

Page 1 of 75

JQA File No. : KL80230809

Issue Date: February 20, 2024

# **TEST REPORT**

**Applicant**: Teijin Frontier Co., Ltd.

Address : NBF Comodio Shiodome 2-14-1, Higashishimbashi, Minato-ku,

Tokyo 105-0021, Japan

Products : RecoHand

Model No. : M920SRW

**Serial No.** : 00012 (Radiated sample), 00013 (Conducted sample)

Test Standard : CFR 47 FCC Rules and Regulations Part 15 Subpart C

FCC ID : 2BEXRRHM920T001

Test Results : Passed

Date of Receipt : February 5, 2024

**Date of Test** : February  $6 \sim 9$ , 2024



dusty.

Kosei Shibata
Deputy Director
Japan Quality Assurance Organization
Kitakansai Testing Center
Saito EMC Branch

7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The test results in this test report was made by using the measuring instruments which are traceable to national standards of measurement in accordance with ISO/IEC 17025.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents for the equipment under test (EUT) such as identification information in clause 2 and 6 of this report were provided by the applicant. JQA is not responsible for the test results affected by the incorrect information.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- VLAC does not approve, certify or warrant the product by this test report.



Page 2 of 75

## **REVISION HISTORY**

| File No.   | Contents      | Issue Date        |
|------------|---------------|-------------------|
| KL80230809 | Initial Issue | February 20, 2024 |



Page 3 of 75

# **TABLE OF CONTENTS**

|    |    |                                          | Page |
|----|----|------------------------------------------|------|
| 1  | Sı | ummary of Test Results                   | 4    |
| 2  | D  | escription of Equipment Under Test (EUT) | 5    |
| 2. | •  | General Information                      |      |
| 3  | Te | est Location                             | 6    |
| 4  | A  | ccreditation of Test Laboratory          | 6    |
| 5  | М  | easurement Uncertainty                   | 6    |
| 6  | Se | etup of EUT                              | 7    |
| 6. | .1 | Test Configuration                       | 7    |
| 6. | 2  | Test Arrangement (Drawings)              | 7    |
| 6. | 3  | Operating Condition                      | 8    |
| 6. | 4  | Duty Cycle                               | 9    |
| 7  | Te | est Item                                 | 10   |
| 7. | 1  | 99% Occupied Bandwidth                   | 10   |
| 7. | 2  | 6 dB Emission Bandwidth                  | 13   |
| 7. | 3  | Power Spectral Density                   | 16   |
| 7. | 4  | Maximum Conducted Output Power           | 19   |
| 7. | .5 | Conducted Spurious Emission              | 21   |
| 7. | 6  | Radiated Spurious Emission               | 29   |
| 7. | 7  | AC Powerline Conducted Emission          |      |
| 8  | Te | est Setup (Photographs)                  | 70   |



Page 4 of 75

#### 1 Summary of Test Results

Applied Standard : CFR 47 FCC Rules and Regulations Part 15 – Radio Frequency Devices

Subpart C – Intentional Radiators

| Item                            | FCC rules                          | Result | Note |
|---------------------------------|------------------------------------|--------|------|
| Antenna Requirement             | §15.203                            | Passed | 1    |
| 99% Occupied Bandwidth          |                                    |        | 2    |
| 6 dB Emission Bandwidth         | §15.247(a)(2)                      | Passed |      |
| Power Spectral Density          | §15.247(e)                         | Passed |      |
| Maximum Conducted Output Power  | §15.247(b)(3)                      | Passed |      |
| Conducted Spurious Emission     | §15.247(d)                         | Passed |      |
| Radiated Spurious Emission      | §15.205, §15.209 and<br>§15.247(d) | Passed |      |
| AC Powerline Conducted Emission | §15.207                            | Passed |      |
| RF Exposure                     | §1.1310, §2.1091 and<br>§15.247(i) | Passed | 3    |

<sup>1)</sup> The EUT is designed to ensure that no antenna other than that furnished by the manufacturer shall be used. Information for antenna type is described in clause 2.

y. Sakai y. Shintaku

- 2) Reporting purposes only
- 3) Refer to test report KL80230810.

In the approval of test results,

- No deviations were employed from the applied standard.
- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by

Yasuhisa Sakai / Project Manager

Tested by

Control No. 23130-2302

Yuji Shintaku / Assistant Manager

JAPAN QUALITY ASSURANCE ORGANIZATION

Page 5 of 75

# 2 Description of Equipment Under Test (EUT)

#### 2.1 General Information

|                       | Teijin Frontier Co., Ltd.                                 |
|-----------------------|-----------------------------------------------------------|
| Manufacturer          | NBF Comodio Shiodome 2-14-1, Higashishimbashi, Minato-ku, |
|                       | Tokyo 105-0021, Japan                                     |
| Products              | RecoHand                                                  |
| Model No.             | M920SRW                                                   |
| Serial No.            | 00012 (Radiated sample), 00013 (Conducted sample)         |
| Product Type          | Mass Production                                           |
| Date of Manufacture   | October 19, 2023                                          |
| Power Rating          | 3.3VDC                                                    |
| EUT Grounding         | None                                                      |
| Modulation Technology | Digital transmission system (DTS)                         |
| Modulation Type       | Bluetooth 5.1 +LE (GFSK)                                  |
| Operating Frequency   | 2402.0 MHz (00CH) - 2480.0MHz (39CH)                      |
| Antenna Type          | PCB Antenna                                               |
| Antenna Gain          | -1.61 dBi                                                 |

## 2.2 Channel List

40 channels are provided for BLE.

| Channel | Channel Frequency (MHz) |    | Frequency (MHz) |
|---------|-------------------------|----|-----------------|
| 0       | 0 2402                  |    | 2442            |
| 1       | 1 2404                  |    |                 |
| 2       | 2 2406                  |    | :               |
|         |                         |    | 2476            |
| 18 2438 |                         | 38 | 2478            |
| 19      | 2440                    | 39 | 2480            |



Page 6 of 75

#### 3 Test Location

Japan Quality Assurance Organization (JQA)
Kitakansai Testing Center Saito EMC Branch
7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

### 4 Accreditation of Test Laboratory

JQA Kitakansai Testing Center Saito EMC Branch is accredited under ISO/IEC 17025 by the following accreditation bodies and the test facility is registered by the following bodies. If the accreditation logo does not appear on this cover, it is outside the scope of ISO/IEC 17025.

VLAC Accreditation No. : VLAC-001-2 (Expiry date : April 30, 2024)
A2LA Accreditation No. : 5498.01 (Expiry date : November 30, 2025)

VCCI Registration No. : A-0002 (Expiry date : April 30, 2024)
FCC Registration No. : JP5008 (Expiry date : April 30, 2024)
ISED Registration No. : JP0014 (Expiry date : November 30, 2025)

BSMI Registration No. : SL2-IS-E-6006, SL2-IN-E-6006, SL2-R1/R2-E-6006, SL2-A1-E-6006

(Expiry date: September 14, 2025)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI.

(Expiry date: February 22, 2025)

#### 5 Measurement Uncertainty

| Item                              | Frequency          | Uncertainty ( <i>U</i> ) |
|-----------------------------------|--------------------|--------------------------|
| Emission Bandwidth                |                    | ± 0.9 %                  |
| Peak Output Power                 |                    | ± 0.9 dB                 |
|                                   | 9 kHz – 1 GHz      | ± 1.4 dB                 |
| Conducted Emission (Antenna Port) | 1 GHz – 18 GHz     | ± 1.7 dB                 |
|                                   | 18 GHz – 40 GHz    | ± 2.3 dB                 |
|                                   | 9 kHz – 30 MHz     | ± 3.0 dB                 |
|                                   | 30 MHz – 200 MHz   | ± 3.6 dB                 |
| Radiated Emission                 | 200 MHz – 1000 MHz | ± 4.8 dB                 |
| Radiated Effission                | 1 GHz – 6 GHz      | ± 4.7 dB                 |
|                                   | 6 GHz – 18 GHz     | ± 4.6 dB                 |
|                                   | 18 GHz – 40 GHz    | ± 5.1 dB                 |
| AC Powerline Conducted Emission   | 150 kHz – 30 MHz   | ± 2.6 dB                 |

Determining compliance with the limits in this test report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty (MIU).

The reported expanded uncertainty of measurement, U is described with using the coverage factor k = 2, to give a level of confidence of approximately 95 %.

JQA File No. : KL80230809

Issue Date : February 20, 2024

Page 7 of 75

## 6 Setup of EUT

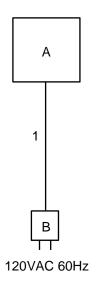
## 6.1 Test Configuration

The equipment under test (EUT) consists of:

| _ |   | 100000000000000000000000000000000000000 |                           |           |              |  |  |
|---|---|-----------------------------------------|---------------------------|-----------|--------------|--|--|
|   |   | Item                                    | Manufacturer              | Model No. | Serial No.   |  |  |
| Ī | Α | RecoHand                                | Teijin Frontier Co., Ltd. | M920SRW   | 00012, 00013 |  |  |

The auxiliary equipment (AE) used for testing:

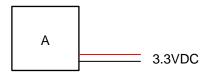
### None


|   | Item       | Manufacturer                       | Model No.        | Serial No. |
|---|------------|------------------------------------|------------------|------------|
| В | AC Adapter | Dongguan Yingju Power<br>Co., Ltd. | YJC010W-0502000J | 4219       |

Type of Cable:

| No. | Description | Identification | Cable    | Ferrite       | Length |
|-----|-------------|----------------|----------|---------------|--------|
|     |             | (Manu. etc.)   | Shielded | Shielded Core | (m)    |
| 1   | USB Cable   |                | Yes      | No            | 1.5    |

## 6.2 Test Arrangement (Drawings)


## **Conducted Emission Tests**







#### **Other RF Tests**



# 6.3 Operating Condition

Test Mode

The EUT is set with the test mode, the specification of the test mode is as followings.

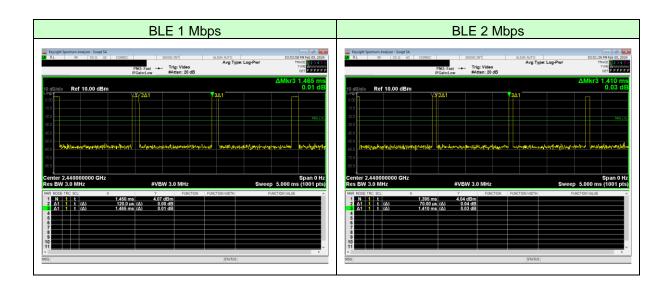
Bluetooth Low Energy Mode (Bluetooth 5.1 +LE):

Transmitting frequency : 2402 MHz (00CH) – 2480 MHz (39CH) Receiver frequency : 2402 MHz (00CH) – 2480 MHz (39CH)

The tests were performed in the following worst condition.

| Mode       | Data Rate (Worst) | Channel   |
|------------|-------------------|-----------|
| BLE 1 Mbps | 1 Mbps            | 0, 19, 39 |
| BLE 2 Mbps | 2 Mbps            | 0, 19, 39 |

The EUT with temporary antenna port was used in conducted measurement.


The tests were performed using the test program which status changed by the contact switches supplied by applicant.



Page 9 of 75

# 6.4 Duty Cycle

| Mode       | On Time<br>(msec.) | On+Off Time<br>(msec.) | Duty Cycle<br>(%) | Duty Factor<br>(dB) | VBW [>1/T]<br>(kHz) |
|------------|--------------------|------------------------|-------------------|---------------------|---------------------|
| BLE 1 Mbps | 0.120              | 1.465                  | 8.2               | 10.87               | > 8.34              |
| BLE 2 Mbps | 0.070              | 1.410                  | 5.0               | 13.04               | > 14.29             |



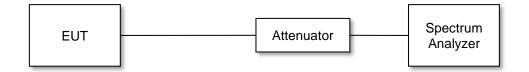


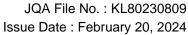
Page 10 of 75

#### 7 Test Item

## 7.1 99% Occupied Bandwidth

#### 7.1.1 Test Site and Instruments


| Test Site : Shielded Room S3                                             |                                                            |                   |              |            |            |  |  |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------------|-------------------|--------------|------------|------------|--|--|--|--|
| Туре                                                                     | Type Model Serial No. (ID) Manufacturer Last Cal. Cal. Due |                   |              |            |            |  |  |  |  |
| Spectrum Analyzer                                                        | N9010A                                                     | MY50420292 (A-12) | Agilent      | 2023/12/12 | 2024/12/11 |  |  |  |  |
| RF Cable                                                                 | SF102                                                      | 14253/2 (C-52)    | HUBER+SUHNER | 2023/08/29 | 2024/08/28 |  |  |  |  |
| Attenuator                                                               | 54A-10                                                     | W5732 (D-30)      | Weinschel    | 2023/05/26 | 2024/05/25 |  |  |  |  |
| Thermo-Hygrometer testo 608-H2 30050650 (F-71) testo 2023/04/24 2024/04/ |                                                            |                   |              |            |            |  |  |  |  |
| Barometer                                                                | BAROMEX                                                    | 02952 (F-48)      | SATO         | 2023/08/16 | 2024/08/15 |  |  |  |  |


## 7.1.2 Test Method and Test Setup (Diagrammatic illustration)

The EUT is connected to the measuring equipment via a suitable attenuator.

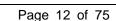
The test conditions and methods comply with the following test standards.

- ANSI C63.10-2020 +Cor.1-2023 clause 6.9.3








Page 11 of 75

#### 7.1.3 Test Data

<u>Test Date: February 9, 2024</u> <u>Temp.: 23 °C, RH: 38 %, Atm.: 1001 hPa</u>

| Mode       | Channel | Frequency<br>(MHz) | 99% Occupied Bandwidth<br>(MHz) | Limits<br>(MHz) |
|------------|---------|--------------------|---------------------------------|-----------------|
| BLE 1 Mbps | 0       | 2402               | 1.038                           |                 |
|            | 19      | 2440               | 1.041                           |                 |
|            | 39      | 2480               | 1.042                           |                 |
|            | 0       | 2402               | 2.036                           |                 |
| BLE 2 Mbps | 19      | 2440               | 2.042                           |                 |
|            | 39      | 2480               | 2.043                           |                 |







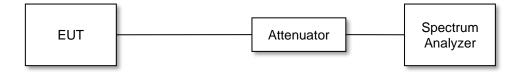




Page 13 of 75

#### 7.2 6 dB Emission Bandwidth

#### 7.2.1 Test Site and Instruments


| Test Site : Shielded Room S3 |              |                   |              |            |            |  |  |  |
|------------------------------|--------------|-------------------|--------------|------------|------------|--|--|--|
| Туре                         | Model        | Serial No. (ID)   | Manufacturer | Last Cal.  | Cal. Due   |  |  |  |
| Spectrum Analyzer            | N9010A       | MY50420292 (A-12) | Agilent      | 2023/12/12 | 2024/12/11 |  |  |  |
| RF Cable                     | SF102        | 14253/2 (C-52)    | HUBER+SUHNER | 2023/08/29 | 2024/08/28 |  |  |  |
| Attenuator                   | 54A-10       | W5732 (D-30)      | Weinschel    | 2023/05/26 | 2024/05/25 |  |  |  |
| Thermo-Hygrometer            | testo 608-H2 | 30050650 (F-71)   | testo        | 2023/04/24 | 2024/04/23 |  |  |  |
| Barometer                    | BAROMEX      | 02952 (F-48)      | SATO         | 2023/08/16 | 2024/08/15 |  |  |  |

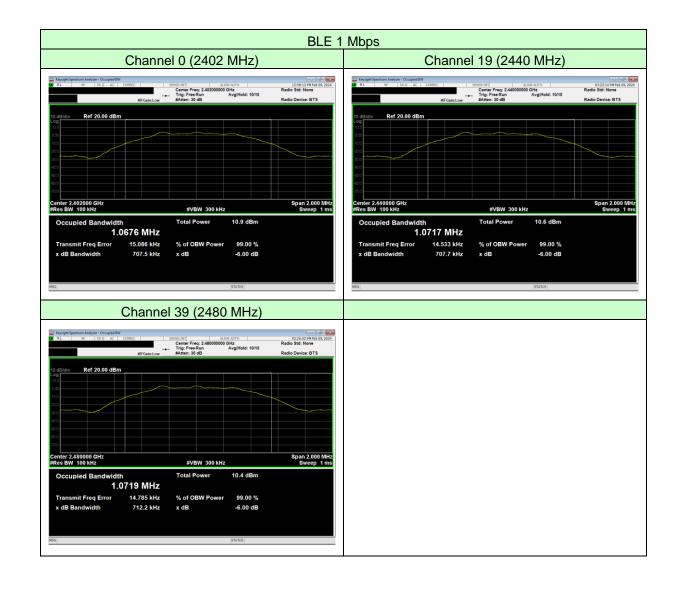
## 7.2.2 Test Method and Test Setup (Diagrammatic illustration)

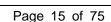
The EUT is connected to the measuring equipment via a suitable attenuator.

The test conditions and methods comply with the following test standards.

- KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2020 +Cor.1-2023 clause 11.8







Page 14 of 75

#### 7.2.3 Test Data

<u>Test Date: February 9, 2024</u> <u>Temp.: 23 °C, RH: 38 %, Atm.: 1001 hPa</u>

| Mode       | Channel | Frequency<br>(MHz) | 6dB Bandwidth<br>(MHz) | Limits<br>(MHz) |
|------------|---------|--------------------|------------------------|-----------------|
| BLE 1 Mbps | 0       | 2402               | 0.708                  | ≥ 0.5           |
|            | 19      | 2440               | 0.708                  | ≥ 0.5           |
|            | 39      | 2480               | 0.712                  | ≥ 0.5           |
|            | 0       | 2402               | 1.188                  | ≥ 0.5           |
| BLE 2 Mbps | 19      | 2440               | 1.192                  | ≥ 0.5           |
|            | 39      | 2480               | 1.198                  | ≥ 0.5           |







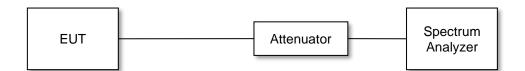


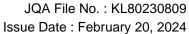


Page 16 of 75

## 7.3 Power Spectral Density

#### 7.3.1 Test Site and Instruments


| Test Site : Shielded Room S3                               |              |                   |              |            |            |  |  |
|------------------------------------------------------------|--------------|-------------------|--------------|------------|------------|--|--|
| Type Model Serial No. (ID) Manufacturer Last Cal. Cal. Due |              |                   |              |            |            |  |  |
| Spectrum Analyzer                                          | N9010A       | MY50420292 (A-12) | Agilent      | 2023/12/12 | 2024/12/11 |  |  |
| RF Cable                                                   | SF102        | 14253/2 (C-52)    | HUBER+SUHNER | 2023/08/29 | 2024/08/28 |  |  |
| Attenuator                                                 | 54A-10       | W5732 (D-30)      | Weinschel    | 2023/05/26 | 2024/05/25 |  |  |
| Thermo-Hygrometer                                          | testo 608-H2 | 30050650 (F-71)   | testo        | 2023/04/24 | 2024/04/23 |  |  |
| Barometer                                                  | BAROMEX      | 02952 (F-48)      | SATO         | 2023/08/16 | 2024/08/15 |  |  |


## 7.3.2 Test Method and Test Setup (Diagrammatic illustration)

The EUT is connected to the measuring equipment via a suitable attenuator.

The test conditions and methods comply with the following test standards.

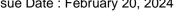
- KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2020 +Cor.1-2023 clause 11.10







sue Date . February 20, 2024


Page 17 of 75

#### 7.3.3 Test Data

<u>Test Date: February 9, 2024</u> <u>Temp.: 23 °C, RH: 38 %, Atm.: 1001 hPa</u>

| Mode       | Channel | Frequency<br>(MHz) | Power Spectral Density<br>(dBm/30kHz) | Limits<br>(dBm/3kHz) |
|------------|---------|--------------------|---------------------------------------|----------------------|
|            | 0       | 2402               | 1.992                                 | ≤ 8.0                |
| BLE 1 Mbps | 19      | 2440               | 1.705                                 | ≤ 8.0                |
|            | 39      | 2480               | 1.462                                 | ≤ 8.0                |
|            | 0       | 2402               | 0.628                                 | ≤ 8.0                |
| BLE 2 Mbps | 19      | 2440               | 0.348                                 | ≤ 8.0                |
|            | 39      | 2480               | 0.117                                 | ≤ 8.0                |





Page 18 of 75



Channel 0 (2402 MHz)

Channel 19 (2440 MHz)

Channel 39 (2480 MHz)

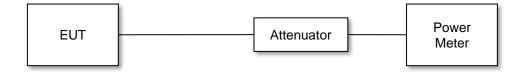
Channel 39 (2480 MHz)



Page 19 of 75

## 7.4 Maximum Conducted Output Power

#### 7.4.1 Test Site and Instruments


| Test Site : Shielded Room S3                               |              |                 |           |            |            |  |  |
|------------------------------------------------------------|--------------|-----------------|-----------|------------|------------|--|--|
| Type Model Serial No. (ID) Manufacturer Last Cal. Cal. Due |              |                 |           |            |            |  |  |
| Power Meter                                                | ML2495A      | 1423001 (B-16)  | Anritsu   | 2023/08/14 | 2024/08/13 |  |  |
| Power Sensor                                               | MA2411B      | 1339136 (B-18)  | Anritsu   | 2023/08/14 | 2024/08/13 |  |  |
| Attenuator                                                 | 54A-10       | W5732 (D-30)    | Weinschel | 2023/05/26 | 2024/05/25 |  |  |
| Thermo-Hygrometer                                          | testo 608-H2 | 30050650 (F-71) | testo     | 2023/04/24 | 2024/04/23 |  |  |
| Barometer                                                  | BAROMEX      | 02952 (F-48)    | SATO      | 2023/08/16 | 2024/08/15 |  |  |

#### 7.4.2 Test Method and Test Setup (Diagrammatic illustration)

The EUT is connected to the measuring equipment via a suitable attenuator.

The test conditions and methods comply with the following test standards.

- KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2020 +Cor.1-2023 clause 11.9.1.2 (PKPM1) and 11.9.2.3.2 (AVGPM-G)





Page 20 of 75

#### 7.4.3 Test Data

<u>Test Date: February 6, 2024</u> <u>Temp.: 22 °C, RH: 39 %, Atm.: 1005 hPa</u>

| Mode       | Channel | Frequency<br>(MHz) | Peak Output Power<br>(dBm) | Limits<br>(dBm) |
|------------|---------|--------------------|----------------------------|-----------------|
| BLE 1 Mbps | 0       | 2402               | 4.456                      | ≤ 30.0          |
|            | 19      | 2440               | 4.238                      | ≤ 30.0          |
|            | 39      | 2480               | 3.944                      | ≤ 30.0          |
| BLE 2 Mbps | 0       | 2402               | 4.464                      | ≤ 30.0          |
|            | 19      | 2440               | 4.232                      | ≤ 30.0          |
|            | 39      | 2480               | 3.960                      | ≤ 30.0          |

| Mode       | Channel | Frequency<br>(MHz) | Average Output Power (dBm) | Limits<br>(dBm) |
|------------|---------|--------------------|----------------------------|-----------------|
|            | 0       | 2402               | 4.434                      |                 |
| BLE 1 Mbps | 19      | 2440               | 4.208                      |                 |
|            | 39      | 2480               | 3.925                      |                 |
|            | 0       | 2402               | 4.438                      |                 |
| BLE 2 Mbps | 19      | 2440               | 4.205                      |                 |
|            | 39      | 2480               | 3.927                      |                 |

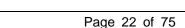


Page 21 of 75

## 7.5 Conducted Spurious Emission

#### 7.5.1 Test Site and Instruments

| Test Site : Shielded Room S3                               |              |                   |              |            |            |  |  |
|------------------------------------------------------------|--------------|-------------------|--------------|------------|------------|--|--|
| Type Model Serial No. (ID) Manufacturer Last Cal. Cal. Due |              |                   |              |            |            |  |  |
| Spectrum Analyzer                                          | N9010A       | MY50420292 (A-12) | Agilent      | 2023/12/12 | 2024/12/11 |  |  |
| RF Cable                                                   | SF102        | 14253/2 (C-52)    | HUBER+SUHNER | 2023/08/29 | 2024/08/28 |  |  |
| Attenuator                                                 | 54A-10       | W5732 (D-30)      | Weinschel    | 2023/05/26 | 2024/05/25 |  |  |
| Thermo-Hygrometer                                          | testo 608-H2 | 30050650 (F-71)   | testo        | 2023/04/24 | 2024/04/23 |  |  |
| Barometer                                                  | BAROMEX      | 02952 (F-48)      | SATO         | 2023/08/16 | 2024/08/15 |  |  |

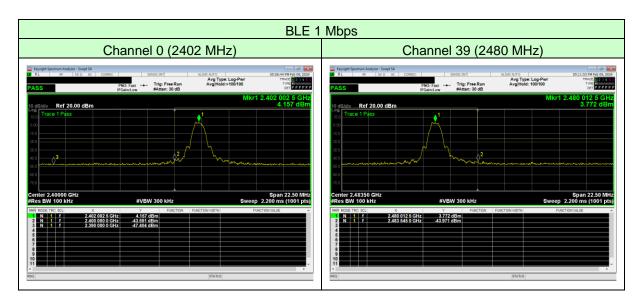

## 7.5.2 Test Method and Test Setup (Diagrammatic illustration)

The EUT is connected to the measuring equipment via a suitable attenuator.

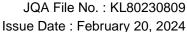
The test conditions and methods comply with the following test standards.

- KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2020 +Cor.1-2023 clause 11.11







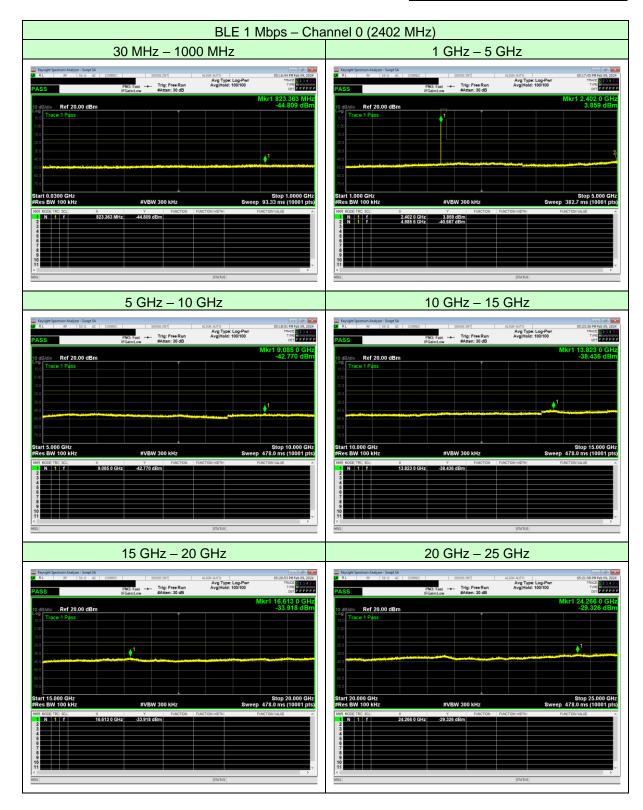


#### 7.5.3 Test Data

## 7.5.3.1 Band-edge Emission

<u>Test Date: February 9, 2024</u> <u>Temp.: 23 °C, RH: 38 %, Atm.: 1001 hPa</u>



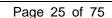




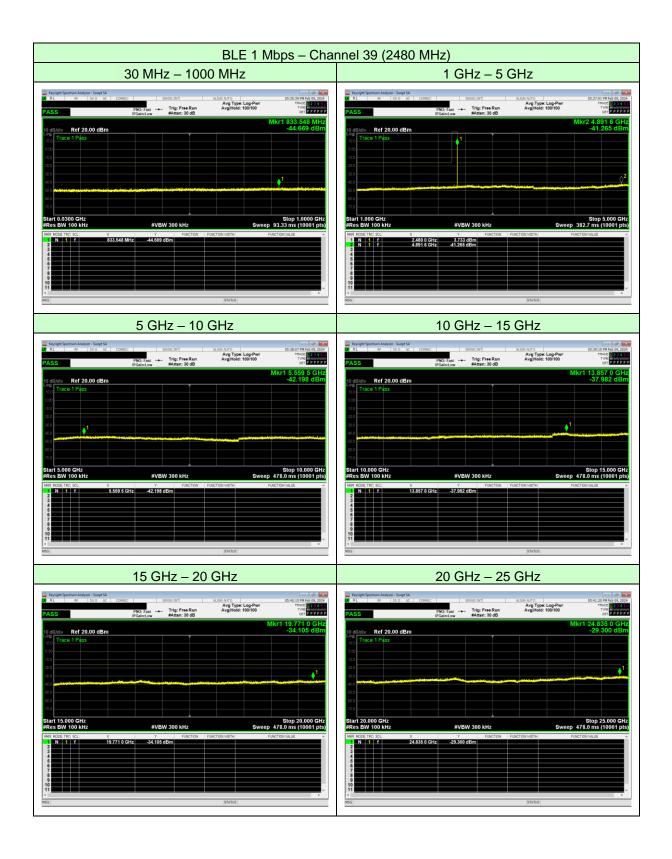


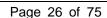

Page 23 of 75

#### 7.5.3.2 Conducted Spurious Emission

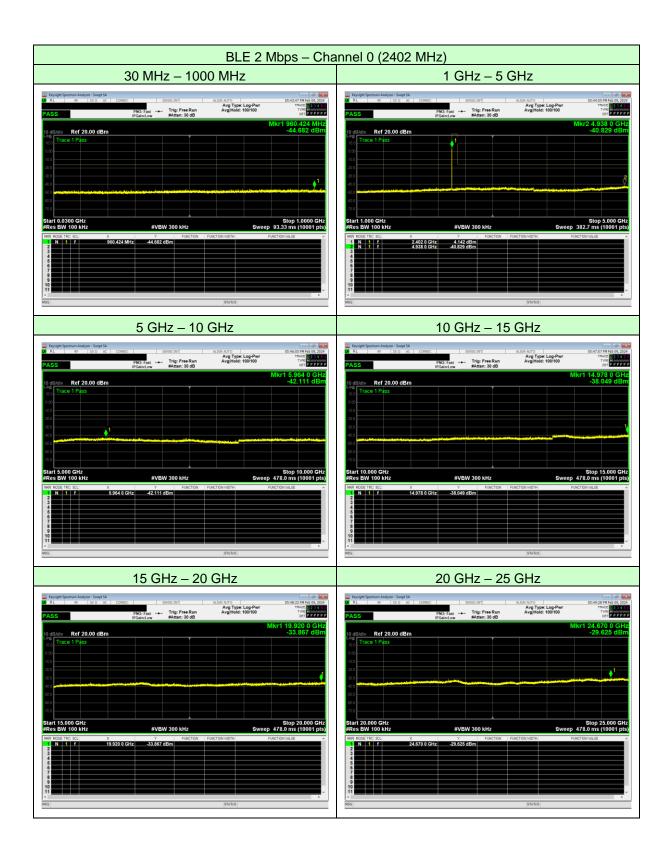

Test Date: August 10, 2023 Temp.: 25 °C, RH: 59 %, Atm.: 1003 hPa

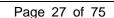




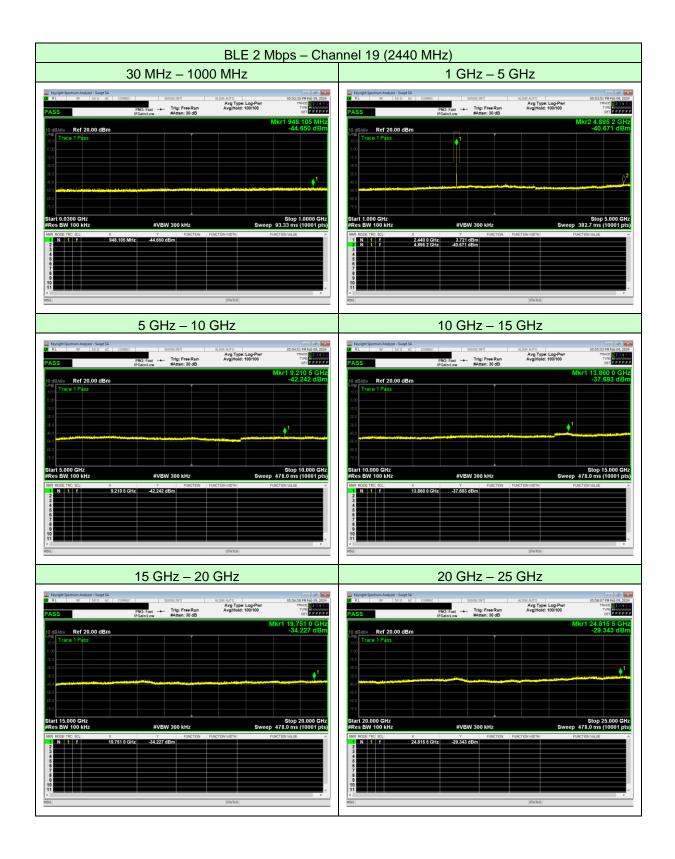



























Page 29 of 75

## 7.6 Radiated Spurious Emission

#### 7.6.1 Test Site and Instruments

|                                       | Test Site : Anechoic Chamber A2   |                        |                 |            |            |  |  |  |
|---------------------------------------|-----------------------------------|------------------------|-----------------|------------|------------|--|--|--|
| Туре                                  | Model                             | Serial No. (ID)        | Manufacturer    | Last Cal.  | Cal. Due   |  |  |  |
| Test Receiver                         | ESR26                             | 101680 (A-76)          | Rohde & Schwarz | 2024/01/29 | 2025/01/28 |  |  |  |
| Pre-Amplifier                         | 310N                              | 304573 (A-17)          | SONOMA          | 2023/11/07 | 2024/11/06 |  |  |  |
| Pre-Amplifier                         | RP1826G-45H                       | RP140121-11 (A-<br>53) | EMCS            | 2023/07/17 | 2024/07/16 |  |  |  |
| Pre-Amplifier                         | BZR-01001800-<br>201040-182323-HS | 23804 (A-65)           | B&Z             | 2024/02/07 | 2025/02/06 |  |  |  |
| Loop Antenna                          | HFH2-Z2                           | 872096/25 (C-2)        | Rohde & Schwarz | 2023/05/25 | 2024/05/24 |  |  |  |
| Biconical Antenna                     | VHBB9124/BBA9106                  | 01314 (C-85)           | Schwarzbeck     | 2023/11/01 | 2024/10/31 |  |  |  |
| Log-periodic<br>Antenna               | VULP9118B                         | 871 (C-39)             | Schwarzbeck     | 2023/11/01 | 2024/10/31 |  |  |  |
| Double-Ridge<br>Guide Horn<br>Antenna | TR17206                           | 73370006 (C-29)        | ADVANTEST       | 2023/05/22 | 2024/05/21 |  |  |  |
| Horn Antenna                          | 91889-2                           | 568 (C-41-2)           | EATON           | 2023/05/23 | 2024/05/22 |  |  |  |
| Horn Antenna                          | 3160-09                           | 9808-1117 (C-48)       | EMCO            | 2023/07/17 | 2024/07/16 |  |  |  |
| Horn Antenna                          | 3160-08                           | 9904-1099 (C-59)       | EMCO            | 2023/05/23 | 2024/05/22 |  |  |  |
| RF Cable                              | SF102E                            | 6683/2E (C-70)         | HUBER+SUHNER    | 2023/04/03 | 2024/04/02 |  |  |  |
| RF Cable                              | SF102E                            | 10055/2E (C-75)        | HUBER+SUHNER    | 2023/04/03 | 2024/04/02 |  |  |  |
| Band Rejection Filter                 | BRM50702                          | 371 (D-121)            | MICRO-TRONICS   | 2023/10/05 | 2024/10/04 |  |  |  |
| EMC Software                          | EP5/RE                            | Ver.6.00.120           | TOYO            |            |            |  |  |  |
| RF Cable                              | RG213/U                           | (H-28)                 | HUBER+SUHNER    | 2023/05/25 | 2024/05/24 |  |  |  |
| RF Cable                              | S 10162 B-11 etc.                 | (H-4)                  | HUBER+SUHNER    | 2023/11/07 | 2024/11/06 |  |  |  |
| Thermo-<br>Hygrometer                 | testo 608-H2                      | 30050646 (F-68)        | testo           | 2023/06/09 | 2024/06/08 |  |  |  |
| Barometer                             | BAROMEX                           | 02952 (F-48)           | SATO            | 2023/08/16 | 2024/08/15 |  |  |  |

## 7.6.2 Test Method and Test Setup (Diagrammatic illustration)

The test conditions and methods comply with the following test standards.

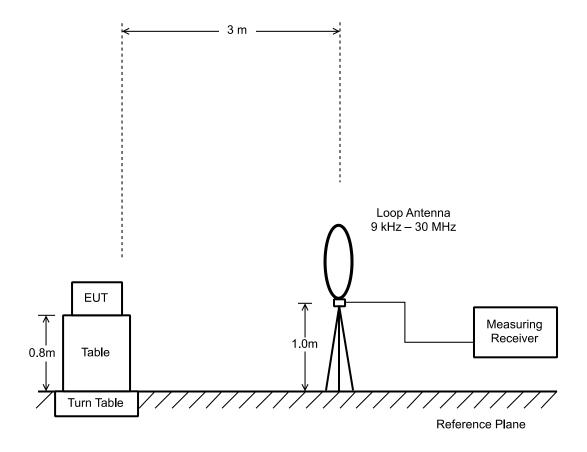
- KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2020 +Cor.1-2023 clause 11.12

Page 30 of 75



Issue Date: February 20, 2024

#### 7.6.2.1 Radiated Spurious Emission 9 kHz - 30 MHz


The pre-scan measurements were performed using the scan mode of test receiver or spectrum analyzer to observe the emissions characteristics of the EUT. The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions.

The measurement were performed about three antenna orientations (parallel, perpendicular, and groundparallel).

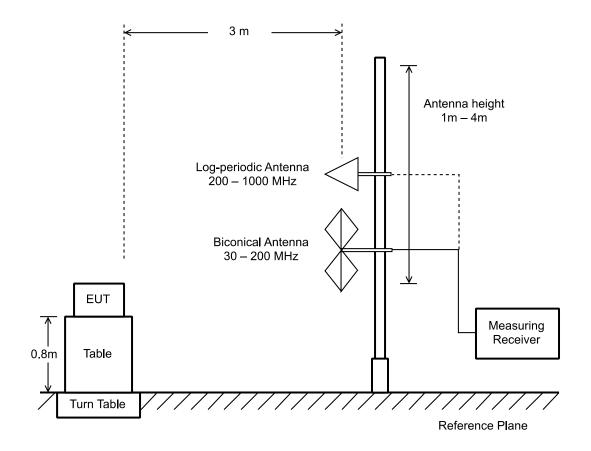
According to KDB 414788, a used anechoic chamber were equivalent to those on an open fields site based on comparison measurements.

This configurations was used for formal measurements.

(Reference divisional instruction No. G703649)






Page 31 of 75

#### Radiated Spurious Emission 30 MHz - 1000 MHz 7.6.2.2

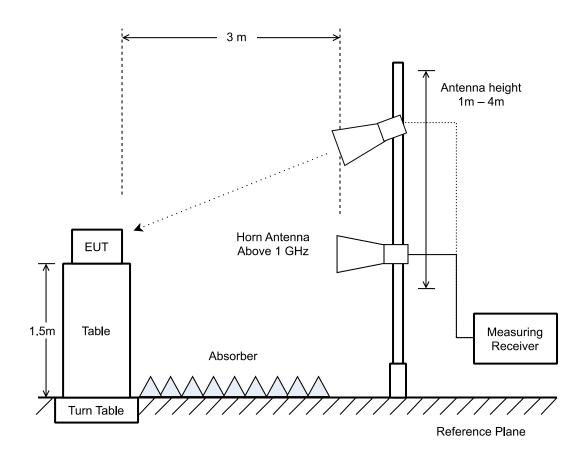
The pre-scan measurements were performed using the scan mode of test receiver or spectrum analyzer to observe the emissions characteristics of the EUT. The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for formal measurements.

(Reference divisional instruction No. G703649)






Page 32 of 75

#### Radiated Spurious Emission above 1 GHz 7.6.2.3

The pre-scan measurements were performed using the scan mode of test receiver or spectrum analyzer to observe the emissions characteristics of the EUT. The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions.

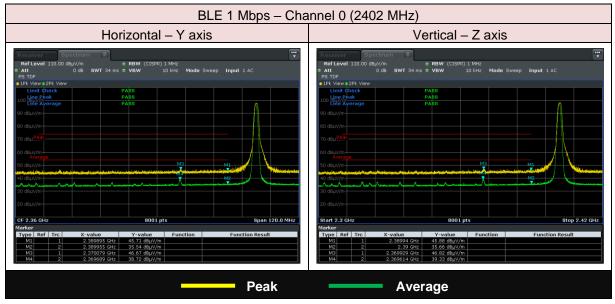
This configurations was used for formal measurements.

(Reference divisional instruction No. G703649)

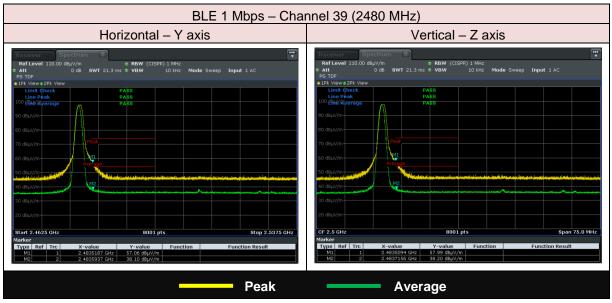


NOTE

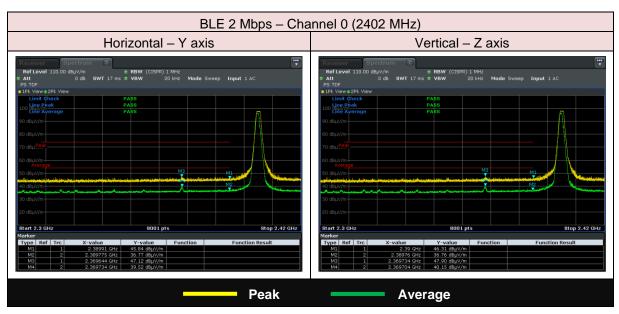
When the EUT is manipulated through three different orientations (for example, X, Y and Z axis), the scan height upper range for the measurement antenna is limited to 2.5 m or 0.5 m above the top of the EUT.


Page 33 of 75

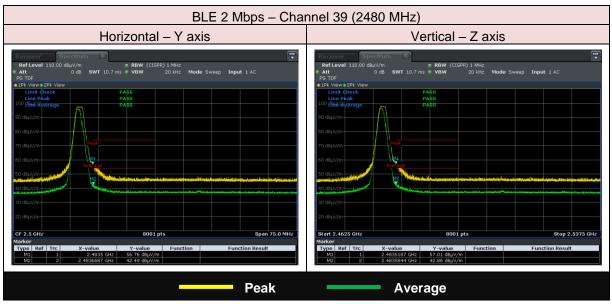
#### 7.6.3 **Test Data**


#### 7.6.3.1 **Band-edge Emission**

Test Date: February 8, 2024 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa


#### w/o Attachment



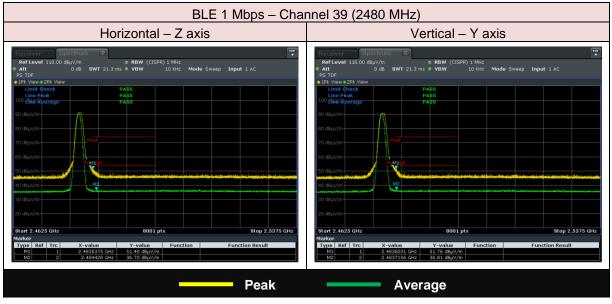

Peak detector is set to RBW 1 MHz and VBW 3 MHz.

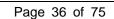




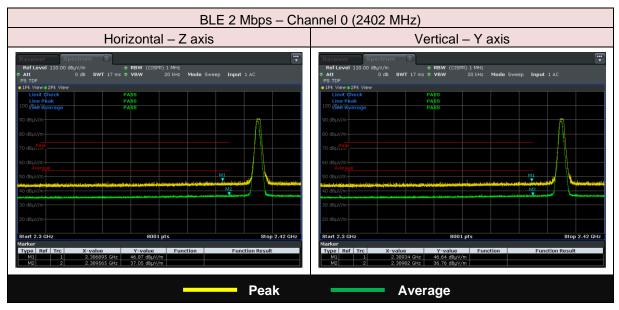


Peak detector is set to RBW 1 MHz and VBW 3 MHz.

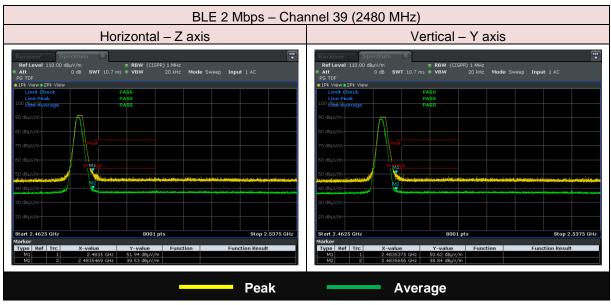



## w/ Attachment




Peak detector is set to RBW 1 MHz and VBW 3 MHz.







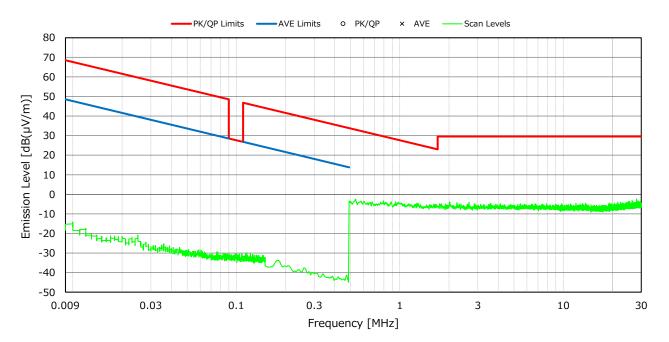



Peak detector is set to RBW 1 MHz and VBW 3 MHz.





Page 37 of 75


## 7.6.3.2 Radiated Spurious Emission 9 kHz - 30 MHz

Mode of EUT: All modes have been investigated and the worst case mode has been listed.

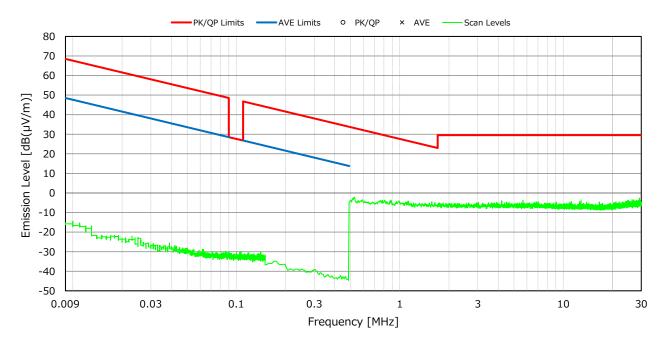
 Test voltage: 3.3VDC
 Test Date: February 7, 2024

 Test condition: w/o Attachment
 Temp.: 24 °C, RH: 40 %, Atm.: 998 hPa

Antenna polarization: Perpendicular to measurement axis



- 1) Measurement Distance : 3 m  $\,$  (Specified Distance : 30 m)
- 2) The spectrum was checked from 9 kHz to 30 MHz.
- 3) PK/QP : Quasi-Peak detector, AVE : Average detector
- 4) Bandwidth : 200 Hz (9 kHz 150 kHz), 9 kHz (150 kHz 30 MHz)
- 5) All emission levels were below the noise floor, or more than 15 dB below the applied limits.




Test Date: February 7, 2024

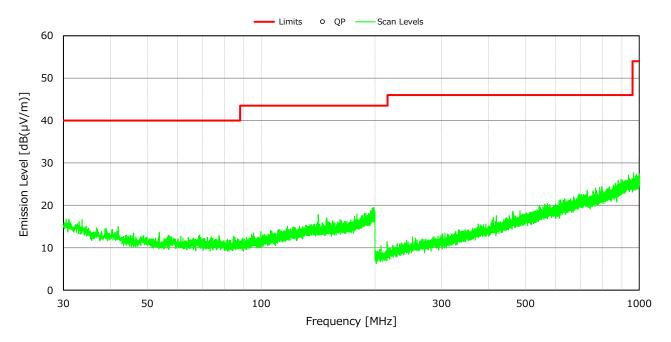
Page 38 of 75

Test voltage: 3.3VDC Test condition: w/ Attachment

Temp.: 24 °C, RH: 40 %, Atm.: 998 hPa Antenna polarization: Perpendicular to measurement axis



- 1) Measurement Distance: 3 m (Specified Distance: 30 m)
- 2) The spectrum was checked from 9 kHz to 30 MHz.
- 3) PK/QP: Quasi-Peak detector, AVE: Average detector
- 4) Bandwidth: 200 Hz (9 kHz 150 kHz), 9 kHz (150 kHz 30 MHz)
- 5) All emission levels were below the noise floor, or more than 15 dB below the applied limits.

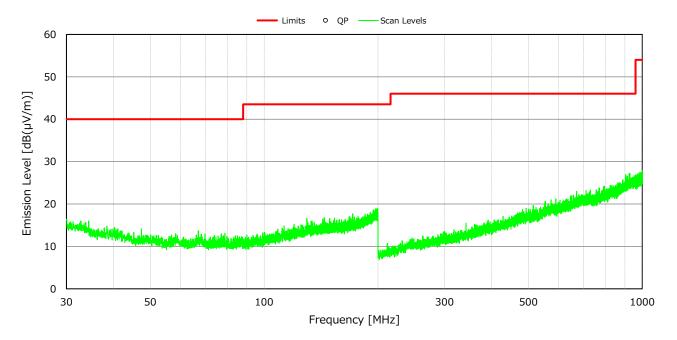



Page 39 of 75

# 7.6.3.3 Radiated Spurious Emission 30 MHz - 1000 MHz

Mode of EUT: All modes have been investigated and the worst case mode has been listed.

<u>Test voltage : 3.3VDC</u> <u>Test condition : w/o Attachment</u> <u>Antenna polarization : Horizontal</u> <u>Test Date: February 7, 2024</u> <u>Temp.: 24 °C, RH: 40 %, Atm.: 998 hPa</u>

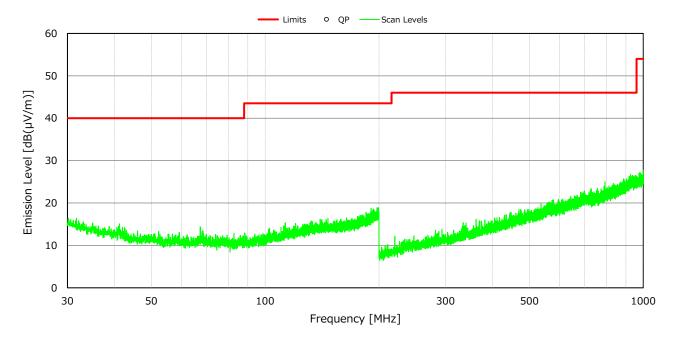



- 1) Measurement Distance: 3 m
- 2) The spectrum was checked from 30 MHz to 1000 MHz.
- 3) QP : Quasi-Peak detector
- 4) Bandwidth : 120 kHz (30 MHz 1000 MHz)
- 5) All emission levels were below the noise floor, or more than 15 dB below the applied limits.



Page 40 of 75

<u>Test voltage : 3.3VDC</u> <u>Test condition : w/o Attachment</u> <u>Antenna polarization : Vertical</u> <u>Test Date: February 7, 2024</u> <u>Temp.: 24 °C, RH: 40 %, Atm.: 998 hPa</u>

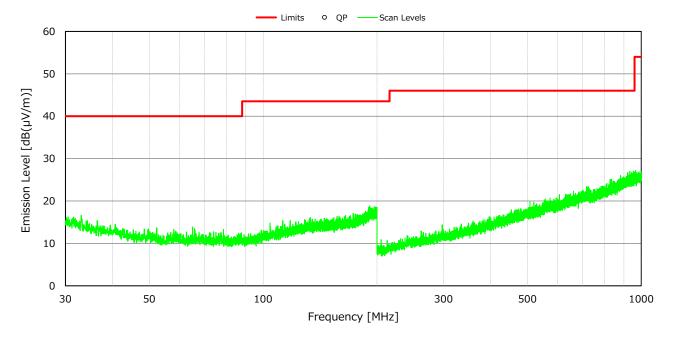



- 1) Measurement Distance: 3 m
- 2) The spectrum was checked from 30 MHz to 1000 MHz.
- 3) QP : Quasi-Peak detector
- 4) Bandwidth: 120 kHz (30 MHz 1000 MHz)
- 5) All emission levels were below the noise floor, or more than 15 dB below the applied limits.



Page 41 of 75

<u>Test voltage : 3.3VDC</u> <u>Test condition : w/ Attachment</u> <u>Antenna polarization : Horizontal</u> <u>Test Date: February 7, 2024</u> <u>Temp.: 24 °C, RH: 40 %, Atm.: 998 hPa</u>




- 1) Measurement Distance: 3 m
- 2) The spectrum was checked from 30 MHz to 1000 MHz.
- 3) QP : Quasi-Peak detector
- 4) Bandwidth: 120 kHz (30 MHz 1000 MHz)
- 5) All emission levels were below the noise floor, or more than 15 dB below the applied limits.



Page 42 of 75

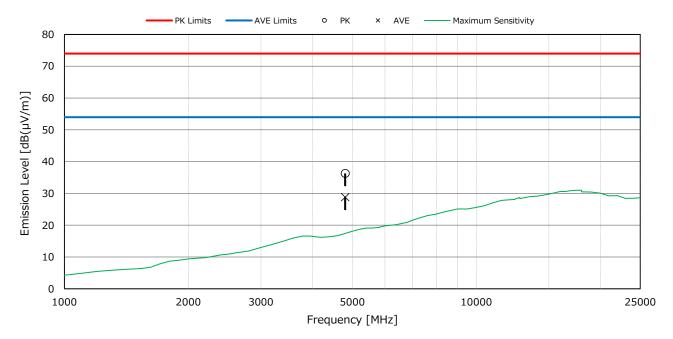
<u>Test voltage : 3.3VDC</u> <u>Test condition : w/ Attachment</u> <u>Antenna polarization : Vertical</u> <u>Test Date: February 7, 2024</u> <u>Temp.: 24 °C, RH: 40 %, Atm.: 998 hPa</u>



- 1) Measurement Distance: 3 m
- 2) The spectrum was checked from 30 MHz to 1000 MHz.
- 3) QP : Quasi-Peak detector
- 4) Bandwidth: 120 kHz (30 MHz 1000 MHz)
- 5) All emission levels were below the noise floor, or more than 15 dB below the applied limits.



Page 43 of 75


## 7.6.3.4 Radiated Spurious Emission above 1 GHz

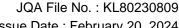
 Test voltage : 3.3VDC
 Test Date: February 8, 2024

 Test condition : BLE 1 Mbps, 0ch (2402MHz) w/o Attachment
 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

**Antenna polarization: Horizontal** 

| Frequency | Factor | Read<br>[dB() | _    |      | nits<br>V/m)] | Res<br>[dB(µ) |      | Mar<br>[di | _      | Remarks |
|-----------|--------|---------------|------|------|---------------|---------------|------|------------|--------|---------|
| [MHz]     | [dB]   | PK            | AVE  | PK   | AVE           | PK            | AVE  | PK         | AVE    |         |
| 4804.00   | -15.4  | 51.7          | 44.2 | 74.0 | 54.0          | 36.3          | 28.8 | + 37.7     | + 25.2 | Υ       |




### NOTES

- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.

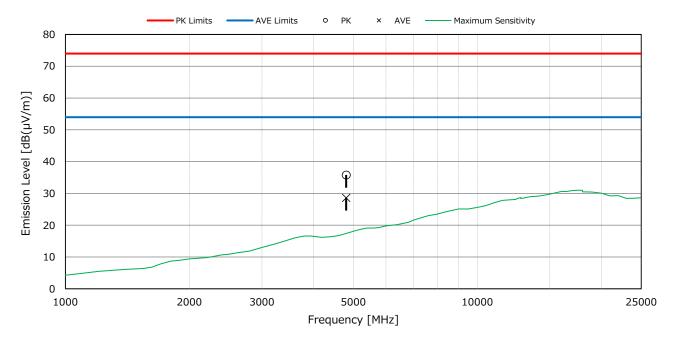
Factor + Reading (AVE) =  $-15.4 + 44.2 = 28.8 \text{ dB}(\mu\text{V})$  at 4804.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

### Spectrum Analyzer Setting(s):






Page 44 of 75

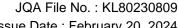
Test voltage: 3.3VDC Test condition: BLE 1 Mbps, 0ch (2402MHz) w/o Attachment

**Antenna polarization : Vertical** 

Test Date: February 8, 2024 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

| Frequency | Factor | Read<br>[dB( | _    |      | nits<br>ɪV/m)] |      | ults<br>V/m)] | Mar<br>[d | 9      | Remarks |
|-----------|--------|--------------|------|------|----------------|------|---------------|-----------|--------|---------|
| [MHz]     | [dB]   | PK           | AVE  | PK   | AVE            | PK   | AVE           | PK        | AVE    |         |
| 4804.00   | -15.4  | 51.2         | 44.0 | 74.0 | 54.0           | 35.8 | 28.6          | + 38.2    | + 25.4 | Z       |




### **NOTES**

- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline:

Factor + Reading (AVE) =  $-15.4 + 44.0 = 28.6 \text{ dB}(\mu\text{V})$  at 4804.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

### Spectrum Analyzer Setting(s):





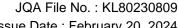
Page 45 of 75

Test voltage: 3.3VDC Test condition: BLE 1 Mbps, 19ch (2440MHz) w/o Attachment **Antenna polarization: Horizontal** 

Test Date: February 8, 2024 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

| Frequency | Factor | Read<br>[dB() | _    |      | nits<br>ɪV/m)] | Res<br>[dB(µ' |      | Mar<br>[d | 9      | Remarks |
|-----------|--------|---------------|------|------|----------------|---------------|------|-----------|--------|---------|
| [MHz]     | [dB]   | PK            | AVE  | PK   | AVE            | PK            | AVE  | PK        | AVE    |         |
| 4880.00   | -15.2  | 48.8          | 42.5 | 74.0 | 54.0           | 33.6          | 27.3 | + 40.4    | + 26.7 | Υ       |




## **NOTES**

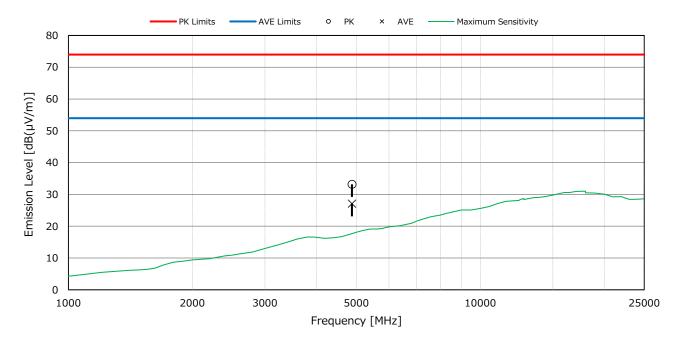
- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline:

Factor + Reading (AVE) =  $-15.2 + 42.5 = 27.3 \text{ dB}(\mu\text{V})$  at 4880.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

## Spectrum Analyzer Setting(s):





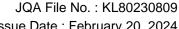

Page 46 of 75

Test voltage: 3.3VDC Test condition: BLE 1 Mbps, 19ch (2440MHz) w/o Attachment **Antenna polarization : Vertical** 

Test Date: February 8, 2024 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

| Frequency | Factor | Read<br>[dB( <sub>l</sub> | _      |      | nits<br>ɪV/m)] | Res<br>[dB(µ' |      | Mar<br>[d | 9      | Remarks |
|-----------|--------|---------------------------|--------|------|----------------|---------------|------|-----------|--------|---------|
| [MHz]     | [dB]   | PK                        | AVE PK |      | AVE            | PK            | AVE  | PK AVE    |        |         |
| 4880.00   | -15.2  | 48.4                      | 42.3   | 74.0 | 54.0           | 33.2          | 27.1 | + 40.8    | + 26.9 | Z       |




## **NOTES**

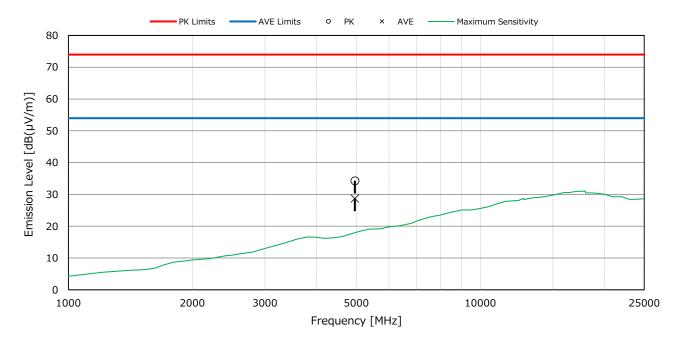
- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline:

Factor + Reading (AVE) =  $-15.2 + 42.3 = 27.1 \text{ dB}(\mu\text{V})$  at 4880.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

### Spectrum Analyzer Setting(s):





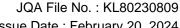

Page 47 of 75

Test voltage: 3.3VDC Test condition: BLE 1 Mbps, 39ch (2480MHz) w/o Attachment **Antenna polarization: Horizontal** 

Test Date: February 8, 2024 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

| Frequency | Factor | Read<br>[dB( <sub>l</sub> | _    |      | nits<br>V/m)] | Res<br>[dB(μ' |      | Mar<br>[d | 9      | Remarks |
|-----------|--------|---------------------------|------|------|---------------|---------------|------|-----------|--------|---------|
| [MHz]     | [dB]   | PK                        | AVE  | PK   | AVE           | PK            | AVE  | PK        | AVE    |         |
| 4960.00   | -14.9  | 49.2                      | 43.6 | 74.0 | 54.0          | 34.3          | 28.7 | + 39.7    | + 25.3 | Υ       |




## **NOTES**

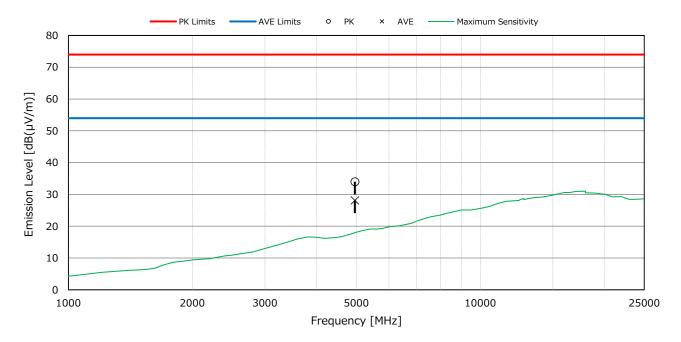
- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline:

Factor + Reading (AVE) =  $-14.9 + 43.6 = 28.7 \text{ dB}(\mu\text{V})$  at 4960.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

## Spectrum Analyzer Setting(s):





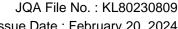

Page 48 of 75

Test voltage: 3.3VDC Test condition: BLE 1 Mbps, 39ch (2480MHz) w/o Attachment **Antenna polarization: Vertical** 

Test Date: February 8, 2024 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

| Frequency | Factor | Read<br>[dB(¡ | _    |      | nits<br>V/m)] | Res<br>[dB(µ' |      | Mar<br>[di | _      | Remarks |
|-----------|--------|---------------|------|------|---------------|---------------|------|------------|--------|---------|
| [MHz]     | [dB]   | PK            | AVE  | PK   | AVE           | PK            | AVE  | PK         | AVE    |         |
| 4960.00   | -14.9  | 48.9          | 43.0 | 74.0 | 54.0          | 34.0          | 28.1 | + 40.0     | + 25.9 | Z       |




## **NOTES**

- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline:

Factor + Reading (AVE) =  $-14.9 + 43.0 = 28.1 \text{ dB}(\mu\text{V})$  at 4960.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

### Spectrum Analyzer Setting(s):





Frequency

Issue Date: February 20, 2024

Page 49 of 75

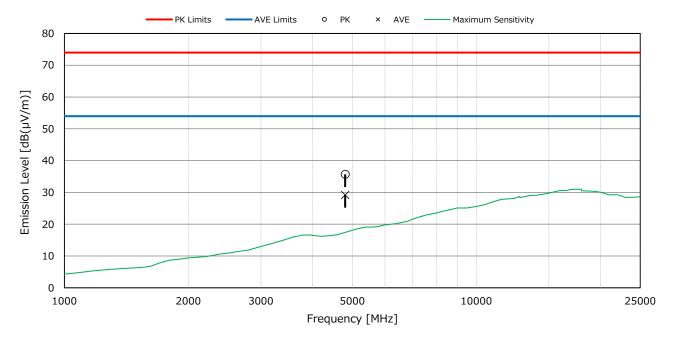
Remarks

<u>Test voltage : 3.3VDC</u> <u>Test condition : BLE 2 Mbps, 0ch (2402MHz) w/o Attachment</u>

Readings

Antenna polarization: Horizontal

**Factor** 


<u>Test Date: February 8, 2024</u> <u>Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa</u>

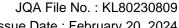
Margin

|         |       | [dB( | μV)] | [dB(μ | ıV/m)] | [dB(µ | V/m)] | [d     | В]     |   |
|---------|-------|------|------|-------|--------|-------|-------|--------|--------|---|
| [MHz]   | [dB]  | PK   | AVE  | PK    | AVE    | PK    | AVE   | PK     | AVE    |   |
| 4804.00 | -15.4 | 51.1 | 44.6 | 74.0  | 54.0   | 35.7  | 29.2  | + 38.3 | + 24.8 | Υ |
| ,       |       |      |      |       |        |       |       |        |        |   |
|         |       |      |      |       |        |       |       |        |        |   |

**Results** 

Limits




### NOTES

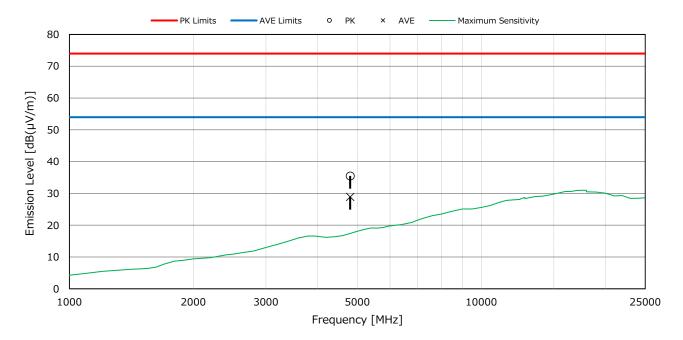
- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline :

Factor + Reading (AVE) =  $-15.4 + 44.6 = 29.2 \text{ dB}(\mu\text{V})$  at 4804.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

### Spectrum Analyzer Setting(s):





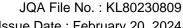

Page 50 of 75

Test voltage: 3.3VDC Test condition: BLE 2 Mbps, 0ch (2402MHz) w/o Attachment **Antenna polarization : Vertical** 

Test Date: February 8, 2024 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

| Frequency | Factor | Read<br>[dB( | _    |      | nits<br>ɪV/m)] | Res<br>[dB(µ' |      | Mar<br>[d | 9      | Remarks |
|-----------|--------|--------------|------|------|----------------|---------------|------|-----------|--------|---------|
| [MHz]     | [dB]   | PK           | AVE  | PK   | AVE            | PK            | AVE  | PK        | AVE    |         |
| 4804.00   | -15.4  | 50.9         | 44.3 | 74.0 | 54.0           | 35.5          | 28.9 | + 38.5    | + 25.1 | Z       |




## **NOTES**

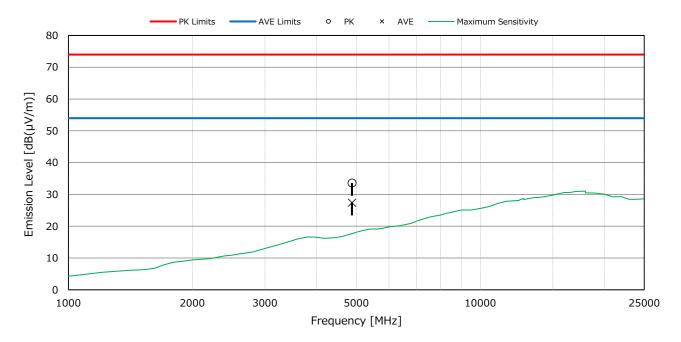
- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline:

Factor + Reading (AVE) =  $-15.4 + 44.3 = 28.9 \text{ dB}(\mu\text{V})$  at 4804.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

### Spectrum Analyzer Setting(s):





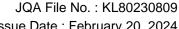

Page 51 of 75

Test voltage: 3.3VDC Test condition: BLE 2 Mbps, 19ch (2440MHz) w/o Attachment **Antenna polarization: Horizontal** 

Test Date: February 8, 2024 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

| Frequency | Factor | Read<br>[dB( <sub>l</sub> | _    |      | nits<br>V/m)] | Res<br>[dB(µ\ |      | Mar<br>[di | _      | Remarks |
|-----------|--------|---------------------------|------|------|---------------|---------------|------|------------|--------|---------|
| [MHz]     | [dB]   | PK                        | AVE  | PK   | AVE           | PK            | AVE  | PK         | AVE    |         |
| 4880.00   | -15.2  | 48.8                      | 42.6 | 74.0 | 54.0          | 33.6          | 27.4 | + 40.4     | + 26.6 | Υ       |



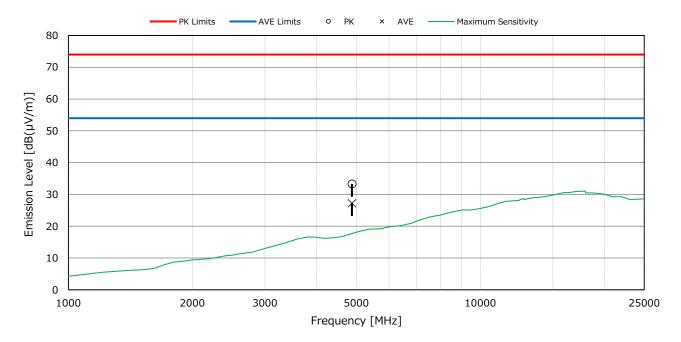

## **NOTES**

- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline:

Factor + Reading (AVE) =  $-15.2 + 42.6 = 27.4 \text{ dB}(\mu\text{V})$  at 4880.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

## Spectrum Analyzer Setting(s):



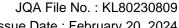



Page 52 of 75

<u>Test voltage : 3.3VDC</u> <u>Test condition : BLE 2 Mbps, 19ch (2440MHz) w/o Attachment</u> <u>Antenna polarization : Vertical</u> <u>Test Date: February 8, 2024</u> <u>Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa</u>

| Frequency | Factor | Read<br>[dB() | _    |      | nits<br>V/m)] | Res<br>[dB(µ' |      | Mar<br>[d | 9      | Remarks |
|-----------|--------|---------------|------|------|---------------|---------------|------|-----------|--------|---------|
| [MHz]     | [dB]   | PK            | AVE  | PK   | AVE           | 72            |      | AVE       |        |         |
| 4880.00   | -15.2  | 48.5          | 42.4 | 74.0 | 54.0          | 33.3          | 27.2 | + 40.7    | + 26.8 | Z       |




## **NOTES**

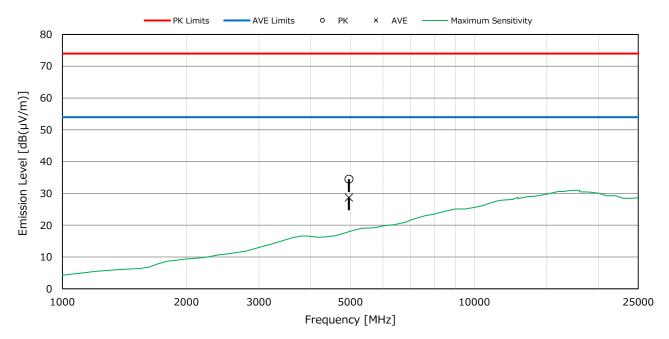
- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline :

Factor + Reading (AVE) =  $-15.2 + 42.4 = 27.2 \text{ dB}(\mu\text{V})$  at 4880.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

## Spectrum Analyzer Setting(s):





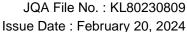

Page 53 of 75

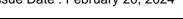
Test voltage: 3.3VDC Test condition: BLE 2 Mbps, 39ch (2480MHz) w/o Attachment **Antenna polarization: Horizontal** 

Test Date: February 8, 2024 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

| Frequency | Factor | Read<br>[dB(¡ | _    |      | nits<br>V/m)] | Res<br>[dB(µ' |      | Mar<br>[d | 9      | Remarks |
|-----------|--------|---------------|------|------|---------------|---------------|------|-----------|--------|---------|
| [MHz]     | [dB]   | PK            | AVE  | PK   | AVE           | PK            | AVE  | PK        | AVE    |         |
| 4960.00   | -14.9  | 49.4          | 43.6 | 74.0 | 54.0          | 34.5          | 28.7 | + 39.5    | + 25.3 | Υ       |




### **NOTES**

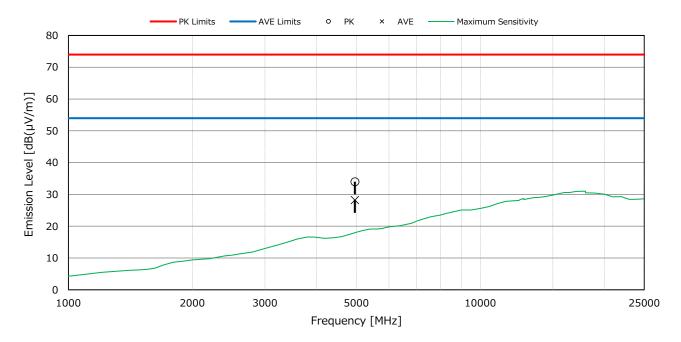

- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline:

Factor + Reading (AVE) =  $-14.9 + 43.6 = 28.7 \text{ dB}(\mu\text{V})$  at 4960.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

## Spectrum Analyzer Setting(s):





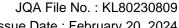

Page 54 of 75



<u>Test voltage : 3.3VDC</u> <u>Test condition : BLE 2 Mbps, 39ch (2480MHz) w/o Attachment</u> <u>Antenna polarization : Vertical</u> <u>Test Date: February 8, 2024</u> <u>Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa</u>

| Frequency | Factor | Read<br>[dB( <sub>l</sub> | _    |      | nits<br>V/m)] | Res<br>[dB(µ' |      | Mar<br>[di | _      | Remarks |
|-----------|--------|---------------------------|------|------|---------------|---------------|------|------------|--------|---------|
| [MHz]     | [dB]   | PK                        | AVE  | PK   | AVE           | PK            | AVE  | PK         | AVE    |         |
| 4960.00   | -14.9  | 48.9                      | 43.1 | 74.0 | 54.0          | 34.0          | 28.2 | + 40.0     | + 25.8 | Z       |




## **NOTES**

- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline :

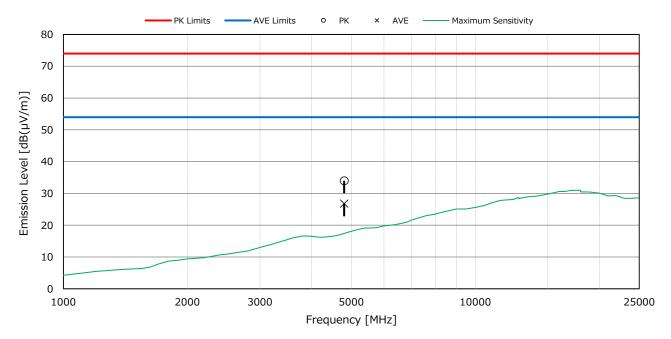
Factor + Reading (AVE) =  $-14.9 + 43.1 = 28.2 \text{ dB}(\mu\text{V})$  at 4960.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

## Spectrum Analyzer Setting(s):






Page 55 of 75

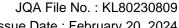
Test voltage: 3.3VDC Test condition: BLE 1 Mbps, 0ch (2402MHz) w/ Attachment

Test Date: February 8, 2024 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

**Antenna polarization: Horizontal** 

| Frequency | Factor | Read<br>[dB(¡ | _    |      | nits<br>V/m)] | Res<br>[dB(µ' |      | Mar<br>[di | _      | Remarks |
|-----------|--------|---------------|------|------|---------------|---------------|------|------------|--------|---------|
| [MHz]     | [dB]   | PK            | AVE  | PK   | AVE           | PK            | AVE  | PK         | AVE    |         |
| 4804.00   | -15.4  | 49.4          | 42.2 | 74.0 | 54.0          | 34.0          | 26.8 | + 40.0     | + 27.2 | Z       |




### **NOTES**

- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline:

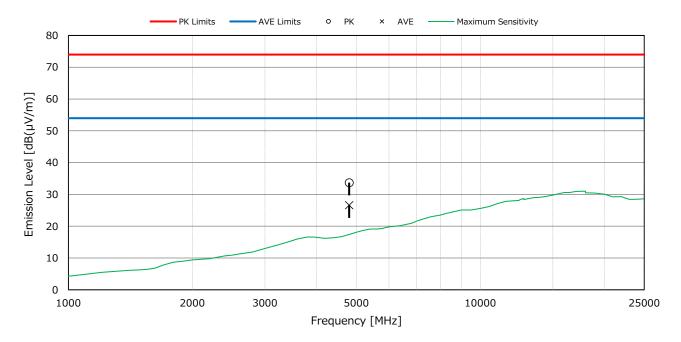
Factor + Reading (AVE) =  $-15.4 + 42.2 = 26.8 \text{ dB}(\mu\text{V})$  at 4804.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

### Spectrum Analyzer Setting(s):






Page 56 of 75

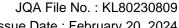
Test voltage: 3.3VDC Test condition: BLE 1 Mbps, 0ch (2402MHz) w/ Attachment

**Antenna polarization : Vertical** 

Test Date: February 8, 2024 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

| Frequency | Factor | Read<br>[dB( | _    |      | nits<br>V/m)] | Res<br>[dB(μ' |      | Mar<br>[d | _      | Remarks |
|-----------|--------|--------------|------|------|---------------|---------------|------|-----------|--------|---------|
| [MHz]     | [dB]   | PK           | AVE  | PK   | AVE           | PK            | AVE  | PK        | AVE    |         |
| 4804.00   | -15.4  | 49.1         | 42.0 | 74.0 | 54.0          | 33.7          | 26.6 | + 40.3    | + 27.4 | Υ       |




## **NOTES**

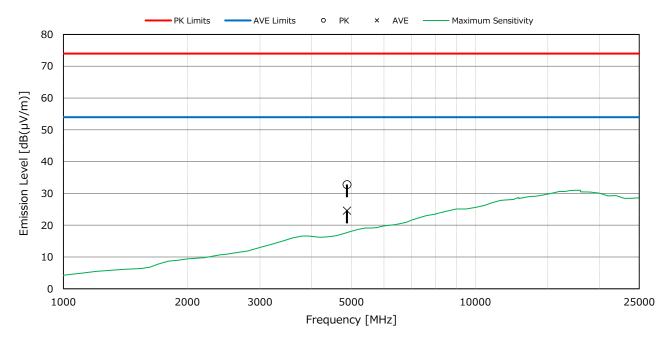
- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline:

Factor + Reading (AVE) =  $-15.4 + 42.0 = 26.6 \text{ dB}(\mu\text{V})$  at 4804.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

### Spectrum Analyzer Setting(s):





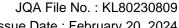

Page 57 of 75

Test voltage: 3.3VDC Test condition: BLE 1 Mbps, 19ch (2440MHz) w/ Attachment **Antenna polarization: Horizontal** 

Test Date: February 8, 2024 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

| Frequency | Factor | Read<br>[dB( | _    |      | mits<br>ɪV/m)] |      | ults<br>V/m)] | Mar<br>[d | _      | Remarks |
|-----------|--------|--------------|------|------|----------------|------|---------------|-----------|--------|---------|
| [MHz]     | [dB]   | PK           | AVE  | PK   | AVE            | PK   | AVE           | PK        | AVE    |         |
| 4880 00   | -15 2  | 48 N         | 39.8 | 74 0 | 54.0           | 32.8 | 24.6          | + 41 2    | + 29 4 | 7       |




### **NOTES**

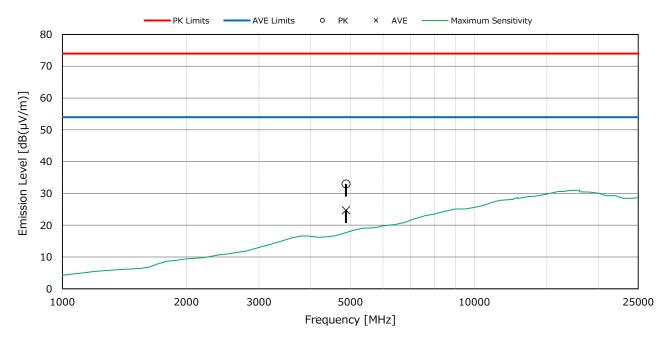
- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline:

Factor + Reading (AVE) =  $-15.2 + 39.8 = 24.6 \text{ dB}(\mu\text{V})$  at 4880.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

### Spectrum Analyzer Setting(s):





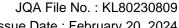

Page 58 of 75

Test voltage: 3.3VDC Test condition: BLE 1 Mbps, 19ch (2440MHz) w/ Attachment **Antenna polarization: Vertical** 

Test Date: February 8, 2024 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

| Frequency | Factor | Read<br>[dB( <sub>l</sub> | _    |      | nits<br>V/m)] | Res<br>[dB(µ' |      | Mar<br>[d | 9      | Remarks |
|-----------|--------|---------------------------|------|------|---------------|---------------|------|-----------|--------|---------|
| [MHz]     | [dB]   | PK                        | AVE  | PK   | AVE           | PK            | AVE  | PK        | AVE    |         |
| 4880.00   | -15.2  | 48.2                      | 39.9 | 74.0 | 54.0          | 33.0          | 24.7 | + 41.0    | + 29.3 | Υ       |




### **NOTES**

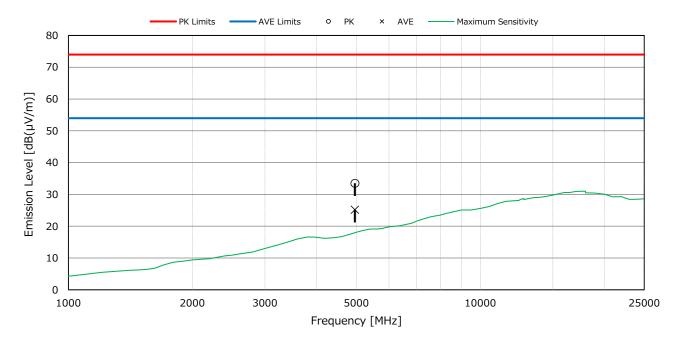
- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline:

Factor + Reading (AVE) =  $-15.2 + 39.9 = 24.7 \text{ dB}(\mu\text{V})$  at 4880.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

## Spectrum Analyzer Setting(s):





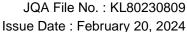

Page 59 of 75

<u>Test voltage : 3.3VDC</u>
<u>Test condition : BLE 1 Mbps, 39ch (2480MHz) w/ Attachment Antenna polarization : Horizontal</u>

<u>Test Date: February 8, 2024</u> <u>Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa</u>

| Frequency | Factor | Read<br>[dB() | _    |      | nits<br>V/m)] | Res<br>[dB(µ) |      | Mar<br>[di | _      | Remarks |
|-----------|--------|---------------|------|------|---------------|---------------|------|------------|--------|---------|
| [MHz]     | [dB]   | PK            | AVE  | PK   | AVE           | PK            | AVE  | PK         | AVE    |         |
| 4960.00   | -14.9  | 48.4          | 40.1 | 74.0 | 54.0          | 33.5          | 25.2 | + 40.5     | + 28.8 | Z       |




## **NOTES**

- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.

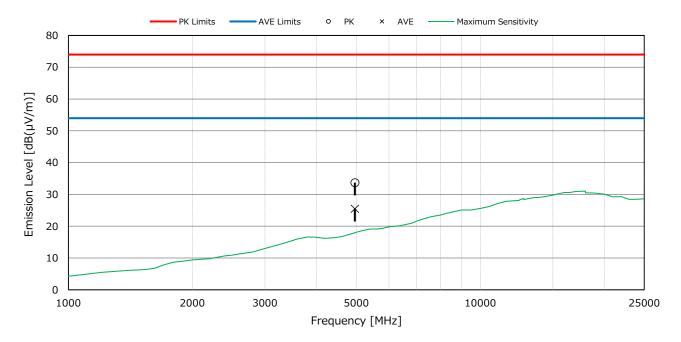
Factor + Reading (AVE) =  $-14.9 + 40.1 = 25.2 \text{ dB}(\mu\text{V})$  at 4960.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

### Spectrum Analyzer Setting(s):






33de Date : 1 cordary 20, 2024

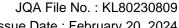
Page 60 of 75

<u>Test voltage: 3.3VDC</u>
<u>Test condition: BLE 1 Mbps, 39ch (2480MHz) w/ Attachment</u>
Antenna polarization: Vertical

<u>Test Date: February 8, 2024</u> <u>Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa</u>

| Frequency | Factor | Read<br>[dB(¡ | _    |      | nits<br>V/m)] | Res<br>[dB(µ' |      | Mar<br>[d | _      | Remarks |
|-----------|--------|---------------|------|------|---------------|---------------|------|-----------|--------|---------|
| [MHz]     | [dB]   | PK            | AVE  | PK   | AVE           | PK            | AVE  | PK        | AVE    |         |
| 4960.00   | -14.9  | 48.6          | 40.4 | 74.0 | 54.0          | 33.7          | 25.5 | + 40.3    | + 28.5 | Υ       |




## **NOTES**

- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline :

Factor + Reading (AVE) =  $-14.9 + 40.4 = 25.5 \text{ dB}(\mu\text{V})$  at 4960.00 MHz

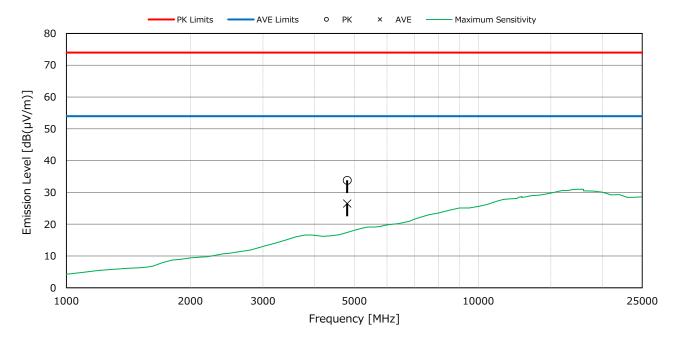
- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

### Spectrum Analyzer Setting(s):





Test Date: February 8, 2024


Page 61 of 75

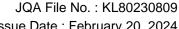
Test voltage: 3.3VDC Test condition: BLE 2 Mbps, 0ch (2402MHz) w/ Attachment

Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

**Antenna polarization: Horizontal** 

| Frequency | Factor | Read<br>[dB( <sub>l</sub> | _    |      | nits<br>V/m)] | Res<br>[dB(µ) |      | Mar<br>[d | _      | Remarks |
|-----------|--------|---------------------------|------|------|---------------|---------------|------|-----------|--------|---------|
| [MHz]     | [dB]   | PK                        | AVE  | PK   | AVE           | PK            | AVE  | PK        | AVE    |         |
| 4804.00   | -15.4  | 49.2                      | 41.9 | 74.0 | 54.0          | 33.8          | 26.5 | + 40.2    | + 27.5 | Z       |




### **NOTES**

- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline:

Factor + Reading (AVE) =  $-15.4 + 41.9 = 26.5 \text{ dB}(\mu\text{V})$  at 4804.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

### Spectrum Analyzer Setting(s):





Page 62 of 75

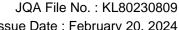
Test voltage: 3.3VDC Test condition: BLE 2 Mbps, 0ch (2402MHz) w/ Attachment

**Antenna polarization : Vertical** 

Test Date: February 8, 2024 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

| Frequency | Factor | Read<br>[dB( | _    |      | nits<br>ıV/m)] | Res<br>[dB(µ' |      | Mar<br>[d | _      | Remarks |
|-----------|--------|--------------|------|------|----------------|---------------|------|-----------|--------|---------|
| [MHz]     | [dB]   | PK           | AVE  | PK   | AVE            | PK            | AVE  | PK        | AVE    |         |
| 4804.00   | -15.4  | 49.0         | 41.6 | 74.0 | 54.0           | 33.6          | 26.2 | + 40.4    | + 27.8 | Y       |




### **NOTES**

- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline:

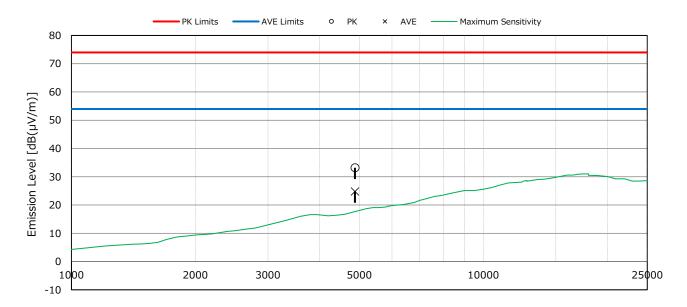
Factor + Reading (AVE) =  $-15.4 + 41.6 = 26.2 \text{ dB}(\mu\text{V})$  at 4804.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

### Spectrum Analyzer Setting(s):






Page 63 of 75

Test voltage: 3.3VDC Test condition: BLE 2 Mbps, 19ch (2440MHz) w/ Attachment

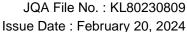
**Antenna polarization: Horizontal** 

Test Date: February 8, 2024 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

| Frequency | Factor | Read<br>[dB(¡ | _    |      | nits<br>V/m)] | Res<br>[dB(µ' |      | Mar<br>[d | _      | Remarks |
|-----------|--------|---------------|------|------|---------------|---------------|------|-----------|--------|---------|
| [MHz]     | [dB]   | PK            | AVE  | PK   | AVE           | PK            | AVE  | PK        | AVE    |         |
| 4880.00   | -15.2  | 48.4          | 40.0 | 74.0 | 54.0          | 33.2          | 24.8 | + 40.8    | + 29.2 | Z       |



Frequency [MHz]

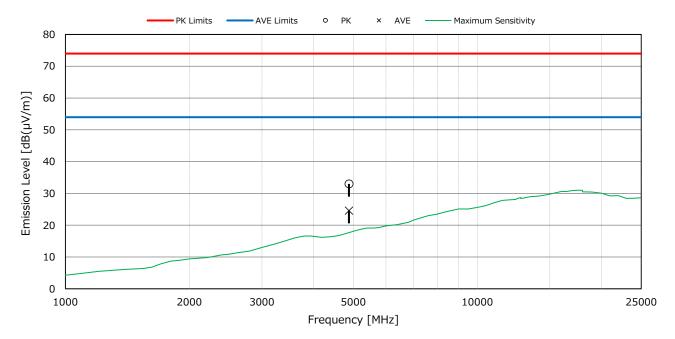

### **NOTES**

- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline:

Factor + Reading (AVE) =  $-15.2 + 40.0 = 24.8 \text{ dB}(\mu\text{V})$  at 4880.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

### Spectrum Analyzer Setting(s):



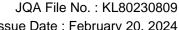



Page 64 of 75

<u>Test voltage : 3.3VDC</u> <u>Test condition : BLE 2 Mbps, 19ch (2440MHz) w/ Attachment</u> <u>Antenna polarization : Vertical</u> <u>Test Date: February 8, 2024</u> <u>Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa</u>

| Frequency | Factor | Read<br>[dB( | _    |      | nits<br>ɪV/m)] | Res<br>[dB(μ' |      | Mar<br>[d | _      | Remarks |
|-----------|--------|--------------|------|------|----------------|---------------|------|-----------|--------|---------|
| [MHz]     | [dB]   | PK           | AVE  | PK   | AVE            | PK            | AVE  | PK        | AVE    |         |
| 4880.00   | -15.2  | 48.2         | 39.8 | 74.0 | 54.0           | 33.0          | 24.6 | + 41.0    | + 29.4 | Υ       |




### NOTES

- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline :

Factor + Reading (AVE) =  $-15.2 + 39.8 = 24.6 \text{ dB}(\mu\text{V})$  at 4880.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

### Spectrum Analyzer Setting(s):





Frequency

Issue Date: February 20, 2024

Page 65 of 75

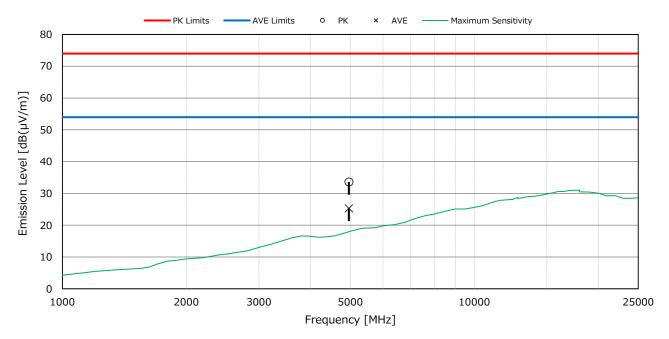
Remarks

Test voltage: 3.3VDC Test condition: BLE 2 Mbps, 39ch (2480MHz) w/ Attachment

Readings

**Antenna polarization: Horizontal** 

**Factor** 


Test Date: February 8, 2024 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

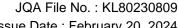
Margin

| [MHz] [dB] PK AVE PK AVE PK AVE PK AVE 4960.00 -14.9 48.5 40.2 74.0 54.0 33.6 25.3 + 40.4 + 28.7 |         | [dB(µV)] |      | - 1  |      |      | [dB(µ | V/m)] | [d     | B]     |   |
|--------------------------------------------------------------------------------------------------|---------|----------|------|------|------|------|-------|-------|--------|--------|---|
| 4960.00 -14.9 48.5 40.2 74.0 54.0 33.6 25.3 + 40.4 + 28.7                                        | [MHz]   | [dB]     | PK   | AVE  | PK   | AVE  | PK    | AVE   | PK     | AVE    |   |
|                                                                                                  | 4960.00 | -14.9    | 48.5 | 40.2 | 74.0 | 54.0 | 33.6  | 25.3  | + 40.4 | + 28.7 | Z |
|                                                                                                  |         |          |      |      |      |      |       |       |        |        |   |

**Results** 

Limits




### **NOTES**

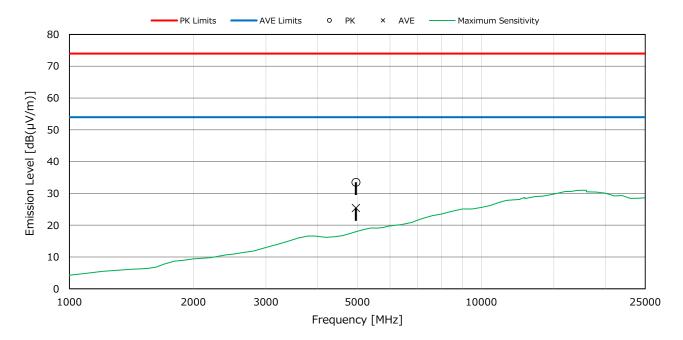
- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline:

Factor + Reading (AVE) =  $-14.9 + 40.2 = 25.3 \text{ dB}(\mu\text{V})$  at 4960.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

### Spectrum Analyzer Setting(s):






Page 66 of 75

Test voltage: 3.3VDC Test condition: BLE 2 Mbps, 39ch (2480MHz) w/ Attachment **Antenna polarization : Vertical** 

Test Date: February 8, 2024 Temp.: 21 °C, RH: 40 %, Atm.: 1002 hPa

| Frequency | Factor | Read<br>[dB() | _    |      | nits<br>IV/m)] | Res<br>[dB(µ' |      | Mar<br>[d | _      | Remarks |
|-----------|--------|---------------|------|------|----------------|---------------|------|-----------|--------|---------|
| [MHz]     | [dB]   | PK            | AVE  | PK   | AVE            | PK            | AVE  | PK        | AVE    |         |
| 4960.00   | -14.9  | 48.4          | 40.3 | 74.0 | 54.0           | 33.5          | 25.4 | + 40.5    | + 28.6 | Υ       |



## **NOTES**

- 1) Measurement Distance: 1 m (Specified Distance: 3 m)
- 2) The spectrum was checked from 1 GHz to 25 GHz.
- 3) The factor includes the antenna factor, the pre-amplifier gain, the cable loss and the distance conversion.
- 4) Calculated result as the worst point shown on underline:

Factor + Reading (AVE) =  $-14.9 + 40.3 = 25.4 \text{ dB}(\mu\text{V})$  at 4960.00 MHz

- 5) PK: Peak detector, AVE: Average detector
- 6) Bandwidth: 1 MHz (1 GHz 25 GHz)

### Spectrum Analyzer Setting(s):

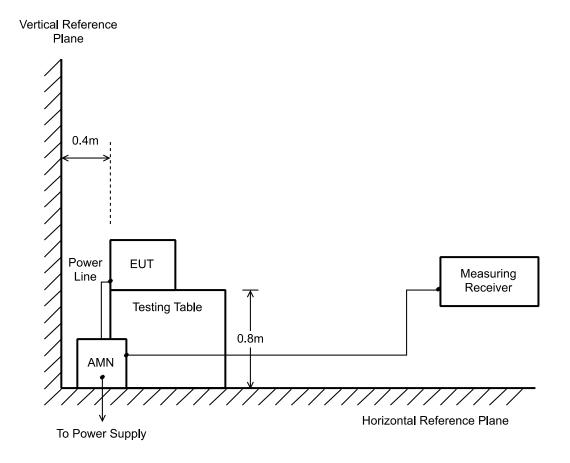
Page 67 of 75



Issue Date: February 20, 2024

#### 7.7 **AC Powerline Conducted Emission**

#### 7.7.1 **Test Site and Instruments**


| Test Site : Measurement Room M2 |              |                  |                 |            |            |  |  |  |  |
|---------------------------------|--------------|------------------|-----------------|------------|------------|--|--|--|--|
| Туре                            | Model        | Serial No. (ID)  | Manufacturer    | Last Cal.  | Cal. Due   |  |  |  |  |
| Test Receiver                   | ESR26        | 101680 (A-76)    | Rohde & Schwarz | 2023/02/20 | 2024/02/19 |  |  |  |  |
| AMN (main)                      | KNW-407FR    | 8-2019-1 (D-103) | Kyoritsu        | 2023/06/30 | 2024/06/29 |  |  |  |  |
| EMC Software                    | EP9/CE       | Ver.4.04.050     | TOYO            |            |            |  |  |  |  |
| RF Cable                        | RG223/U      | (H-9)            | HUBER+SUHNER    | 2023/11/07 | 2024/11/06 |  |  |  |  |
| Thermo-Hygrometer               | testo 608-H2 | 30050646 (F-68)  | testo           | 2023/06/09 | 2024/06/08 |  |  |  |  |
| Barometer                       | BAROMEX      | 02952 (F-48)     | SATO            | 2023/08/16 | 2024/08/15 |  |  |  |  |

#### 7.7.2 Test Method and Test Setup (Diagrammatic illustration)

The pre-scan measurements were performed using the scan mode of test receiver or spectrum analyzer to observe the emissions characteristics of the EUT. The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions.

This configurations was used for formal measurements.

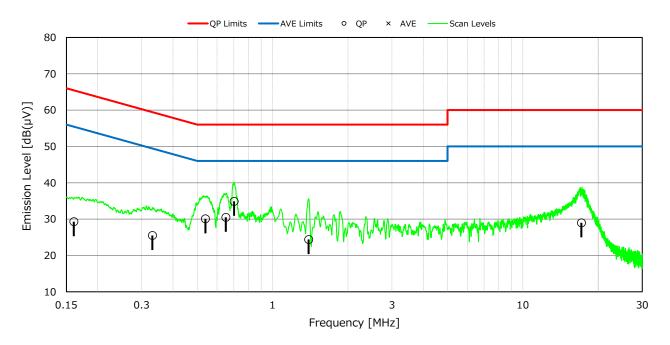
(Reference divisional instruction No. G703649)



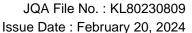


Page 68 of 75

### 7.7.3 Test Data


<u>Test voltage : 3.3VDC (AC Adapter 120VAC 60Hz)</u>

<u>Test Date: February 7, 2024</u>


<u>Temp.: 24 °C, RH: 40 %, Atm.: 998 hPa</u>

Measured phase: VA

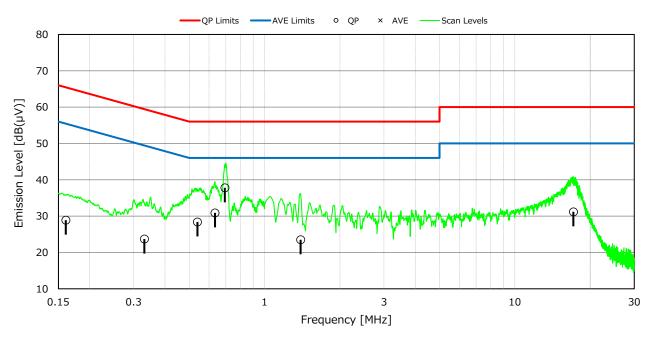
| Frequency | Factor | Read<br>[dB( | _   |      | nits<br>(μV)] | Res<br>[dB( |     | Mar<br>[dl | _   | Remarks |
|-----------|--------|--------------|-----|------|---------------|-------------|-----|------------|-----|---------|
| [MHz]     | [dB]   | QP           | AVE | QP   | AVE           | QP          | AVE | QP         | AVE |         |
| 0.1606    | 10.3   | 19.0         |     | 65.4 | 55.4          | 29.3        |     | + 36.1     |     | -       |
| 0.3308    | 10.3   | 15.2         |     | 59.4 | 49.4          | 25.5        |     | + 33.9     |     | -       |
| 0.5389    | 10.3   | 19.8         |     | 56.0 | 46.0          | 30.1        |     | + 25.9     |     | -       |
| 0.6505    | 10.3   | 20.2         |     | 56.0 | 46.0          | 30.5        |     | + 25.5     |     | -       |
| 0.7016    | 10.3   | 24.6         |     | 56.0 | 46.0          | 34.9        |     | + 21.1     |     | -       |
| 1.3933    | 10.3   | 14.1         |     | 56.0 | 46.0          | 24.4        |     | + 31.6     |     | -       |
| 17.1423   | 11.1   | 17.9         |     | 60.0 | 50.0          | 29.0        |     | + 31.0     |     | -       |



- 1) The spectrum was checked from 150 kHz to 30 MHz.
- 2) The factor includes the AMN voltage division factor and the cable loss.
- 3) The symbol of "--" means "not applicable".
- 4) Calculated result as the worst point shown on underline : Factor + Reading (QP) =  $10.3 + 24.6 = 34.9 \text{ dB}(\mu\text{V})$  at 0.7016 MHz
- 5) QP: Quasi-Peak detector, AVE: Average detector
- 6) Bandwidth: 9 kHz (150 kHz 30 MHz)








Test voltage: 3.7VDC (AC Adapter 120VAC 60Hz)

<u>Test Date: February 7, 2024</u> <u>Temp.: 24 °C, RH: 40 %, Atm.: 998 hPa</u>

Measured phase: VB

| Frequency | Factor | Read<br>[dB( | _   |      | nits<br>(μV)] | Res<br>[dB( |     | Mar<br>[di | _   | Remarks |
|-----------|--------|--------------|-----|------|---------------|-------------|-----|------------|-----|---------|
| [MHz]     | [dB]   | QP           | AVE | QP   | AVE           | QP          | AVE | QP         | AVE |         |
| 0.1606    | 10.4   | 18.5         |     | 65.4 | 55.4          | 28.9        |     | + 36.5     |     | -       |
| 0.3308    | 10.4   | 13.3         |     | 59.4 | 49.4          | 23.7        |     | + 35.7     |     | -       |
| 0.5389    | 10.4   | 18.0         |     | 56.0 | 46.0          | 28.4        |     | + 27.6     |     | -       |
| 0.6337    | 10.4   | 20.5         |     | 56.0 | 46.0          | 30.9        |     | + 25.1     |     | -       |
| 0.6937    | 10.4   | 27.4         |     | 56.0 | 46.0          | 37.8        |     | + 18.2     |     | -       |
| 1.3933    | 10.4   | 13.1         |     | 56.0 | 46.0          | 23.5        |     | + 32.5     |     | -       |
| 17.1423   | 11.4   | 19.8         |     | 60.0 | 50.0          | 31.2        |     | + 28.8     |     | -       |



- 1) The spectrum was checked from 150 kHz to 30 MHz.
- 2) The factor includes the AMN voltage division factor and the cable loss.
- 3) The symbol of "--" means "not applicable".
- 4) Calculated result as the worst point shown on underline : Factor + Reading (QP) = 10.4 + 27.4 = 37.8 dB( $\mu$ V) at 0.6937 MHz
- 5) QP: Quasi-Peak detector, AVE: Average detector
- 6) Bandwidth: 9 kHz (150 kHz 30 MHz)