

RF Test Report

Applicant: NETPRISMA INC.

Address: 1301 6TH AVE, SEATTLE, WA, 98101-2304, UNITED STATES

Product: 5G Sub-6 GHz Smart Module with Wi-Fi 6E & Bluetooth

Model No.: SUD500-LD

Brand Name: Vrileg

FCC ID: 2BEY3SUD500LDA

Standards: FCC CFR47 Part 15E

Report No.: PD20250035-R3H

Issue Date: 2025/07/17

Test Result: PASS *

* Testing performed at Hefei Panwin Technology Co., Ltd. on the above equipment indicates the product meets the requirements of the relevant standards.

Reviewed By: Jerry Zhang

Approved By: Alec Yang

Hefei Panwin Technology Co., Ltd.

Floor 1, Zone E, Plant 2#, Mingzhu Industrial Park, No.106 Chuangxin Avenue, High-tech Zone, Hefei City, Anhui Province, China
TEL: +86-0551-63811775

Revision History

Report No.	Version	Description	Issue Date	Note
PD20250035-R3H	1	Initial Report	2025/07/17	Valid

CONTENTS

1 General Information	5
1.1 Notes of the Test Report	5
1.2 Test Facility	5
1.3 Testing Laboratory	5
2 General Description of Equipment under Test.....	6
2.1 Details of Application	6
2.2 General Information	6
2.3 Application Standards	7
3 Test Condition	8
3.1 Test Configuration	8
3.2 Wireless Technology and Frequency Range	11
3.3 Equipment List	13
3.4 Support Equipment List	14
3.5 Test Uncertainty	14
4 Test Items Description	15
4.1 Emission Bandwidth and 99% Occupied Bandwidth Measurement	15
4.2 Maximum e.i.r.p. Qoutput Power Measurement	17
4.3 Maximum Power Spectral Density Measurement	19
4.4 In-Band Emissions Measurement	21
4.5 Contention Based Protocol	23
4.6 Unwanted Emissions Measurement	25
4.7 AC Conducted Emission Measurement	29
4.8 Antenna Requirements	31
ANNEX A: Test Results of Conducted Test	32
ANNEX B: Test Results of Radiated Test	266
ANNEX C: The EUT Appearance	287
ANNEX D: Test Setup Photograph	288

Summary of Test Results

No.	Test Case	FCC Rules	Verdict
1	Emission Bandwidth	15.407(a)10	PASS
2	99% Occupied Bandwidth	2.1049	For Report Purpose
3	Maximum e.i.r.p Output Power	15.407(a)6	PASS
4	Power Spectral Density	15.407(a)6	PASS
5	In-Band Emissions	15.407(b)7	PASS
6	Contention Based Protocol	15.407(d)6	PASS
7	Unwanted Emissions	15.407(b)5 15.205, 15.209	PASS
8	AC Power Line Conducted Emission	15.207	NA
9	Antenna Requirements	15.203/15.407(a)	PASS
10	Frequency Stability ^{Note1}	15.407(g)	NA

Date of Testing: 2025/03/14 to 2025/07/17

Date of Sample Received: 2025/03/10

- We, Hefei Panwin Technology Co., Ltd., would like to declare that the tested sample has been evaluated in accordance with the procedures given in applied standard(s) in **Section 2.3** of this report and shown compliance with the applicable technical standards.

- All indications of PASS/FAIL in this report are based on interpretations and/or observations of test results.

Measurement Uncertainties were not taken into account and are published for informational purposes only.

Note1: Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

1 General Information

1.1 Notes of the Test Report

This report is invalid without signature of auditor and approver or with any alterations. The report shall not be partially reproduced without written approval of the testing company. Entrusted test results are only responsible for incoming samples. If there is any objection to the testing report, it shall be raised to the testing company within 15 days from the date of receiving the report. In the test results, "NA" means "not applicable", and the test items marked with "Δ" are subcontracted projects.

1.2 Test Facility

A2LA (Certificate Number: 6849.01)

Hefei Panwin Technology Co., Ltd. has been accredited by American Association for Laboratory Accreditation to perform measurement.

FCC (Designation Number: CN1361, Test Firm Registration Number: 473156)

Hefei Panwin Technology Co., Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform measurements.

1.3 Testing Laboratory

Company Name	Hefei Panwin Technology Co., Ltd.
Address	Floor 1, Zone E, Plant 2#, Mingzhu Industrial Park, No.106 Chuangxin Avenue, High-tech Zone, Hefei City, Anhui Province, China
Telephone	+86-0551-63811775
Post Code	230031

2 General Description of Equipment under Test

2.1 Details of Application

Applicant	NETPRISMA INC.
Applicant Address	1301 6TH AVE, SEATTLE, WA, 98101-2304, UNITED STATES
Manufacturer	NETPRISMA INC.
Manufacturer Address	1301 6TH AVE, SEATTLE, WA, 98101-2304, UNITED STATES

2.2 General Information

Product	5G Sub-6 GHz Smart Module with Wi-Fi 6E & Bluetooth	
Model	SUD500-LD	
SN	Conducted: P1Y24GH23000046 Radiated: P1Y24AV340000022 & P1Y24AV340000102	
Hardware Version	R1.0	
Software Version	SUD500LDPA0301	
Antenna Type	External Antenna	
Max. Conducted Power	Wi-Fi 6E: 19.77dBm	
Classification	<input type="checkbox"/> Low power indoor Client(6xD) <input checked="" type="checkbox"/> Low power indoor Access points(6ID) <input type="checkbox"/> Subordinate device(6PP) <input type="checkbox"/> Low power Dual Client(6CD)	
Smart System	<input checked="" type="checkbox"/> SISO	802.11a/ax
	<input checked="" type="checkbox"/> MIMO	802.11ax
	<input checked="" type="checkbox"/> CDD	802.11a
Antenna Gain	5925 MHz to 6425 MHz: 1.60dBi (Ant1); 1.60dBi (Ant2) 6425 MHz to 6525 MHz: 1.60dBi (Ant1); 1.60dBi (Ant2) 6525 MHz to 6875 MHz: 1.60dBi (Ant1); 1.60dBi (Ant2), 6875 MHz to 7125 MHz: 1.60dBi (Ant1); 1.60dBi (Ant2);	
Operating voltage	Typical 4.0Vdc	
Modulation Type	802.11a/ax: BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM	
Note: The declared of product specification for EUT and/or Antenna presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.		

2.3 Application Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart E
- FCC KDB 789033 D02 General UN II Test Procedures New Rules v02r01
- ANSI C63.10-2013
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01
- FCC KDB 987594 D01 U-NII 6GHz General Requirements v01r02
- FCC KDB 987594 D02 U-NII 6GHz EMC Measurement v01r01.

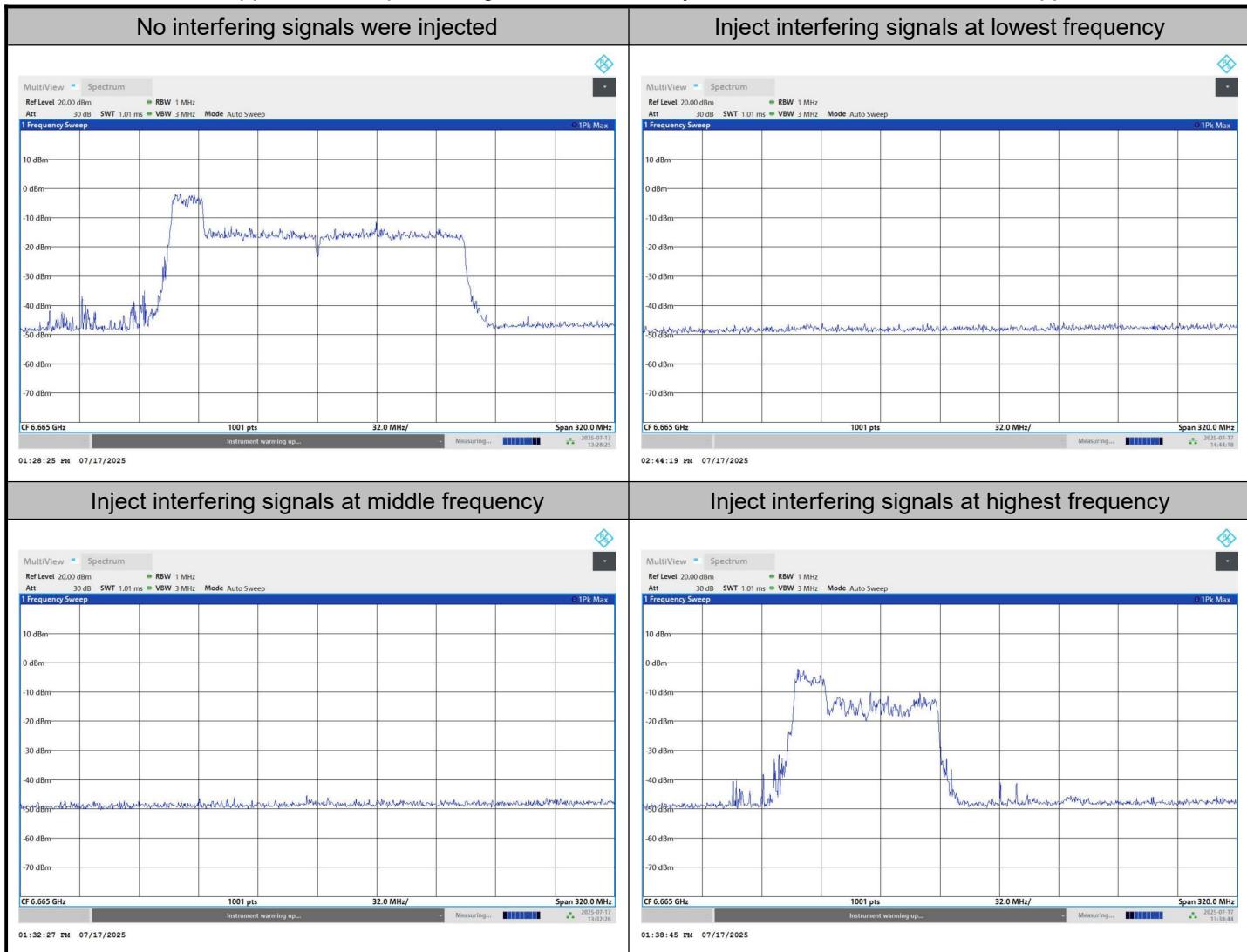
Remark:

1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 Test Condition

3.1 Test Configuration

Test mode


Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). The worst cases were recorded in this report.

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes (Z, X, Y axis), receiver antenna polarization (horizontal and vertical), the worst emission was found in Z position and the worst case was recorded. This report presents the data for the worst polarity.

Test Mode	Data Rate(Mbps)
802.11a_CDD	6
802.11ax 20M_MIMO	MCS0
802.11ax 40M_MIMO	MCS0
802.11ax 80M_MIMO	MCS0
802.11ax 160M_MIMO	MCS0

Verify Contention Based Protocol Transmission Bandwidth Reduction

802.11ax does not support channel puncturing in CBP mode, only channel bandwidth reduction is applied.

Directional gain calculations

According to KDB 662911 D01Multiple Transmitter Output v02r01 2)f(i):

If all antennas have the same gain, Directional gain = G_{ANT} + Array Gain,

- For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(N_{ANT}/NSS=1)$ dB.

- For power measurements on IEEE 802.11 devices.

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \leq 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT} ;

Array Gain = $5 \log(N_{ANT}/NSS)$ dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \geq 5$.

The Power and PSD limit should be modified if the directional gain of EUT is over 6dBi.

Operation Band (MHz)	Antenna1 Gain(dBi)	Antenna2 Gain(dBi)	Directional Gain For Power (dBi)	Directional Gain For PSD (dBi)	Power Limit Reduction (dBm)	PSD Limit Reduction (dBm)
5925 to 7125	1.60	1.60	1.60	4.61	0	0

3.2 Wireless Technology and Frequency Range

Wireless Technology	Bandwidth		Channel	Frequency
Wi-Fi	U-NII-5	20MHz	1	5955 MHz
			45	6175 MHz
			93	6415 MHz
		40MHz	3	5965 MHz
			43	6165 MHz
			91	6405 MHz
		80MHz	7	5985 MHz
			39	6145 MHz
			87	6385 MHz
		160MHz	15	6025 MHz
			47	6185 MHz
			79	6345 MHz
	U-NII-6	20MHz	97	6435 MHz
			105	6475 MHz
			113	6515 MHz
		40MHz	99	6445 MHz
			107	6485 MHz
			115	6525 MHz
		80MHz	103	6465 MHz
		160MHz	111	6505 MHz
	U-NII-7	20MHz	117	6535 MHz
			149	6695 MHz
			181	6855 MHz
			185	6875 MHz
		40MHz	123	6565 MHz
			147	6685 MHz
			179	6845 MHz
		80MHz	119	6545 MHz
			135	6625 MHz
			151	6705 MHz
			167	6785 MHz
			183	6865 MHz
		160MHz	143	6665 MHz
			175	6825 MHz
	U-NII-8	20MHz	189	6895 MHz
			209	6995 MHz

Test Report

Report No.: PD20250035-R3H
Report Version: 01

		233	7115 MHz
40MHz	187	6885 MHz	
	195	6925 MHz	
	203	6965 MHz	
	227	7085 MHz	
	199	6945 MHz	
80MHz	215	7025 MHz	
	160MHz	207	6985 MHz

3.3 Equipment List

Conducted

Instrument	Manufacturer	Model	Asset No.	Cal. Interval	Cal. Due Date
Spectrum Analyzer	R&S	FSV3044	PWC0009	1 Year	2025/09/11
Vector Signal Generator	R&S	SMM100A	PWC0040	1 Year	2025/07/09
Power Meter Unit	Tonscend	JS0806-2-8CH	PWC0013	1 Year	2025/09/12
DC Power	Keysight	E3640A	PWC0027	1 Year	2025/09/12
Shielded Chamber	MIX-BEP	SR 433	PWC0001	3 Years	2027/07/09
Test Software	Tonseced	JS1120-3 V3.2.22	/	/	/

Radiated

Instrument	Manufacturer	Model	Asset No.	Cal. Interval	Cal. Due Date
EMI Test Receiver	R&S	ESR7	PWB0023	1 Year	2025/09/11
Spectrum Analyzer	R&S	FSV3044	PWB0024	1 Year	2025/09/11
Loop Antenna	R&S	HFH2-Z2E	PWB0026	1 Year	2025/09/13
TRILOG Broadband	Schwarzbeck	VULB9162	PWB0029	1 Year	2025/09/09
Double-Ridged Guide Antenna	ETS-Lindgren	3117	PWB0031	1 Year	2025/09/26
k Type Horn Antenna	Stearite Antennas	QMS-00880	PWB0035	1 Year	2025/09/08
Pre-Amplifier	R&S	SCU40F1	PWB0036	1 Year	2025/09/11
Pre-Amplifier	COM-MW	DLNA8	PWB0094	1 Year	2025/09/11
Pre-Amplifier	R&S	SCU18F	PWB0034	1 Year	2025/09/11
Pre-Amplifier	R&S	OSP220 (OSP-B155G)	PWB0042	1 Year	2025/09/11
Anechoic Chamber	ETS.LINDGREN	Fact 3-2m	PWB0003	3 Years	2026/06/05
Test Software	Tonscend	JS32 V5.0.0	/	/	/

3.4 Support Equipment List

Equipment	Manufacturer	Description	Model	Serial Number
EVB	NETPRISMA	/	Q1-C0129	D1Y24E94G000263 D1Y24E94G000241
RF cable	/	2.4G:0.5dB; 5G:1dB	/	/
Adapter	Dong Guan City GangQi Electronic Co.,Ltd	AC to DC power supply to EVB	GQ36-120300-AX	/
Smart Module	/	/	SG560D-WF	/
Antenna	NETPRISMA	Wi-Fi &BT Antenna	NPEBT038WFA	/

3.5 Test Uncertainty

No.	Parameter	Uncertainty
1	Emission Bandwidth	1.9%
2	Occupied channel bandwidth	1.9%
3	Maximum Conduct Output Power	1.18 dB
4	Power Spectral Density	0.98 dB
5	Duty Cycle	0.11%
6	Unwanted Emissions Measurement	9kHz-7GHz: 1.21dB 7GHz-40GHz: 3.31dB
7	Radiated Band Edges and Spurious Emission	Below 1GHz: 4.88 dB Above 1GHz: 5.06 dB
8	Temperature	3 °C
9	Humidity	1.3 %
10	Supply voltages	0.006 V

4 Test Items Description

Ambient condition

Shielded Chamber

Temperature [°C]	20.0 to 25.9
Humidity [%RH]	30 to 66
Pressure [kPa]	99.5 to 103.2

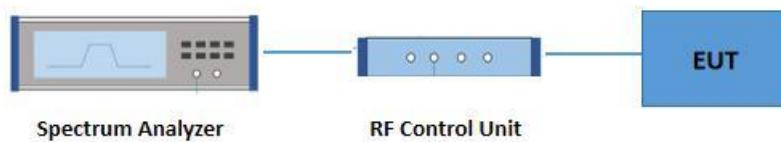
Anechoic Chamber

Temperature [°C]	20.3 to 25.6
Humidity [%RH]	38 to 55
Pressure [kPa]	99.6 to 101.5

4.1 Emission Bandwidth and 99% Occupied Bandwidth Measurement

4.1.1 Limit of 26dB and 99% Occupied Bandwidth

For 26dB Occupied bandwidth, The maximum transmitter channel bandwidth for U-NII devices in the 5.925-7.125GHz band is 320 megahertz.


99% Occupied bandwidth are reporting only.

4.1.2 Measuring Instruments

The measuring equipment is listed in the section 3.3 of this test report.

4.1.3 Test Procedures

1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01Section C) Emission bandwidth.
2. For 26dB BW, Set RBW = approximately 1% of the emission bandwidth.
For 99% OBW, Set RBW = 1% to 5% of the OBW.
3. For 26dB BW. Set the VBW > RBW.
For 99% OBW. Set the VBW $\geq 3 \times$ RBW
4. Detector = Peak.
5. Trace mode = max hold
6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer, Readjust RBW and repeat measurements needed until the RBW/EBW ratio is approximately 1%.
7. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1% to 5% of the OBW and set the Video bandwidth (VBW) $\geq 3^* RBW$.
8. Measure and record the results in the test report.

4.1.4 Test Setup**4.1.5 Test Results**

See ANNEX A.1.

4.2 Maximum e.i.r.p. Output Power Measurement

4.2.1 Limit of Maximum e.i.r.p. Output Power

<FCC 14 -30 CFR 15.407>

(4) For a standard power access point and fixed client device operating in the 5.925-6.425 GHz and 6.525-6.875 GHz bands, the maximum power spectral density must not exceed 23 dBm e.i.r.p in any 1-megahertz band. In addition, the maximum e.i.r.p. over the frequency band of operation must not exceed 36 dBm. For outdoor devices, the maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(5) For an indoor access point operating in the 5.925-7.125 GHz band, the maximum power spectral density must not exceed 5 dBm e.i.r.p. in any 1-megahertz band. In addition, the maximum e.i.r.p. over the frequency band of operation must not exceed 30 dBm.

(6) For a subordinate device operating under the control of an indoor access point in the 5.925-7.125 GHz band, the maximum power spectral density must not exceed 5 dBm e.i.r.p in any 1-megahertz band, and the maximum e.i.r.p. over the frequency band of operation must not exceed 30 dBm.

(7) For client devices, except for fixed client devices as defined in this subpart, operating under the control of a standard power access point in 5.925-6.425 GHz and 6.525-6.875 GHz bands, the maximum power spectral density must not exceed 17 dBm e.i.r.p. in any 1-megahertz band, and the maximum e.i.r.p. over the frequency band of operation must not exceed 30 dBm and the device must limit its power to no more than 6 dB below its associated standard power access point's authorized transmit power.

(8) For client devices operating under the control of an indoor access point in the 5.925-7.125 GHz bands, the maximum power spectral density must not exceed -1 dBm e.i.r.p. in any 1-megahertz band, and the maximum e.i.r.p. over the frequency band of operation must not exceed 24 dBm.

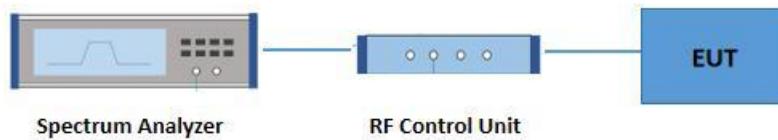
(9) For very low power devices operating in the 5.925-7.125 GHz band, the maximum power spectral density must not exceed -5 dBm e.i.r.p in any 1-megahertz band and the maximum e.i.r.p must not exceed 14 dBm.

4.2.2 Measuring Instruments

The measuring equipment is listed in the section 3.3 of this test report.

4.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.


Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

1. Measure the duty cycle, x, of the transmitter output signal as described in II.B.
2. Set span to encompass the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.
3. Set RBW = 1 MHz.
4. Set VBW \geq 3 MHz.

5. Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$. (This ensures that bin-to-bin spacing is $\leq \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
6. Sweep time = auto.
7. Detector = power averaging (rms), if available. Otherwise, use sample detector mode.
8. Do not use sweep triggering. Allow the sweep to "free run."
9. Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed to ensure that the average accurately represents the true average over the on and off periods of the transmitter.
10. Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.
11. Add $10 \log (1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission). For example, add $10 \log (1/0.25) = 6 \text{ dB}$ if the duty cycle is 25%.

For Straddle Channel, According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, If the power and PSD of the devices are uniform and comply with the lower limits specified for the U-NI-2 bands, a single measurement over the entire emission bandwidth can be performed to show compliance.

4.2.4 Test Setup

4.2.5 Test Result of Maximum e.i.r.p. Qutput Power

Please refer to ANNEX A.2.

4.3 Maximum Power Spectral Density Measurement

4.3.1 Limit of Maximum Power Spectral Density

For a standard power access point and fixed client device operating in the 5.925-6.425 GHz and 6.525-6.875 GHz bands, the maximum power spectral density must not exceed 23 dBm e.i.r.p in any 1-megahertz band.

For an indoor access point operating in the 5.925-7.125 GHz band, the maximum power spectral density must not exceed 5 dBm e.i.r.p. in any 1-megahertz band.

For a subordinate device operating under the control of an indoor access point in the 5.925-7.125 GHz band, the maximum power spectral density must not exceed 5 dBm e.i.r.p in any 1-megahertz band.

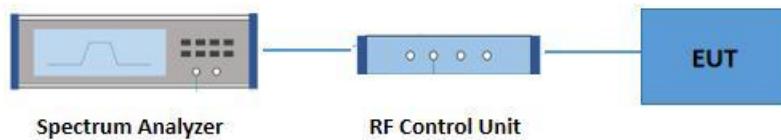
For client devices, except for fixed client devices as defined in this subpart, operating under the control of a standard power access point in 5.925-6.425 GHz and 6.525-6.875 GHz bands, the maximum power spectral density must not exceed 17 dBm e.i.r.p. in any 1-megahertz band.

For client devices operating under the control of an indoor access point in the 5.925-7.125 GHz bands, the maximum power spectral density must not exceed -1 dBm e.i.r.p. in any 1-megahertz band.

For very low power devices operating in the 5.925-6.425 GHz and 6.525-6.875 GHz bands, the maximum power spectral density must not exceed -5 dBm e.i.r.p in any 1-megahertz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.3.2 Measuring Instruments


The measuring equipment is listed in the section 3.3 of this test report.

4.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01Section F) Maximum power spectral density.

1. Measure the duty cycle.
2. Set span to encompass the entire emission bandwidth (EBW) of the signal.
3. Set RBW $\geq 1/T$, where T is defined in II.B.I.a).
4. Set VBW ≥ 3 RBW.
5. If measurement bandwidth of Maximum PSD is specified in 500 kHz, add $10 \log (500 \text{ kHz}/\text{RBW})$ to the measured result, whereas RBW (<500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
6. If measurement bandwidth of Maximum PSD is specified in 1 MHz, add $10 \log (1\text{MHz}/\text{RBW})$ to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
7. Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

4.3.4 Test Setup

4.3.5 Test Result of Maximum Power Spectral Density

Please refer to ANNEX A.3.

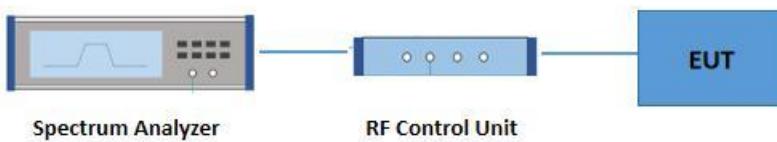
4.4 In-Band Emissions Measurement

4.4.1 Limit of In-Band Emissions

For transmitters operating within the 5.925-7.125 GHz bands: Power spectral density must be suppressed by 20 dB at 1 MHz outside of channel edge, by 28 dB at one channel bandwidth from the channel center, and by 40 dB at one- and one-half times the channel bandwidth away from channel center. At frequencies between one megahertz outside an unlicensed device's channel edge and one channel bandwidth from the center of the channel, the limits must be linearly interpolated between 20 dB and 28 dB suppression, and at frequencies between one and one- and one-half times an unlicensed device's channel bandwidth, the limits must be linearly interpolated between 28 dB and 40 dB suppression. Emissions removed from the channel center by more than one- and one-half times the channel bandwidth must be suppressed by at least 40 dB.

4.4.2 Measuring Instruments

The measuring equipment is listed in the section 3.3 of this test report.


4.4.3 Test Procedures

The testing follows KDB 987594 D02 U-NI 6GHz EMC Measurement v01r01 Section J.In-Band Emissions.

1. Connect output of the antenna port to a spectrum analyzer or EMI receiver, with appropriate attenuation, as to not damage the instrumentation.
2. Set the reference level of the measuring equipment in accordance with procedure 4.1.5.2 of ANSI C63.10-2013.
3. Measure the 26 dB EBW using the test procedure 12.4.1 of ANSI C63.10-2013. (This will be used to determine the channel edge.)
4. Measure the power spectral density (which will be used for emissions mask reference) using the following procedure:
 - a) Set the span to encompass the entire 26 dB EBW of the signal.
 - b) Set RBW = same RBW used for 26 dB EBW measurement.
 - c) Set VBW \geq 3 X RBW
 - d) Number of points in sweep \geq [2 X span / RBW].
 - e) Sweep time = auto.
 - f) Detector = RMS (i.e., power averaging)
 - g) Trace average at least 100 traces in power averaging (rms) mode.
 - h) Use the peak search function on the instrument to find the peak of the spectrum.
5. For the purposes of developing the emission mask, the channel bandwidth is defined as the 26 dB EBW or 99% of the occupied bandwidth.
6. Using the measuring equipment limit line function, develop the emissions mask based on the following requirements. The emissions power spectral density must be reduced below the peak power spectral density (in dB) as follows:
 - a) Suppressed by 20 dB at 1 MHz outside of the channel edge. (The channel edge is defined as the 26-dB point on either side of the carrier center frequency.)
 - b) Suppressed by 28 dB at one channel bandwidth from the channel center.
 - c) Suppressed by 40 dB at one- and one-half times the channel bandwidth from the channel center.

7. Adjust the span to encompass the entire mask as necessary.
8. Clear trace.
9. Trace average at least 100 traces in power averaging (rms) mode.
10. Adjust the reference level as necessary so that the crest of the channel touches the top of the emission mask.

4.4.4 Test Setup

4.4.5 Test Result of In-Band Emissions

Please refer to ANNEX A.4.

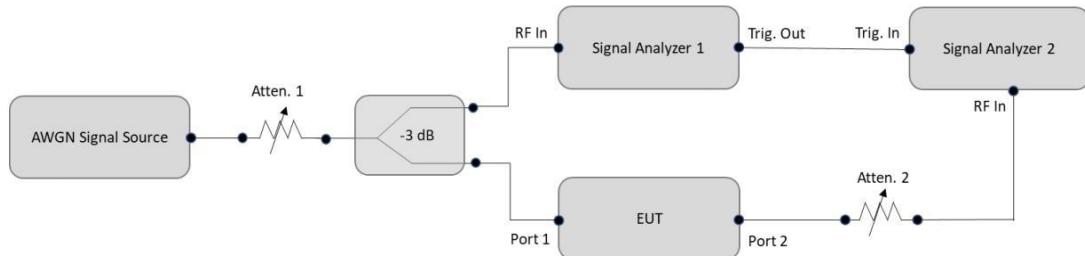
4.5 Contention Based Protocol

4.5.1 Limit of Contention Based Protocol

All U-NII transmitters, except for standard power access points, operating in the 5.925-7.125 GHz band must employ a contention-based protocol. Unlicensed low-power indoor devices must detect co-channel radio frequency power that is at least -62 dBm or lower. Upon detection of energy in the band, unlicensed low power indoor devices must vacate the channel and stay off the channel as long as detected radio frequency power is equal to or greater than the threshold (-62 dBm). The -62 dBm (or lower) threshold is referenced to a 0 dBi antenna gain. To ensure incumbent operations are reliably detected in the band, low power indoor devices must detect RF energy throughout their intended operating channel. For example, an 802.11 device that plans to transmit a 40 MHz-wide signal (on a primary 20 MHz channel and a secondary 20 MHz channel) must detect energy throughout the entire 40 MHz channel. Additionally, low-power indoor devices must detect co-channel energy with 90% or greater certainty.

4.5.2 Measuring Instruments

The measuring equipment is listed in the section 3.3 of this test report.


4.5.3 Test Procedures

The testing follows KDB 987594 D02 U-NI 6GHz EMC Measurement v01r01 Section I Contention Based Protocol.

1. Configure the EUT to transmit with a constant duty cycle.
2. Set the operating parameters of the EUT including power level, operating frequency, modulation and bandwidth.
3. Set the signal analyzer center frequency to the nominal EEUUT channel center frequency. The span range of the signal analyzer shall be between two times and five times the OBW of the EUT. Connect the output port of the EUT to the signal analyzer 2, as shown in Figure 2. Ensure that the attenuator 2 provides enough attenuation to not overload the signal analyzer 2 receiver.
4. Monitoring the signal analyzer 2, verify the EUT is operating and transmitting with the parameters set at step two.
5. Using an AWGN signal source, generate (but do not transmit, i.e., RF OFF) a 10 MHz-wide AWGN signal. Use Table 1 to determine the center frequency of the 10 MHz AWGN signal relative to the EUT's channel bandwidth and center frequency.
6. Set the AWGN signal power to an extremely low level (more than 20 dB below the -62 dBm threshold). Connect the AWGN signal source, via a 3-dB splitter, to the signal analyzer 1 and the EUT as shown in Figure 2.
7. Transmit the AWGN signal (RF ON) and verify its characteristics on the signal analyzer 1.
8. Monitor the signal analyzer 2 to verify if the AWGN signal has been detected and the EUT has ceased transmission. If the EUT continues to transmit, then incrementally increase the AWGN signal power level until the EUT stops transmitting.
9. (Including all losses in the RF paths) Determine and record the AWGN signal power level (at the EUT's antenna port) at which the EUT ceased transmission. Repeat the procedure at least 10 times to verify the EUT can detect an AWGN signal with 90% (or better) level of certainty.
10. Refer to Table 1 to determine number of times the detection threshold testing needs to be repeated. If testing is required more than once, then go back to step 5, choose a different center frequency for the AWGN signal and

repeat the process.

4.5.4 Test Setup

4.5.5 Test Result of Contention Based Protocol

Please refer to ANNEX A.5.

4.6 Unwanted Emissions Measurement.

4.6.1 Limit of Unwanted Emissions

For transmitters operating within the 5.925-7.125 GHz band: Any emissions outside of the 5.925-7.125 GHz band must not exceed an e.i.r.p.of-27 dBm/MHz.

Spurious emissions are permitted in an of the frequency bands.

MHz	MHz	MHz	MHz	GHz	GHz
0.090 - 0.110	12.29 - 12.293	149.9 - 150.05	1660 - 1710	4.5 - 5.15	14.47 - 14.5
0.495 - 0.505	12.51975 - 1252025	156.52475 - 156.52525	1718.8 - 1722.2	5.35 - 5.46	15.35 - 16.2
2.1735 - 2.1905	12.5767 - 12.57725	156.7 - 156.9	2200 - 2300	7.25 - 7.75	17.7 - 21.4
4.125 - 128	13.36 - 13.41	162.0125 - 167.17	2310 - 2390	8.025 - 8.5	22.01 - 23.12
4.17725 - 4.17775	16.42 - 16.423	167.72 - 173.2	2483.5 - 2500	9.0 - 9.2	23.6 - 24.0
4.20725 - 4.20775	16.69475 - 16.69525	240 - 285	2655 - 2900	9.3 - 9.5	31.2 - 31.8
6.215 - 6.218	1680425 - 1680475	322 - 335.4	3260 - 3267	10.6 - 12.7	36.43 - 36.5
6.26775 - 6.26825	25.5 - 25.67	399.9 - 410	3332 - 3339	13.25 - 13.4	
6.31175 - 6.31225	37.5 - 38.25	608 - 614	3345.8 - 3358		
8.291 - 8.294	73 - 74.6	960 - 1240	3600 - 4400		
8.362 - 8.366	74.8 - 75.2	1300 - 1427			
8.37625 - 8.38675	108 - 121.94	1435 - 1626.5			
8.41425 - 8.41475	123 - 138	1645.5 - 1646.5			

Radiated disturbance of an intentional radiator:

Frequency (MHz)	Field Strength (microvolts/meter)	Limit[dB μ V/m]	Detector	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	--	--	300
0.490-1.705	24000/F(kHz)	--	--	30
1.705 - 30.0	30	--	--	30
30-88	100	40.0	Quasi-peak	3
88 -216	150	43.5	Quasi-peak	3
216 - 960	200	46.0	Quasi-peak	3
960- 1G	500	54.0	Quasi-peak	3
Above 1G	500	54.0	Average	3
		74.0	Peak	

EIRP (dBm)	Field Strength at 3m (dB μ V/m)
- 27	68.2

Note: The following formula is used to convert the EIRP to field strength.

$$\text{EIRP} = E_{\text{Meas}} + 20\log(d_{\text{Meas}}) - 104.7$$

where

EIRP is the equivalent isotropically radiated power, in dBm

E_{Meas} is the field strength of the emission at the measurement distance, in $\text{dB}\mu\text{V/m}$

d_{Meas} is the measurement distance, in m

4.6.2 Measuring Instruments

The measuring equipment is listed in the section 3.3 of this test report.

4.6.3 Test Procedures

1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Section G) Unwanted emissions measurement.

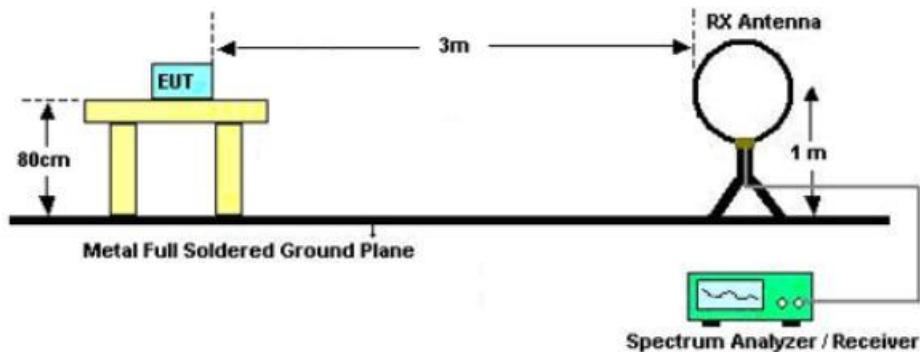
(1)Procedure for Unwanted Emissions Measurements Below 1000MHz

- RBW = 120 kHz
- VBW = 300 kHz
- Detector = Peak
- Trace mode = max hold

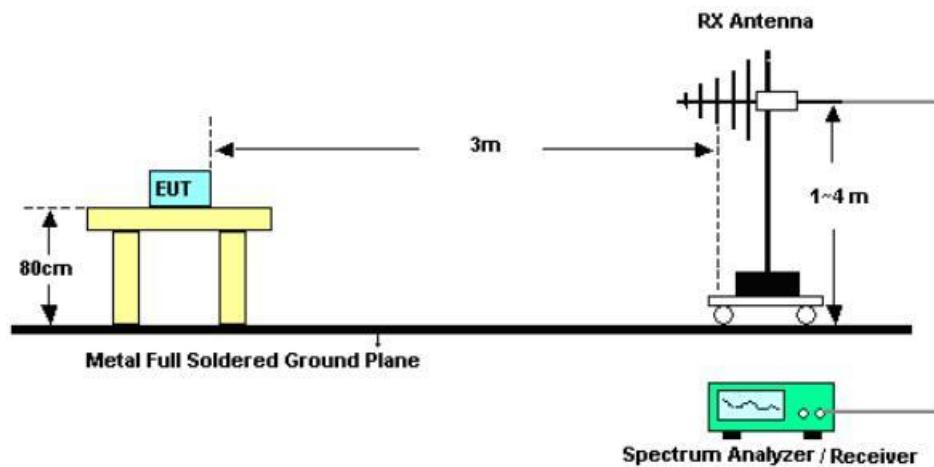
(2)Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz

- RBW= 1 MHz
- VBW \geq 3 MHz
- Detector = Peak
- Sweep time = auto
- Trace mode = max hold

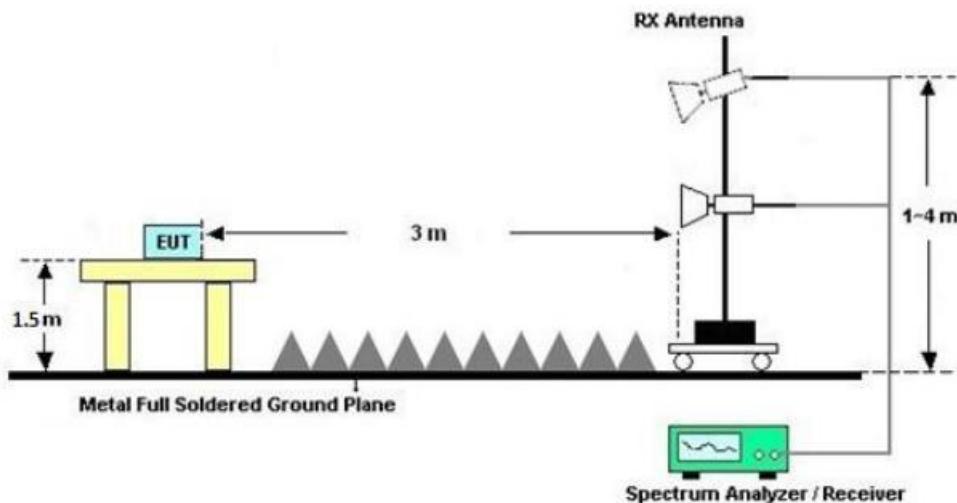
(3)Procedures for Average Unwanted Emissions Measurements Above 1000MHz


- RBW = 1 MHz
- VBW = 10 Hz, when duty cycle is no less than 98 percent
- VBW $\geq 1/T$, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4.. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.


6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

4.6.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

4.6.5 Test Results of Radiated Spurious Emissions (9 kHz - 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

4.6.6 Test Result of Radiated Spurious at Band Edges

Please refer to ANNEX B.1.

4.6.7 Test Result of Radiated Spurious Emissions (30MHz - 10th Harmonic or 40GHz whichever is lower)

Please refer to ANNEX B.1.

4.6.8 Duty Cycle

Please refer to ANNEX A.6.

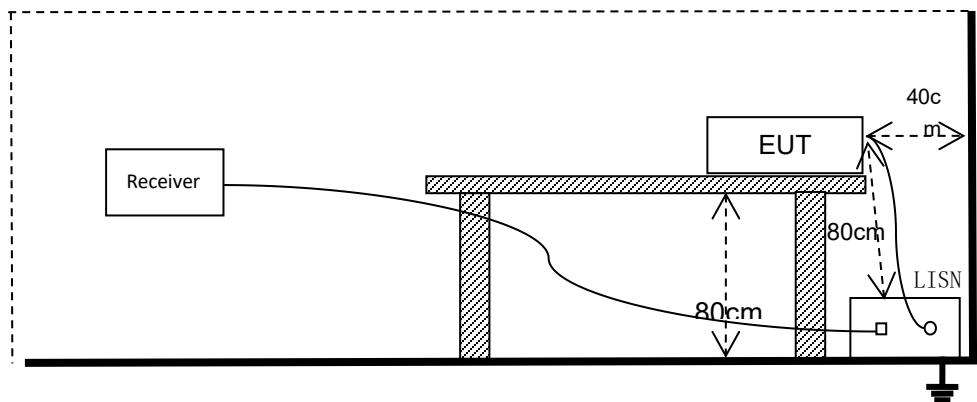
4.7 AC Conducted Emission Measurement

4.7.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.


4.7.2 Measuring Instruments

The section 3.3 of List of Measuring Equipment of this test report is used for test.

4.7.3 Test Procedures

1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connecting to the other LISN.
4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
6. Both sides of AC line were checked for maximum conducted interference.
7. The frequency range from 150 kHz to 30 MHz was searched.
8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth =9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

4.7.4 Test Setup

4.7.5 Uncertainty Measurement

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT. The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$.

CASE	Uncertainty
Continuous Emission (AC port)	2.92 dB

4.7.6 Test Result

Remark: The product is DC powered, this test item is not applicable.

4.8 Antenna Requirements

4.8.1 Standard Applicable

15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and(b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6dBi.

4.8.2 Antenna Anti-Replacement Construction

The antenna is External on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.60dBi.

----- THE END -----

ANNEX A: Test Results of Conducted Test**A.1 Emission Bandwidth and 99% Occupied Bandwidth Measurement****Test Result_Emission Bandwidth**

Test Mode	Antenna	Frequency[MHz]	26db EBW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
11A-CDD	Ant1	5955	21.28	5944.80	5966.08	---	---
11A-CDD	Ant2	5955	20.08	5945.04	5965.12	---	---
11A-CDD	Ant1	6175	19.12	6165.40	6184.52	---	---
11A-CDD	Ant2	6175	19.00	6165.60	6184.60	---	---
11A-CDD	Ant1	6415	19.36	6405.32	6424.68	---	---
11A-CDD	Ant2	6415	18.84	6405.64	6424.48	---	---
11A-CDD	Ant1	6435	19.24	6425.28	6444.52	---	---
11A-CDD	Ant2	6435	18.80	6425.60	6444.40	---	---
11A-CDD	Ant1	6475	19.00	6465.40	6484.40	---	---
11A-CDD	Ant2	6475	19.04	6465.56	6484.60	---	---
11A-CDD	Ant1	6515	19.04	6505.36	6524.40	---	---
11A-CDD	Ant2	6515	18.76	6505.60	6524.36	---	---
11A-CDD	Ant1	6535	18.84	6525.44	6544.28	---	---
11A-CDD	Ant2	6535	18.96	6525.60	6544.56	---	---
11A-CDD	Ant1	6695	19.00	6685.32	6704.32	---	---
11A-CDD	Ant2	6695	18.92	6685.60	6704.52	---	---
11A-CDD	Ant1	6855	19.16	6845.32	6864.48	---	---
11A-CDD	Ant2	6855	19.16	6845.28	6864.44	---	---
11A-CDD	Ant1	6875	19.12	6865.24	6884.36	---	---
11A-CDD	Ant2	6875	19.00	6865.56	6884.56	---	---
11A-CDD	Ant1	6895	19.40	6885.08	6904.48	---	---
11A-CDD	Ant2	6895	18.96	6885.56	6904.52	---	---
11A-CDD	Ant1	6995	19.16	6985.28	7004.44	---	---
11A-CDD	Ant2	6995	19.28	6985.28	7004.56	---	---
11A-CDD	Ant1	7115	19.24	7105.20	7124.44	---	---
11A-CDD	Ant2	7115	19.08	7105.48	7124.56	---	---
11AX20MIMO	Ant1	5955	21.08	5944.36	5965.44	---	---
11AX20MIMO	Ant2	5955	21.16	5944.28	5965.44	---	---
11AX20MIMO	Ant1	6175	21.32	6164.28	6185.60	---	---
11AX20MIMO	Ant2	6175	21.20	6164.28	6185.48	---	---
11AX20MIMO	Ant1	6415	21.20	6404.40	6425.60	---	---
11AX20MIMO	Ant2	6415	21.08	6404.48	6425.56	---	---
11AX20MIMO	Ant1	6435	21.08	6424.40	6445.48	---	---

11AX20MIMO	Ant2	6435	21.24	6424.40	6445.64	---	---
11AX20MIMO	Ant1	6475	21.00	6464.56	6485.56	---	---
11AX20MIMO	Ant2	6475	21.32	6464.20	6485.52	---	---
11AX20MIMO	Ant1	6515	20.84	6504.60	6525.44	---	---
11AX20MIMO	Ant2	6515	20.96	6504.52	6525.48	---	---
11AX20MIMO	Ant1	6535	21.36	6524.40	6545.76	---	---
11AX20MIMO	Ant2	6535	21.16	6524.28	6545.44	---	---
11AX20MIMO	Ant1	6695	20.96	6684.48	6705.44	---	---
11AX20MIMO	Ant2	6695	20.72	6684.64	6705.36	---	---
11AX20MIMO	Ant1	6855	20.64	6844.64	6865.28	---	---
11AX20MIMO	Ant2	6855	21.28	6844.32	6865.60	---	---
11AX20MIMO	Ant1	6875	21.08	6864.44	6885.52	---	---
11AX20MIMO	Ant2	6875	21.32	6864.20	6885.52	---	---
11AX20MIMO	Ant1	6895	21.12	6884.52	6905.64	---	---
11AX20MIMO	Ant2	6895	21.36	6884.36	6905.72	---	---
11AX20MIMO	Ant1	6995	20.80	6984.60	7005.40	---	---
11AX20MIMO	Ant2	6995	20.64	6984.64	7005.28	---	---
11AX20MIMO	Ant1	7115	21.12	7104.52	7125.64	---	---
11AX20MIMO	Ant2	7115	21.20	7104.52	7125.72	---	---
11AX40MIMO	Ant1	5965	40.96	5944.60	5985.56	---	---
11AX40MIMO	Ant2	5965	40.80	5944.60	5985.40	---	---
11AX40MIMO	Ant1	6165	41.04	6144.52	6185.56	---	---
11AX40MIMO	Ant2	6165	40.88	6144.68	6185.56	---	---
11AX40MIMO	Ant1	6405	41.04	6384.44	6425.48	---	---
11AX40MIMO	Ant2	6405	40.96	6384.52	6425.48	---	---
11AX40MIMO	Ant1	6445	41.04	6424.44	6465.48	---	---
11AX40MIMO	Ant2	6445	40.80	6424.68	6465.48	---	---
11AX40MIMO	Ant1	6485	40.80	6464.52	6505.32	---	---
11AX40MIMO	Ant2	6485	40.80	6464.44	6505.24	---	---
11AX40MIMO	Ant1	6525	40.48	6504.84	6545.32	---	---
11AX40MIMO	Ant2	6525	41.44	6504.04	6545.48	---	---
11AX40MIMO	Ant1	6565	40.72	6544.60	6585.32	---	---
11AX40MIMO	Ant2	6565	40.88	6544.52	6585.40	---	---
11AX40MIMO	Ant1	6685	40.96	6664.60	6705.56	---	---
11AX40MIMO	Ant2	6685	40.88	6664.60	6705.48	---	---
11AX40MIMO	Ant1	6845	40.64	6824.60	6865.24	---	---
11AX40MIMO	Ant2	6845	40.88	6824.68	6865.56	---	---
11AX40MIMO	Ant1	6885	40.64	6864.68	6905.32	---	---
11AX40MIMO	Ant2	6885	40.88	6864.52	6905.40	---	---

11AX40MIMO	Ant1	6925	40.72	6904.60	6945.32	---	---
11AX40MIMO	Ant2	6925	40.96	6904.60	6945.56	---	---
11AX40MIMO	Ant1	6965	40.96	6944.44	6985.40	---	---
11AX40MIMO	Ant2	6965	41.04	6944.36	6985.40	---	---
11AX40MIMO	Ant1	7085	40.72	7064.60	7105.32	---	---
11AX40MIMO	Ant2	7085	40.80	7064.60	7105.40	---	---
11AX80MIMO	Ant1	5985	82.40	5943.72	6026.12	---	---
11AX80MIMO	Ant2	5985	82.88	5943.72	6026.60	---	---
11AX80MIMO	Ant1	6145	83.20	6103.24	6186.44	---	---
11AX80MIMO	Ant2	6145	83.04	6103.40	6186.44	---	---
11AX80MIMO	Ant1	6385	82.88	6343.56	6426.44	---	---
11AX80MIMO	Ant2	6385	83.20	6343.40	6426.60	---	---
11AX80MIMO	Ant1	6465	82.24	6423.72	6505.96	---	---
11AX80MIMO	Ant2	6465	82.72	6423.72	6506.44	---	---
11AX80MIMO	Ant1	6545	82.72	6503.72	6586.44	---	---
11AX80MIMO	Ant2	6545	83.20	6503.24	6586.44	---	---
11AX80MIMO	Ant1	6625	83.20	6583.40	6666.60	---	---
11AX80MIMO	Ant2	6625	82.24	6583.88	6666.12	---	---
11AX80MIMO	Ant1	6705	82.88	6663.40	6746.28	---	---
11AX80MIMO	Ant2	6705	82.72	6663.56	6746.28	---	---
11AX80MIMO	Ant1	6785	82.40	6743.56	6825.96	---	---
11AX80MIMO	Ant2	6785	82.88	6743.56	6826.44	---	---
11AX80MIMO	Ant1	6865	82.88	6823.72	6906.60	---	---
11AX80MIMO	Ant2	6865	83.04	6823.40	6906.44	---	---
11AX80MIMO	Ant1	6945	82.56	6903.72	6986.28	---	---
11AX80MIMO	Ant2	6945	82.40	6903.72	6986.12	---	---
11AX80MIMO	Ant1	7025	82.88	6983.56	7066.44	---	---
11AX80MIMO	Ant2	7025	82.72	6983.56	7066.28	---	---
11AX160MIMO	Ant1	6025	166.08	5941.80	6107.88	---	---
11AX160MIMO	Ant2	6025	166.40	5941.48	6107.88	---	---
11AX160MIMO	Ant1	6185	165.76	6102.12	6267.88	---	---
11AX160MIMO	Ant2	6185	166.40	6101.80	6268.20	---	---
11AX160MIMO	Ant1	6345	166.40	6262.12	6428.52	---	---
11AX160MIMO	Ant2	6345	165.76	6262.12	6427.88	---	---
11AX160MIMO	Ant1	6505	165.76	6421.80	6587.56	---	---
11AX160MIMO	Ant2	6505	165.76	6421.80	6587.56	---	---
11AX160MIMO	Ant1	6665	167.36	6581.16	6748.52	---	---
11AX160MIMO	Ant2	6665	166.08	6582.12	6748.20	---	---
11AX160MIMO	Ant1	6825	166.72	6741.48	6908.20	---	---

11AX160MIMO	Ant2	6825	166.08	6741.80	6907.88	---	---
11AX160MIMO	Ant1	6985	166.40	6901.80	7068.20	---	---
11AX160MIMO	Ant2	6985	166.72	6901.48	7068.20	---	---

Test Result_Emission Bandwidth for AX Part RU

Test Mode	Antenna	Frequency [dBm]	Ru Size	Ru Index	26db BW [MHz]	FL [MHz]	FH [MHz]	Limit [MHz]	Verdict
11AX20MIMO	Ant1	5955	26Tone	RU0	20.80	5943.36	5964.16	---	---
11AX20MIMO	Ant2	5955	26Tone	RU0	21.00	5943.28	5964.28	---	---
11AX20MIMO	Ant1	5955	52Tone	RU37	20.68	5943.76	5964.44	---	---
11AX20MIMO	Ant2	5955	52Tone	RU37	20.96	5943.44	5964.40	---	---
11AX20MIMO	Ant1	5955	106Tone	RU53	21.28	5943.68	5964.96	---	---
11AX20MIMO	Ant2	5955	106Tone	RU53	21.12	5943.76	5964.88	---	---
11AX20MIMO	Ant1	6175	26Tone	RU4	18.96	6165.56	6184.52	---	---
11AX20MIMO	Ant2	6175	26Tone	RU4	17.80	6165.72	6183.52	---	---
11AX20MIMO	Ant1	6175	52Tone	RU39	19.48	6165.28	6184.76	---	---
11AX20MIMO	Ant2	6175	52Tone	RU39	18.72	6165.68	6184.40	---	---
11AX20MIMO	Ant1	6175	106Tone	RU53	21.04	6163.80	6184.84	---	---
11AX20MIMO	Ant2	6175	106Tone	RU53	21.40	6163.60	6185.00	---	---
11AX20MIMO	Ant1	6415	26Tone	RU8	20.44	6405.72	6426.16	---	---
11AX20MIMO	Ant2	6415	26Tone	RU8	20.36	6405.76	6426.12	---	---
11AX20MIMO	Ant1	6415	52Tone	RU40	20.88	6405.44	6426.32	---	---
11AX20MIMO	Ant2	6415	52Tone	RU40	20.44	6405.64	6426.08	---	---
11AX20MIMO	Ant1	6415	106Tone	RU54	21.40	6404.84	6426.24	---	---
11AX20MIMO	Ant2	6415	106Tone	RU54	20.76	6405.56	6426.32	---	---
11AX20MIMO	Ant1	6435	26Tone	RU0	20.72	6423.60	6444.32	---	---
11AX20MIMO	Ant2	6435	26Tone	RU0	20.84	6423.48	6444.32	---	---
11AX20MIMO	Ant1	6435	52Tone	RU37	21.44	6423.12	6444.56	---	---
11AX20MIMO	Ant2	6435	52Tone	RU37	21.32	6423.12	6444.44	---	---
11AX20MIMO	Ant1	6435	106Tone	RU53	21.64	6423.52	6445.16	---	---
11AX20MIMO	Ant2	6435	106Tone	RU53	21.48	6423.52	6445.00	---	---
11AX20MIMO	Ant1	6475	26Tone	RU4	18.64	6465.64	6484.28	---	---
11AX20MIMO	Ant2	6475	26Tone	RU4	18.28	6465.88	6484.16	---	---
11AX20MIMO	Ant1	6475	52Tone	RU39	19.56	6465.32	6484.88	---	---
11AX20MIMO	Ant2	6475	52Tone	RU39	18.48	6465.84	6484.32	---	---
11AX20MIMO	Ant1	6475	106Tone	RU53	21.56	6463.48	6485.04	---	---
11AX20MIMO	Ant2	6475	106Tone	RU53	21.16	6463.60	6484.76	---	---
11AX20MIMO	Ant1	6515	26Tone	RU8	20.52	6505.60	6526.12	---	---
11AX20MIMO	Ant2	6515	26Tone	RU8	20.32	6505.84	6526.16	---	---

11AX20MIMO	Ant1	6515	52Tone	RU40	21.04	6505.16	6526.20	---	---
11AX20MIMO	Ant2	6515	52Tone	RU40	20.64	6505.72	6526.36	---	---
11AX20MIMO	Ant1	6515	106Tone	RU54	21.08	6505.00	6526.08	---	---
11AX20MIMO	Ant2	6515	106Tone	RU54	20.56	6505.64	6526.20	---	---
11AX20MIMO	Ant1	6535	26Tone	RU0	20.84	6523.52	6544.36	---	---
11AX20MIMO	Ant2	6535	26Tone	RU0	20.56	6523.52	6544.08	---	---
11AX20MIMO	Ant1	6535	52Tone	RU37	21.56	6523.08	6544.64	---	---
11AX20MIMO	Ant2	6535	52Tone	RU37	21.12	6523.24	6544.36	---	---
11AX20MIMO	Ant1	6535	106Tone	RU53	21.12	6523.80	6544.92	---	---
11AX20MIMO	Ant2	6535	106Tone	RU53	21.16	6523.60	6544.76	---	---
11AX20MIMO	Ant1	6695	26Tone	RU4	18.80	6685.56	6704.36	---	---
11AX20MIMO	Ant2	6695	26Tone	RU4	18.12	6685.76	6703.88	---	---
11AX20MIMO	Ant1	6695	52Tone	RU39	19.48	6685.40	6704.88	---	---
11AX20MIMO	Ant2	6695	52Tone	RU39	18.64	6685.80	6704.44	---	---
11AX20MIMO	Ant1	6695	106Tone	RU53	21.04	6683.92	6704.96	---	---
11AX20MIMO	Ant2	6695	106Tone	RU53	21.40	6683.44	6704.84	---	---
11AX20MIMO	Ant1	6855	26Tone	RU8	20.56	6845.64	6866.20	---	---
11AX20MIMO	Ant2	6855	26Tone	RU8	20.48	6845.88	6866.36	---	---
11AX20MIMO	Ant1	6855	52Tone	RU40	20.64	6845.36	6866.00	---	---
11AX20MIMO	Ant2	6855	52Tone	RU40	20.24	6845.76	6866.00	---	---
11AX20MIMO	Ant1	6855	106Tone	RU54	21.00	6845.08	6866.08	---	---
11AX20MIMO	Ant2	6855	106Tone	RU54	20.36	6845.60	6865.96	---	---
11AX20MIMO	Ant1	6875	26Tone	RU8	20.72	6865.56	6886.28	---	---
11AX20MIMO	Ant2	6875	26Tone	RU8	20.24	6865.84	6886.08	---	---
11AX20MIMO	Ant1	6875	52Tone	RU40	20.84	6865.20	6886.04	---	---
11AX20MIMO	Ant2	6875	52Tone	RU40	20.28	6865.80	6886.08	---	---
11AX20MIMO	Ant1	6875	106Tone	RU54	21.04	6864.88	6885.92	---	---
11AX20MIMO	Ant2	6875	106Tone	RU54	20.84	6865.52	6886.36	---	---
11AX20MIMO	Ant1	6895	26Tone	RU0	20.76	6883.48	6904.24	---	---
11AX20MIMO	Ant2	6895	26Tone	RU0	21.08	6883.16	6904.24	---	---
11AX20MIMO	Ant1	6895	52Tone	RU37	21.24	6883.52	6904.76	---	---
11AX20MIMO	Ant2	6895	52Tone	RU37	21.32	6883.12	6904.44	---	---
11AX20MIMO	Ant1	6895	106Tone	RU53	21.48	6883.64	6905.12	---	---
11AX20MIMO	Ant2	6895	106Tone	RU53	20.64	6883.84	6904.48	---	---
11AX20MIMO	Ant1	6995	26Tone	RU4	18.72	6985.80	7004.52	---	---
11AX20MIMO	Ant2	6995	26Tone	RU4	18.44	6985.84	7004.28	---	---
11AX20MIMO	Ant1	6995	52Tone	RU39	19.32	6985.28	7004.60	---	---
11AX20MIMO	Ant2	6995	52Tone	RU39	18.44	6985.80	7004.24	---	---
11AX20MIMO	Ant1	6995	106Tone	RU53	21.00	6983.92	7004.92	---	---

11AX20MIMO	Ant2	6995	106Tone	RU53	21.40	6983.48	7004.88	---	---
11AX20MIMO	Ant1	7115	26Tone	RU8	20.60	7105.64	7126.24	---	---
11AX20MIMO	Ant2	7115	26Tone	RU8	20.28	7105.84	7126.12	---	---
11AX20MIMO	Ant1	7115	52Tone	RU40	20.92	7105.24	7126.16	---	---
11AX20MIMO	Ant2	7115	52Tone	RU40	20.56	7105.64	7126.20	---	---
11AX20MIMO	Ant1	7115	106Tone	RU54	21.20	7105.08	7126.28	---	---
11AX20MIMO	Ant2	7115	106Tone	RU54	20.56	7105.40	7125.96	---	---
11AX40MIMO	Ant1	5965	242Tone	RU61	42.40	5942.76	5985.16	---	---
11AX40MIMO	Ant2	5965	242Tone	RU61	41.76	5942.92	5984.68	---	---
11AX40MIMO	Ant1	6165	242Tone	RU61	42.72	6142.44	6185.16	---	---
11AX40MIMO	Ant2	6165	242Tone	RU61	41.60	6143.08	6184.68	---	---
11AX40MIMO	Ant1	6405	242Tone	RU62	44.00	6383.32	6427.32	---	---
11AX40MIMO	Ant2	6405	242Tone	RU62	41.52	6385.08	6426.60	---	---
11AX40MIMO	Ant1	6445	242Tone	RU61	42.96	6421.96	6464.92	---	---
11AX40MIMO	Ant2	6445	242Tone	RU61	41.76	6422.92	6464.68	---	---
11AX40MIMO	Ant1	6485	242Tone	RU62	43.12	6463.64	6506.76	---	---
11AX40MIMO	Ant2	6485	242Tone	RU62	41.36	6465.16	6506.52	---	---
11AX40MIMO	Ant1	6525	242Tone	RU62	42.48	6504.44	6546.92	---	---
11AX40MIMO	Ant2	6525	242Tone	RU62	41.60	6505.08	6546.68	---	---
11AX40MIMO	Ant1	6565	242Tone	RU61	42.32	6542.84	6585.16	---	---
11AX40MIMO	Ant2	6565	242Tone	RU61	42.32	6542.36	6584.68	---	---
11AX40MIMO	Ant1	6685	242Tone	RU61	43.28	6662.04	6705.32	---	---
11AX40MIMO	Ant2	6685	242Tone	RU61	41.60	6663.08	6704.68	---	---
11AX40MIMO	Ant1	6845	242Tone	RU62	43.12	6823.80	6866.92	---	---
11AX40MIMO	Ant2	6845	242Tone	RU62	42.24	6825.32	6867.56	---	---
11AX40MIMO	Ant1	6885	242Tone	RU62	44.48	6863.40	6907.88	---	---
11AX40MIMO	Ant2	6885	242Tone	RU62	42.24	6865.32	6907.56	---	---
11AX40MIMO	Ant1	6925	242Tone	RU61	42.64	6902.60	6945.24	---	---
11AX40MIMO	Ant2	6925	242Tone	RU61	41.60	6902.92	6944.52	---	---
11AX40MIMO	Ant1	6965	242Tone	RU61	42.96	6942.12	6985.08	---	---
11AX40MIMO	Ant2	6965	242Tone	RU61	42.48	6942.20	6984.68	---	---
11AX40MIMO	Ant1	7085	242Tone	RU62	43.36	7063.48	7106.84	---	---
11AX40MIMO	Ant2	7085	242Tone	RU62	42.16	7065.32	7107.48	---	---
11AX80MIMO	Ant1	5985	484Tone	RU65	88.00	5940.52	6028.52	---	---
11AX80MIMO	Ant2	5985	484Tone	RU65	84.64	5941.32	6025.96	---	---
11AX80MIMO	Ant1	6145	484Tone	RU65	87.68	6099.72	6187.40	---	---
11AX80MIMO	Ant2	6145	484Tone	RU65	86.40	6099.72	6186.12	---	---
11AX80MIMO	Ant1	6385	484Tone	RU66	85.92	6343.24	6429.16	---	---
11AX80MIMO	Ant2	6385	484Tone	RU66	85.44	6343.88	6429.32	---	---

11AX80MIMO	Ant1	6465	484Tone	RU65	86.40	6420.68	6507.08	---	---
11AX80MIMO	Ant2	6465	484Tone	RU65	85.12	6420.20	6505.32	---	---
11AX80MIMO	Ant1	6545	484Tone	RU66	86.08	6503.40	6589.48	---	---
11AX80MIMO	Ant2	6545	484Tone	RU66	86.08	6503.72	6589.80	---	---
11AX80MIMO	Ant1	6625	484Tone	RU65	89.76	6578.44	6668.20	---	---
11AX80MIMO	Ant2	6625	484Tone	RU65	86.24	6580.04	6666.28	---	---
11AX80MIMO	Ant1	6705	484Tone	RU65	86.08	6661.32	6747.40	---	---
11AX80MIMO	Ant2	6705	484Tone	RU65	85.44	6660.68	6746.12	---	---
11AX80MIMO	Ant1	6785	484Tone	RU66	85.76	6743.88	6829.64	---	---
11AX80MIMO	Ant2	6785	484Tone	RU66	86.24	6743.88	6830.12	---	---
11AX80MIMO	Ant1	6865	484Tone	RU66	85.28	6823.88	6909.16	---	---
11AX80MIMO	Ant2	6865	484Tone	RU66	86.56	6823.88	6910.44	---	---
11AX80MIMO	Ant1	6945	484Tone	RU65	87.36	6901.32	6988.68	---	---
11AX80MIMO	Ant2	6945	484Tone	RU65	86.08	6900.20	6986.28	---	---
11AX80MIMO	Ant1	7025	484Tone	RU66	86.24	6983.24	7069.48	---	---
11AX80MIMO	Ant2	7025	484Tone	RU66	86.08	6984.36	7070.44	---	---
11AX160MIMO	Ant1	6025	996Tone	RU67	172.48	5936.68	6109.16	---	---
11AX160MIMO	Ant2	6025	996Tone	RU67	170.88	5937.32	6108.20	---	---
11AX160MIMO	Ant1	6185	996Tone	RU67	173.76	6095.72	6269.48	---	---
11AX160MIMO	Ant2	6185	996Tone	RU67	170.56	6097.64	6268.20	---	---
11AX160MIMO	Ant1	6345	996Tone	RU68	168.64	6262.44	6431.08	---	---
11AX160MIMO	Ant2	6345	996Tone	RU68	168.00	6262.76	6430.76	---	---
11AX160MIMO	Ant1	6505	996Tone	RU67	172.48	6416.68	6589.16	---	---
11AX160MIMO	Ant2	6505	996Tone	RU67	168.32	6418.92	6587.24	---	---
11AX160MIMO	Ant1	6665	996Tone	RU68	171.20	6582.44	6753.64	---	---
11AX160MIMO	Ant2	6665	996Tone	RU68	168.64	6582.76	6751.40	---	---
11AX160MIMO	Ant1	6825	996Tone	RU67	173.44	6735.72	6909.16	---	---
11AX160MIMO	Ant2	6825	996Tone	RU67	171.52	6737.00	6908.52	---	---
11AX160MIMO	Ant1	6985	996Tone	RU68	168.00	6903.08	7071.08	---	---
11AX160MIMO	Ant2	6985	996Tone	RU68	169.28	6902.44	7071.72	---	---

Test Result_99% Bandwidth

Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
11A-CDD	Ant1	5955	16.985	5946.4337	5963.4189	≤320	PASS
11A-CDD	Ant2	5955	16.739	5946.6130	5963.3519	≤320	PASS
11A-CDD	Ant1	6175	16.734	6166.5763	6183.3107	≤320	PASS
11A-CDD	Ant2	6175	16.577	6166.7200	6183.2971	≤320	PASS
11A-CDD	Ant1	6415	16.74	6406.5705	6423.3107	≤320	PASS
11A-CDD	Ant2	6415	16.552	6406.7180	6423.2697	≤320	PASS

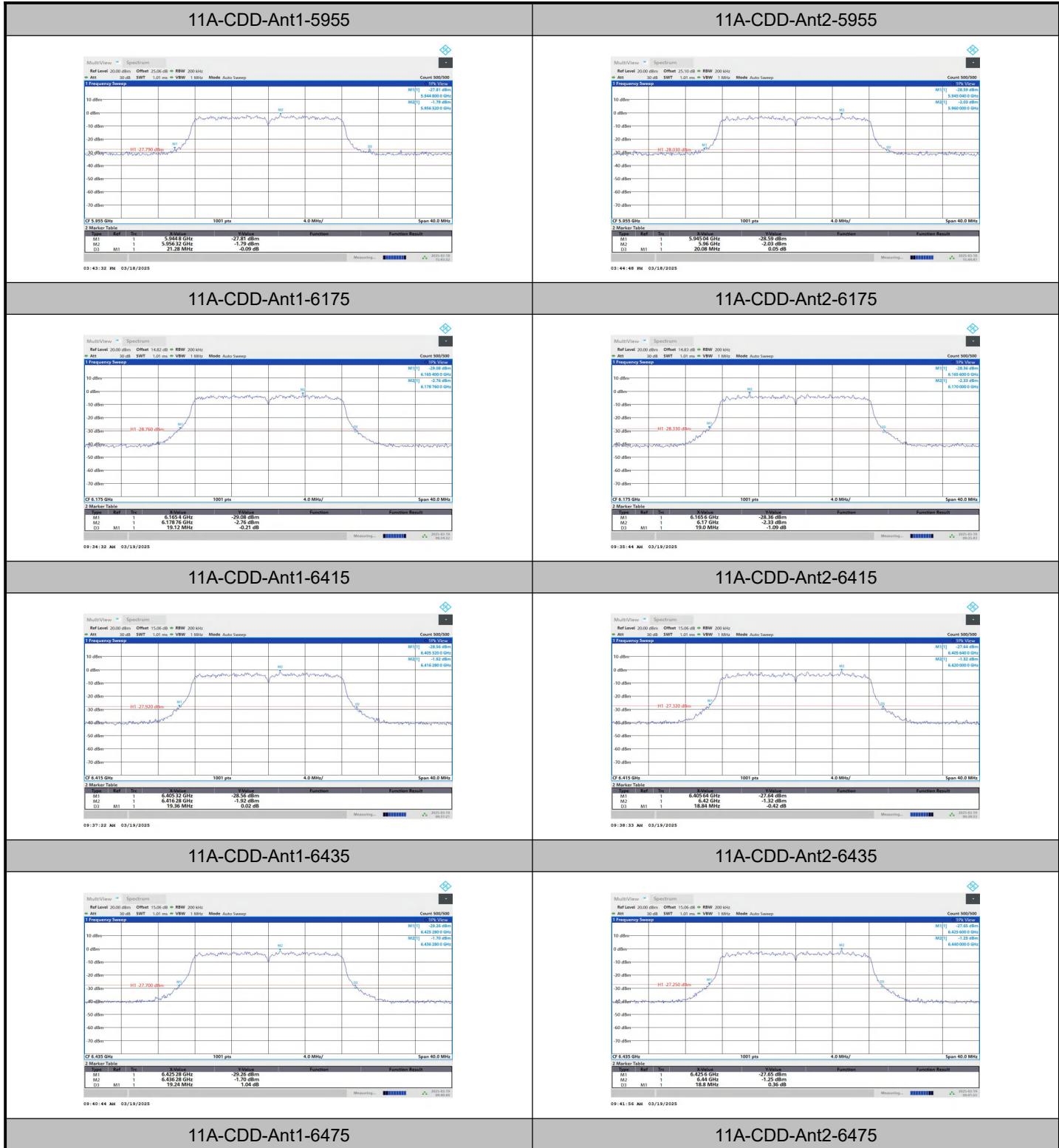
11A-CDD	Ant1	6435	16.738	6426.5647	6443.3025	≤320	PASS
11A-CDD	Ant2	6435	16.56	6426.7131	6443.2736	≤320	PASS
11A-CDD	Ant1	6475	16.772	6466.5347	6483.3063	≤320	PASS
11A-CDD	Ant2	6475	16.576	6466.6954	6483.2711	≤320	PASS
11A-CDD	Ant1	6515	16.766	6506.5453	6523.3110	≤320	PASS
11A-CDD	Ant2	6515	16.569	6506.7080	6523.2767	≤320	PASS
11A-CDD	Ant1	6535	16.765	6526.5450	6543.3104	≤320	PASS
11A-CDD	Ant2	6535	16.545	6526.7122	6543.2569	≤320	PASS
11A-CDD	Ant1	6695	16.741	6686.5616	6703.3027	≤320	PASS
11A-CDD	Ant2	6695	16.557	6686.7232	6703.2805	≤320	PASS
11A-CDD	Ant1	6855	16.825	6846.5079	6863.3330	≤320	PASS
11A-CDD	Ant2	6855	16.605	6846.6723	6863.2778	≤320	PASS
11A-CDD	Ant1	6875	16.826	6866.5159	6883.3419	≤320	PASS
11A-CDD	Ant2	6875	16.602	6866.6850	6883.2868	≤320	PASS
11A-CDD	Ant1	6895	16.8	6886.5162	6903.3158	≤320	PASS
11A-CDD	Ant2	6895	16.599	6886.6804	6903.2797	≤320	PASS
11A-CDD	Ant1	6995	16.819	6986.4998	7003.3185	≤320	PASS
11A-CDD	Ant2	6995	16.601	6986.6785	7003.2797	≤320	PASS
11A-CDD	Ant1	7115	16.786	7106.5506	7123.3362	≤320	PASS
11A-CDD	Ant2	7115	16.614	7106.6933	7123.3075	≤320	PASS
11AX20MIMO	Ant1	5955	19.043	5945.4574	5964.5007	≤320	PASS
11AX20MIMO	Ant2	5955	19.061	5945.4386	5964.5001	≤320	PASS
11AX20MIMO	Ant1	6175	19.049	6165.4669	6184.5161	≤320	PASS
11AX20MIMO	Ant2	6175	19.09	6165.4478	6184.5376	≤320	PASS
11AX20MIMO	Ant1	6415	19.056	6405.4666	6424.5222	≤320	PASS
11AX20MIMO	Ant2	6415	19.13	6405.4059	6424.5360	≤320	PASS
11AX20MIMO	Ant1	6435	19.017	6425.4744	6444.4910	≤320	PASS
11AX20MIMO	Ant2	6435	19.089	6425.4329	6444.5218	≤320	PASS
11AX20MIMO	Ant1	6475	19.005	6465.4732	6484.4777	≤320	PASS
11AX20MIMO	Ant2	6475	19.097	6465.4294	6484.5266	≤320	PASS
11AX20MIMO	Ant1	6515	19.016	6505.4777	6524.4935	≤320	PASS
11AX20MIMO	Ant2	6515	19.125	6505.4373	6524.5623	≤320	PASS
11AX20MIMO	Ant1	6535	19.037	6525.4715	6544.5088	≤320	PASS
11AX20MIMO	Ant2	6535	19.117	6525.4248	6544.5418	≤320	PASS
11AX20MIMO	Ant1	6695	19.015	6685.4793	6704.4940	≤320	PASS
11AX20MIMO	Ant2	6695	19.095	6685.4358	6704.5307	≤320	PASS
11AX20MIMO	Ant1	6855	18.97	6845.4916	6864.4619	≤320	PASS
11AX20MIMO	Ant2	6855	19.073	6845.4475	6864.5205	≤320	PASS
11AX20MIMO	Ant1	6875	18.989	6865.4964	6884.4855	≤320	PASS

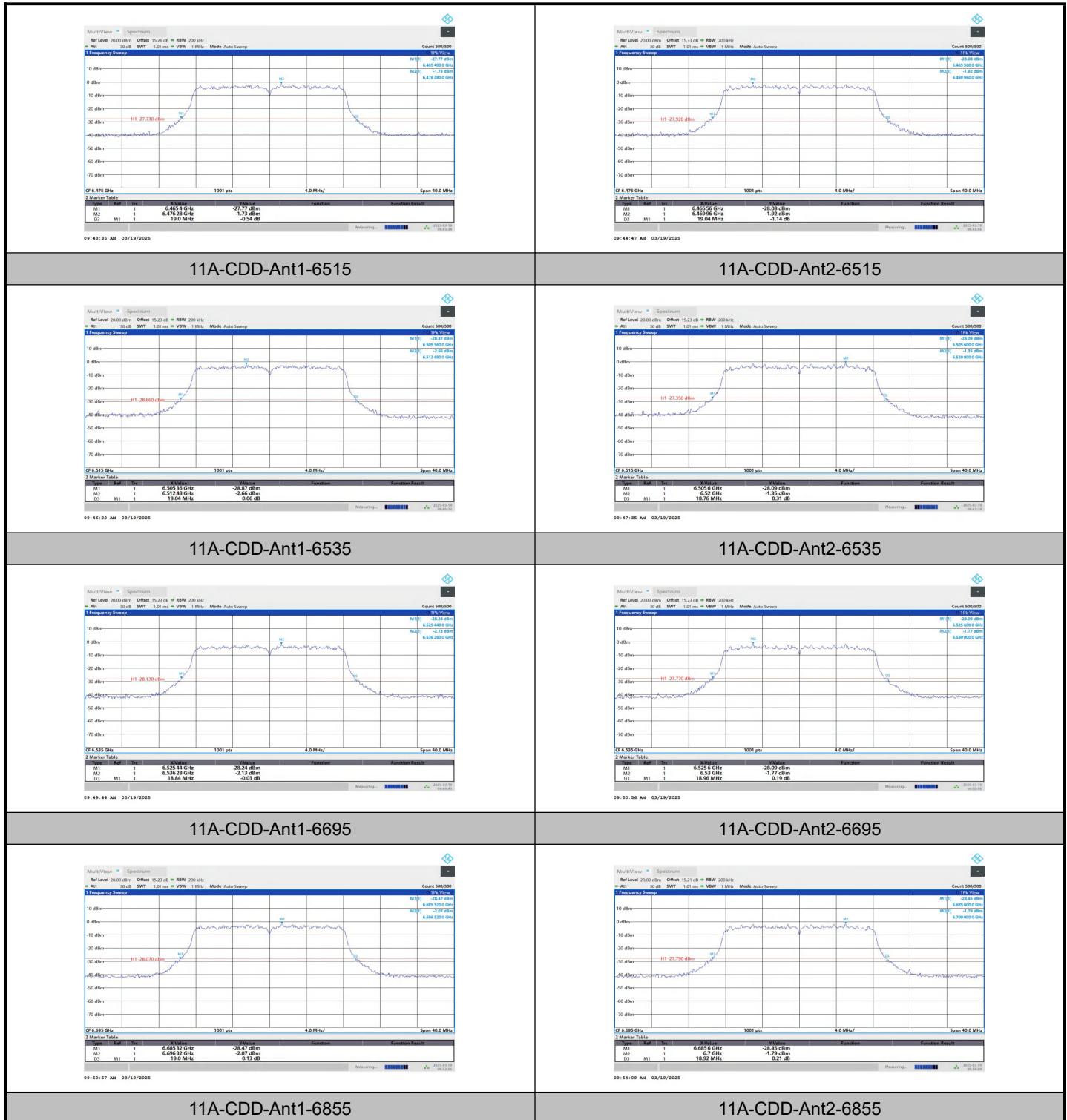
11AX20MIMO	Ant2	6875	19.105	6865.4318	6884.5373	≤320	PASS
11AX20MIMO	Ant1	6895	18.984	6885.4937	6904.4780	≤320	PASS
11AX20MIMO	Ant2	6895	19.067	6885.4475	6904.5147	≤320	PASS
11AX20MIMO	Ant1	6995	19.006	6985.4826	7004.4891	≤320	PASS
11AX20MIMO	Ant2	6995	19.062	6985.4477	7004.5095	≤320	PASS
11AX20MIMO	Ant1	7115	19.015	7105.4701	7124.4852	≤320	PASS
11AX20MIMO	Ant2	7115	19.069	7105.4549	7124.5236	≤320	PASS
11AX40MIMO	Ant1	5965	37.856	5946.0666	5983.9230	≤320	PASS
11AX40MIMO	Ant2	5965	37.877	5946.0155	5983.8923	≤320	PASS
11AX40MIMO	Ant1	6165	37.881	6146.0936	6183.9748	≤320	PASS
11AX40MIMO	Ant2	6165	38.059	6145.9359	6183.9953	≤320	PASS
11AX40MIMO	Ant1	6405	37.962	6385.9780	6423.9396	≤320	PASS
11AX40MIMO	Ant2	6405	38.094	6385.9624	6424.0566	≤320	PASS
11AX40MIMO	Ant1	6445	37.924	6426.0663	6463.9907	≤320	PASS
11AX40MIMO	Ant2	6445	38.064	6425.9641	6464.0278	≤320	PASS
11AX40MIMO	Ant1	6485	37.881	6466.0467	6503.9275	≤320	PASS
11AX40MIMO	Ant2	6485	38.082	6465.9582	6504.0402	≤320	PASS
11AX40MIMO	Ant1	6525	37.879	6506.0360	6543.9147	≤320	PASS
11AX40MIMO	Ant2	6525	38.045	6505.9586	6544.0039	≤320	PASS
11AX40MIMO	Ant1	6565	37.914	6546.0413	6583.9554	≤320	PASS
11AX40MIMO	Ant2	6565	38.037	6545.9677	6584.0049	≤320	PASS
11AX40MIMO	Ant1	6685	37.885	6666.0834	6703.9687	≤320	PASS
11AX40MIMO	Ant2	6685	38.061	6665.9902	6704.0511	≤320	PASS
11AX40MIMO	Ant1	6845	37.843	6826.0618	6863.9044	≤320	PASS
11AX40MIMO	Ant2	6845	38.003	6825.9856	6863.9882	≤320	PASS
11AX40MIMO	Ant1	6885	37.875	6866.0460	6903.9210	≤320	PASS
11AX40MIMO	Ant2	6885	38.084	6865.9555	6904.0399	≤320	PASS
11AX40MIMO	Ant1	6925	37.919	6906.0165	6943.9358	≤320	PASS
11AX40MIMO	Ant2	6925	38.018	6906.0177	6944.0355	≤320	PASS
11AX40MIMO	Ant1	6965	37.942	6946.0228	6983.9644	≤320	PASS
11AX40MIMO	Ant2	6965	38.03	6945.9675	6983.9977	≤320	PASS
11AX40MIMO	Ant1	7085	37.912	7066.0002	7103.9123	≤320	PASS
11AX40MIMO	Ant2	7085	37.953	7065.9941	7103.9472	≤320	PASS
11AX80MIMO	Ant1	5985	77.556	5946.1685	6023.7242	≤320	PASS
11AX80MIMO	Ant2	5985	77.44	5946.2418	6023.6822	≤320	PASS
11AX80MIMO	Ant1	6145	77.53	6106.2308	6183.7608	≤320	PASS
11AX80MIMO	Ant2	6145	77.759	6106.0895	6183.8488	≤320	PASS
11AX80MIMO	Ant1	6385	77.484	6346.2129	6423.6967	≤320	PASS
11AX80MIMO	Ant2	6385	77.66	6346.1380	6423.7977	≤320	PASS

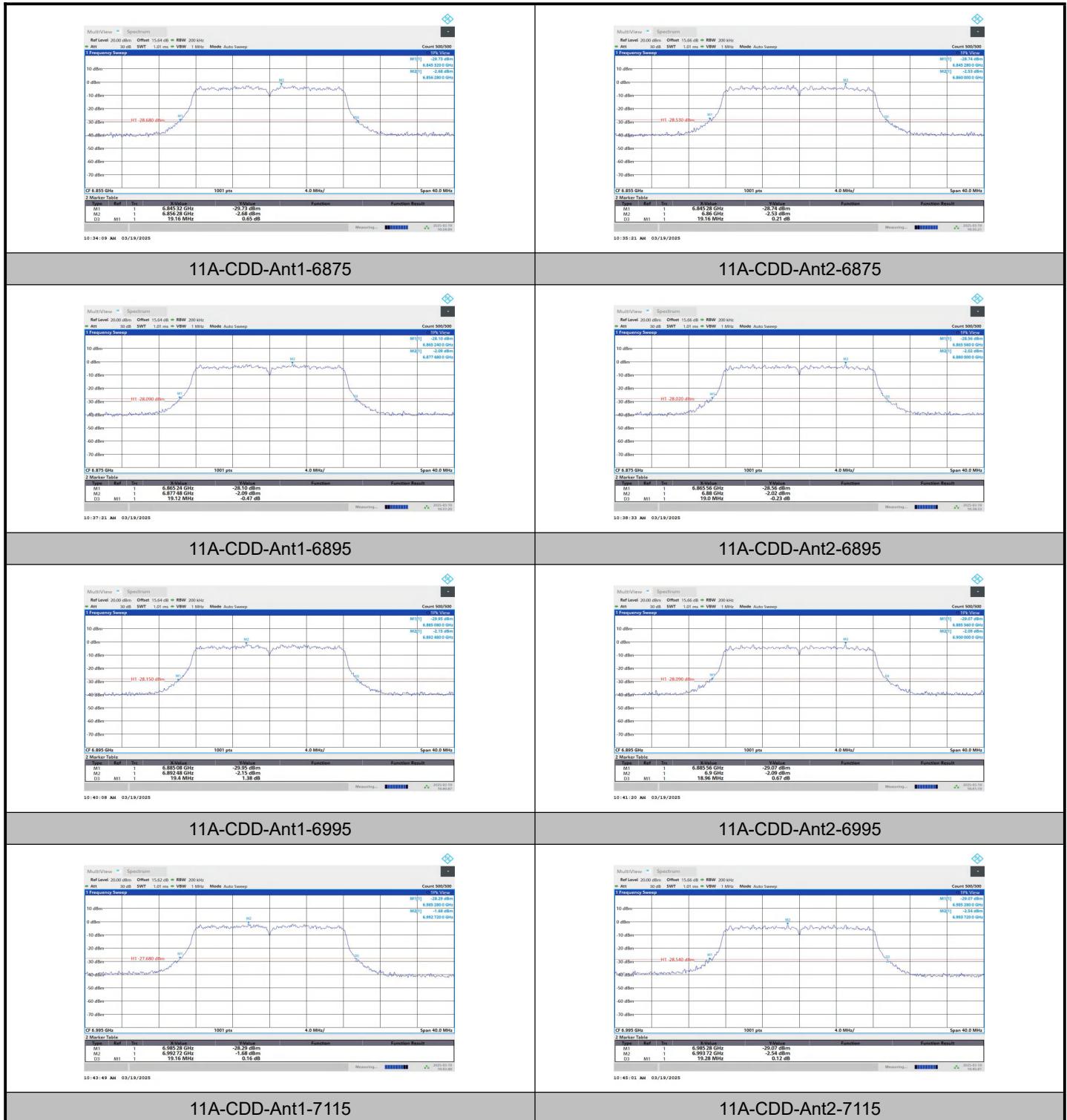
11AX80MIMO	Ant1	6465	77.527	6426.0984	6503.6257	≤320	PASS
11AX80MIMO	Ant2	6465	77.732	6426.0925	6503.8242	≤320	PASS
11AX80MIMO	Ant1	6545	77.364	6506.2582	6583.6217	≤320	PASS
11AX80MIMO	Ant2	6545	77.683	6506.0813	6583.7643	≤320	PASS
11AX80MIMO	Ant1	6625	77.572	6586.1267	6663.6987	≤320	PASS
11AX80MIMO	Ant2	6625	77.651	6586.1133	6663.7638	≤320	PASS
11AX80MIMO	Ant1	6705	77.364	6666.2849	6743.6484	≤320	PASS
11AX80MIMO	Ant2	6705	77.491	6666.2307	6743.7216	≤320	PASS
11AX80MIMO	Ant1	6785	77.407	6746.1139	6823.5212	≤320	PASS
11AX80MIMO	Ant2	6785	77.893	6746.0298	6823.9227	≤320	PASS
11AX80MIMO	Ant1	6865	77.418	6826.2650	6903.6830	≤320	PASS
11AX80MIMO	Ant2	6865	77.585	6826.1148	6903.6994	≤320	PASS
11AX80MIMO	Ant1	6945	77.443	6906.2325	6983.6753	≤320	PASS
11AX80MIMO	Ant2	6945	77.578	6906.1222	6983.7006	≤320	PASS
11AX80MIMO	Ant1	7025	77.571	6986.1316	7063.7027	≤320	PASS
11AX80MIMO	Ant2	7025	77.827	6986.0233	7063.8507	≤320	PASS
11AX160MIMO	Ant1	6025	157.168	5946.2287	6103.3963	≤320	PASS
11AX160MIMO	Ant2	6025	157.341	5946.0248	6103.3661	≤320	PASS
11AX160MIMO	Ant1	6185	157.205	6106.1324	6263.3374	≤320	PASS
11AX160MIMO	Ant2	6185	157.548	6105.9964	6263.5445	≤320	PASS
11AX160MIMO	Ant1	6345	157.043	6266.4778	6423.5204	≤320	PASS
11AX160MIMO	Ant2	6345	157.316	6266.5305	6423.8466	≤320	PASS
11AX160MIMO	Ant1	6505	157.287	6426.1682	6583.4549	≤320	PASS
11AX160MIMO	Ant2	6505	157.244	6426.1299	6583.3735	≤320	PASS
11AX160MIMO	Ant1	6665	157.793	6586.1186	6743.9118	≤320	PASS
11AX160MIMO	Ant2	6665	157.342	6586.2097	6743.5513	≤320	PASS
11AX160MIMO	Ant1	6825	157.221	6746.2880	6903.5092	≤320	PASS
11AX160MIMO	Ant2	6825	157.478	6745.9873	6903.4656	≤320	PASS
11AX160MIMO	Ant1	6985	156.944	6906.4417	7063.3860	≤320	PASS
11AX160MIMO	Ant2	6985	157.268	6906.3210	7063.5889	≤320	PASS

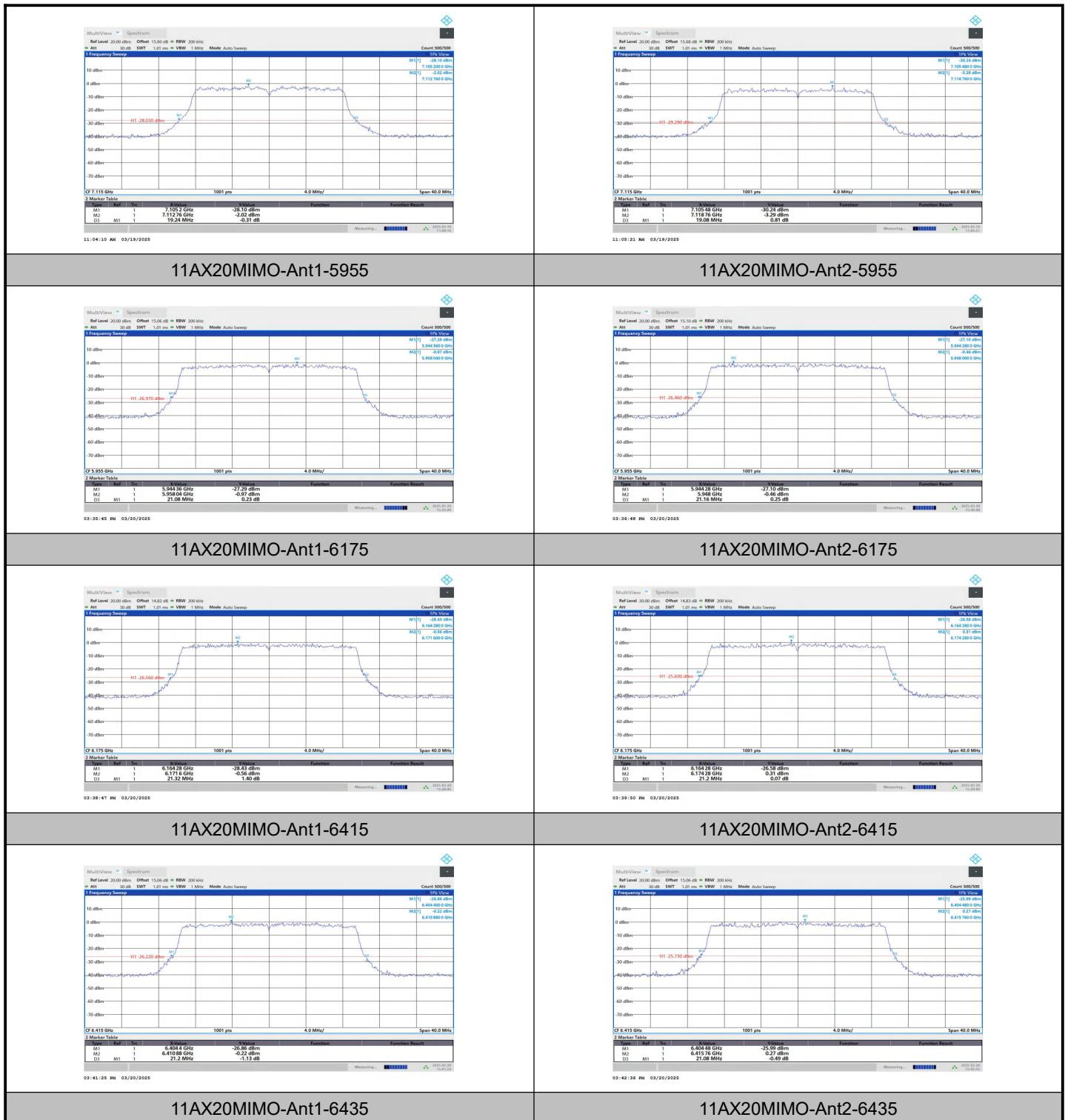
Test Result _99% Bandwidth for AX Part RU

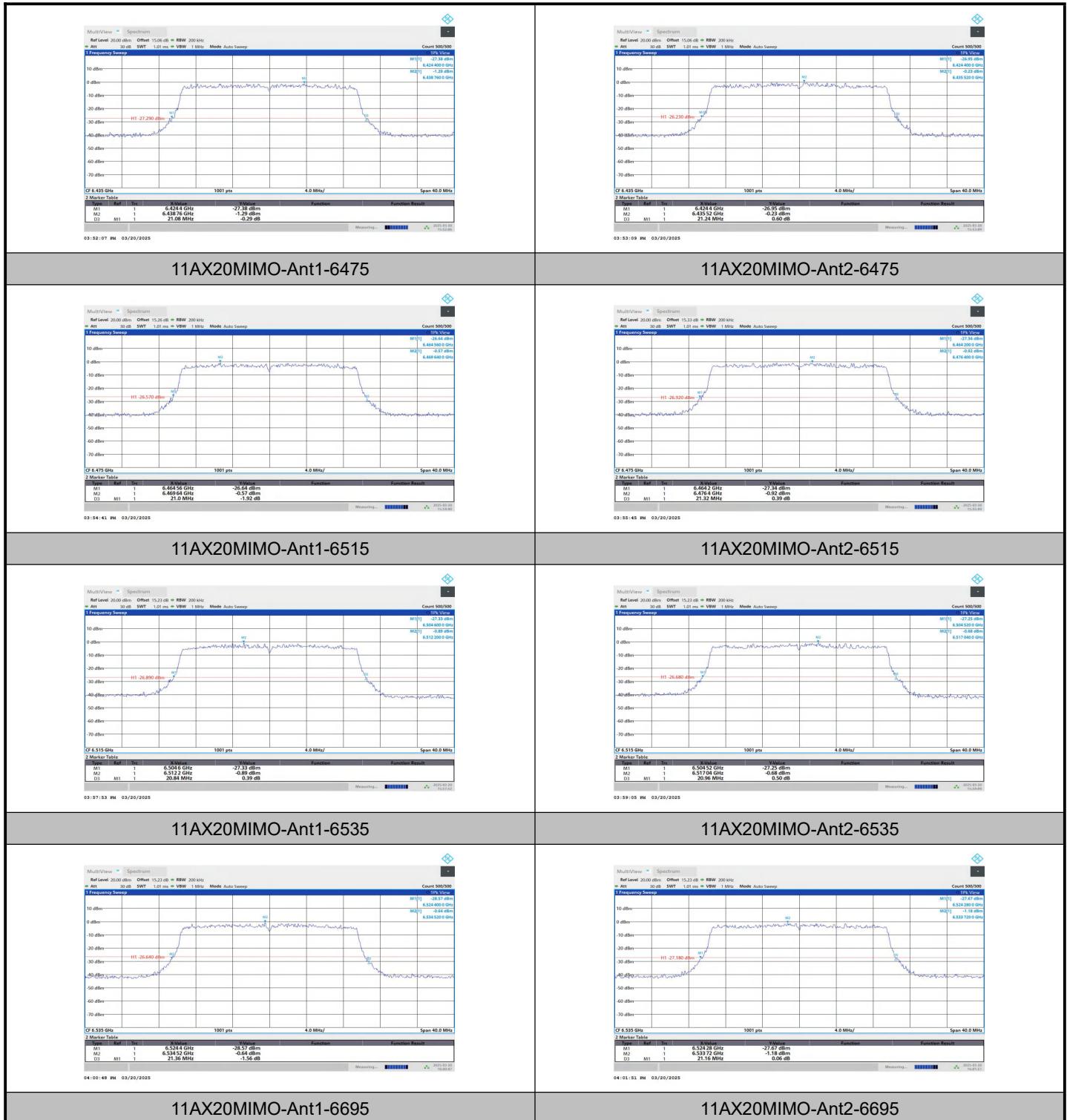
Test Mode	Antenna	Frequency [MHz]	Ru Size	Ru Index	OCB [MHz]	FL [MHz]	FH [MHz]	Limit [MHz]	Verdict
11AX20MIMO	Ant1	5955	26Tone	RU0	19.251	5944.3476	5963.5985	≤320	PASS
11AX20MIMO	Ant2	5955	26Tone	RU0	19.025	5944.4182	5963.4434	≤320	PASS
11AX20MIMO	Ant1	5955	52Tone	RU37	18.777	5944.8081	5963.5851	≤320	PASS
11AX20MIMO	Ant2	5955	52Tone	RU37	18.759	5944.8280	5963.5869	≤320	PASS
11AX20MIMO	Ant1	5955	106Tone	RU53	18.596	5945.0309	5963.6268	≤320	PASS


11AX20MIMO	Ant2	5955	106Tone	RU53	18.514	5945.0666	5963.5809	≤320	PASS
11AX20MIMO	Ant1	6175	26Tone	RU4	17.239	6166.3113	6183.5498	≤320	PASS
11AX20MIMO	Ant2	6175	26Tone	RU4	17.069	6166.4942	6183.5629	≤320	PASS
11AX20MIMO	Ant1	6175	52Tone	RU39	17.225	6166.3843	6183.6092	≤320	PASS
11AX20MIMO	Ant2	6175	52Tone	RU39	17.128	6166.4291	6183.5571	≤320	PASS
11AX20MIMO	Ant1	6175	106Tone	RU53	18.429	6165.1341	6183.5634	≤320	PASS
11AX20MIMO	Ant2	6175	106Tone	RU53	18.564	6165.0268	6183.5908	≤320	PASS
11AX20MIMO	Ant1	6415	26Tone	RU8	18.918	6406.4073	6425.3257	≤320	PASS
11AX20MIMO	Ant2	6415	26Tone	RU8	18.898	6406.3999	6425.2981	≤320	PASS
11AX20MIMO	Ant1	6415	52Tone	RU40	18.763	6406.3143	6425.0770	≤320	PASS
11AX20MIMO	Ant2	6415	52Tone	RU40	18.668	6406.4361	6425.1037	≤320	PASS
11AX20MIMO	Ant1	6415	106Tone	RU54	18.500	6406.3077	6424.8079	≤320	PASS
11AX20MIMO	Ant2	6415	106Tone	RU54	18.424	6406.4254	6424.8490	≤320	PASS
11AX20MIMO	Ant1	6435	26Tone	RU0	18.976	6424.4613	6443.4376	≤320	PASS
11AX20MIMO	Ant2	6435	26Tone	RU0	19.106	6424.4606	6443.5664	≤320	PASS
11AX20MIMO	Ant1	6435	52Tone	RU37	18.752	6424.7743	6443.5264	≤320	PASS
11AX20MIMO	Ant2	6435	52Tone	RU37	18.624	6424.7628	6443.3872	≤320	PASS
11AX20MIMO	Ant1	6435	106Tone	RU53	18.404	6425.1618	6443.5657	≤320	PASS
11AX20MIMO	Ant2	6435	106Tone	RU53	18.400	6425.0664	6443.4662	≤320	PASS
11AX20MIMO	Ant1	6475	26Tone	RU4	17.365	6466.3212	6483.6860	≤320	PASS
11AX20MIMO	Ant2	6475	26Tone	RU4	16.997	6466.4457	6483.4427	≤320	PASS
11AX20MIMO	Ant1	6475	52Tone	RU39	17.280	6466.3114	6483.5910	≤320	PASS
11AX20MIMO	Ant2	6475	52Tone	RU39	17.221	6466.3363	6483.5572	≤320	PASS
11AX20MIMO	Ant1	6475	106Tone	RU53	18.610	6465.0477	6483.6581	≤320	PASS
11AX20MIMO	Ant2	6475	106Tone	RU53	18.492	6465.0751	6483.5675	≤320	PASS
11AX20MIMO	Ant1	6515	26Tone	RU8	18.534	6506.7212	6525.2549	≤320	PASS
11AX20MIMO	Ant2	6515	26Tone	RU8	18.433	6506.8138	6525.2468	≤320	PASS
11AX20MIMO	Ant1	6515	52Tone	RU40	18.706	6506.3086	6525.0149	≤320	PASS
11AX20MIMO	Ant2	6515	52Tone	RU40	18.668	6506.4229	6525.0913	≤320	PASS
11AX20MIMO	Ant1	6515	106Tone	RU54	18.604	6506.2130	6524.8165	≤320	PASS
11AX20MIMO	Ant2	6515	106Tone	RU54	18.433	6506.3926	6524.8258	≤320	PASS
11AX20MIMO	Ant1	6535	26Tone	RU0	19.129	6524.4556	6543.5843	≤320	PASS
11AX20MIMO	Ant2	6535	26Tone	RU0	19.035	6524.4540	6543.4890	≤320	PASS
11AX20MIMO	Ant1	6535	52Tone	RU37	18.853	6524.6446	6543.4979	≤320	PASS
11AX20MIMO	Ant2	6535	52Tone	RU37	18.810	6524.6966	6543.5062	≤320	PASS
11AX20MIMO	Ant1	6535	106Tone	RU53	18.337	6525.0825	6543.4195	≤320	PASS
11AX20MIMO	Ant2	6535	106Tone	RU53	18.543	6525.0526	6543.5957	≤320	PASS
11AX20MIMO	Ant1	6695	26Tone	RU4	17.338	6686.2529	6703.5906	≤320	PASS
11AX20MIMO	Ant2	6695	26Tone	RU4	17.187	6686.4493	6703.6359	≤320	PASS


11AX20MIMO	Ant1	6695	52Tone	RU39	17.140	6686.3824	6703.5221	≤320	PASS
11AX20MIMO	Ant2	6695	52Tone	RU39	17.226	6686.3538	6703.5796	≤320	PASS
11AX20MIMO	Ant1	6695	106Tone	RU53	18.544	6685.1115	6703.6555	≤320	PASS
11AX20MIMO	Ant2	6695	106Tone	RU53	18.532	6685.0625	6703.5948	≤320	PASS
11AX20MIMO	Ant1	6855	26Tone	RU8	19.192	6846.2375	6865.4300	≤320	PASS
11AX20MIMO	Ant2	6855	26Tone	RU8	18.854	6846.4714	6865.3257	≤320	PASS
11AX20MIMO	Ant1	6855	52Tone	RU40	18.578	6846.3135	6864.8913	≤320	PASS
11AX20MIMO	Ant2	6855	52Tone	RU40	18.506	6846.4172	6864.9233	≤320	PASS
11AX20MIMO	Ant1	6855	106Tone	RU54	18.554	6846.2340	6864.7882	≤320	PASS
11AX20MIMO	Ant2	6855	106Tone	RU54	18.424	6846.3842	6864.8086	≤320	PASS
11AX20MIMO	Ant1	6875	26Tone	RU8	18.998	6866.2914	6885.2890	≤320	PASS
11AX20MIMO	Ant2	6875	26Tone	RU8	18.949	6866.3906	6885.3398	≤320	PASS
11AX20MIMO	Ant1	6875	52Tone	RU40	18.590	6866.3334	6884.9235	≤320	PASS
11AX20MIMO	Ant2	6875	52Tone	RU40	18.580	6866.3895	6884.9692	≤320	PASS
11AX20MIMO	Ant1	6875	106Tone	RU54	18.487	6866.3289	6884.8154	≤320	PASS
11AX20MIMO	Ant2	6875	106Tone	RU54	18.497	6866.3639	6884.8613	≤320	PASS
11AX20MIMO	Ant1	6895	26Tone	RU0	19.265	6884.3384	6903.6036	≤320	PASS
11AX20MIMO	Ant2	6895	26Tone	RU0	19.115	6884.4675	6903.5829	≤320	PASS
11AX20MIMO	Ant1	6895	52Tone	RU37	18.677	6884.8891	6903.5661	≤320	PASS
11AX20MIMO	Ant2	6895	52Tone	RU37	18.726	6884.8677	6903.5936	≤320	PASS
11AX20MIMO	Ant1	6895	106Tone	RU53	18.504	6885.0850	6903.5889	≤320	PASS
11AX20MIMO	Ant2	6895	106Tone	RU53	18.516	6885.0915	6903.6071	≤320	PASS
11AX20MIMO	Ant1	6995	26Tone	RU4	17.359	6986.2823	7003.6413	≤320	PASS
11AX20MIMO	Ant2	6995	26Tone	RU4	17.071	6986.4222	7003.4929	≤320	PASS
11AX20MIMO	Ant1	6995	52Tone	RU39	17.235	6986.3169	7003.5518	≤320	PASS
11AX20MIMO	Ant2	6995	52Tone	RU39	17.203	6986.3760	7003.5786	≤320	PASS
11AX20MIMO	Ant1	6995	106Tone	RU53	18.369	6985.1282	7003.4974	≤320	PASS
11AX20MIMO	Ant2	6995	106Tone	RU53	18.433	6985.0610	7003.4945	≤320	PASS
11AX20MIMO	Ant1	7115	26Tone	RU8	18.961	7106.3784	7125.3396	≤320	PASS
11AX20MIMO	Ant2	7115	26Tone	RU8	18.882	7106.4442	7125.3266	≤320	PASS
11AX20MIMO	Ant1	7115	52Tone	RU40	18.675	7106.2972	7124.9721	≤320	PASS
11AX20MIMO	Ant2	7115	52Tone	RU40	18.583	7106.4107	7124.9941	≤320	PASS
11AX20MIMO	Ant1	7115	106Tone	RU54	18.504	7106.2951	7124.7991	≤320	PASS
11AX20MIMO	Ant2	7115	106Tone	RU54	18.409	7106.4126	7124.8212	≤320	PASS
11AX40MIMO	Ant1	5965	242Tone	RU61	37.768	5945.4390	5983.2066	≤320	PASS
11AX40MIMO	Ant2	5965	242Tone	RU61	37.605	5945.3300	5982.9348	≤320	PASS
11AX40MIMO	Ant1	6165	242Tone	RU61	37.971	6145.2848	6183.2558	≤320	PASS
11AX40MIMO	Ant2	6165	242Tone	RU61	37.773	6145.4059	6183.1784	≤320	PASS
11AX40MIMO	Ant1	6405	242Tone	RU62	38.107	6386.4845	6424.5918	≤320	PASS


11AX40MIMO	Ant2	6405	242Tone	RU62	37.996	6386.5285	6424.5244	≤320	PASS
11AX40MIMO	Ant1	6445	242Tone	RU61	37.922	6425.3146	6463.2368	≤320	PASS
11AX40MIMO	Ant2	6445	242Tone	RU61	37.798	6425.3739	6463.1722	≤320	PASS
11AX40MIMO	Ant1	6485	242Tone	RU62	37.847	6466.5152	6504.3620	≤320	PASS
11AX40MIMO	Ant2	6485	242Tone	RU62	37.869	6466.5511	6504.4201	≤320	PASS
11AX40MIMO	Ant1	6525	242Tone	RU62	37.863	6506.4883	6544.3509	≤320	PASS
11AX40MIMO	Ant2	6525	242Tone	RU62	37.621	6506.7562	6544.3769	≤320	PASS
11AX40MIMO	Ant1	6565	242Tone	RU61	37.822	6545.4152	6583.2368	≤320	PASS
11AX40MIMO	Ant2	6565	242Tone	RU61	37.797	6545.3565	6583.1532	≤320	PASS
11AX40MIMO	Ant1	6685	242Tone	RU61	38.121	6665.1519	6703.2733	≤320	PASS
11AX40MIMO	Ant2	6685	242Tone	RU61	37.808	6665.4268	6703.2348	≤320	PASS
11AX40MIMO	Ant1	6845	242Tone	RU62	37.857	6826.4805	6864.3373	≤320	PASS
11AX40MIMO	Ant2	6845	242Tone	RU62	37.790	6826.6608	6864.4510	≤320	PASS
11AX40MIMO	Ant1	6885	242Tone	RU62	38.206	6866.3221	6904.5280	≤320	PASS
11AX40MIMO	Ant2	6885	242Tone	RU62	37.972	6866.6092	6904.5813	≤320	PASS
11AX40MIMO	Ant1	6925	242Tone	RU61	37.896	6905.3810	6943.2769	≤320	PASS
11AX40MIMO	Ant2	6925	242Tone	RU61	37.854	6905.4077	6943.2621	≤320	PASS
11AX40MIMO	Ant1	6965	242Tone	RU61	37.851	6945.3724	6983.2229	≤320	PASS
11AX40MIMO	Ant2	6965	242Tone	RU61	37.828	6945.3377	6983.1661	≤320	PASS
11AX40MIMO	Ant1	7085	242Tone	RU62	38.107	7066.4153	7104.5223	≤320	PASS
11AX40MIMO	Ant2	7085	242Tone	RU62	37.897	7066.6972	7104.5939	≤320	PASS
11AX80MIMO	Ant1	5985	484Tone	RU65	78.193	5945.1107	6023.3042	≤320	PASS
11AX80MIMO	Ant2	5985	484Tone	RU65	77.780	5944.9741	6022.7539	≤320	PASS
11AX80MIMO	Ant1	6145	484Tone	RU65	78.442	6104.8305	6183.2726	≤320	PASS
11AX80MIMO	Ant2	6145	484Tone	RU65	78.176	6104.8201	6182.9960	≤320	PASS
11AX80MIMO	Ant1	6385	484Tone	RU66	78.063	6346.8086	6424.8711	≤320	PASS
11AX80MIMO	Ant2	6385	484Tone	RU66	78.259	6346.9626	6425.2212	≤320	PASS
11AX80MIMO	Ant1	6465	484Tone	RU65	78.385	6424.9186	6503.3034	≤320	PASS
11AX80MIMO	Ant2	6465	484Tone	RU65	77.927	6424.9397	6502.8669	≤320	PASS
11AX80MIMO	Ant1	6545	484Tone	RU66	77.746	6506.8715	6584.6178	≤320	PASS
11AX80MIMO	Ant2	6545	484Tone	RU66	77.805	6507.0153	6584.8203	≤320	PASS
11AX80MIMO	Ant1	6625	484Tone	RU65	78.230	6584.9493	6663.1798	≤320	PASS
11AX80MIMO	Ant2	6625	484Tone	RU65	77.822	6584.9424	6662.7640	≤320	PASS
11AX80MIMO	Ant1	6705	484Tone	RU65	78.238	6665.0873	6743.3251	≤320	PASS
11AX80MIMO	Ant2	6705	484Tone	RU65	77.793	6665.0462	6742.8391	≤320	PASS
11AX80MIMO	Ant1	6785	484Tone	RU66	77.868	6746.7575	6824.6259	≤320	PASS
11AX80MIMO	Ant2	6785	484Tone	RU66	77.974	6746.7961	6824.7701	≤320	PASS
11AX80MIMO	Ant1	6865	484Tone	RU66	78.033	6826.8639	6904.8969	≤320	PASS
11AX80MIMO	Ant2	6865	484Tone	RU66	77.952	6827.0328	6904.9846	≤320	PASS


11AX80MIMO	Ant1	6945	484Tone	RU65	78.300	6905.2474	6983.5471	≤320	PASS
11AX80MIMO	Ant2	6945	484Tone	RU65	77.951	6905.0162	6982.9671	≤320	PASS
11AX80MIMO	Ant1	7025	484Tone	RU66	77.911	6986.6312	7064.5419	≤320	PASS
11AX80MIMO	Ant2	7025	484Tone	RU66	77.988	6986.9498	7064.9376	≤320	PASS
11AX160MIMO	Ant1	6025	996Tone	RU67	159.73	5943.3043	6103.0366	≤320	PASS
11AX160MIMO	Ant2	6025	996Tone	RU67	158.33	5944.0820	6102.4091	≤320	PASS
11AX160MIMO	Ant1	6185	996Tone	RU67	159.95	6102.7846	6262.7327	≤320	PASS
11AX160MIMO	Ant2	6185	996Tone	RU67	159.77	6103.6451	6263.4183	≤320	PASS
11AX160MIMO	Ant1	6345	996Tone	RU68	158.00	6267.4130	6425.4154	≤320	PASS
11AX160MIMO	Ant2	6345	996Tone	RU68	157.72	6267.8941	6425.6179	≤320	PASS
11AX160MIMO	Ant1	6505	996Tone	RU67	161.11	6422.1173	6583.2251	≤320	PASS
11AX160MIMO	Ant2	6505	996Tone	RU67	158.86	6423.5917	6582.4529	≤320	PASS
11AX160MIMO	Ant1	6665	996Tone	RU68	158.31	6587.1704	6745.4826	≤320	PASS
11AX160MIMO	Ant2	6665	996Tone	RU68	158.42	6586.9190	6745.3399	≤320	PASS
11AX160MIMO	Ant1	6825	996Tone	RU67	161.41	6743.3743	6904.7797	≤320	PASS
11AX160MIMO	Ant2	6825	996Tone	RU67	159.44	6743.4333	6902.8710	≤320	PASS
11AX160MIMO	Ant1	6985	996Tone	RU68	158.40	6907.2079	7065.6102	≤320	PASS
11AX160MIMO	Ant2	6985	996Tone	RU68	158.37	6906.9895	7065.3564	≤320	PASS


Test Graphs_Emission Bandwidth

