

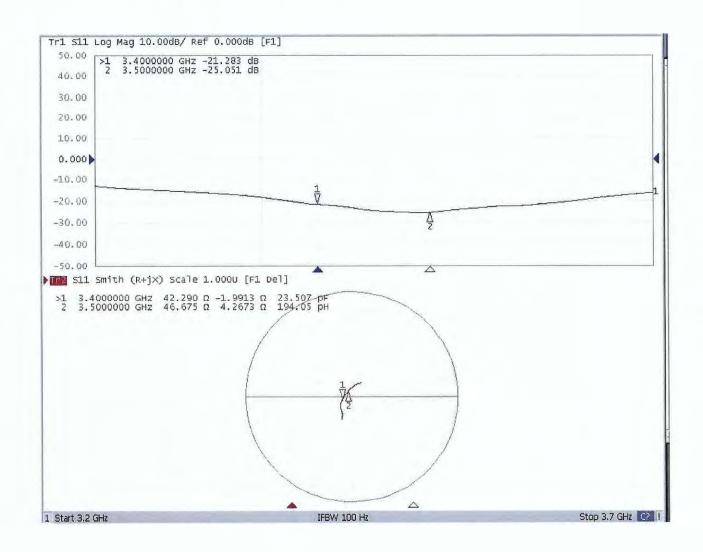
Tel: +86-10-62304633-2117

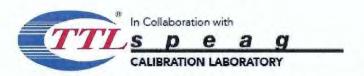
E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

0 dB = 12.1 W/kg = 10.83 dBW/kg

Certificate No: Z22-60370




Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Impedance Measurement Plot for Head TSL

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Client

SGS

Certificate No:

Z22-60371

CALIBRATION CERTIFICATE

Object

D3700V2 - SN: 1046

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

September 15, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)[∞]C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Power sensor NRP8S	104291	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Reference Probe EX3DV4	SN 7464	26-Jan-22(SPEAG,No.EX3-7464_Jan22)	Jan-23
DAE4	SN 1556	12-Jan-22(CTTL-SPEAG,No.Z22-60007)	Jan-23
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-22 (CTTL, No.J22X00409)	Jan-23
Network Analyzer E5071C	MY46110673	14-Jan-22 (CTTL, No.J22X00406)	Jan-23

Name Function Signature
Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

Issued: September 23, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z22-60371

Page 1 of 6

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z22-60371 Page 2 of 6

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3700 MHz ±1 MHz	

Head TSL parameters at 3700 MHz

The following parameters and calculations were applied.

ne following parameters and calculations were	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 ℃	37.7	3.12 mho/m
Measured Head TSL parameters	(22.0 ±0.2) ℃	37.1 ±6 %	3.11 mho/m ±6 %
Head TSL temperature change during test	<1.0 ℃		

SAR result with Head TSL at 3700 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.63 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	66.1 W/kg ±24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.48 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ±24.2 % (k=2)

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 3700 MHz

Impedance, transformed to feed point	48.4Ω - 0.99jΩ	
Return Loss	- 34.5dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.047 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
manuscript, or any	710.00

Certificate No: Z22-60371 Page 4 of 6

Date: 2022-09-15

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN: 1046

Communication System: UID 0, CW; Frequency: 3700 MHz;

Medium parameters used: f = 3700 MHz; σ = 3.111 S/m; ϵ_r = 37.08; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN7464; ConvF(6.78, 6.78, 6.78) @ 3700 MHz;
 Calibrated: 2022-01-26

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn1556; Calibrated: 2022-01-12

 Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration /Pin=100mW, d=10mm, f=3700 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.34 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 6.63 W/kg; SAR(10 g) = 2.48 W/kg

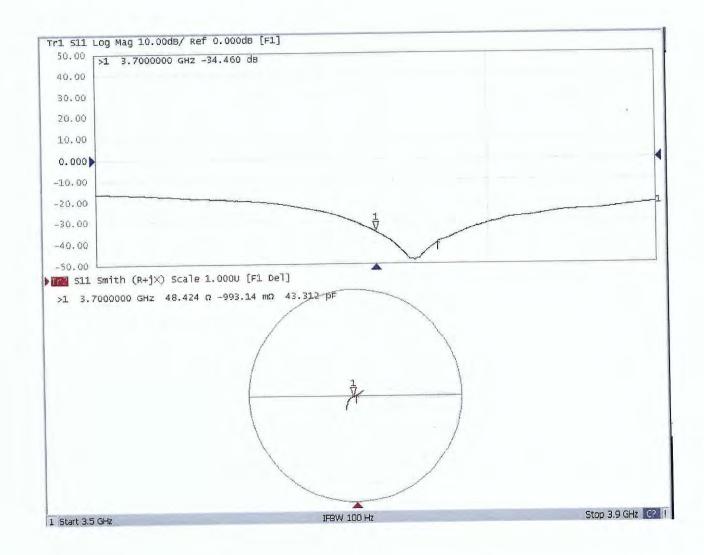
Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 75.5%

Maximum value of SAR (measured) = 12.3 W/kg

0 dB = 12.3 W/kg = 10.90 dBW/kg

Certificate No: Z22-60371 Page 5 of 6


Tel: +86-10-62304633-2117

Certificate No: Z22-60371

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Impedance Measurement Plot for Head TSL

Add: No.52 Hua Yuan Bei Road, Haidian District, Beijing, 100191. Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Client

SGS

Certificate No:

Z22-60372

CALIBRATION CERTIFICATE

Object

D3900V2 - SN: 1026

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

September 16, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)℃ and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
106277	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
104291	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
SN 7464	26-Jan-22(SPEAG,No.EX3-7464_Jan22)	Jan-23
SN 1556	12-Jan-22(CTTL-SPEAG,No.Z22-60007)	Jan-23
ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
MY49071430	13-Jan-22 (CTTL, No.J22X00409)	Jan-23
MY46110673	14-Jan-22 (CTTL, No.J22X00406)	Jan-23
	106277 104291 SN 7464 SN 1556 ID # MY49071430	106277 24-Sep-21 (CTTL, No.J21X08326) 104291 24-Sep-21 (CTTL, No.J21X08326) SN 7464 26-Jan-22(SPEAG,No.EX3-7464_Jan22) SN 1556 12-Jan-22(CTTL-SPEAG,No.Z22-60007) ID# Cal Date (Calibrated by, Certificate No.) MY49071430 13-Jan-22 (CTTL, No.J22X00409)

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	Z Z
Reviewed by:	Lin Hao	SAR Test Engineer	林格
Approved by:	Qi Dianyuan	SAR Project Leader	2

Issued: September 23, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

Certificate No: Z22-60372

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3900 MHz ±1 MHz 4100 MHz ±1 MHz	

Head TSL parameters at 3900MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 ℃	37.5	3.32 mho/m
Measured Head TSL parameters	(22.0 ±0.2) ℃	38.0 ±6 %	3.31 mho/m ±6 %
Head TSL temperature change during test	<1.0 ℃		

SAR result with Head TSL at 3900MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.65 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	66.7 W/kg ±24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ±24.2 % (k=2)

Head TSL parameters at 4100MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 ℃	37.2	3.53 mho/m
Measured Head TSL parameters	(22.0 ±0.2) ℃	37.5 ±6 %	3.50 mho/m ±6 %
Head TSL temperature change during test	<1.0 ℃	4	

SAR result with Head TSL at 4100MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.79 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	68.1 W/kg ±24.4 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ±24.2 % (k=2)

Certificate No: Z22-60372 Page 3 of 7

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 3900MHz

Impedance, transformed to feed point	44.9Ω- 8.03jΩ	
Return Loss	- 20.0dB	

Antenna Parameters with Head TSL at 4100MHz

Impedance, transformed to feed point	58.4Ω- 3.87jΩ	
Return Loss	- 21.4dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.011 ns
Electrical Delay (one direction)	1.011110

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z22-60372 Page 4 of 7

Date: 2022-09-16

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN: 1026

Communication System: UID 0, CW; Frequency: 3900 MHz; Frequency: 4100 MHz;

Duty Cycle: 1:1

Medium parameters used: f = 3900 MHz; $\sigma = 3.31$ S/m; $\epsilon_r = 38$; $\rho = 1000$ kg/m³ Medium parameters used: f = 4100 MHz; $\sigma = 3.498$ S/m; $\epsilon_r = 37.47$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(6.76, 6.76, 6.76) @ 3900 MHz;
 ConvF(6.71, 6.71, 6.71) @ 4100 MHz; Calibrated: 2022-01-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration /Pin=100mW, d=10mm, f=3900 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.50 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 6.65 W/kg; SAR(10 g) = 2.37 W/kg

Smallest distance from peaks to all points 3 dB below = 7.9 mm

Ratio of SAR at M2 to SAR at M1 = 76.4%

Maximum value of SAR (measured) = 12.4 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=4100 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.37 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 18.6 W/kg

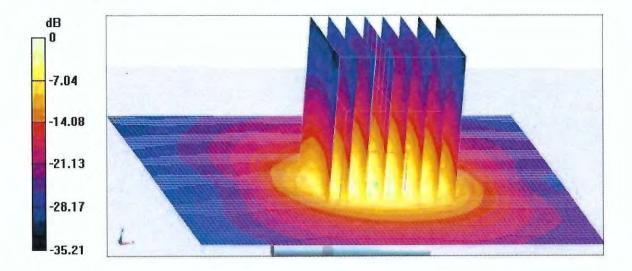
SAR(1 g) = 6.79 W/kg; SAR(10 g) = 2.4 W/kg

Smallest distance from peaks to all points 3 dB below = 7.9 mm

Ratio of SAR at M2 to SAR at M1 = 75.1%

Maximum value of SAR (measured) = 13.1 W/kg

Certificate No: Z22-60372 Page 5 of 7



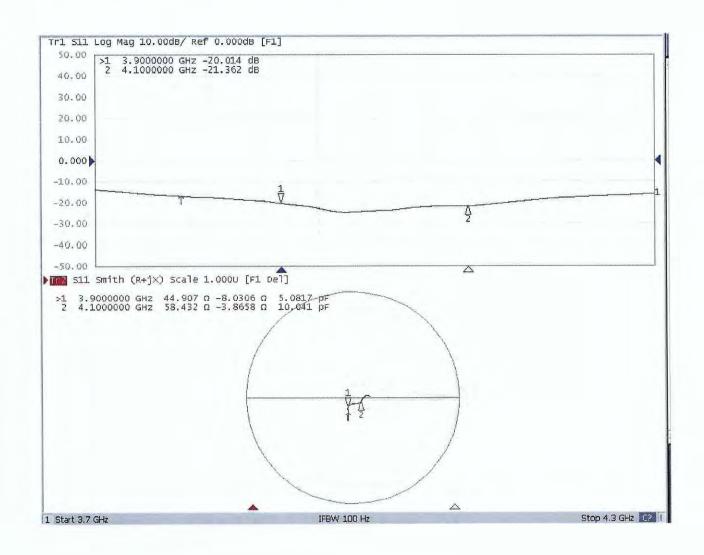
Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http

http://www.caict.ac.cn

0 dB = 13.1 W/kg = 11.17 dBW/kg

Certificate No: Z22-60372 Page 6 of 7



Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Impedance Measurement Plot for Head TSL

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caic.ac.cn

Client

SGS

Certificate No:

Z22-60490

CALIBRATION CERTIFICATE

Object D5GHzV2 - SN: 1165

Calibration Procedure(s) FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: November 1, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	10-May-22 (CTTL, No.J22X03103)	May-23
Power sensor NRP6A	101369	10-May-22 (CTTL, No.J22X03103)	May-23
Reference Probe EX3DV4	SN 7464	26-Jan-22(SPEAG,No.EX3-7464_Jan22)	Jan-23
DAE4	SN 1556	12-Jan-22(CTTL-SPEAG,No.Z22-60007)	Jan-23
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-22 (CTTL, No. J22X00409)	Jan-23
Network Analyzer E5071C	MY46110673	14-Jan-22 (CTTL, No.J22X00406)	Jan-23

Name Function Signature

Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

Issued: November 7, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z22-60490 Page 1 of 8

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caic.ac.cn

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z22-60490 Page 2 of 8

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caic.ac.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ±1 MHz 5600 MHz ±1 MHz 5750 MHz ±1 MHz	

Head TSL parameters at 5250MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 ℃	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ±0.2) ℃	35.2 ±6 %	4.68 mho/m ±6 %
Head TSL temperature change during test	<1.0 ℃	- t	

SAR result with Head TSL at 5250MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.3 W/kg ±24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.21 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.1 W/kg ±24.2 % (k=2)

Certificate No: Z22-60490 Page 3 of 8

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caic.ac.cn

Head TSL parameters at 5600MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 ℃	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ±0.2) ℃	34.6 ±6 %	5.05 mho/m ±6 %
Head TSL temperature change during test	<1.0 ℃		

SAR result with Head TSL at 5600MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.3 W/kg ±24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ±24.2 % (k=2)

Head TSL parameters at 5750MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 ℃	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ±0.2) ℃	34.4 ±6 %	5.21 mho/m ±6 %
Head TSL temperature change during test	<1.0 ℃	3-	_

SAR result with Head TSL at 5750MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.1 W/kg ±24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.3 W/kg ±24.2 % (k=2)

Certificate No: Z22-60490 Page 4 of 8

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caic.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250MHz

Impedance, transformed to feed point	49.0Ω- 4.73jΩ	
Return Loss	- 26.3dB	

Antenna Parameters with Head TSL at 5600MHz

Impedance, transformed to feed point	53.5Ω+ 1.12jΩ	
Return Loss	- 28.9dB	

Antenna Parameters with Head TSL at 5750MHz

Impedance, transformed to feed point	54.6Ω- 1.85jΩ	
Return Loss	- 26.5dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.114 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

1	
Manufactured by	SPEAG

Certificate No: Z22-60490 Page 5 of 8

Date: 2022-11-01

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caic.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1165

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz,

Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 4.677$ S/m; $\epsilon_r = 35.15$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 5.047$ S/m; $\epsilon_r = 34.56$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5750 MHz; $\sigma = 5.211$ S/m; $\epsilon_r = 34.35$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(5.43, 5.43, 5.43) @ 5250 MHz;
 ConvF(4.91, 4.91, 4.91) @ 5600 MHz; ConvF(4.85, 4.85, 4.85) @ 5750 MHz; Calibrated: 2022-01-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.46 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.22 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 65.3%

Maximum value of SAR (measured) = 18.3 W/kg

Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.78 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 35.8 W/kg

SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.33 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 62.3%

Maximum value of SAR (measured) = 20.0 W/kg

Certificate No: Z22-60490 Page 6 of 8

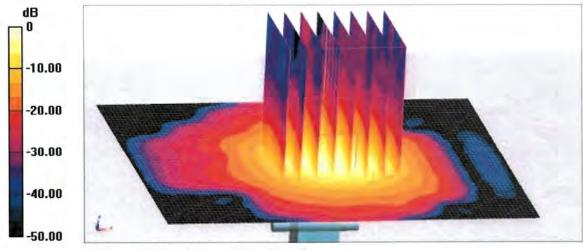
Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caic.ac.cn

Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.99 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 35.9 W/kg

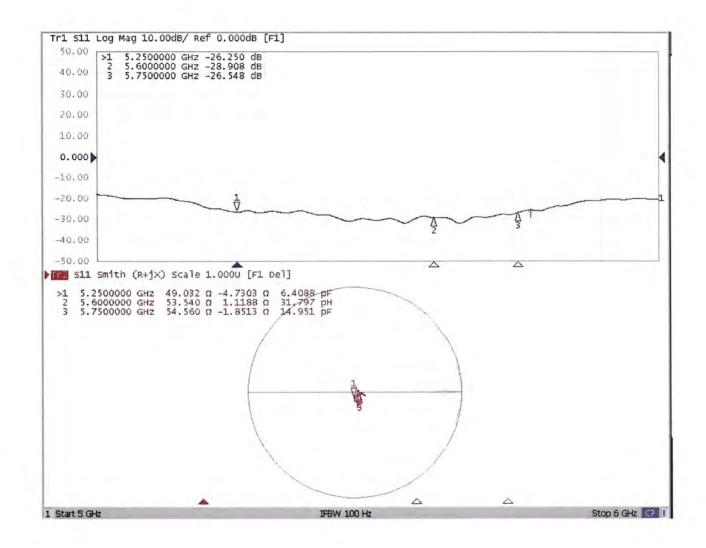
SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.15 W/kg

Smallest distance from peaks to all points 3 dB below = 6.8 mm

Ratio of SAR at M2 to SAR at M1 = 61.4%

Maximum value of SAR (measured) = 19.1 W/kg

0 dB = 19.1 W/kg = 12.81 dBW/kg


Certificate No: Z22-60490 Page 7 of 8

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caic.ac.cn

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Shenzhen

Certificate No.

D6.5GHzV2-1102_Sep23

CALIBRATION CERTIFICATE

Object

D6.5GHzV2 - SN:1102

Calibration procedure(s)

QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date:

Primary Standards

September 11, 2023

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID#

	1.00	our bate (ocitinoste 140.)	Scrieduled Calibration
Power sensor R&S NRP33T	SN: 100967	03-Apr-23 (No. 217-03806)	Apr-24
Reference 20 dB Attenuator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Mismatch combination	SN: 84224 / 360D	03-Apr-23 (No. 217-03812)	Apr-24
Reference Probe EX3DV4	SN: 7405	12-Jun-23 (No. EX3-7405_Jun23)	Jun-24
DAE4	SN: 908	03-Jul-23 (No. DAE4-908_Jul23)	Jul-24
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator Anapico APSIN20G	SN: 827	18-Dec-18 (in house check Dec-21)	In house check: Dec-23
Power sensor NRP-Z23	SN: 100169	10-Jan-19 (in house check Nov-22)	In house check: Nov-23
Power sensor NRP-18T	SN: 100950	28-Sep-22 (in house check Nov-22)	In house check: Nov-23
Network Analyzer Keysight E5063A	SN:MY54504221	31-Oct-19 (in house check Oct-22)	In house check: Oct-25
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	+ 100
Approved by:	Sven Kühn	Technical Manager	

Cal Date (Certificate No.)

Issued: September 12, 2023

Scheduled Calibration

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D6.5GHzV2-1102_Sep23

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020.

Additional Documentation:

b) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point
 exactly below the center marking of the flat phantom section, with the arms oriented parallel to the
 body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.
- The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY6	V16.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	5 mm	with Spacer
Zoom Scan Resolution	dx, dy = 3.4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	6500 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	34.5	6.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.7 ± 6 %	6.01 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	29.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	291 W/kg ± 24.7 % (k=2)

SAR averaged over 8 cm ³ (8 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.63 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	65.9 W/kg ± 24.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	5.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.9 W/kg ± 24.4 % (k=2)

Certificate No: D6.5GHzV2-1102_Sep23

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.3 Ω - 3.2 jΩ
Return Loss	- 29.9 dB

APD (Absorbed Power Density)

APD averaged over 1 cm ²	Condition	The state of the s
APD measured	100 mW input power	290 W/m ²
APD measured	normalized to 1W	2900 W/m ² ± 29.2 % (k=2)

APD averaged over 4 cm ²	condition	
APD measured	100 mW input power	133 W/m²
APD measured	normalized to 1W	1330 W/m ² ± 28.9 % (k=2)

^{*}The reported APD values have been derived using the psSAR1g and psSAR8g.

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	SFLAG

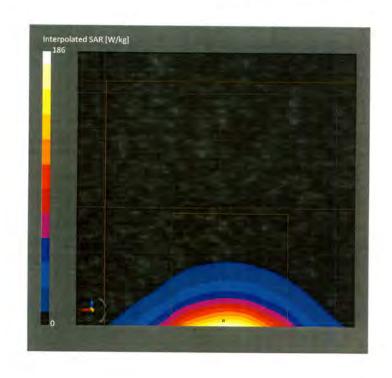
Certificate No: D6.5GHzV2-1102_Sep23

DASY6 Validation Report for Head TSL

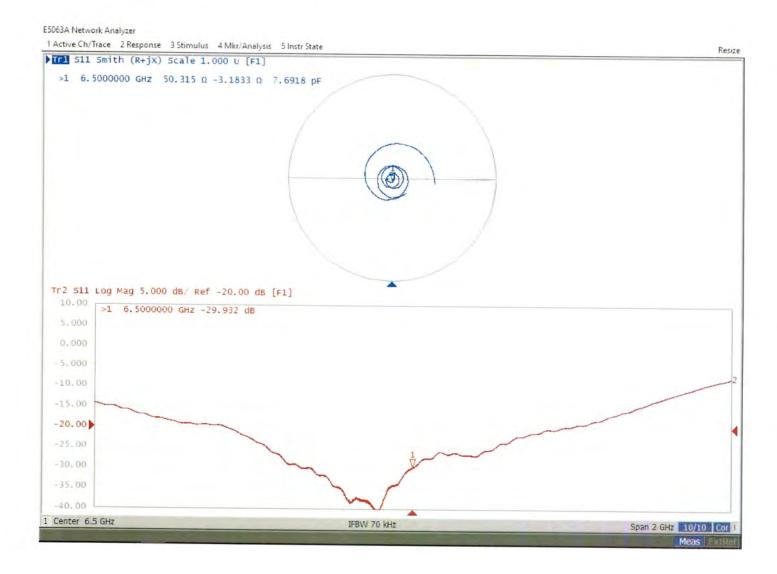
Measurement Report for D6.5GHz-1102, UID 0 -, Channel 6500 (6500.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
D6.5GHz	10.0 x 10.0 x 10.0	SN: 1102	2


Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz]	Conversion Factor	TSL Cond. [S/m]	TSL Permittivity
Flat, HSL	5.00	Band	CW,	6500	5.50	6.01	33.7


Hardware Setup

Phantom	TSL	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center - 1182	HBBL600-10000V6	EX3DV4 - SN7405, 2023-06-12	DAE4 Sn908, 2023-07-03

			The state of the s
Scan Setup		Measurement Results	
	Zoom Scan		Zoom Scan
Grid Extents [mm]	22.0 x 22.0 x 22.0	Date	2023-09-11, 12:05
Grid Steps [mm]	3.4 x 3.4 x 1.4	psSAR1g [W/Kg]	29.2
Sensor Surface [mm]	1.4	psSAR8g [W/Kg]	6.63
Graded Grid	Yes	psSAR10g [W/Kg]	5.42
Grading Ratio	1.4	Power Drift [dB]	0.00
MAIA	N/A	Power Scaling	Disabled
Surface Detection	VMS + 6p	Scaling Factor [dB]	2.543.754
Scan Method	Measured	TSL Correction	No correction
		M2/M1 [%]	50.6
		Dist 3dB Peak [mm]	4.8

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

SGS Shenzhen

C

Certificate No. 5G-Veri10-2004_Aug24

BRATION CERTIFICATE

Object

5G Verification Source 10 GHz - SN: 2004

Calibration procedure(s)

QA CAL-45.v5

Calibration procedure for sources in air above 6 GHz

Calibration date:

August 20, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Reference Probe EUmmWV3	SN: 9374	04-Dec-23 (No. EUmm-9374_Dec23)	Dec-24
DAE4ip	SN: 1602	08-Nov-23 (No. DAE4ip-1602 Nov23)	Nov-24

Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMF100A	SN: 100184	29-Nov-23 (in house check Nov-23)	In house check: Nov-24
Power sensor R&S NRP18S-10	SN: 101258	29-Nov-23 (in house check Nov-23)	In house check: Nov-24
Network Analyzer Keysight E5063A	SN: MY54504221	31-Oct-19 (in house check Oct-22)	In house check: Oct-25

Name

Function

Calibrated by:

Joanna Lleshaj

Laboratory Technician

Approved by:

Sven Kühn

Technical Manager

Issued: August 23, 2024

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 5G-Veri10-2004_Aug24

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Glossary

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CW

Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz.
- IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

Methods Applied and Interpretation of Parameters

- Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the
 E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and
 horn flange.
- Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by farfield measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a
 vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the
 horn.
- Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

 Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: 5G-Veri10-2004_Aug24

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module mmWave	V3.2
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
Number of measured planes	2 (10mm, 10mm ± 1/4)	
Frequency	10 GHz ± 10 MHz	

Calibration Parameters, 10 GHz

Circular Averaging

Distance Horn Aperture to	Prad¹ (mW)	Max E-field (V/m)	Uncertainty $(k = 2)$	Avg (psPDn+, psPDtot+, psPDmod+) (k		Uncertainty (k = 2)
Measured Plane	ļ ·			(W	/m ²)	
				1 cm ²	4 cm ²	
10 mm	138	295	1,27 dB	231	183	1.28 dB

Distance Horn	Prad'	Max E-field	Uncertainty	Power	Density	Uncertainty
Aperture to	(mW)	(V/m)	(k = 2)	psPDn+, psPDt	ot+, psPDmod+	(k = 2)
Measured Plane				(W	/m²)	
				1 cm²	4 cm ²	
10 mm	138	295	1.27 dB	230, 230, 232	181, 182, 187	1.28 dB

Square Averaging

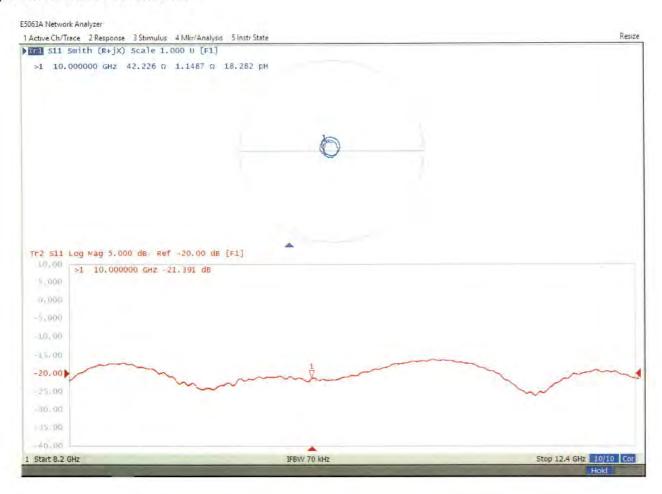
Distance Horn	Prad1	Max E-field	Uncertainty	Avg Powe	er Density	Uncertainty
Aperture to	(mW)	(V/m)	(k = 2)			(k = 2)
Measured Plane			[(W	'm²)	
				1 cm ²	4 cm ²	
10 mm	138	295	1.27 dB	231	183	1.28 dB

Distance Horn Aperture to Measured Plane	Prad¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	psPDn+, psPDt	Density ot+, psPDmod+ /m²)	Uncertainty (k = 2)
			,	1 cm²	4 cm²	
10 mm	138	295	1.27 dB	230, 230, 232	181, 181, 186	1.28 dB

Max Power Density

Distance Horn	Prad1	Max E-field	Uncertainty	Max Power Density	Uncertainty
Aperture to	(mW)	(V/m)	(k = 2)	Sn, Stot, Stot	(k = 2)
Measured Plane			,	(W/m²)	
10 mm	138	295	1.27.dB	250, 250, 250	1.28 dB

Certificate No: 5G-Veri10-2004_Aug24


 $^{^{\}mathrm{T}}$ Assessed ohmic and mismatch loss plus numerical offset: 0.60 dB

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Impedance, transformed to feed point	42.2 Ω + 1.1 jΩ	
Return Loss	- 21.4 dB	

Impedance Measurement Plot

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

 Name, Manufacturer
 Dimensions [mm]
 IMEI
 DUT Type

 5G Verification Source 10 GHz
 100.0 x 100.0 x 100.0
 SN: 2004

Exposure Conditions

Phantom Section Position, Test Distance Band Group, Frequency [MHz], Conversion Factor Channel Number

5G - 10.0 mm Validation band CW 10000.0, 1.0

10000

0.02

Measurement Results

Power Drift [dB]

Hardware Setup

PhantomMediumProbe, Calibration DateDAE, Calibration DatemmWave Phantom - 1002AirEUmmWV3 - SN9374_F1-55GHz,
2023-12-04DAE4ip Sn1602,
2023-11-08

Scan Setup

5G Scan 5G Scan 10.0 2024-08-20, 18:04 Sensor Surface [mm] 1.00 MAIA not used Avg. Area [cm²] MAIA Avg. Type Circular Averaging psPDn+ [W/m²] 230 psPDtot+ [W/m2] 230 psPDmod+ [W/m²] 232 Max(Sn) [W/m²] 250 250 Max(Stot) [W/m2] 250 Max(|Stot|)[W/m2] $E_{max}\left[V/m\right]$ 295

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

 Name, Manufacturer
 Dimensions [mm]
 IMEI
 DUT Type

 5G Verification Source 10 GHz
 100.0 x 100.0 x 100.0
 SN: 2004

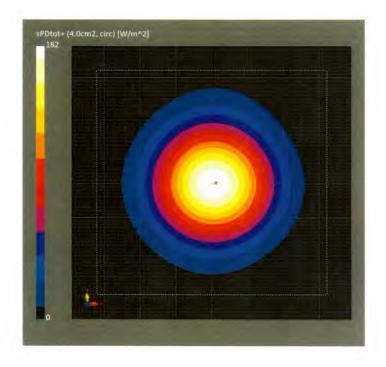
Exposure Conditions

Phantom Section Position, Test Distance Band Group, Frequency [MHz], Conversion Factor [mm] Channel Number

5G - 10.0 mm Validation band CW 10000.0, 1.0

5G - 10.0 mm Validation band CW 10000.0, 10000

Hardware Setup


PhantomMediumProbe, Calibration DateDAE, Calibration DatemmWave Phantom - 1002AirEUmmWV3 - SN9374_F1-55GHz,DAE4ip Sn1602,2023-12-042023-11-08

Scan Setup Measurement Results

5G Scan 5G Scan Sensor Surface [mm] 2024-08-20, 18:04 10.0 Date MAIA MAIA not used Avg. Area [cm²] 4.00 Avg. Type Circular Averaging psPDn+ [W/m²] 181 psPDtot+ [W/m²] 182 psPDmod+ [W/m2] 187 Max(Sn) [W/m²] 250 Max(Stot) [W/m²] 250 $Max(|Stot|)[W/m^2]$ 250 $E_{max}\left[V/m\right]$ 295

Power Drift [dB]

0.02

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

 Name, Manufacturer
 Dimensions [mm]
 IMEI
 DUT Type

 5G Verification Source 10 GHz
 100.0 x 100.0 x 100.0
 SN: 2004

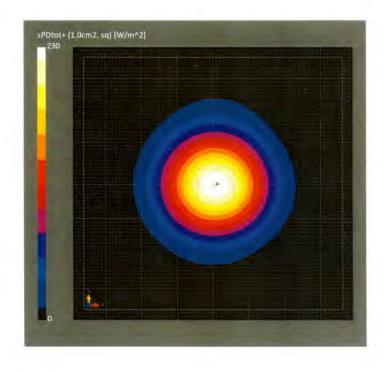
Exposure Conditions

Phantom Section Position, Test Distance [mm] Band Group, Frequency [MHz], Conversion Factor Channel Number

5G - 10.0 mm Validation band CW 10000.0, 10000

Hardware Setup

PhantomMediumProbe, Calibration DateDAE, Calibration DatemmWave Phantom - 1002AirEUmmWV3 - SN9374_F1-55GHz,
2023-12-04DAE4ip Sn1602,
2023-11-08


Scan Setup

5G Scan 5G Scan Sensor Surface [mm] 2024-08-20, 18:04 10.0 MAIA not used Avg. Area [cm²] 1.00 MAIA Avg. Type Square Averaging psPDn+ [W/m²] 230 psPDtot+ [W/m2] 230 psPDmod+ [W/m²] 232 Max(Sn) [W/m²] 250 Max(Stot) [W/m2] 250 250 Max(|Stot|)[W/m²] E_{max} [V/m] 295

Measurement Results

Power Drift [dB]

0.02

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

 Name, Manufacturer
 Dimensions [mm]
 IMEI
 DUT Type

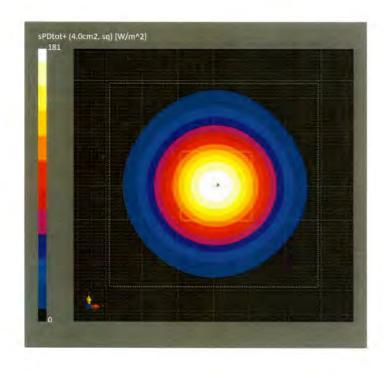
 5G Verification Source 10 GHz
 100.0 x 100.0 x 100.0
 SN: 2004

Exposure Conditions

Phantom Section Position, Test Distance [mm] Band Group, Frequency [MHz], Conversion Factor Channel Number

5G - 10.0 mm Validation band CW 10000.0, 10000

Hardware Setup


 Phantom
 Medium
 Probe, Calibration Date
 DAE, Calibration Date

 mmWave Phantom - 1002
 Air
 EUmmWV3 - SN9374_F1-55GHz, 2023-11-08
 DAE4ip Sn1602, 2023-11-08

Scan Setup

5G Scan 5G Scan Sensor Surface [mm] 10.0 2024-08-20, 18:04 MAIA MAIA not used Avg. Area [cm²] 4.00 Avg. Type Square Averaging psPDn+ [W/m²] 181 psPDtot+ [W/m2] 181 psPDmod+ [W/m²] 186 Max(Sn) [W/m²] 250 Max(Stot) [W/m²] 250 Max(|Stot|) [W/m²] 250 $E_{max}[V/m]$ 295 Power Drift [dB] 0.02

Measurement Results

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Client :

SGS

Certificate No: 24J02Z001048

CALIBRATION CERTIFICATE

Object DAE4 - SN: 867

Calibration Procedure(s)

FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

December 31, 2024

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) $^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	11-Jun-24 (CTTL, No.24J02X005147)	Jun-25

Name

Function

Signature

Calibrated by:

Yu Zongying

SAR Test Engineer

Reviewed by:

Lin Jun

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: January 02, 2025

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 24J02Z001048

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: 24J02Z001048

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	Z
High Range	406.194 ± 0.15% (k=2)	405.646 ± 0.15% (k=2)	406.689 ± 0.15% (k=2)
Low Range	4.00453 ± 0.7% (k=2)	3.99658 ± 0.7% (k=2)	4.02769 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	222° ± 1 °
---	------------

Certificate No: 24J02Z001048

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Client :

SGS

Certificate No: 25J02Z000183

CALIBRATION CERTIFICATE

Object DAE4 - SN: 896

Calibration Procedure(s) FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date: March 27, 2025

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) [™] and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	11-Jun-24 (CTTL, No.24J02X005147)	Jun-25

Name Function

Yu Zongying SAR Test Engineer

Reviewed by: Lin Jun SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

Issued: April 01, 2025

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibrated by:

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191. China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: 25J02Z000183

Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

1LSB = 1LSB = $6.1 \mu V$, 61 nV , High Range: full range = -100...+300 mV full range = -10....+3mV Low Range:

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.047 ± 0.15% (k=2)	404.301 ± 0.15% (k=2)	404.219 ± 0.15% (k=2)
Low Range	3.98037 ± 0.7% (k=2)	4.00130 ± 0.7% (k=2)	3.97118 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	267.5° ± 1 °
---	--------------

Certificate No: 25J02Z000183