	1435 - 1626.5			
8.41425 - 8.41475	123 - 138	1645.5 - 1646.5			

Radiated disturbance of an intentional radiator:

Frequency	Field strength (μ V/m)	Limit (dB μ V/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	74.0	Peak	3
		54.0	Average	

Test Procedure

ANSI C63.10:2020 Section 6.4 & 6.5 & 6.6

Test Settings

- For radiated emissions measurements performed at frequencies less than or equal to 1GHz, the EUT shall be placed on a RF-transparent table or support at a nominal height of 80cm above the reference ground plane.
- For radiated emissions measurements performed at frequencies above 1GHz, the EUT shall be placed on a RF-transparent table or support at a nominal height of 80cm above the ground plane.
- Radiated measurements shall be made with the measurement antenna positioned in both horizontal and vertical polarization. The measurement antenna shall be varied from 1m to 4m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level (i.e, field strength or received power), when orienting the measurement antenna in vertical polarization, the minimum height of the lowest element of the antenna shall clear the site reference ground plane by at least 25cm.
- For each suspected emission, the EUT was ranged its worst case and then tune the antenna tower(from 1~4m) and turntable(from 0~360°) find the maximum reading. Preamplifier and a high pass filter are used for the test in order get better signal level comply with the guidelines.
- Set to the maximum power setting and enable the EUT transmit continuously.
- The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- spectrum analyzer setting:
Measurements Below 1000MHz: RBW = 120 kHz; VBW ≥ 300 kHz; Detector = Peak
Measurements Above 1000MHz: RBW = 1 MHz; VBW ≥ 3 MHz; Detector = Peak

Average Measurements Above 1000MHz:

RBW = 1 MHz, VBW $\geq 1/T$, with peak detector for average measurements.

8. The field strength is calculated by adding the Antenna Factor, Cable Factor. The basic equation with a sample calculation is as follows:

Level = Reading(dB μ V) + AF(dB/m) + Factor(dB):

AF = Antenna Factor(dB/m)

Factor = Cable Factor(dB) - Preamplifier gain(dB)

Margin = Limit(dB μ V/m) – Level(dB μ V/m)

9. Repeat above procedures until all frequencies measured was complete.

10. Measure and record the results in the test report.

Test Notes

1. Emissions below 18GHz were measured at a 3-meter test distance while emissions above 18GHz were measured at a 1-meter test distance with the application of a distance correction factor.
2. Radiated spurious emissions were investigated from 9kHz to 30MHz, 30MHz-1GHz and above 1GHz, the disturbance between 9kHz to 30MHz, 30MHz-1GHz and 18GHz to 40GHz was very low. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be recorded, so only the harmonics had been displayed.
3. The " - " shown in the following RSE tables are used to denote a noise floor measurement.

Test Setup

Refer to section 2.7.2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

The detailed test data see: **Appendix**.

5 Test Setup Photos

The detailed test data see: **Appendix-C BTWIFI Setup Photos**

Appendix

20dB Emission Bandwidth Test Result

TestMode	Antenna	Frequency[MHz]	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
DH5	Ant0	2402	0.891	2401.538	2402.429	---	---
DH5	Ant0	2441	0.954	2440.532	2441.486	---	---
DH5	Ant0	2480	0.930	2479.538	2480.468	---	---
2DH5	Ant0	2402	1.287	2401.361	2402.648	---	---
2DH5	Ant0	2441	1.329	2440.331	2441.660	---	---
2DH5	Ant0	2480	1.290	2479.361	2480.651	---	---
3DH5	Ant0	2402	1.305	2401.343	2402.648	---	---
3DH5	Ant0	2441	1.305	2440.346	2441.651	---	---
3DH5	Ant0	2480	1.284	2479.358	2480.642	---	---

Test Graphs

Occupied Channel Bandwidth Test Result

TestMode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
DH5	Ant0	2402	0.85651	2401.5683	2402.4248	---	---
DH5	Ant0	2441	0.83872	2440.5755	2441.4142	---	---
DH5	Ant0	2480	0.85031	2479.5701	2480.4204	---	---
2DH5	Ant0	2402	1.1879	2401.4025	2402.5904	---	---
2DH5	Ant0	2441	1.1811	2440.4060	2441.5871	---	---
2DH5	Ant0	2480	1.1801	2479.4056	2480.5857	---	---
3DH5	Ant0	2402	1.1854	2401.4009	2402.5863	---	---
3DH5	Ant0	2441	1.1879	2440.4035	2441.5914	---	---
3DH5	Ant0	2480	1.1821	2479.4040	2480.5861	---	---

Test Graphs

Maximum conducted output power**Test Result**

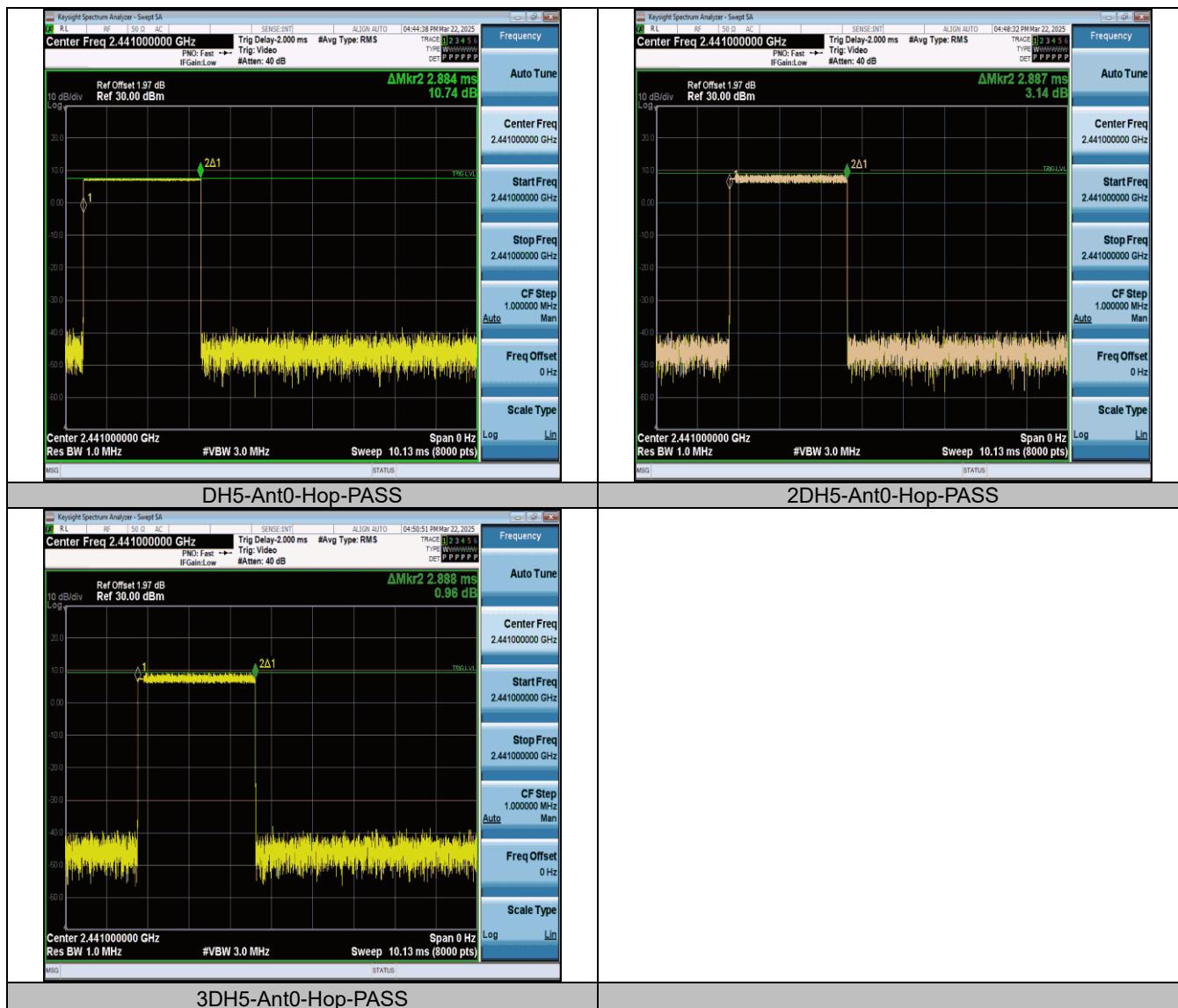
TestMode	Frequency[MHz]	Conducted Average Power[dBm]	Conducted Peak Power[dBm]	Conducted Limit[dBm]	Verdict
DH5	2402	7.753	7.804	≤30	PASS
DH5	2441	7.576	8.066	≤30	PASS
DH5	2480	7.523	7.913	≤30	PASS
2DH5	2402	7.139	9.827	≤30	PASS
2DH5	2441	7.363	10.146	≤30	PASS
2DH5	2480	7.265	9.995	≤30	PASS
3DH5	2402	7.138	10.012	≤30	PASS
3DH5	2441	7.356	10.363	≤30	PASS
3DH5	2480	7.262	10.262	≤30	PASS

Carrier frequency separation

Test Result

TestMode	Antenna	Hop/Non-Hop	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant0	Hop	1.168	≥0.954	PASS
2DH5	Ant0	Hop	1.292	≥0.886	PASS
3DH5	Ant0	Hop	1.002	≥0.870	PASS

Test Graphs



Time of occupancy

Test Result

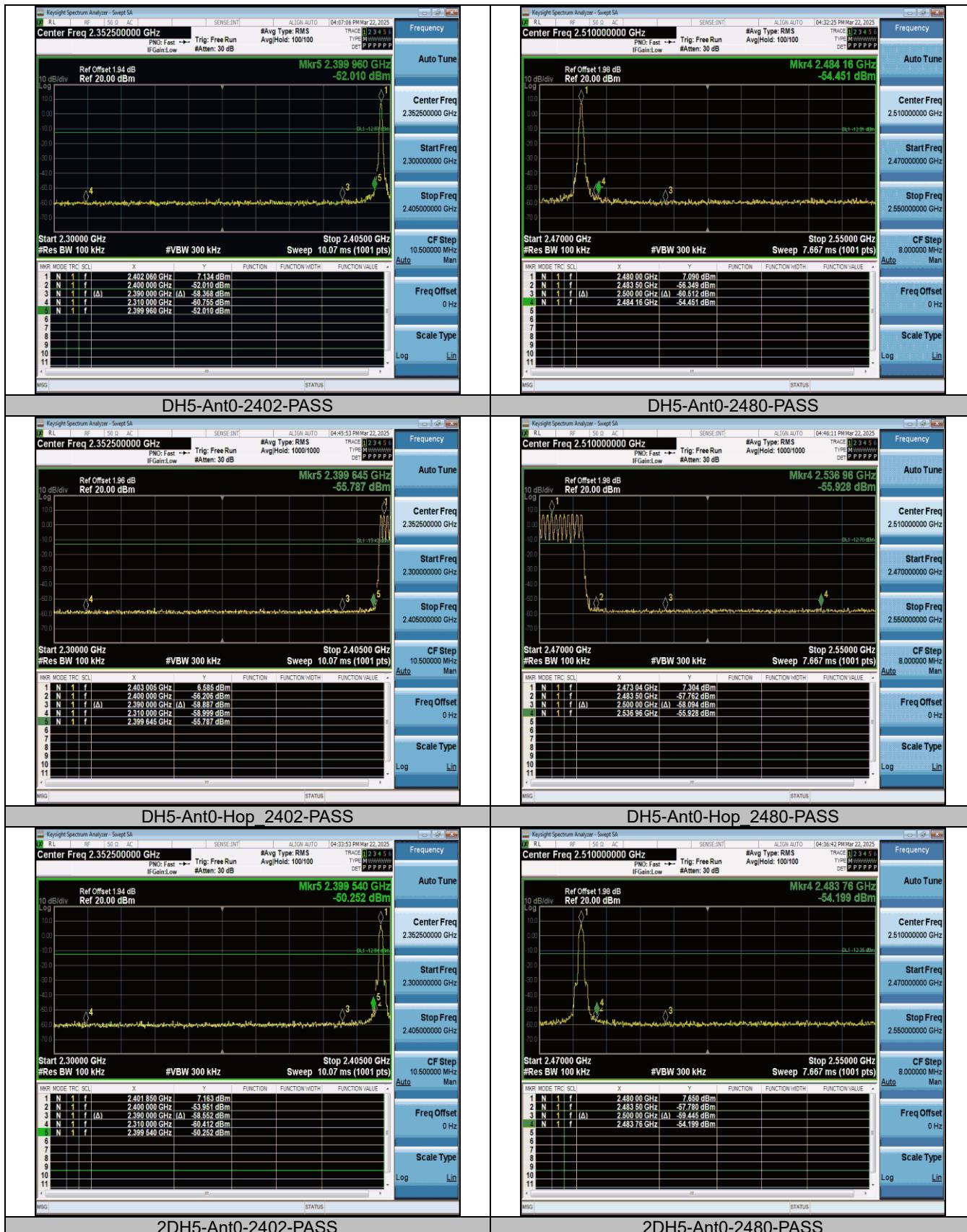
TestMode	Antenna	Hop/Non-Hop	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH5	Ant0	Hop	2.884	106.67	0.308	≤0.4	PASS
2DH5	Ant0	Hop	2.887	106.67	0.308	≤0.4	PASS
3DH5	Ant0	Hop	2.888	106.67	0.308	≤0.4	PASS

Test Graphs

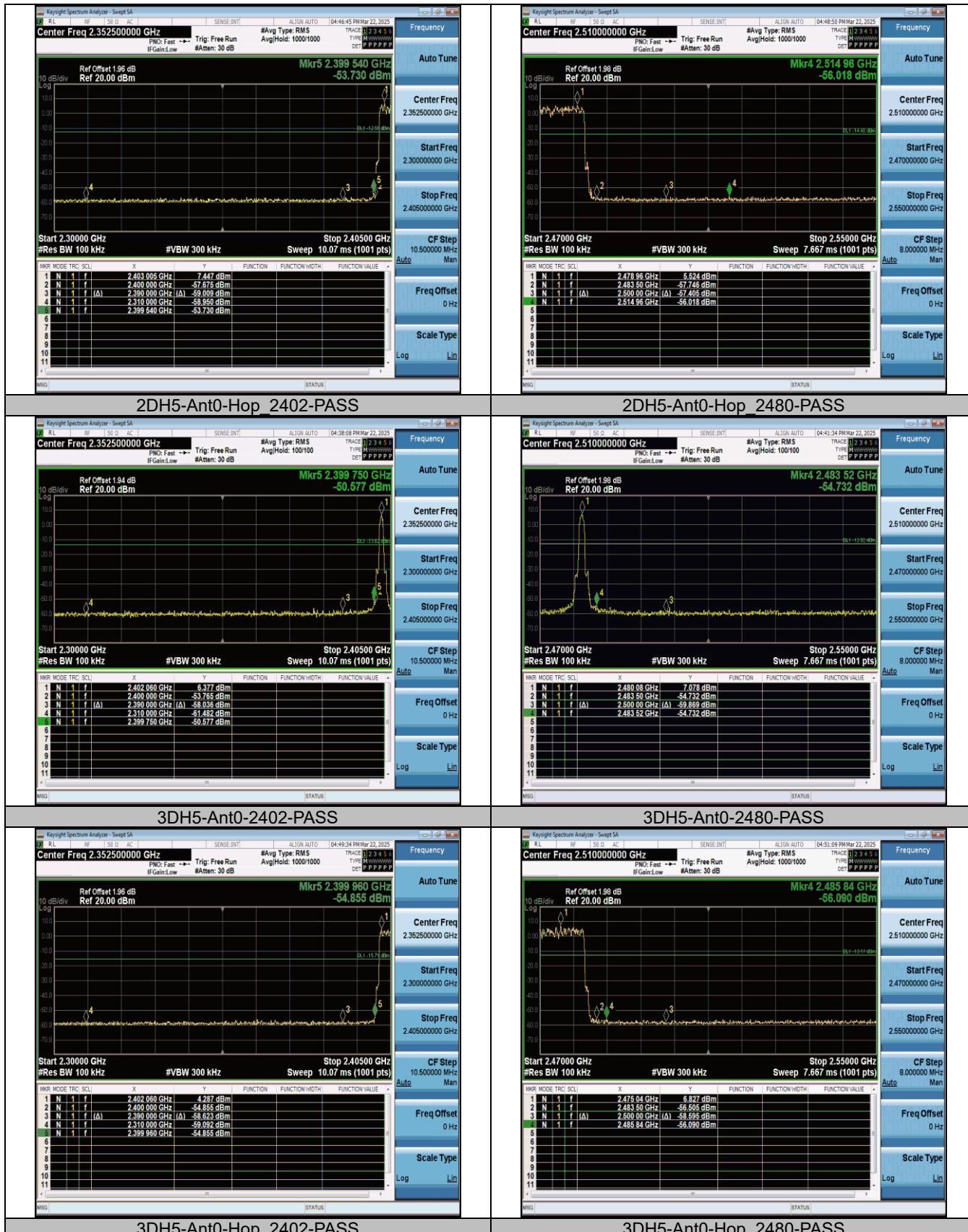
Number of hopping channels

Test Result

TestMode	Antenna	Hop/Non-Hop	Result[Num]	Limit[Num]	Verdict
DH5	Ant0	Hop	79	≥15	PASS
2DH5	Ant0	Hop	79	≥15	PASS
3DH5	Ant0	Hop	79	≥15	PASS

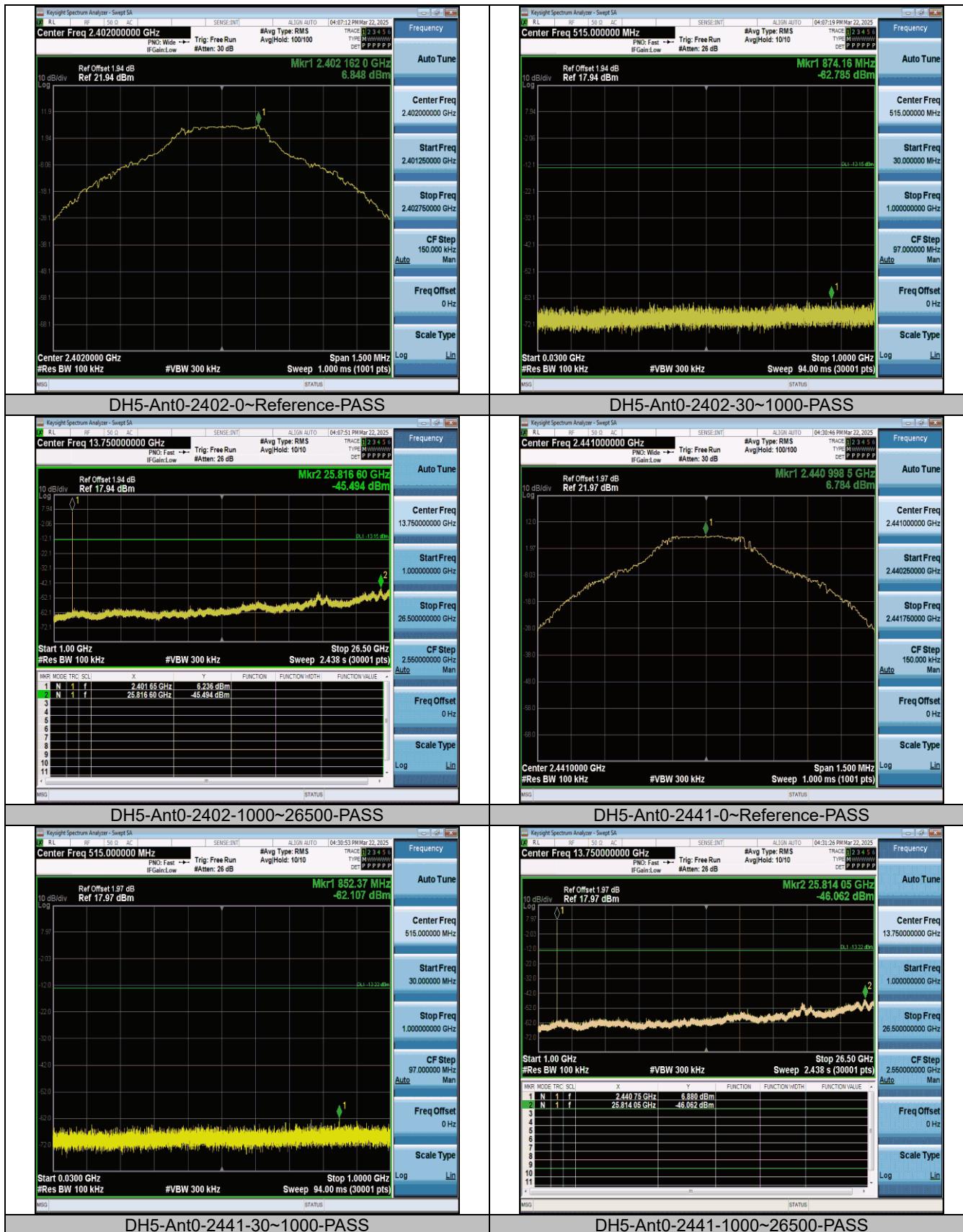

Test Graphs

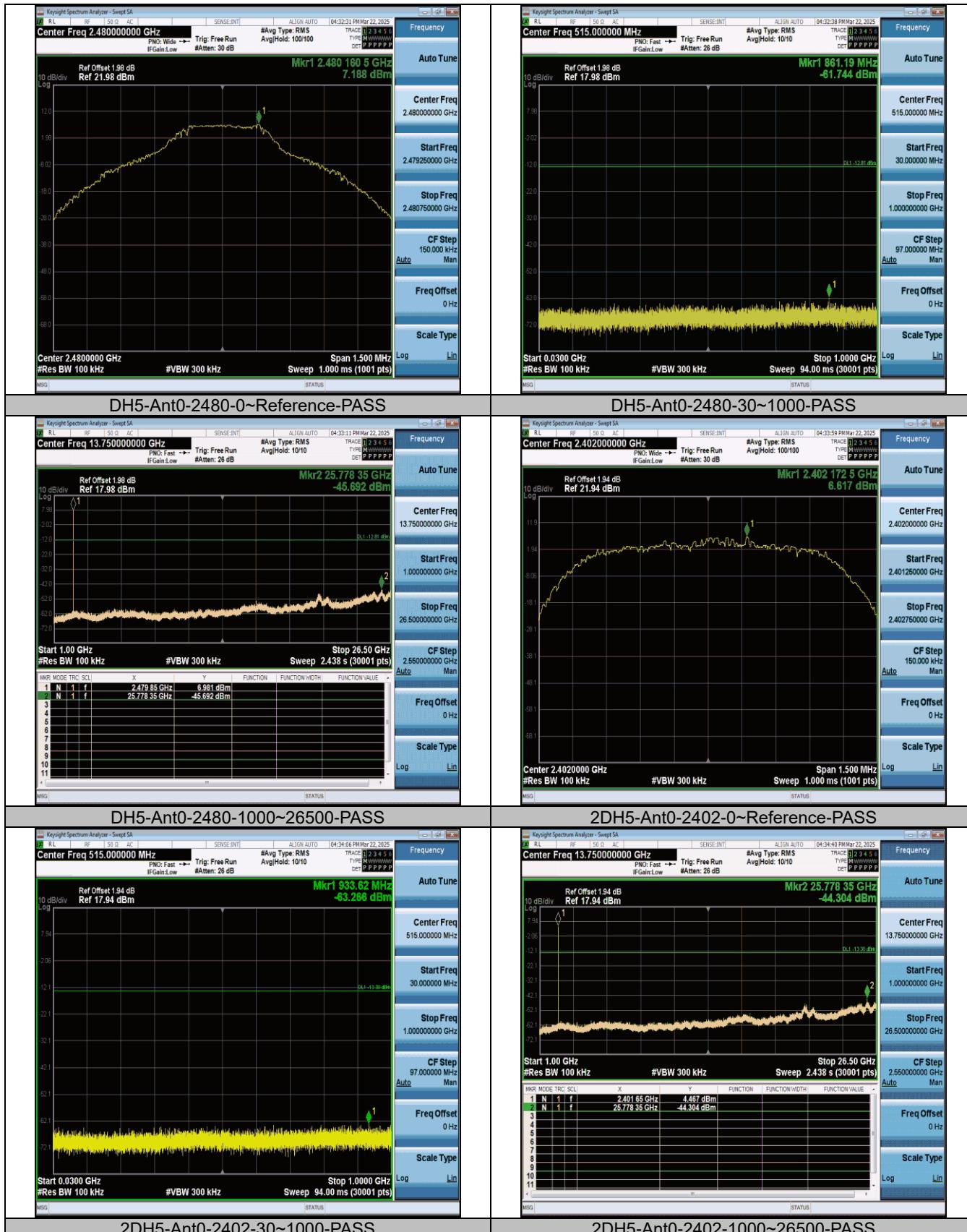
Band edge measurements**Test Result**

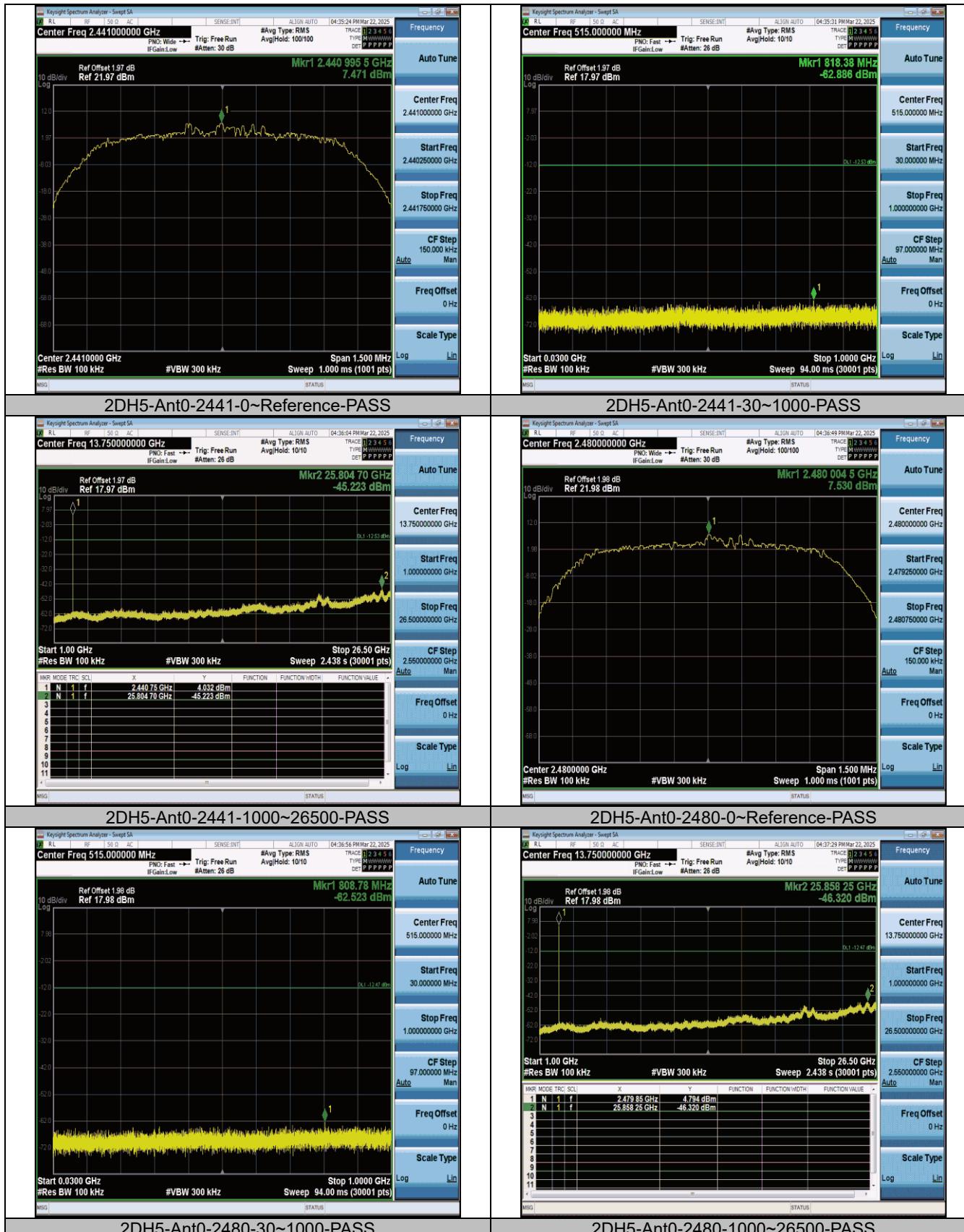

TestMode	Antenna	ChName	Frequency[MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
DH5	Ant0	Low	2402	7.13	-52.01	≤-12.87	PASS
DH5	Ant0	High	2480	7.09	-54.45	≤-12.91	PASS
DH5	Ant0	Low	Hop_2402	6.59	-55.79	≤-13.42	PASS
DH5	Ant0	High	Hop_2480	7.30	-55.93	≤-12.7	PASS
2DH5	Ant0	Low	2402	7.16	-50.25	≤-12.84	PASS
2DH5	Ant0	High	2480	7.65	-54.2	≤-12.35	PASS
2DH5	Ant0	Low	Hop_2402	7.45	-53.73	≤-12.55	PASS
2DH5	Ant0	High	Hop_2480	5.52	-56.02	≤-14.48	PASS
3DH5	Ant0	Low	2402	6.38	-50.58	≤-13.62	PASS
3DH5	Ant0	High	2480	7.08	-54.73	≤-12.92	PASS
3DH5	Ant0	Low	Hop_2402	4.29	-54.86	≤-15.71	PASS
3DH5	Ant0	High	Hop_2480	6.83	-56.09	≤-13.17	PASS

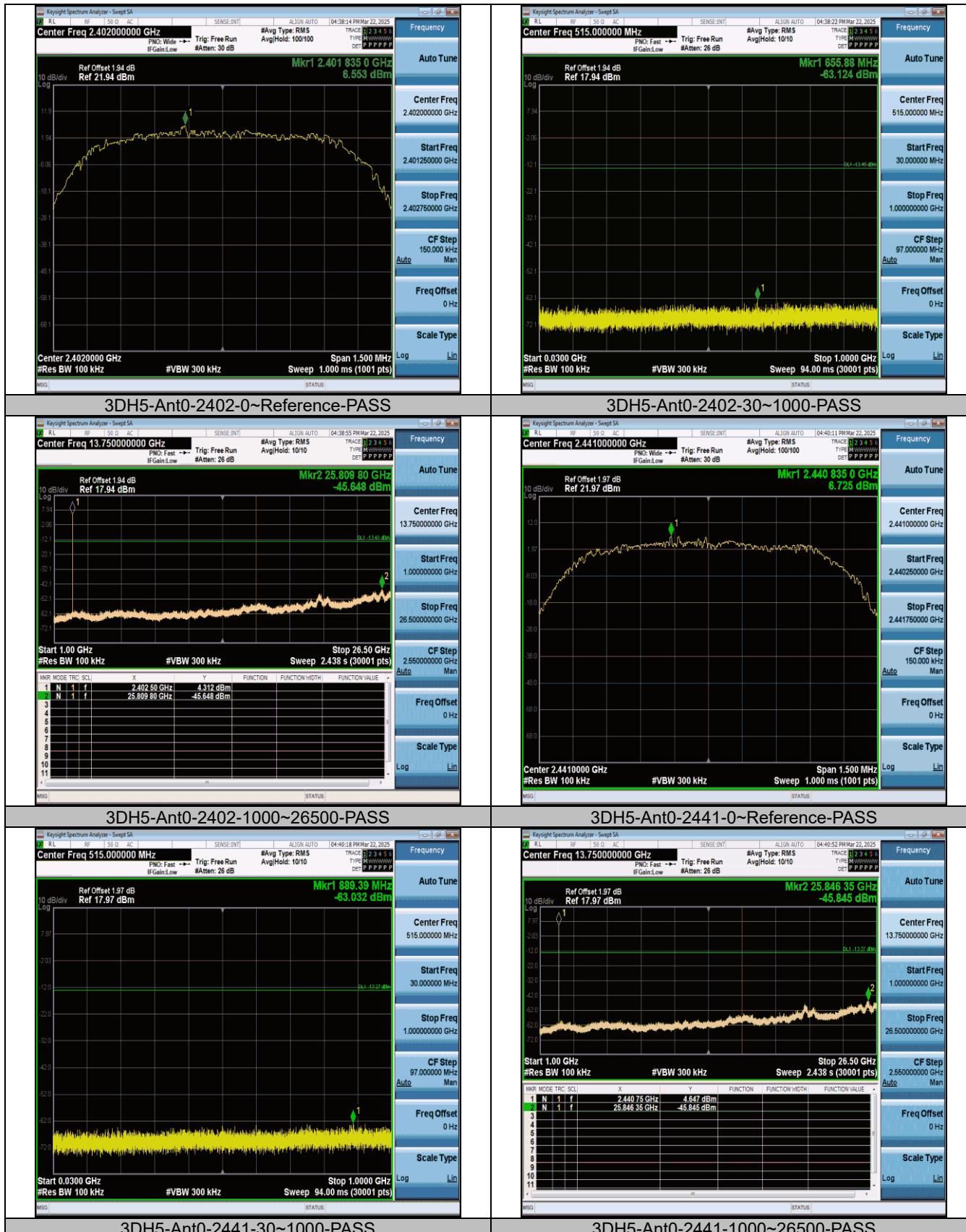
Test Graphs

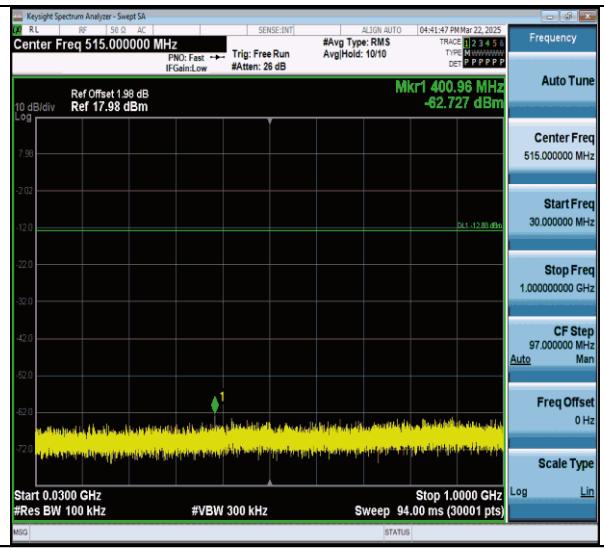
2DH5-Ant0-2402-PASS

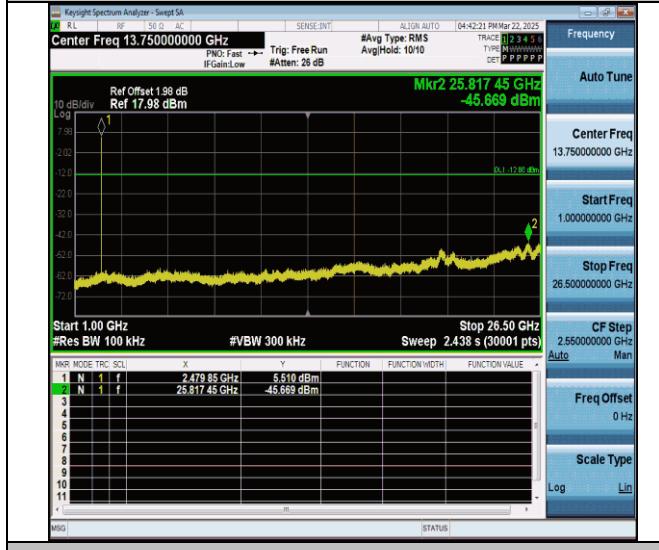

2DH5-Ant0-2480-PASS




Conducted Spurious Emission Test Result

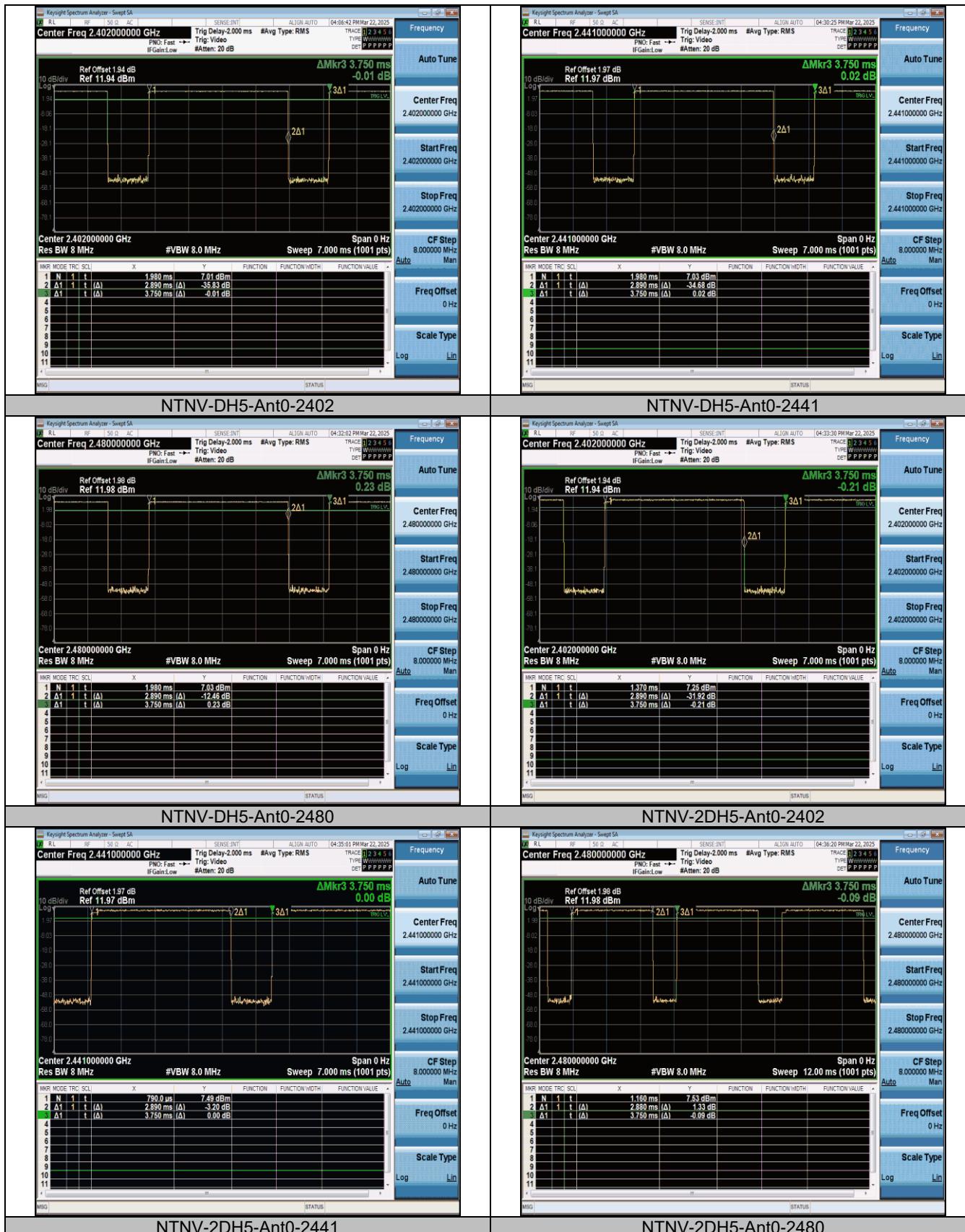

TestMode	Antenna	Frequency[MHz]	FreqRange [MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
DH5	Ant0	2402	0~Reference	6.85	6.85	---	PASS
DH5	Ant0	2402	30~1000	6.85	-62.79	≤-13.15	PASS
DH5	Ant0	2402	1000~26500	6.85	-45.49	≤-13.15	PASS
DH5	Ant0	2441	0~Reference	6.78	6.78	---	PASS
DH5	Ant0	2441	30~1000	6.78	-62.11	≤-13.22	PASS
DH5	Ant0	2441	1000~26500	6.78	-46.06	≤-13.22	PASS
DH5	Ant0	2480	0~Reference	7.19	7.19	---	PASS
DH5	Ant0	2480	30~1000	7.19	-61.74	≤-12.81	PASS
DH5	Ant0	2480	1000~26500	7.19	-45.69	≤-12.81	PASS
2DH5	Ant0	2402	0~Reference	6.62	6.62	---	PASS
2DH5	Ant0	2402	30~1000	6.62	-63.27	≤-13.38	PASS
2DH5	Ant0	2402	1000~26500	6.62	-44.3	≤-13.38	PASS
2DH5	Ant0	2441	0~Reference	7.47	7.47	---	PASS
2DH5	Ant0	2441	30~1000	7.47	-62.89	≤-12.53	PASS
2DH5	Ant0	2441	1000~26500	7.47	-45.22	≤-12.53	PASS
2DH5	Ant0	2480	0~Reference	7.53	7.53	---	PASS
2DH5	Ant0	2480	30~1000	7.53	-62.52	≤-12.47	PASS
2DH5	Ant0	2480	1000~26500	7.53	-46.32	≤-12.47	PASS
3DH5	Ant0	2402	0~Reference	6.55	6.55	---	PASS
3DH5	Ant0	2402	30~1000	6.55	-63.12	≤-13.45	PASS
3DH5	Ant0	2402	1000~26500	6.55	-45.65	≤-13.45	PASS
3DH5	Ant0	2441	0~Reference	6.73	6.73	---	PASS
3DH5	Ant0	2441	30~1000	6.73	-63.03	≤-13.27	PASS
3DH5	Ant0	2441	1000~26500	6.73	-45.85	≤-13.27	PASS
3DH5	Ant0	2480	0~Reference	7.12	7.12	---	PASS
3DH5	Ant0	2480	30~1000	7.12	-62.73	≤-12.88	PASS
3DH5	Ant0	2480	1000~26500	7.12	-45.67	≤-12.88	PASS

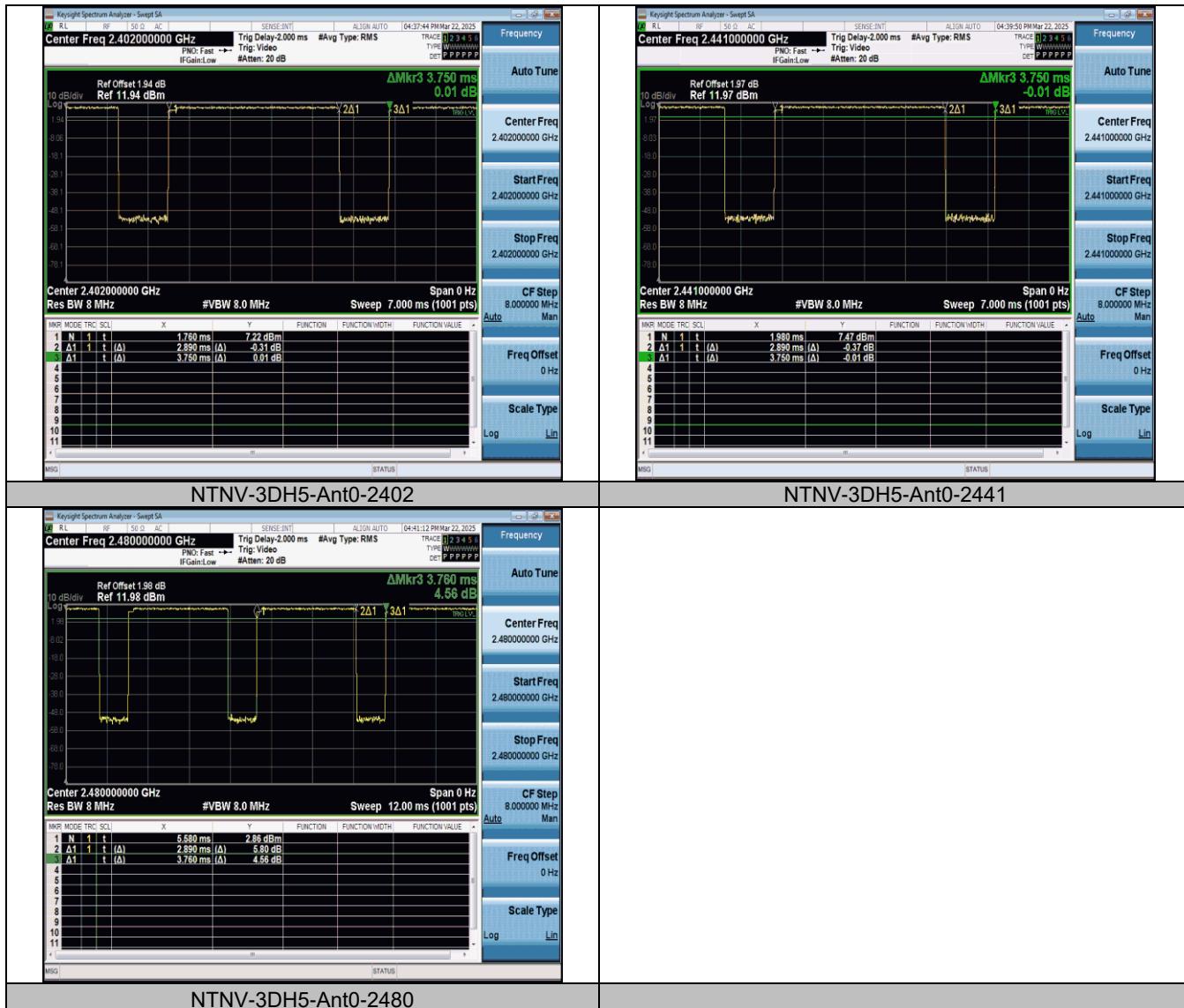

Test Graphs



3DH5-Ant0-2480-0~Reference-PASS

3DH5-Ant0-2480-30~1000-PASS

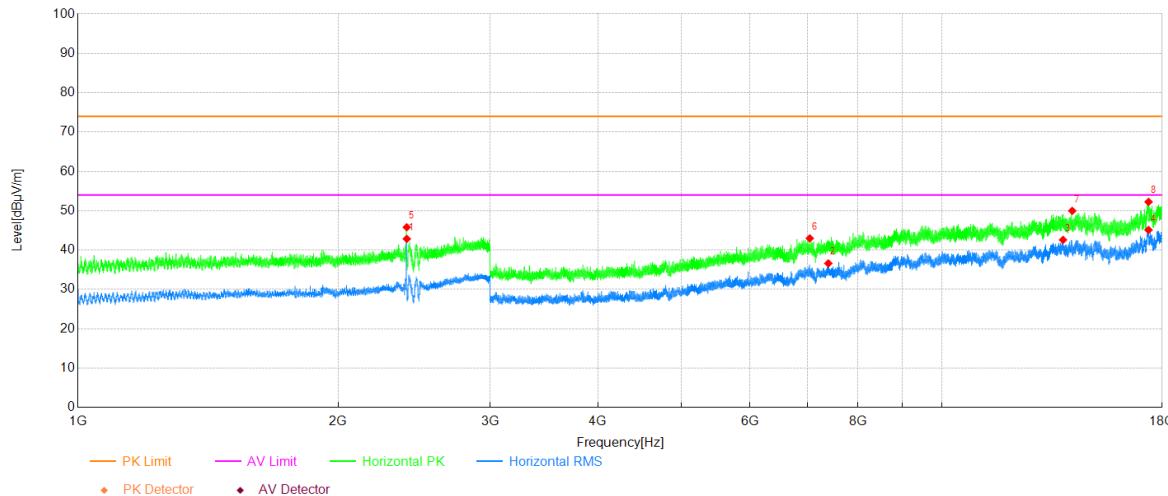



3DH5-Ant0-2480-1000~26500-PASS

**Duty Cycle
Test Result**

TestMode	Antenna	Frequency[MHz]	ON Time [ms]	Period [ms]	Duty Cycle [%]	Duty Cycle Factor[dB]
DH5	Ant0	2402	2.89	3.75	77.07	1.13
DH5	Ant0	2441	2.89	3.75	77.07	1.13
DH5	Ant0	2480	2.89	3.75	77.07	1.13
2DH5	Ant0	2402	2.89	3.75	77.07	1.13
2DH5	Ant0	2441	2.89	3.75	77.07	1.13
2DH5	Ant0	2480	2.88	3.75	76.80	1.15
3DH5	Ant0	2402	2.89	3.75	77.07	1.13
3DH5	Ant0	2441	2.89	3.75	77.07	1.13
3DH5	Ant0	2480	2.89	3.76	76.86	1.14

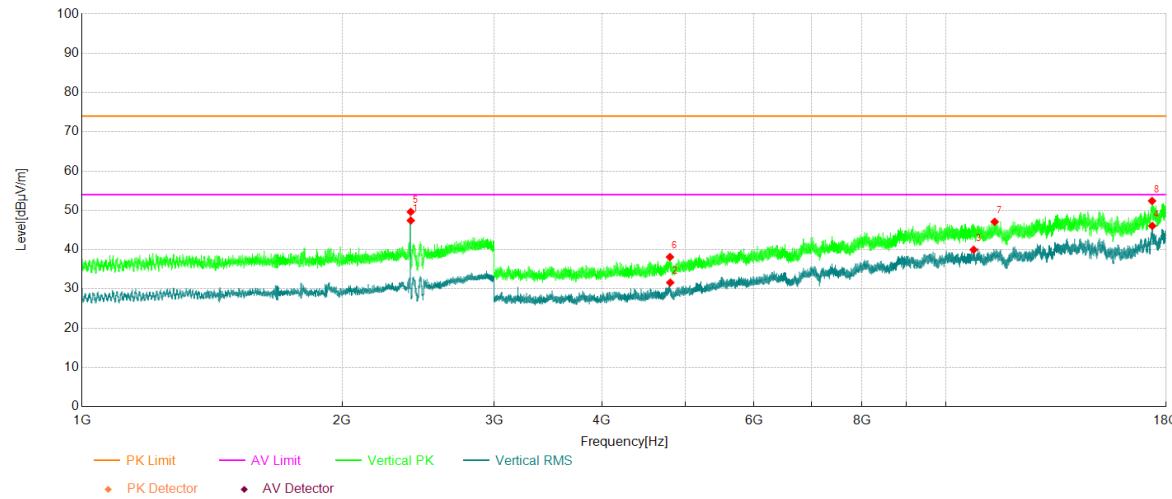
Test Graphs



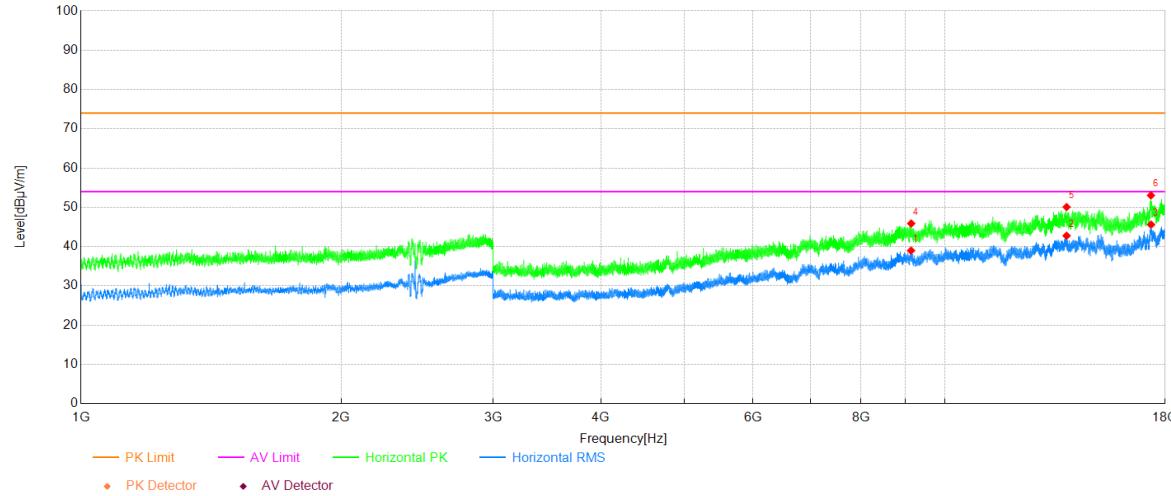
Radiated Spurious Emissions

Test Result

Project Information			
Mode:	BT(DH5)	Band:	-
Bandwidth	-	Channel	0
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

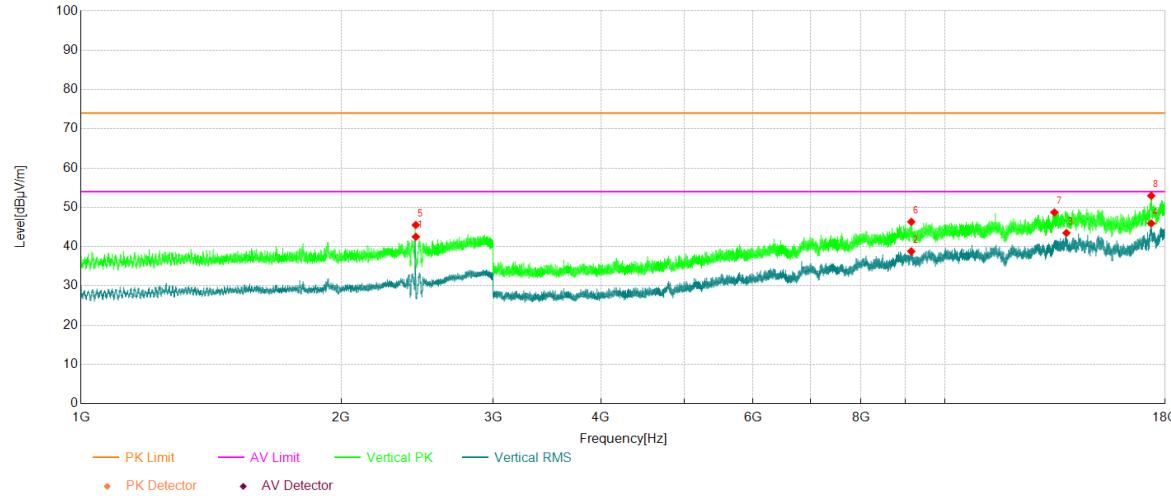

Test Graph

Data List


NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Polarity	Verdict
1	2402.20	40.64	2.22	42.86	-	-	Horizontal	NA
2	7393.00	37.71	-1.09	36.62	54.00	17.38	Horizontal	PASS
3	13822.50	34.31	8.29	42.60	54.00	11.40	Horizontal	PASS
4	17364.50	32.83	12.29	45.12	54.00	8.88	Horizontal	PASS
5	2402.00	43.59	2.22	45.81	-	-	Horizontal	NA
6	7035.50	45.02	-2.03	42.99	74.00	31.01	Horizontal	PASS
7	14166.50	42.18	7.80	49.98	74.00	24.02	Horizontal	PASS
8	17363.50	39.93	12.33	52.26	74.00	21.74	Horizontal	PASS

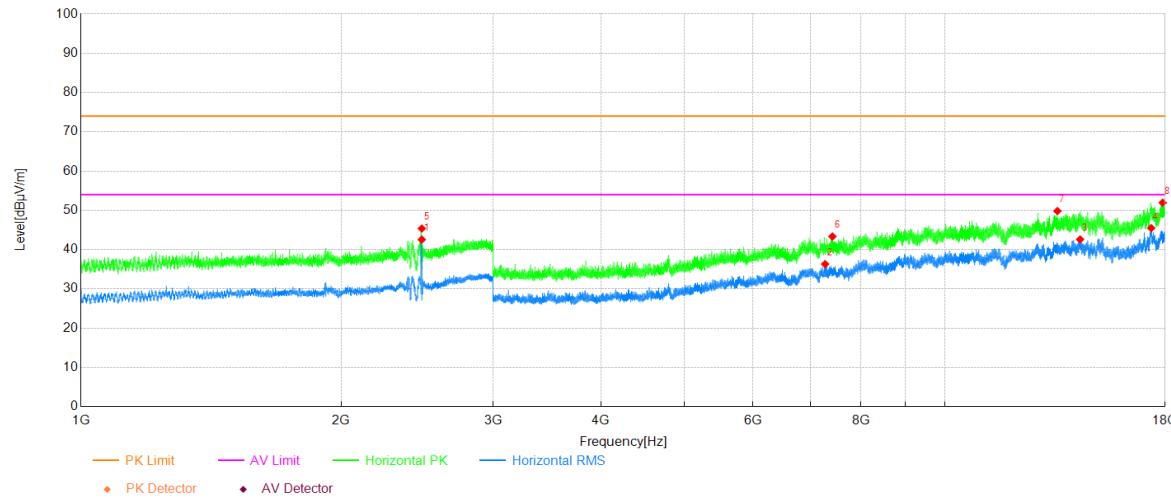
Project Information			
Mode:	BT(DH5)	Band:	-
Bandwidth	-	Channel	0
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

Test Graph**Data List**


NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Polarity	Verdict
1	2402.20	45.18	2.22	47.40	-	-	Vertical	NA
2	4797.50	39.15	-7.55	31.60	54.00	22.40	Vertical	PASS
3	10776.50	35.65	4.32	39.97	54.00	14.03	Vertical	PASS
4	17354.00	33.34	12.70	46.04	54.00	7.96	Vertical	PASS
5	2401.80	47.40	2.22	49.62	-	-	Vertical	NA
6	4794.50	45.68	-7.58	38.10	74.00	35.90	Vertical	PASS
7	11397.00	41.78	5.30	47.08	74.00	26.92	Vertical	PASS
8	17342.00	39.90	12.49	52.39	74.00	21.61	Vertical	PASS

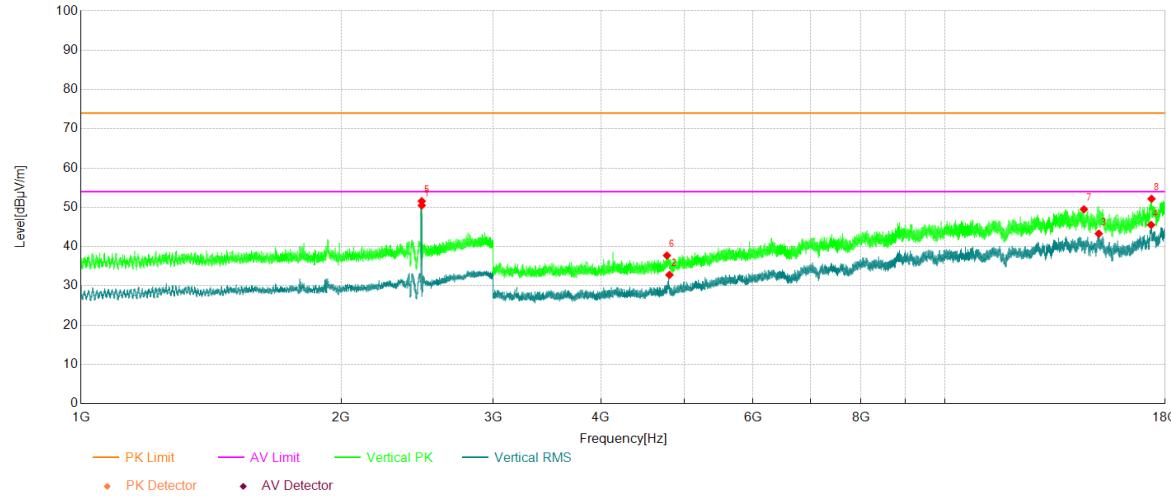
Project Information			
Mode:	BT(DH5)	Band:	-
Bandwidth	-	Channel	39
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

Test Graph**Data List**


NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Polarity	Verdict
1	9144.00	35.90	3.09	38.99	54.00	15.01	Horizontal	PASS
2	13846.00	34.09	8.67	42.76	54.00	11.24	Horizontal	PASS
3	17343.50	33.04	12.56	45.60	54.00	8.40	Horizontal	PASS
4	9148.00	42.68	3.20	45.88	74.00	28.12	Horizontal	PASS
5	13844.50	41.44	8.64	50.08	74.00	23.92	Horizontal	PASS
6	17335.00	40.86	12.18	53.04	74.00	20.96	Horizontal	PASS

Project Information			
Mode:	BT(DH5)	Band:	-
Bandwidth	-	Channel	39
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

Test Graph**Data List**


NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Polarity	Verdict
1	2441.20	40.21	2.29	42.50	-	-	Vertical	NA
2	9149.50	35.54	3.25	38.79	54.00	15.21	Vertical	PASS
3	13839.00	34.92	8.55	43.47	54.00	10.53	Vertical	PASS
4	17348.00	33.13	12.77	45.90	54.00	8.10	Vertical	PASS
5	2441.00	43.21	2.29	45.50	-	-	Vertical	NA
6	9150.50	43.05	3.26	46.31	74.00	27.69	Vertical	PASS
7	13402.00	41.61	7.10	48.71	74.00	25.29	Vertical	PASS
8	17351.00	40.12	12.82	52.94	74.00	21.06	Vertical	PASS

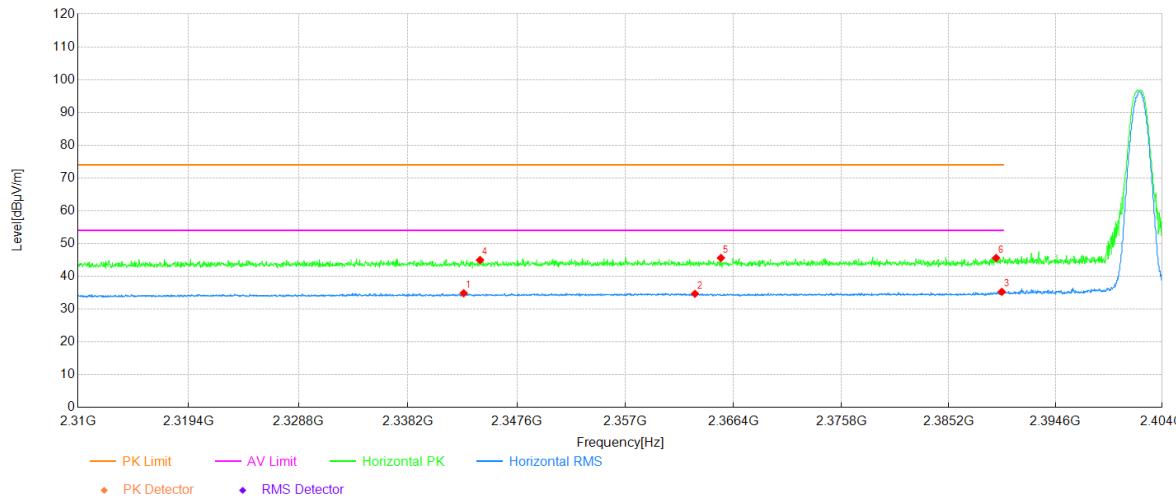
Project Information			
Mode:	BT(DH5)	Band:	-
Bandwidth	-	Channel	78
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

Test Graph**Data List**

NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Polarity	Verdict
1	2480.20	40.19	2.37	42.56	-	-	Horizontal	NA
2	7270.50	37.70	-1.40	36.30	54.00	17.70	Horizontal	PASS
3	14351.00	33.26	9.33	42.59	54.00	11.41	Horizontal	PASS
4	17348.50	32.69	12.79	45.48	54.00	8.52	Horizontal	PASS
5	2480.20	42.99	2.37	45.36	-	-	Horizontal	NA
6	7414.50	44.57	-1.24	43.33	74.00	30.67	Horizontal	PASS
7	13508.00	43.00	6.82	49.82	74.00	24.18	Horizontal	PASS
8	17890.00	39.63	12.33	51.96	74.00	22.04	Horizontal	PASS

Project Information			
Mode:	BT(DH5)	Band:	-
Bandwidth	-	Channel	78
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

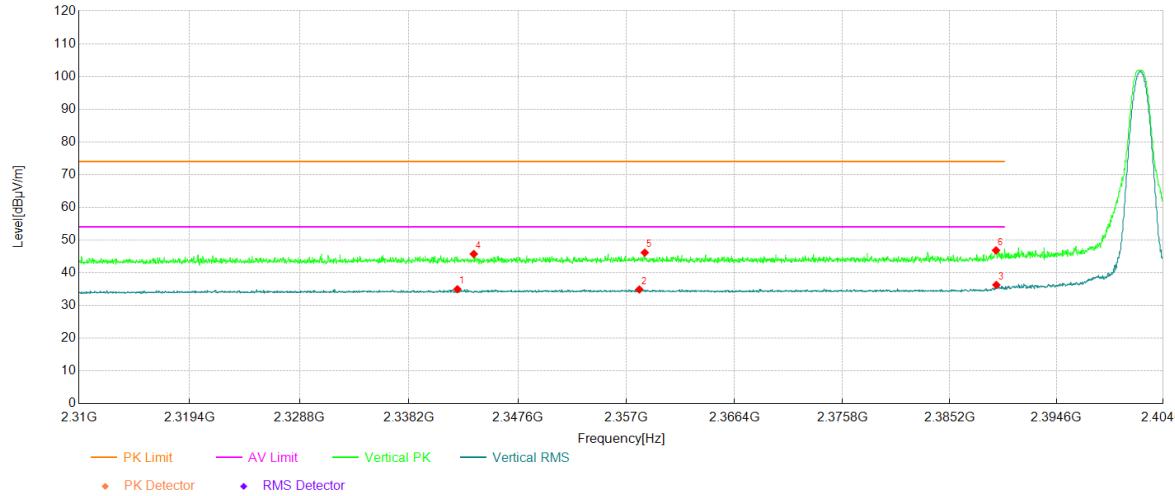
Test Graph**Data List**


NO.	Freq. [MHz]	Reading [dB μ V]	Factor [dB]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Polarity	Verdict
1	2480.20	48.12	2.37	50.49	-	-	Vertical	NA
2	4800.50	40.33	-7.54	32.79	54.00	21.21	Vertical	PASS
3	15084.00	34.28	9.01	43.29	54.00	10.71	Vertical	PASS
4	17345.50	32.85	12.66	45.51	54.00	8.49	Vertical	PASS
5	2480.00	49.21	2.37	51.58	-	-	Vertical	NA
6	4768.50	45.54	-7.81	37.73	74.00	36.27	Vertical	PASS
7	14499.00	41.22	8.28	49.50	74.00	24.50	Vertical	PASS
8	17364.00	39.86	12.31	52.17	74.00	21.83	Vertical	PASS

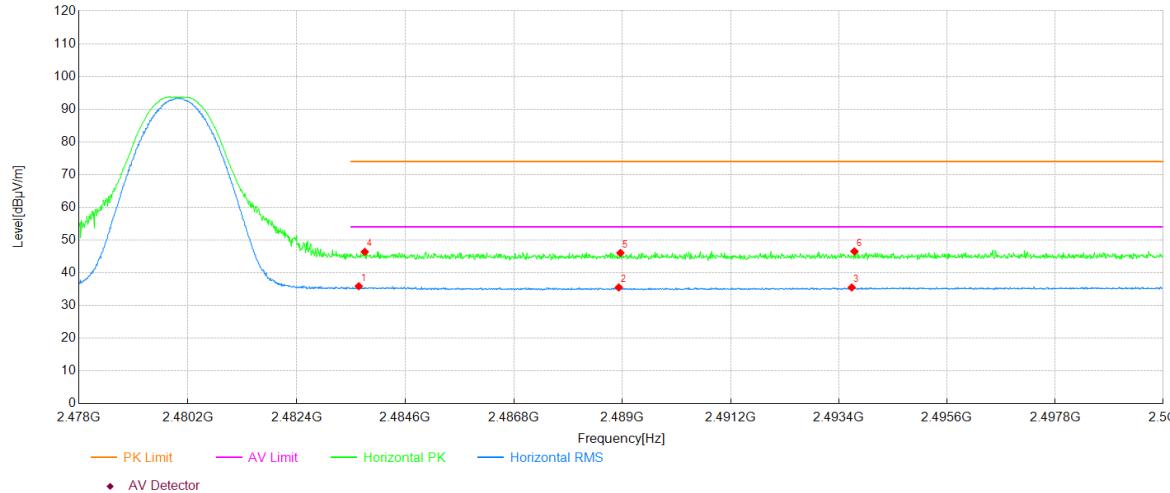
Radiated Band Edge

Test Result

Project Information			
Mode:	BT(DH5)	Band:	-
Bandwidth	-	Channel	0
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

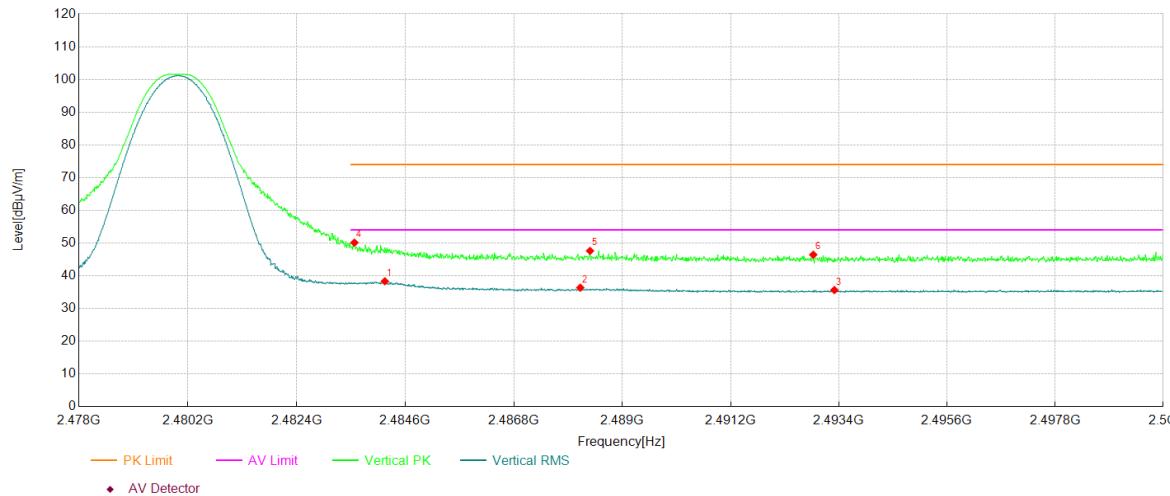

Test Graph

Data List


NO.	Freq. [MHz]	Reading [dB μ V]	Factor [dB]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Polarity	Verdict
1	2343.01	33.46	1.39	34.85	54.00	19.15	Horizontal	PASS
2	2363.03	33.23	1.45	34.68	54.00	19.32	Horizontal	PASS
3	2389.86	33.84	1.43	35.27	54.00	18.73	Horizontal	PASS
4	2344.42	43.57	1.40	44.97	74.00	29.03	Horizontal	PASS
5	2365.29	44.16	1.44	45.60	74.00	28.40	Horizontal	PASS
6	2389.36	44.16	1.43	45.59	74.00	28.41	Horizontal	PASS

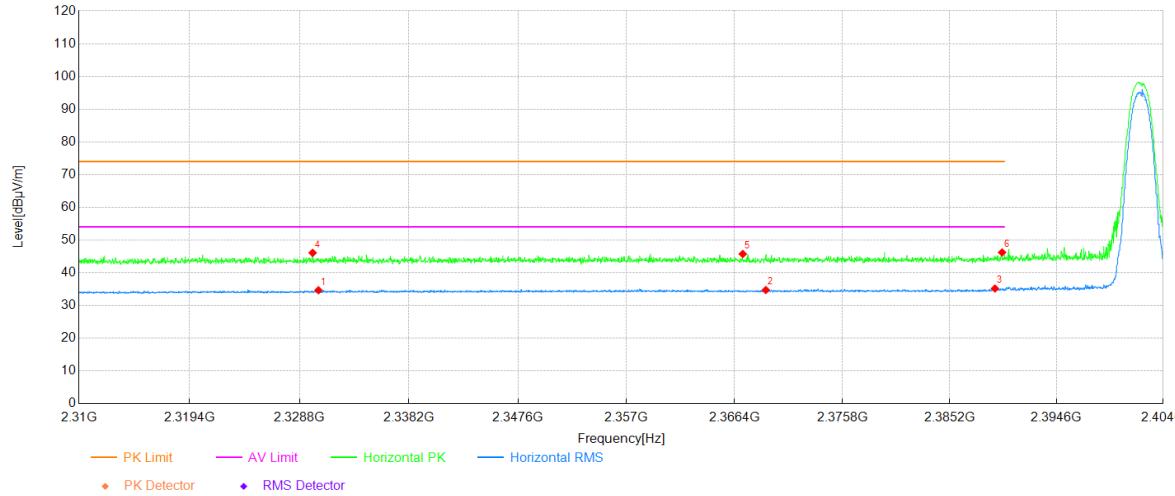
Project Information			
Mode:	BT(DH5)	Band:	-
Bandwidth	-	Channel	0
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

Test Graph**Data List**


NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Polarity	Verdict
1	2342.38	33.59	1.38	34.97	54.00	19.03	Vertical	PASS
2	2358.11	33.45	1.45	34.90	54.00	19.10	Vertical	PASS
3	2389.30	34.87	1.43	36.30	54.00	17.70	Vertical	PASS
4	2343.79	44.34	1.40	45.74	74.00	28.26	Vertical	PASS
5	2358.58	44.70	1.45	46.15	74.00	27.85	Vertical	PASS
6	2389.27	45.42	1.43	46.85	74.00	27.15	Vertical	PASS

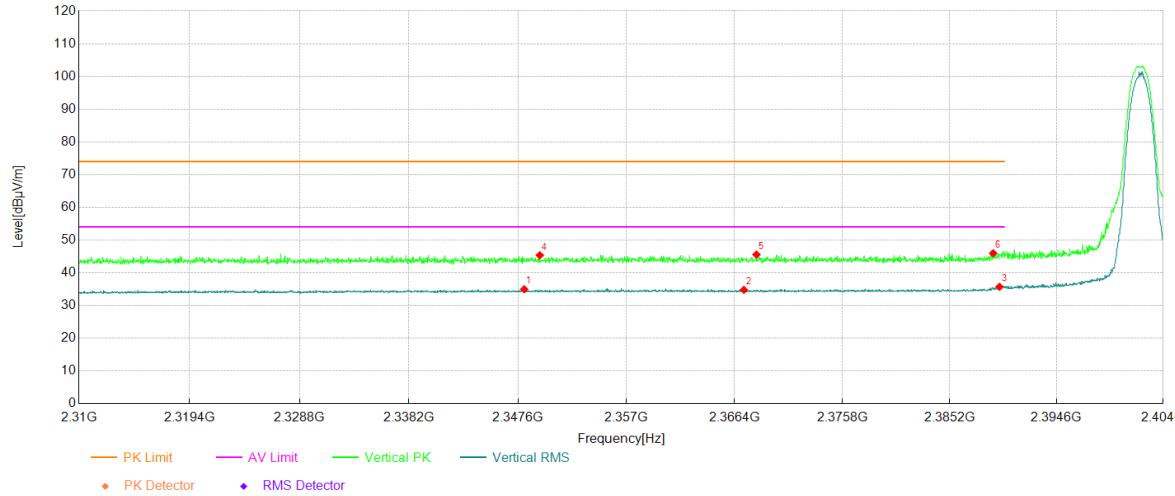
Project Information			
Mode:	BT(DH5)	Band:	-
Bandwidth	-	Channel	78
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

Test Graph


Data List								
NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Polarity	Verdict
1	2483.66	34.04	1.86	35.90	54.00	18.10	Horizontal	PASS
2	2488.93	33.60	1.92	35.52	54.00	18.48	Horizontal	PASS
3	2493.66	33.55	1.96	35.51	54.00	18.49	Horizontal	PASS
4	2483.78	44.51	1.87	46.38	74.00	27.62	Horizontal	PASS
5	2488.96	44.13	1.92	46.05	74.00	27.95	Horizontal	PASS
6	2493.72	44.58	1.96	46.54	74.00	27.46	Horizontal	PASS

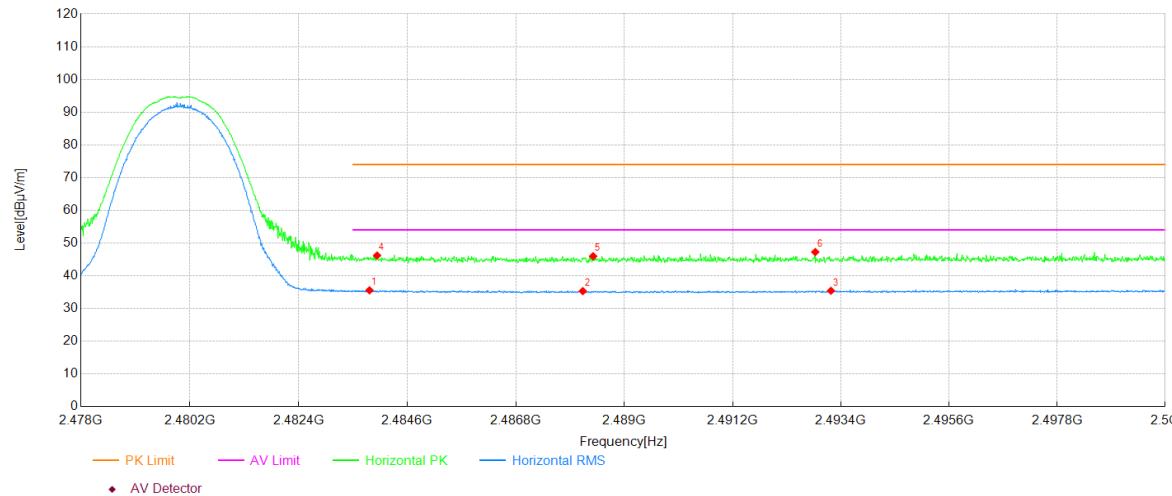
Project Information			
Mode:	BT(DH5)	Band:	-
Bandwidth	-	Channel	78
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

Test Graph**Data List**


NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Polarity	Verdict
1	2484.19	36.46	1.87	38.33	54.00	15.67	Vertical	PASS
2	2488.15	34.45	1.90	36.35	54.00	17.65	Vertical	PASS
3	2493.31	33.67	1.96	35.63	54.00	18.37	Vertical	PASS
4	2483.57	48.27	1.85	50.12	74.00	23.88	Vertical	PASS
5	2488.35	45.71	1.91	47.62	74.00	26.38	Vertical	PASS
6	2492.88	44.48	1.95	46.43	74.00	27.57	Vertical	PASS

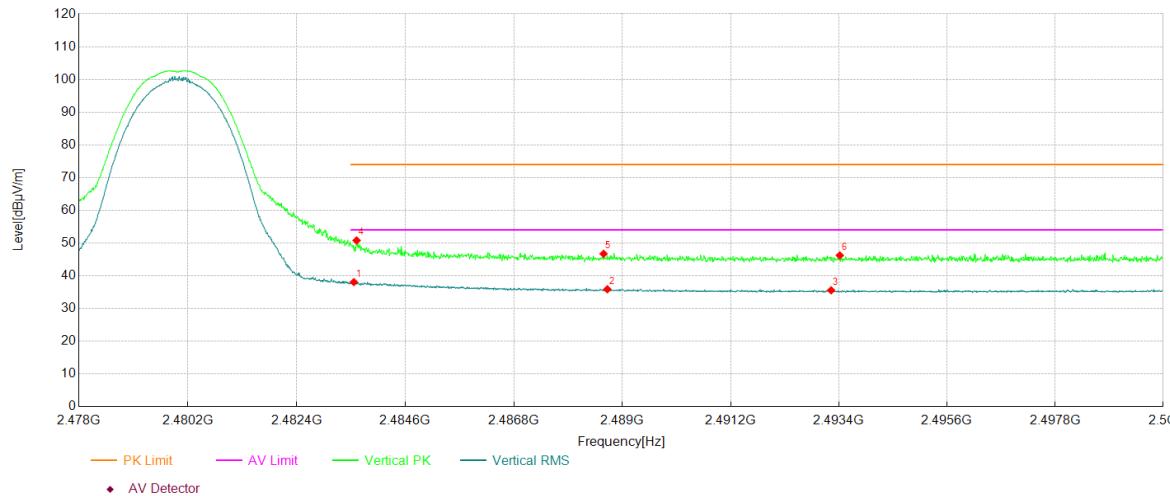
Project Information			
Mode:	BT(2DH5)	Band:	-
Bandwidth	-	Channel	0
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

Test Graph**Data List**


NO.	Freq. [MHz]	Reading [dB μ V]	Factor [dB]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Polarity	Verdict
1	2330.44	33.38	1.28	34.66	54.00	19.34	Horizontal	PASS
2	2369.11	33.29	1.44	34.73	54.00	19.27	Horizontal	PASS
3	2389.17	33.77	1.43	35.20	54.00	18.80	Horizontal	PASS
4	2329.93	44.81	1.28	46.09	74.00	27.91	Horizontal	PASS
5	2367.11	44.30	1.44	45.74	74.00	28.26	Horizontal	PASS
6	2389.80	44.79	1.43	46.22	74.00	27.78	Horizontal	PASS

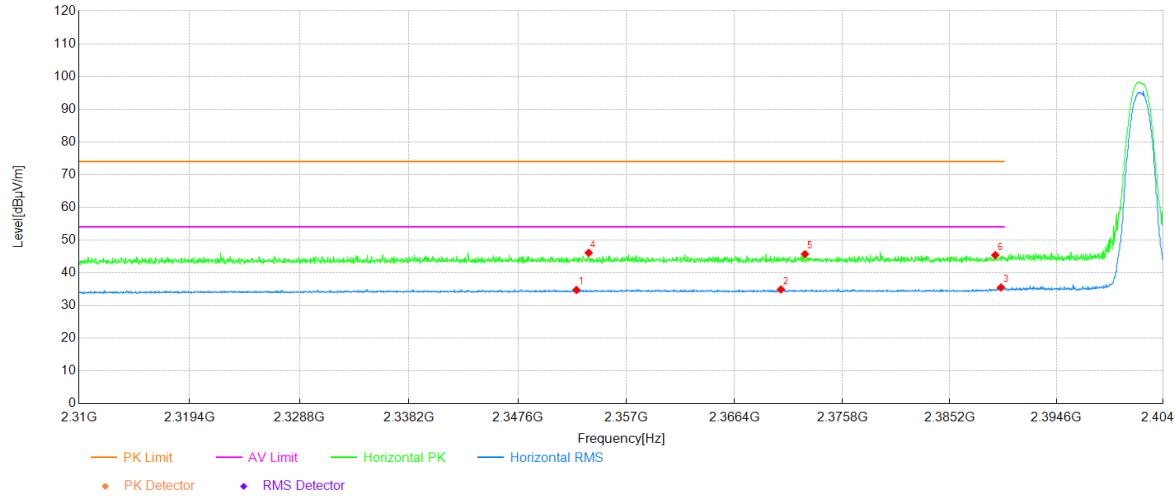
Project Information			
Mode:	BT(2DH5)	Band:	-
Bandwidth	-	Channel	0
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

Test Graph**Data List**


NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Polarity	Verdict
1	2348.15	33.53	1.43	34.96	54.00	19.04	Vertical	PASS
2	2367.20	33.33	1.44	34.77	54.00	19.23	Vertical	PASS
3	2389.58	34.28	1.43	35.71	54.00	18.29	Vertical	PASS
4	2349.49	43.91	1.45	45.36	74.00	28.64	Vertical	PASS
5	2368.30	44.12	1.44	45.56	74.00	28.44	Vertical	PASS
6	2389.02	44.53	1.43	45.96	74.00	28.04	Vertical	PASS

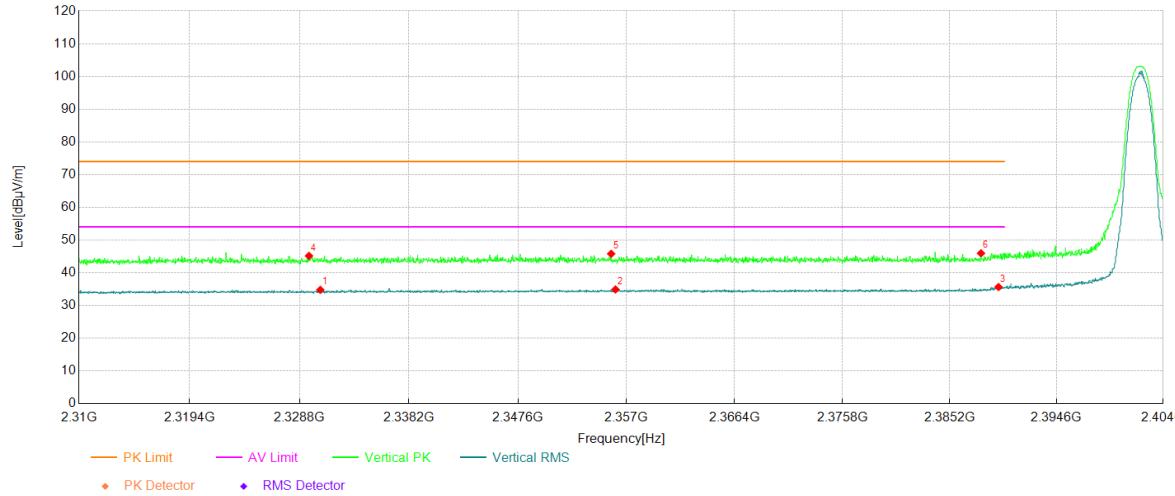
Project Information			
Mode:	BT(2DH5)	Band:	-
Bandwidth	-	Channel	78
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

Test Graph**Data List**


NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Polarity	Verdict
1	2483.83	33.69	1.87	35.56	54.00	18.44	Horizontal	PASS
2	2488.16	33.41	1.90	35.31	54.00	18.69	Horizontal	PASS
3	2493.20	33.46	1.96	35.42	54.00	18.58	Horizontal	PASS
4	2483.99	44.32	1.87	46.19	74.00	27.81	Horizontal	PASS
5	2488.37	44.06	1.91	45.97	74.00	28.03	Horizontal	PASS
6	2492.88	45.31	1.95	47.26	74.00	26.74	Horizontal	PASS

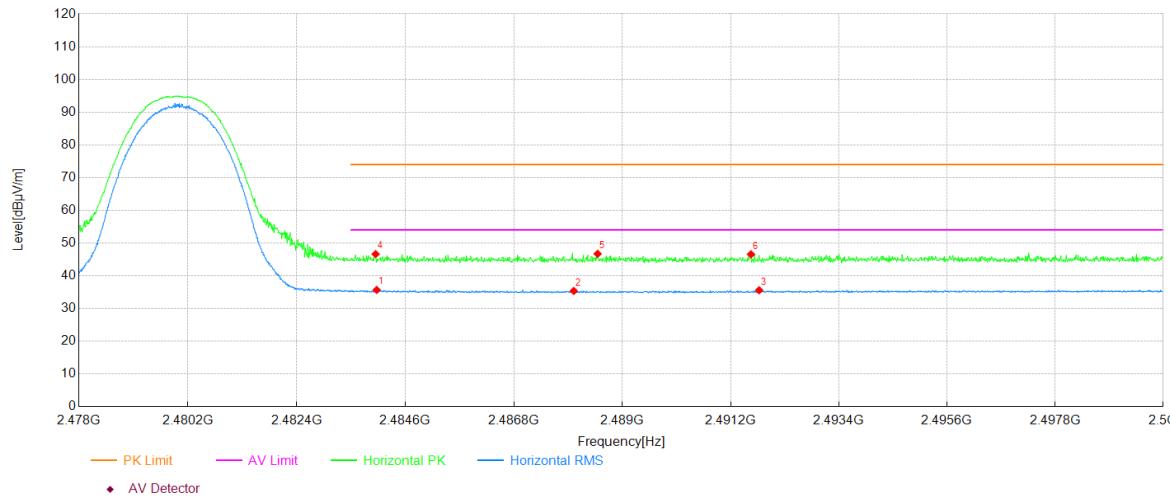
Project Information			
Mode:	BT(2DH5)	Band:	-
Bandwidth	-	Channel	78
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

Test Graph**Data List**


NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Polarity	Verdict
1	2483.56	36.22	1.85	38.07	54.00	15.93	Vertical	PASS
2	2488.70	33.97	1.91	35.88	54.00	18.12	Vertical	PASS
3	2493.24	33.60	1.96	35.56	54.00	18.44	Vertical	PASS
4	2483.61	48.93	1.86	50.79	74.00	23.21	Vertical	PASS
5	2488.62	44.80	1.91	46.71	74.00	27.29	Vertical	PASS
6	2493.42	44.26	1.96	46.22	74.00	27.78	Vertical	PASS

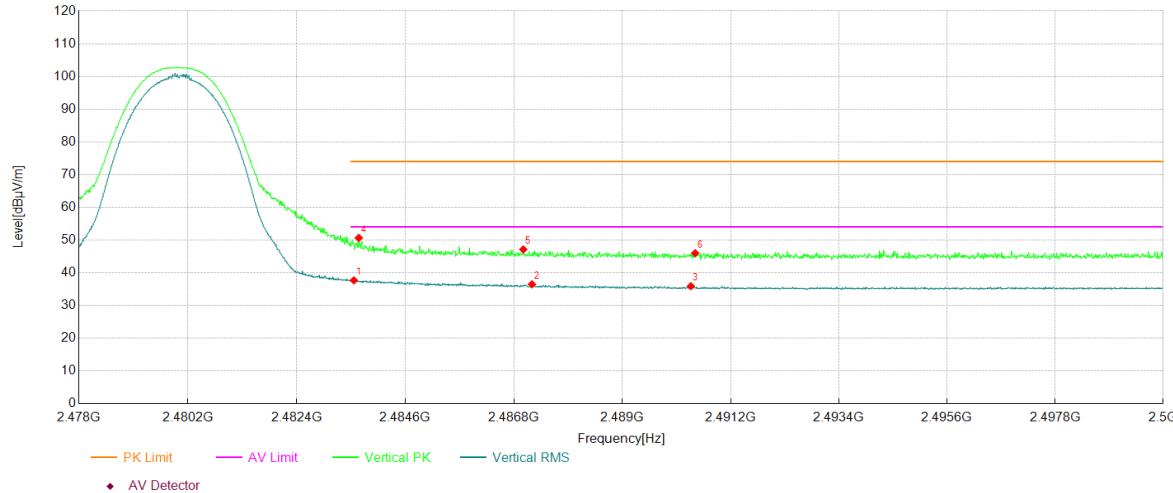
Project Information			
Mode:	BT(2DH5)	Band:	-
Bandwidth	-	Channel	0
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

Test Graph**Data List**


NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Polarity	Verdict
1	2352.66	33.30	1.45	34.75	54.00	19.25	Horizontal	PASS
2	2370.43	33.46	1.44	34.90	54.00	19.10	Horizontal	PASS
3	2389.71	34.09	1.43	35.52	54.00	18.48	Horizontal	PASS
4	2353.72	44.65	1.45	46.10	74.00	27.90	Horizontal	PASS
5	2372.53	44.25	1.44	45.69	74.00	28.31	Horizontal	PASS
6	2389.21	43.97	1.43	45.40	74.00	28.60	Horizontal	PASS

Project Information			
Mode:	BT(3DH5)	Band:	-
Bandwidth	-	Channel	0
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

Test Graph**Data List**


NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Polarity	Verdict
1	2330.59	33.51	1.28	34.79	54.00	19.21	Vertical	PASS
2	2356.04	33.46	1.44	34.90	54.00	19.10	Vertical	PASS
3	2389.49	34.22	1.43	35.65	54.00	18.35	Vertical	PASS
4	2329.62	43.89	1.27	45.16	74.00	28.84	Vertical	PASS
5	2355.67	44.35	1.45	45.80	74.00	28.20	Vertical	PASS
6	2387.95	44.53	1.43	45.96	74.00	28.04	Vertical	PASS

Project Information			
Mode:	BT(3DH5)	Band:	-
Bandwidth	-	Channel	78
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

Test Graph**Data List**

NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Polarity	Verdict
1	2484.02	33.81	1.87	35.68	54.00	18.32	Horizontal	PASS
2	2488.02	33.47	1.90	35.37	54.00	18.63	Horizontal	PASS
3	2491.78	33.62	1.95	35.57	54.00	18.43	Horizontal	PASS
4	2484.00	44.76	1.87	46.63	74.00	27.37	Horizontal	PASS
5	2488.50	44.80	1.91	46.71	74.00	27.29	Horizontal	PASS
6	2491.61	44.61	1.95	46.56	74.00	27.44	Horizontal	PASS

Project Information			
Mode:	BT(3DH5)	Band:	-
Bandwidth	-	Channel	78
SN:	D1C25AM1T000064	Engineer:	Ou Shuyan
Remark:			

Test Graph

Data List								
NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBμV/m]	Limit [dBμV/m]	Margin [dB]	Polarity	Verdict
1	2483.56	35.83	1.85	37.68	54.00	16.32	Vertical	PASS
2	2487.17	34.58	1.90	36.48	54.00	17.52	Vertical	PASS
3	2490.39	33.98	1.93	35.91	54.00	18.09	Vertical	PASS
4	2483.66	48.78	1.86	50.64	74.00	23.36	Vertical	PASS
5	2486.99	45.24	1.90	47.14	74.00	26.86	Vertical	PASS
6	2490.48	44.06	1.93	45.99	74.00	28.01	Vertical	PASS

~The End~