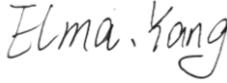


Report No.: BTEK240124004AE001
Page: 1 of 29
FCC ID: 2BEVG-ASGR29

TEST REPORT

Application No.:	BTEK240124004AE
Applicant:	Shenzhen Xinhongju Technology Co., Ltd.
Address of Applicant:	Room 1302, Longhua Apartment, No. 9, Minqing Rd, Longhua District, Shenzhen
Manufacturer:	Shenzhen Xinhongju Technology Co., Ltd.
Address of Manufacturer:	Room 1302, Longhua Apartment, No. 9, Minqing Rd, Longhua District, Shenzhen
Factory:	Shenzhen Xinhongju Technology Co., Ltd.
Address of Factory:	Room 1302, Longhua Apartment, No. 9, Minqing Rd, Longhua District, Shenzhen
Equipment Under Test (EUT):	
EUT Name:	Yard lamp
Model No.:	ASGR29, ASGR29-WT, ASGR29-1, ASGR29-2, ASGR29-3, ASGR29-4, ASGR29-5, ASGR29-6, ASHT120-1
	Please refer to section 2 of this report which indicates which model was actually tested and which were electrically identical.
Trade Mark:	N/A
Standard(s) :	47 CFR Part 15, Subpart C 15.231
Date of Receipt:	2024-01-25
Date of Test:	2024-01-25 to 2024-03-11
Date of Issue:	2024-03-26

Test Result:	Pass*
---------------------	--------------


* In the configuration tested, the EUT complied with the standards specified above.

Damon Su
EMC Laboratory Manager

Revision Record				
Version	Chapter	Date	Modifier	Remark
01		2024-03-26		Original

Authorized for issue by				
		 Elma Yang/ Project Engineer		
		 Carl Yang / Reviewer		

2 Test Summary

Radio Spectrum Technical Requirement				
Item	Standard	Method	Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.203	N/A	47 CFR Part 15, Subpart C 15.203	Pass

Item	Standard	Requirement	Result
Conduction Emission	47 CFR Part 15, Subpart C 15.207 47 CFR Part 15, Subpart C 15.231	47 CFR Part 15, Subpart C 15.207	N/A
20dB Bandwidth		47 CFR Part 15, Subpart C 15.231(c)	Pass
Transmission time		47 CFR Part 15, Subpart C 15.231a(1)	Pass
Duty cycle corrected factor		--	Pass
Field strength of the Fundamental signal		47 CFR Part 15, Subpart C 15.231 (b)	Pass
Radiation Spurious Emission		47 CFR Part 15, Subpart C 15.231(b)/15.205/15.209	Pass

Note:

N/A: Not applicable.

Due to the EUT is powered by battery, The Conduction Emission is not applicable.

E.U.T./EUT means Equipment Under Test.

Pass means the test result passed the test standard requirement, please find the detailed decision rule in the report relative section.

Model No.: ASGR29, ASGR29-WT, ASGR29-1, ASGR29-2, ASGR29-3, ASGR29-4, ASGR29-5, ASGR29-6, ASHT120-1

Only the model ASGR29 was tested. According to the declaration from the applicant, the electrical circuit design, layout, components used, internal wiring and functions of other models are identical for the above models, with only difference on Model No.

3 Contents

	Page
1 Cover Page	1
2 Test Summary	3
3 Contents	4
4 General Information	6
4.1 Details of E.U.T.	6
4.2 Description of Support Units	6
4.3 Measurement Uncertainty	6
4.4 Test Location	7
4.5 Deviation from Standards	7
4.6 Abnormalities from Standard Conditions	7
5 Equipment List	8
6 Radio Spectrum Technical Requirement	10
6.1 Antenna Requirement	10
6.1.1 Test Requirement:	10
6.1.2 Conclusion	10
7 Radio Spectrum Matter Test Results	11
7.1 20dB Bandwidth	11
7.1.1 E.U.T. Operation	11
7.1.2 Test Mode Description	11
7.1.3 Test Setup Diagram	11
7.1.4 Measurement Procedure and Data	11
7.2 Transmission time	12
7.2.1 E.U.T. Operation	12
7.2.2 Test Mode Description	12
7.2.3 Test Setup Diagram	12
7.2.4 Measurement Procedure and Data	12
7.3 Duty Cycle Corrected Factor	13
7.3.1 E.U.T. Operation	13
7.3.2 Test Mode Description	13
7.3.3 Test Setup Diagram	13
7.3.4 Measurement Procedure and Data	13
7.4 Field strength of the Fundamental signal	14
7.4.1 E.U.T. Operation	14
7.4.2 Test Mode Description	14
7.4.3 Test Setup Diagram	14
7.4.4 Measurement Procedure and Data	15
7.5 Radiated Spurious Emission	16
7.5.1 E.U.T. Operation	16
7.5.2 Test Mode Description	16
7.5.3 Test Setup Diagram	17
7.5.4 Measurement Procedure and Data	18
8 Test Setup Photo	19
9 EUT Constructional Details (EUT Photos)	19

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 3V CR2025 Battery
Cable(s):	/
Frequency Range:	434MHz
Modulation Type:	OOK
Number of Channels:	1
Sample Type:	portable device
Antenna Type:	Spring antenna
Antenna Gain:	0dBi
Hardware Version	N/A
Software and Firmware Version	N/A

Remark: The information in this section is provided by the applicant or manufacturer, BANTEK is not liable to the accuracy, suitability, reliability or/and integrity of the information.

Sample No.:	BTEK240124004AE-01
-------------	--------------------

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
--	--	--	--

4.3 Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Peak Output Power	± 0.76dB
20dB Bandwidth	± 3%
Conducted Spurious Emissions	± 0.8dB
Radiated Emissions which fall in the restricted bands	±5.1dB (1GHz-6GHz); ±5.2dB(above 6GHz)
Radiated Spurious Emissions (Below 1GHz)	±5.1dB
Radiated Spurious Emissions (Above 1GHz)	±5.1dB (1GHz-6GHz); ±5.2dB(above 6GHz)

4.4 Test Location

All tests were performed at:

Shenzhen BANTEK Testing Co., Ltd.,

A5&A6, Building B1&B2, No.45 Gangtou Road, Bogang Community, Shajing Street, Bao'an District, Shenzhen, Guangdong, China 518104

Tel:0755-2334 4200 Fax: 0755-2334 4200

FCC Registration Number: 264293

Designation Number: CN1356

No tests were sub-contracted.

4.5 Deviation from Standards

None

4.6 Abnormalities from Standard Conditions

None

5 Equipment List

RF Conducted					
Equipment	Manufacturer	Model No	Serial No	Cal Date	Cal Due Date
Shielding Room	YIHENG ENELECTRONIC	5.5*3.1*3	YH-BT- 220304-03	2022-03-03	2025-03-02
EXA Signal Analyzer	KEYSIGHT	N9020A	MY54230486	2023-06-12	2024-06-11
DC Power Supply	E3632A	E3642A	KR75304416	2023-06-12	2024-06-11
Attenuator	RswTech	SMA-JK-6dB	N/A	2023-06-12	2024-06-11
Attenuator	RswTech	SMA-JK-3dB	N/A	2023-06-12	2024-06-11
RF Control Unit	Techy	TR1029-1	N/A	2023-06-12	2024-06-11
RF Sensor Unit	Techy	TR1029-2	N/A	2023-06-12	2024-06-11
WIDEBAND RADIO COMMUNICATION TESTER	R&S	CMW 500	141258	2023-06-12	2024-06-11
MXG Vector Signal Generator	Agilent	N5182A	US46240522	2023-06-12	2024-06-11
Programmable Temperature&Humidity Chamber	GRT	GR-HWX1000	GR22051001	2023-06-12	2024-06-11
Measurement Software	TACHOY	RF TestSoft V2.0.0.0	N/A	N/A	N/A

RSE					
Equipment	Manufacturer	Model No	Serial No	Cal Date	Cal Due Date
3m Semi-Anechoic Chamber	YIHENG ENELECTRONIC	966	YH-BT- 220304-01	2022-03-03	2025-03-02
EMI Test Receiver	Rohde&Schwarz	ESCI	100694	2023-06-12	2024-06-11
TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	01324	2022-06-15	2025-06-14
Pre-Amplifier	Schwarzbeck	BBV 9745	#180	2023-06-12	2024-06-11
Measurement Software	Fara	EZ_EMC Ver. FA-03A2	N/A	2023-06-12	2024-06-11
EXA Signal Analyzer	Keysight	N9020A	MY54440290	2023-06-12	2024-06-11
Horn Antenna	Schwarzbeck	BBHA 9120D	02695	2022-06-15	2025-06-14
Pre-Amplifier	Tonscend	TAP0118045	AP20K806109	2023-06-12	2024-06-11
Horn Antenna	SCHWARZBECK	BBHA9170	1157	2022-06-15	2025-06-14
Low Noise Pre-amplifier	SKET	LNPA-1840G- 50	SK2022032902	2023-06-12	2024-06-11
Signal analyzer	ROHDE&SCHWARZ	FSQ40	100010	2023-06-12	2024-06-11
Loop Antenna	ETS	6502	00201177	2022-06-15	2025-06-14

General used equipment

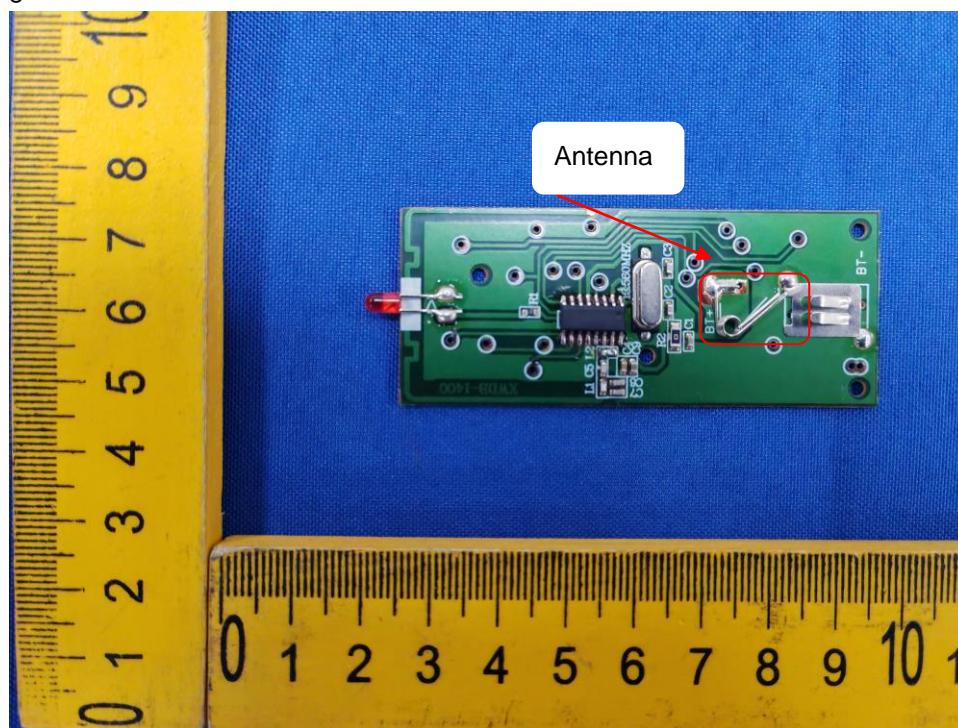
Equipment	Manufacturer	Model No	Serial No	Cal Date	Cal Due Date
Humidity/Temperature/B arometric Pressure Indicator	KUMAR	F132	N/A	2023-06-12	2024-06-11
Humidity/Temperature/B arometric Pressure Indicator	KUMAR	F132	N/A	2023-06-12	2024-06-11

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203


6.1.2 Conclusion

Standard Requirement:

Testing shall be performed using the highest gain antenna of each combination of licence-exempt transmitter and antenna type, with the transmitter output power set at the maximum level. When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer.

EUT Antenna:

The antenna is integrated on the Chip in PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

7 Radio Spectrum Matter Test Results

7.1 20dB Bandwidth

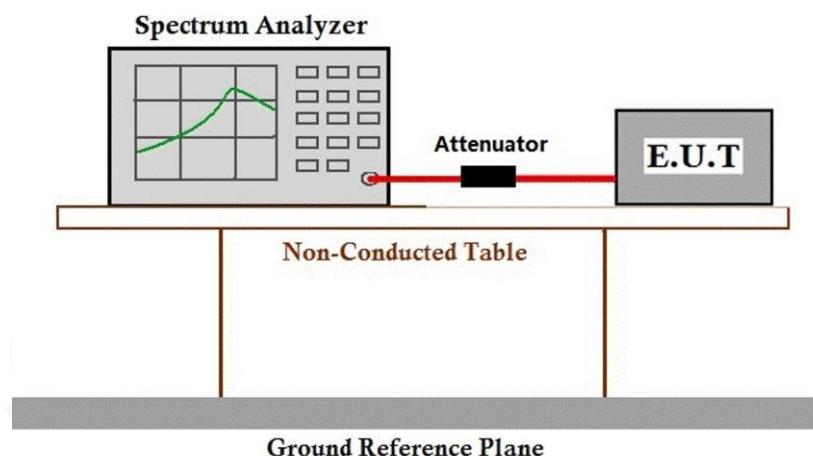
Test Requirement 47 CFR Part 15, Subpart C 15.231(c)

Limit:

Frequency range(MHz)	Limit
70-900	No wider than 0.25% of the center frequency
Above 900	No wider than 0.5% of the center frequency

Remark: For this device, the limit is $434\text{MHz} \times 0.25\% = 1.085\text{MHz}$

7.1.1 E.U.T. Operation


Operating Environment:

Temperature: 20.6 °C Humidity: 50.5 % RH Atmospheric Pressure: 1010 mbar

7.1.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	01	keep the relative position between the artificial antenna and the EUT. Set to the maximum power setting and enable the EUT transmit continuously. All modes have been tested and only the data of worst case is recorded in the report.

7.1.3 Test Setup Diagram

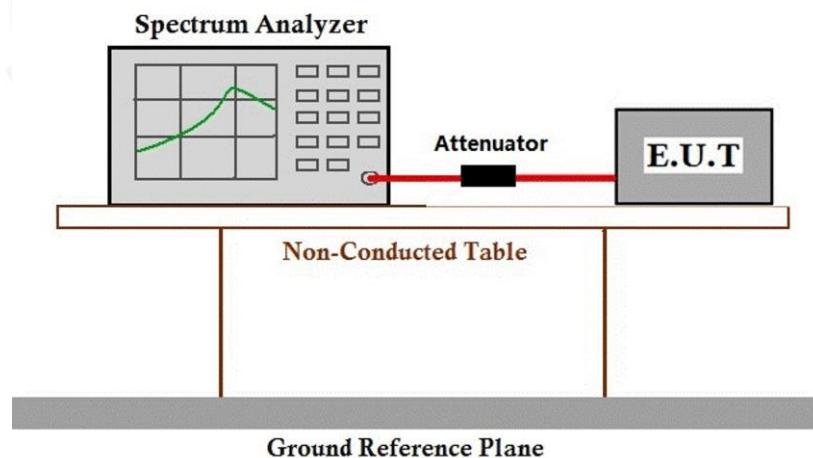
7.1.4 Measurement Procedure and Data

cable loss=0.83dB

Please Refer to Appendix

7.2 Transmission time

Test Requirement 47 CFR Part 15, Subpart C 15.231a(1)
Limit: A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.


7.2.1 E.U.T. Operation

Operating Environment:
Temperature: 20.6 °C Humidity: 50.5 % RH Atmospheric Pressure: 1010 mbar

7.2.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	01	The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings: Frequency=Center carrier frequency RBW=100kHz, VBW=300kHz, Span= zero, Sweep time= 10second, Detector function = peak, Trace = single

7.2.3 Test Setup Diagram

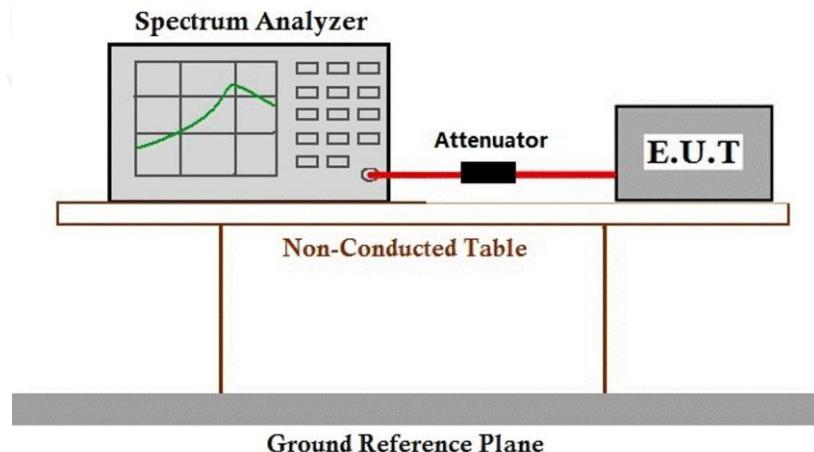
7.2.4 Measurement Procedure and Data

cable loss=0.83dB

Please Refer to Appendix

7.3 Duty Cycle Corrected Factor

Test Requirement 47 CFR Part 15, Subpart C 15.231
Limit: N/A


7.3.1 E.U.T. Operation

Operating Environment:
Temperature: 20.6 °C Humidity: 50.5 % RH Atmospheric Pressure: 1010 mbar

7.3.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	01	The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings: Span=zero span, Frequency=centered channel, RBW= 1MHz, VBW \geq RBW . Sweep time=as necessary to capture the entire dwell time, Detector function = peak, Trigger mode

7.3.3 Test Setup Diagram

7.3.4 Measurement Procedure and Data

cable loss=0.83dB

Please Refer to Appendix

7.4 Field strength of the Fundamental signal

Test Requirement 47 CFR Part 15, Subpart C 15.231(b)

Limit:

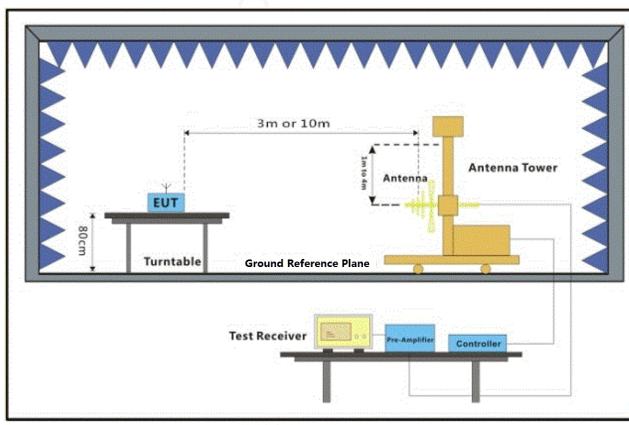
Frequency(MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	*1,250 to 3,750	*125 to 375
174 - 260	3,750	375
260 - 470	*3,750 to 12,500	*375 to 1,250
Above 470	12,500	1,250

*Linear interpolations

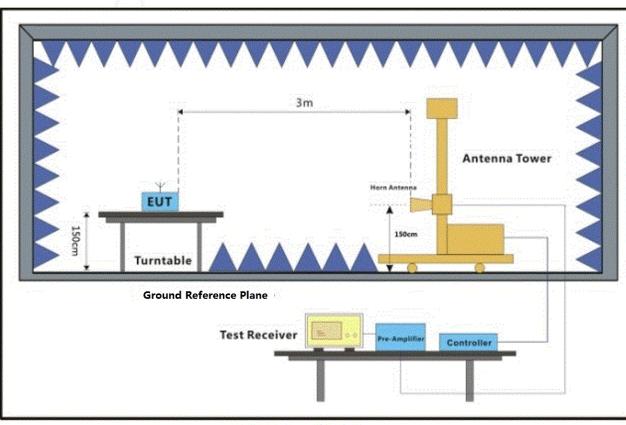
7.4.1 E.U.T. Operation

Operating Environment:

Temperature: 21.4 °C


Humidity: 54.3 % RH

Atmospheric Pressure: 1010 mbar


7.4.2 Test Mode Description

Pre-scan / Final test	Mode Code	Description
Final test	01	Set to the maximum power setting and enable the EUT transmit continuously. All modes have been tested and only the data of worst case is recorded in the report.

7.4.3 Test Setup Diagram

30MHz-1GHz

Above 1GHz

7.4.4 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Reading Level + Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Please Refer to Appendix

7.5 Radiated Spurious Emission

Test Requirement 47 CFR Part 15, Subpart C 15.231(b)/15.209

Limit:

15.209

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

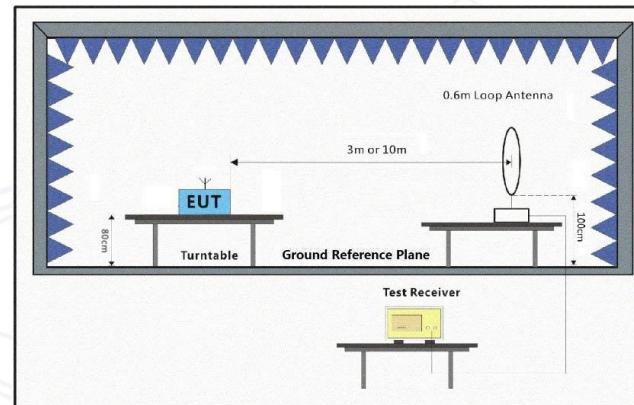
15.231(b)

Frequency(MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	*1,250 to 3,750	*125 to 375
174 - 260	3,750	375
260 - 470	*3,750 to 12,500	*375 to 1,250
Above 470	12,500	1,250

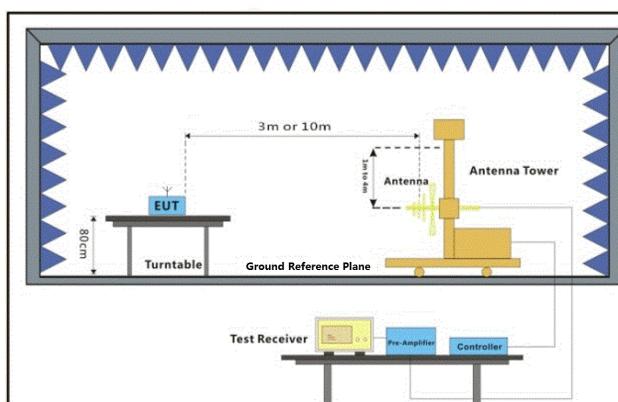
*Linear interpolations

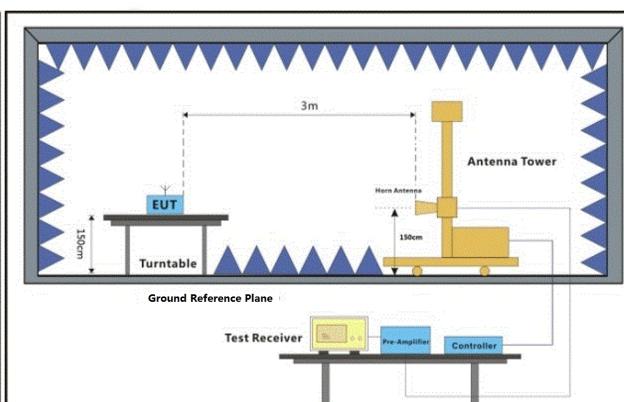
7.5.1 E.U.T. Operation

Operating Environment:


Temperature: 25.5 °C Humidity: 68.6 % RH Atmospheric Pressure: 1010 mbar

7.5.2 Test Mode Description


Pre-scan / Final test	Mode Code	Description
Final test	01	Set to the maximum power setting and enable the EUT transmit continuously. All modes have been tested and only the data of worst case is recorded in the report.


7.5.3 Test Setup Diagram

9KHz~30MHz

30MHz~1GHz

Above 1GHz

7.5.4 Measurement Procedure and Data

1. For testing performed with the loop antenna, the center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. Only the worst position of Horizontal was shown in the report.

Measured Level $I = \text{Read Level} + \text{Antenna Factor} + \text{Cable Loss} - \text{Preamp Factor}$

2. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber in below 1GHz, 1.5m above the ground in above 1GHz. The table was rotated 360 degrees to determine the position of the highest radiation.

3. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

4. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

6. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

7. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Remark:

1) Through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Reading Level + Factor

3) Scan from 9kHz to 1 GHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Please Refer to Appendix

Note:

1) Pre-scan all modes and recorded the worst case results in this report (High Channel).

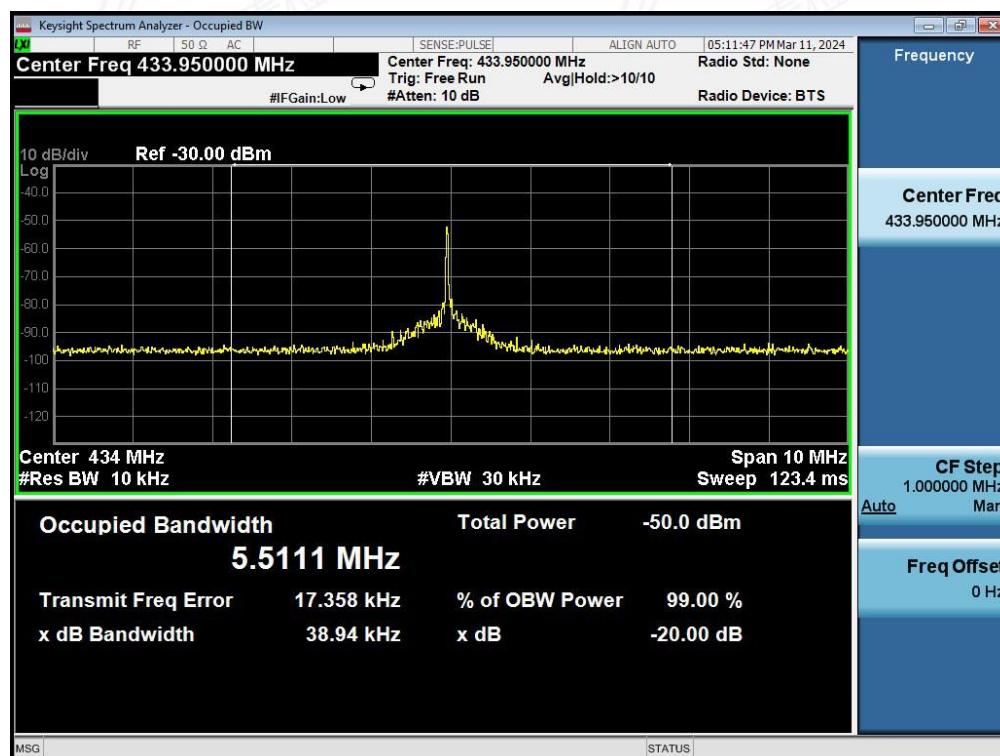
2) Emission level (dBuV/m) = 20 log Emission level (uV/m).

3) Level= Reading+ Factor, Margin= Level- Limit, Factor= Antenna Factor Cable Loss-Preamp Factor

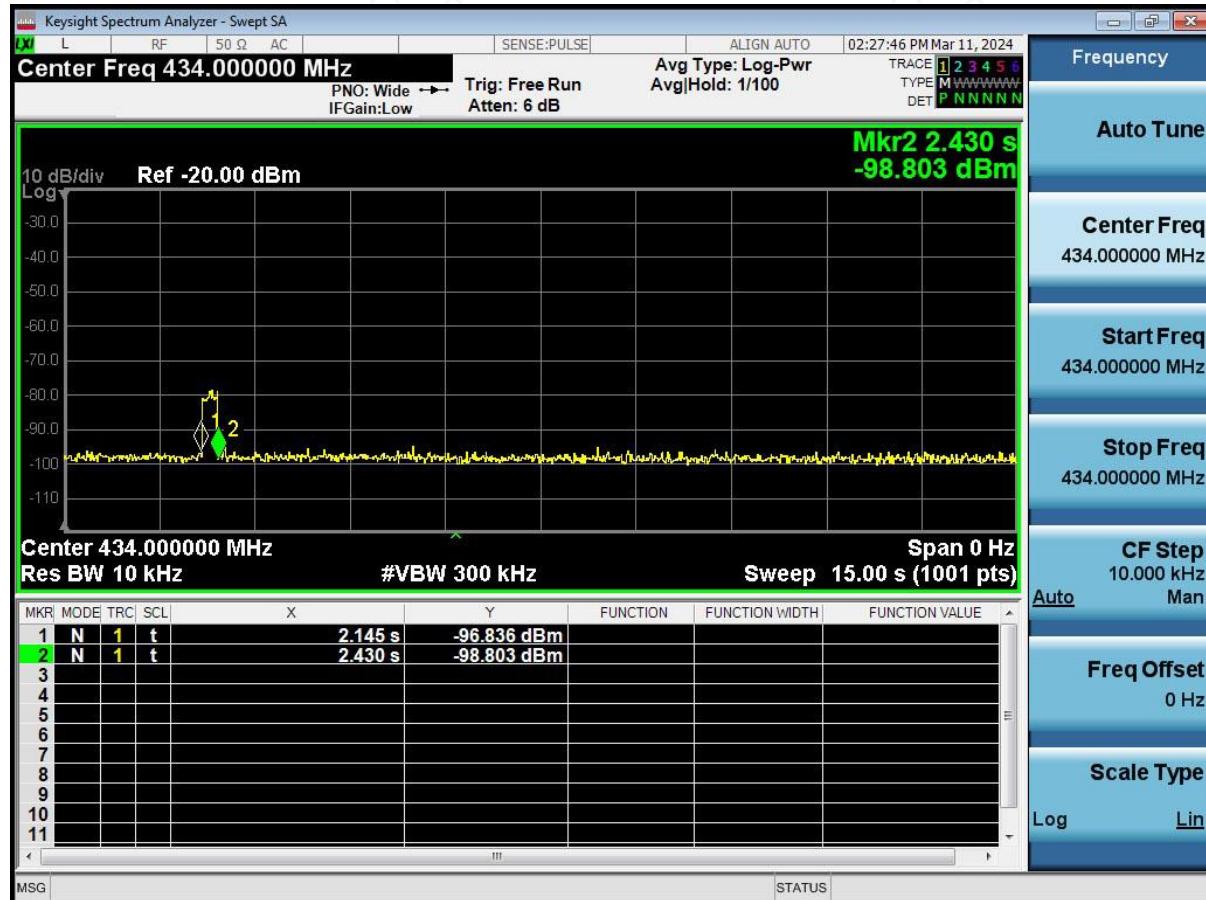
8 Test Setup Photo

Please Refer to Appendix – Test Setup Photos.

9 EUT Constructional Details (EUT Photos)


Please Refer to Appendix - External and Internal Appendix EUT Photos

10 Appendix


10.1 20dB Bandwidth

Test Channel	Bandwidth	Limit	Verdict
434MHz	38.94kHz	1.085MHz	PASS

10.2 Transmission time

Transmission time(second)	Limit(second)	Result
0.285	5	Pass

10.3 Duty cycle corrected factor

$T_{ON}(\text{ms})$	$(19*1.4+7*1) = 26.6+7 = 33.6$
T_{ON} number	1
Period (ms)	$71.85 - 19.05 = 52.80$
Duty Cycle	$(33.6*1)/52.80 = 0.64$
Duty Cycle Corrected Factor	$20 * \log(0.64) = -3.88$

19 for $(16.20-14.80) = 1.4$ ms

7 for $(55.50-54.50) = 1$ ms

10.4 Field strength of the Fundamental signal

No.	Freq. [MHz]	Reading [dB μ V]	Factor [dB/m]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Polarity	Detector
1	434.0650	86.05	-15.05	71.00	100.80	-29.80	Horizontal	PK
2	434.0650	85.88	-15.03	70.85	100.80	-29.95	Vertical	PK

Note: Level=Reading+Factor

No.	Freq. [MHz]	Reading [dB μ V]	Factor [dB/m]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Polarity	Detector
1	869.1300	69.57	-7.23	62.34	80.90	-18.56	Horizontal	PK
2	869.1300	68.23	-7.56	60.67	80.90	-20.23	Vertical	PK

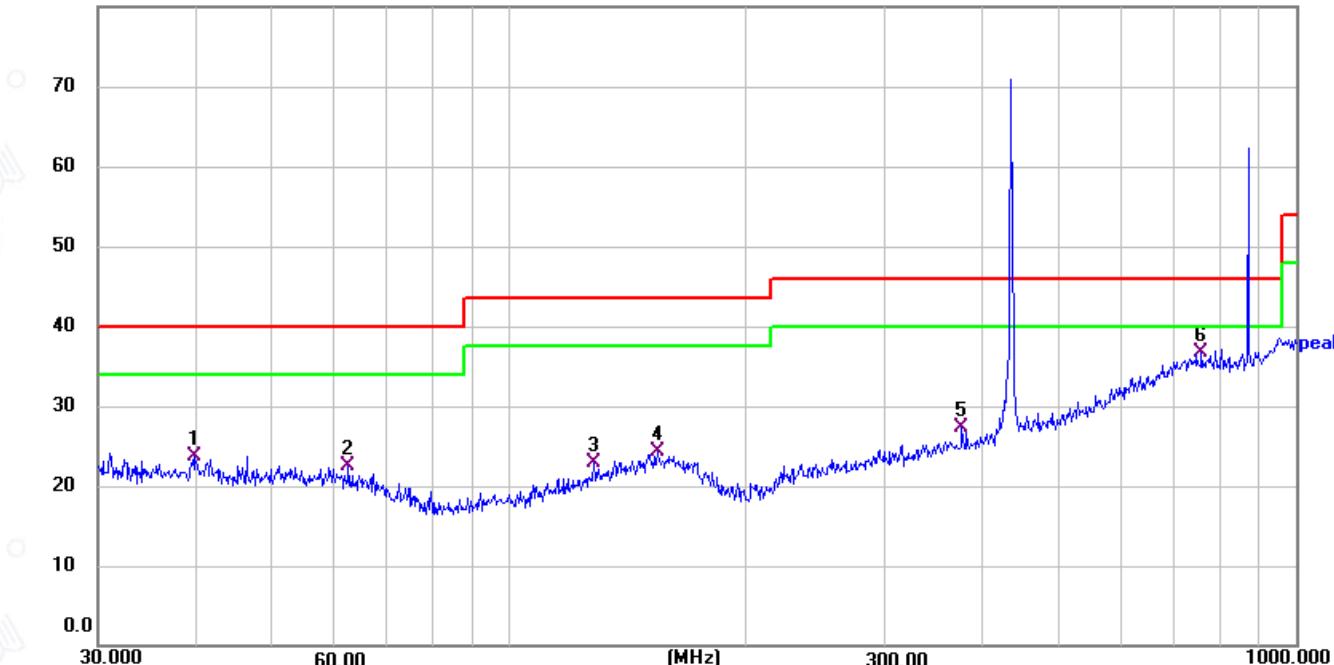
Note: Level=Reading+Factor

No.	Freq. [MHz]	PKLevel [dB μ V/m]	DCCF [dB]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Polarity	Detector
1	434.0650	71.00	-3.88	67.12	80.85	-13.73	Horizontal	AV
2	434.0650	70.85	-3.88	66.97	80.85	-13.88	Vertical	AV

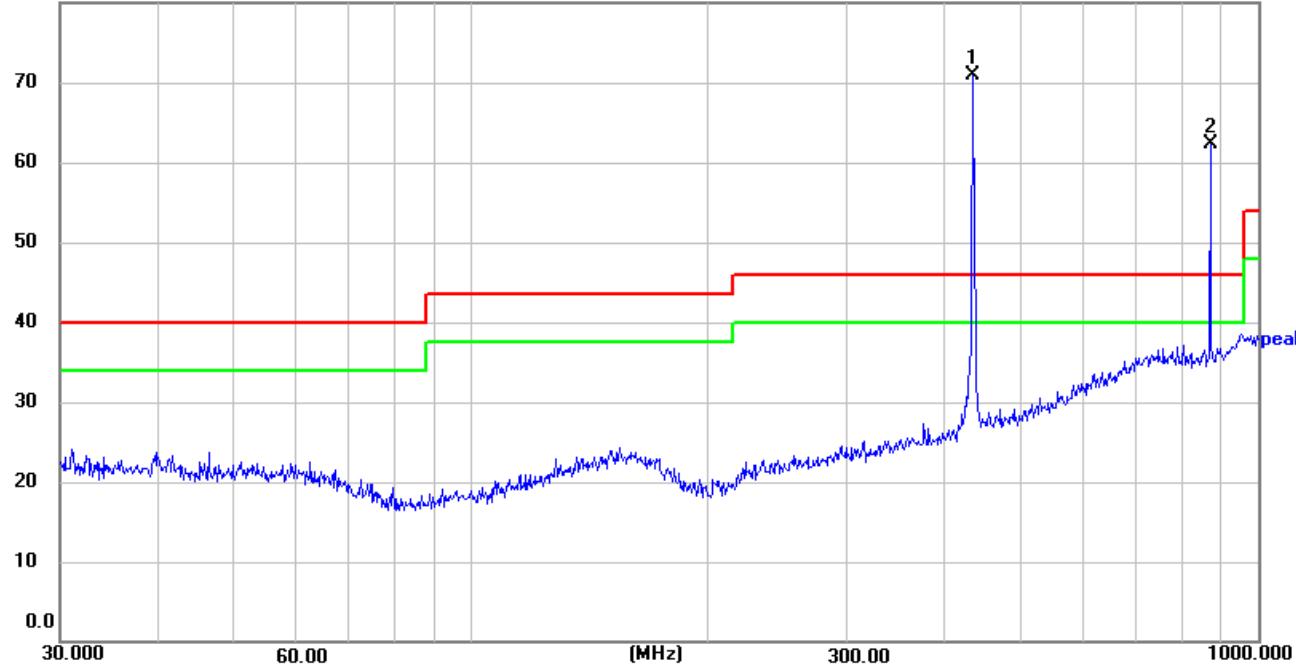
Note: Level=PKLevel+DCCF

No.	Freq. [MHz]	PKLevel [dB μ V/m]	DCCF [dB]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Polarity	Detector
1	869.1300	62.34	-3.88	58.46	60.85	-2.39	Horizontal	AV
2	869.1300	60.67	-3.88	56.79	60.85	-4.06	Vertical	AV

Note: Level= PKLevel+DCCF



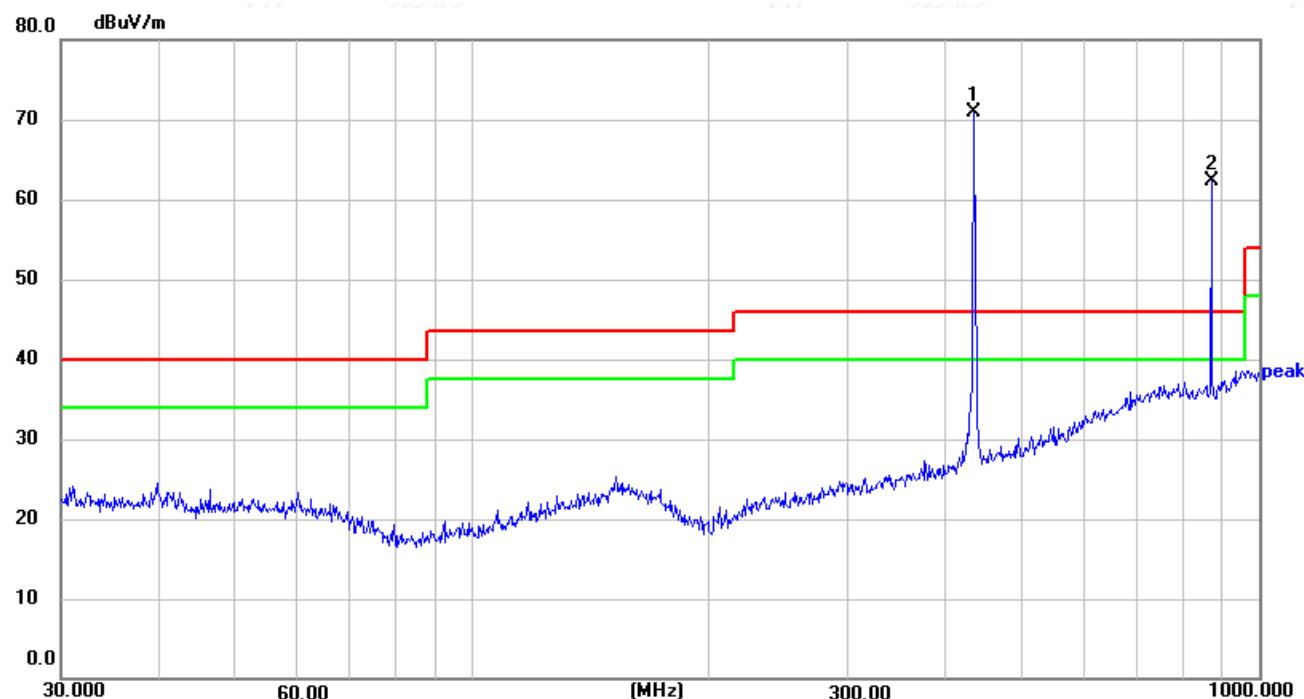
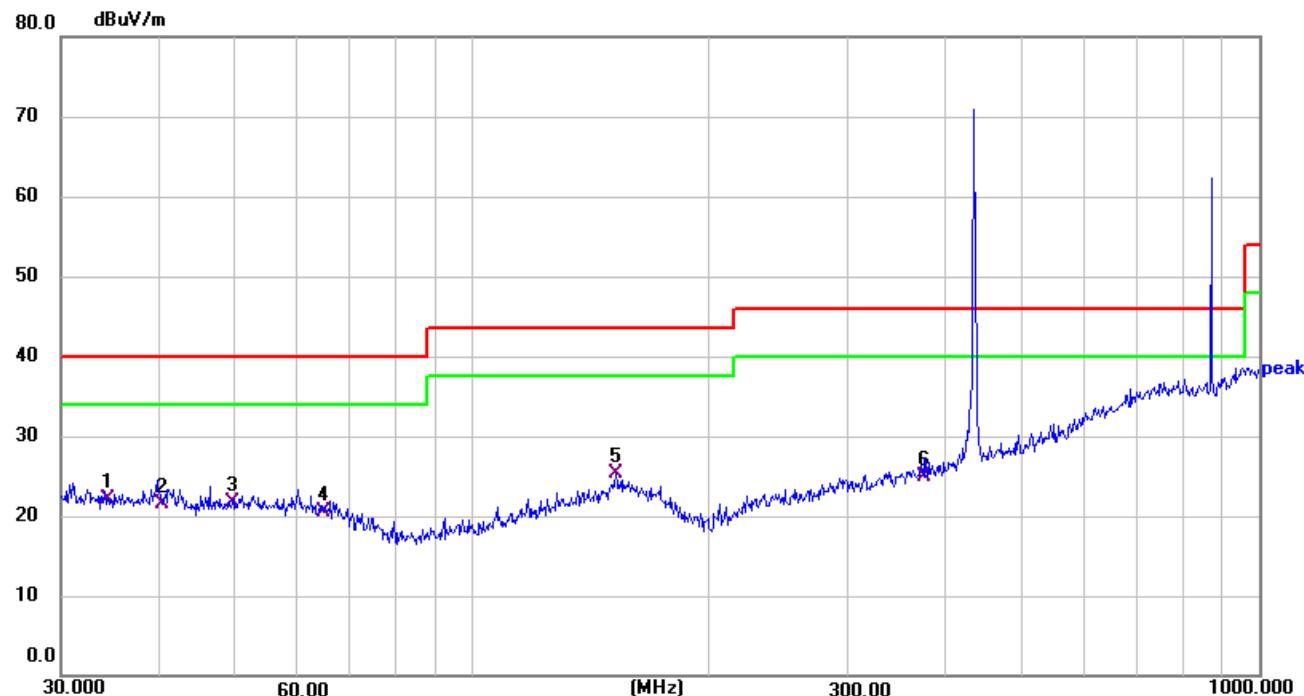
10.5 Radiation Spurious Emission


Test Antenna Horizontal (30MHz to 1GHz)

Level = Reading + Factor

80.0 dB μ V/m

80.0 dB μ V/m



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	39.8542	42.13	-18.45	23.68	40.00	-16.32	QP	100	360	P	
2	62.4313	42.54	-20.07	22.47	40.00	-17.53	QP	100	360	P	
3	128.1130	42.69	-19.78	22.91	43.50	-20.59	QP	100	360	P	
4	154.2785	42.85	-18.50	24.35	43.50	-19.15	QP	100	360	P	
5	375.9385	43.87	-16.58	27.29	46.00	-18.71	QP	100	360	P	
6 *	758.0407	44.92	-8.20	36.72	46.00	-9.28	QP	100	360	P	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)
1 *	434.0650	86.05	-15.05	71.00
2 X	869.1300	69.57	-7.23	62.34

Test Antenna Vertical (30MHz to 1GHz)

Level = Reading + Factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1 *	34.3964	41.25	-19.12	22.13	40.00	-17.87	QP	100	354	P	
2	40.4172	39.94	-18.52	21.42	40.00	-18.58	QP	100	354	P	
3	49.5328	40.93	-19.21	21.72	40.00	-18.28	QP	100	354	P	
4	64.6594	41.07	-20.60	20.47	40.00	-19.53	QP	100	354	P	
5	152.1297	43.55	-18.31	25.24	43.50	-18.26	QP	100	354	P	
6	374.6225	41.56	-16.61	24.95	46.00	-21.05	QP	100	354	P	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)
1 *	434.0650	85.88	-15.03	70.85
2 X	869.1300	68.23	-7.56	60.67

Test Antenna Horizontal Above 1GHz

No.	Frequency (MHz)	Reading (dBuv)	Factor (dB/m)	Level (dBuv/m)	Limit (dBuv/m)	Margin(dB)	Detector	P/F
1	2914.487	68.84	-29.30	39.55	74.00	-34.45	peak	P
2	4277.577	67.40	-28.76	38.64	74.00	-35.36	peak	P
3	6086.059	64.48	-25.35	39.13	74.00	-34.87	peak	P
4	8645.938	70.35	-25.15	45.20	74.00	-28.80	peak	P
5	11046.855	67.01	-24.04	42.97	74.00	-31.03	peak	P
6	14217.993	70.56	-21.88	48.68	74.00	-25.32	peak	P

Test Antenna Vertical Above 1GHz

No.	Frequency (MHz)	Reading (dBuv)	Factor (dB/m)	Level (dBuv/m)	Limit (dBuv/m)	Margin(dB)	Detector	P/F
1	2973.761	66.80	-29.10	37.70	74.00	-36.30	peak	P
2	4313.652	69.12	-29.64	39.48	74.00	-34.52	peak	P
3	6354.013	67.24	-26.02	41.22	74.00	-32.78	peak	P
4	8576.482	69.20	-25.95	43.25	74.00	-30.75	peak	P
5	11285.187	68.68	-23.67	45.01	74.00	-28.99	peak	P
6	14955.791	71.08	-19.63	51.44	74.00	-22.56	peak	P

- End of the Report -

