

RF TEST REPORT

FCC ID: 2BEMR-P18

Equipment : Car Bluetooth Transmitter
Brand Name : N/A
Test Model : P18, P12,P19,P20,P21,P22,P23,P24,P25,P26
Series Model : N/A
Applicant : Shenzhen Baiyin Technology Co., LTD
Address : 8th Floor, No 2 Building, Baoyunda Logistics Center, Bao'an District, Shenzhen, China
Manufacturer : Shenzhen Baiyin Technology Co., LTD
Address : 8th Floor, No 2 Building, Baoyunda Logistics Center, Bao'an District, Shenzhen, China
Date of Receipt : Jan. 10, 2024
Date of Test : Jan. 11, 2024~Jan. 14, 2024
Issued Date : Jan. 15, 2024
Report Version : V1.0
Test Sample : Engineering Sample No.: AIT24011003-2
Standard(s) : FCC Part 15.239

Lab: Dongguan Yaxu (AiT) Technology Limited
Add: No.22, Jinqianling 3rd Street, Jitigang, Huangjiang, Dongguan, Guangdong, China
Tel.: +86-769-8202 0499 Fax.: +86-769-8202 0495

This device described above has been tested by Dongguan Yaxu (AiT) Technology Limited and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Note: This report shall not be reproduced except in full, without the written approval of Dongguan Yaxu (AiT) Technology Limited, this document may be altered or revised by Dongguan Yaxu (AiT) Technology Limited, personal only, and shall be noted in the revision of the document. This test report must not be used by the client to claim product endorsement.

Reviewed by:

Simba huang

Approved by:

Seal Chen

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Jan. 15, 2024	Valid	Initial Release

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
2. PRODUCT INFORMATION	5
2.1 PRODUCT TECHNICAL DESCRIPTION	5
2.2 MEASUREMENT UNCERTAINTY	6
2.3 DESCRIPTION OF TEST MODES	6
2.4 SUMMARY OF TEST RESULTS	6
3. TEST ENVIRONMENT	7
3.1. TEST FACILITY	7
3.2 LIST OF EQUIPMENTS USED	8
4. RADIATED EMISSION	10
4.1. MEASUREMENT PROCEDURE	10
4.2. TEST SETUP	11
4.3. TEST RESULT FOR FIELD STRENGTH OF FUNDAMENTAL	12
4.4. TEST RESULT FOR FIELD STRENGTH OF BAND EDGE EMISSION	12
4.5. TEST RESULT FOR SPURIOUS EMISSION	13
5. BANDWIDTH	15
8.1. MEASUREMENT PROCEDURE	15
8.2. TEST SETUP	15
8.3. TEST RESULT	15
APPENDIX I: PHOTOGRAPHS OF TEST SETUP	18
APPENDIX II: PHOTOGRAPHS OF TEST EUT	18

1. GENERAL INFORMATION

Applicant	Shenzhen Baiyin Technology Co., LTD
Address	8th Floor, No 2 Building, Baoyunda Logistics Center, Bao'an District, Shenzhen, China
Manufacturer	Shenzhen Baiyin Technology Co., LTD
Address	8th Floor, No 2 Building, Baoyunda Logistics Center, Bao'an District, Shenzhen, China
Product Name:	Car Bluetooth Transmitter
Brand Name:	N/A
Model No.:	P18
Series Model:	P12,P19,P20,P21,P22,P23,P24,P25,P26
Model Difference:	The circuit design and PCB design of the product are the same as the internal structure, only the Model Name is different.(s) are the same, So no additional models were tested.
Input Power:	DC 12V/1A
Output Power:	DC 5V/2.8A
Test Result	Pass

Note: For more details, refer to the user's manual of the EUT.

2. PRODUCT INFORMATION

2.1 PRODUCT TECHNICAL DESCRIPTION

A major technical description of EUT is described as following

Operation Frequency	100MHz-107.9MHz
Field Strength(3m)	46.42dBuV/m@3m Max.
Modulation	FM
Number of channels	80(Channel spacing 100kHz)
Hardware Version	V1.0
Software Version	V1.0
Antenna Type:	PCB Antenna
Antenna gain:	-0.58dBi

2.2 MEASUREMENT UNCERTAINTY

Conducted measurement: +/- 3.18dB

Radiated measurement: +/- 3.91dB

2.3 DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION
1	Transmitting mode(Low channel)
2	Transmitting mode(Middle channel)
3	Transmitting mode(High channel)

Note:

1. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
2. All the requirements have been tested by modulating the transmitter with a 2.5 kHz tone at a fixed level which set to the manufacturer's maximum rated input to the modulator.
3. Only the result of the worst case was recorded in the report, if no other cases.

2.4 SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
15.239	Field Strength of Fundamental and Spurious Emission	Pass
15.239 (a)	Occupied Bandwidth	Pass
15.209	Radiated Emission	Pass
15.209	Line Conducted Emission	N/A

Note:

1. EUT DC power supply.

3. TEST ENVIRONMENT

3.1. TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS- Registration No: L6177

Dongguan Yaxu (AiT) technology Limited is accredited to ISO/IEC 17025:2017 general Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the competence of testing and calibration laboratories) on April 17, 2022

FCC-Registration No.: 703111 Designation Number: CN1313

Dongguan Yaxu (AiT) technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC —Registration No.: 6819A CAB identifier: CN0122

The 3m Semi-anechoic chamber of Dongguan Yaxu (AiT) technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 6819A

A2LA-Lab Cert. No.: 6317.01

Dongguan Yaxu (AiT) technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

3.2 LIST OF EQUIPMENTS USED

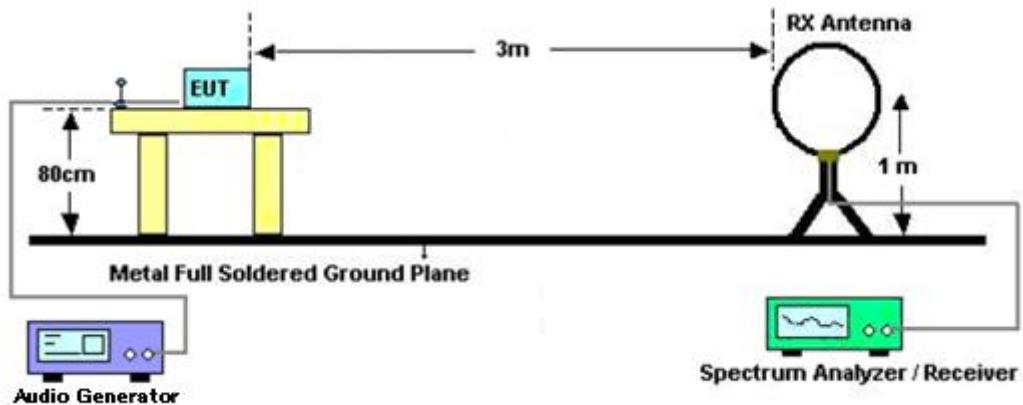
No	Test Equipment	Manufacturer	Model No	Serial No	Cal. Date	Cal. Due Date
1	Spectrum Analyzer	R&S	FSV40	101470	2023.09.02	2024.09.01
2	EMI Measuring Receiver	R&S	ESR	101660	2023.09.02	2024.09.01
3	Low Noise Pre Amplifier	HP	HP8447E	1937A01855	2023.09.02	2024.09.01
4	Low Noise Pre Amplifier	Tsj	MLA-0120-A02-34	2648A04738	2023.09.02	2024.09.01
5	Passive Loop	ETS	6512	00165355	2023.09.02	2024.09.01
6	TRILOG Super Broadband test Antenna	SCHWARZBECK	VULB9160	9160-3206	2021.08.29	2024.08.28
7	Broadband Horn Antenna	SCHWARZBECK	BBHA9120D	452	2021.08.29	2024.08.28
8	SHF-EHF Horn Antenna 15-40GHz	SCHWARZBECK	BBHA9170	BBHA9170367d	2021.11.24	2024.11.23
9	EMI Test Receiver	R&S	ESCI	100124	2023.09.02	2024.09.01
10	LISN	Kyoritsu	KNW-242	8-837-4	2023.09.02	2024.09.01
11	LISN	R&S	ESH3-Z2	0357.8810.54-101161-S2	2023.09.02	2024.09.01
12	Pro.Temp&Humi.chamber	MENTEK	MHP-150-1C	MAA08112501	2023.09.02	2024.09.01
13	RF Automatic Test system	MW	MW100-RFCB	21033016	2023.09.02	2024.09.01
14	Signal Generator	Agilent	N5182A	MY50143009	2023.09.02	2024.09.01
15	Wideband Radio communication tester	R&S	CMW500	1201.0002K50	2023.09.02	2024.09.01
16	RF Automatic Test system	MW	MW100-RFCB	21033016	2023.09.02	2024.09.01
17	DC power supply	ZHAOXIN	RXN-305D-2	28070002559	N/A	N/A
18	RE Software	EZ	EZ-EMC_RE	Ver.AIT-03A	N/A	N/A
19	CE Software	EZ	EZ-EMC_CE	Ver.AIT-03A	N/A	N/A
20	RF Software	MW	MTS 8310	2.0.0.0	N/A	N/A
21	temporary antenna connector(Note)	NTS	R001	N/A	N/A	N/A
22	Agilent	N9020A	M785556H02	21033028	2023.09.02	2024.09.01

23	Fliter-UHF	Microwave	N25155H9	21033029	2023.09.02	2024.09.01
24	Fliter-VHF	Microwave	N26460M5	21033029	2023.09.02	2024.09.01

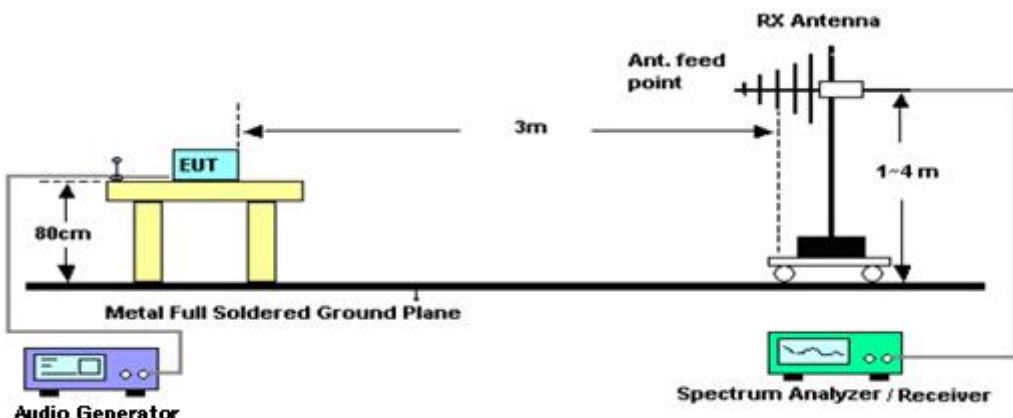
Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

4. RADIATED EMISSION

4.1. MEASUREMENT PROCEDURE


1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground and opposite the horn antenna. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
6. For emissions below 1GHz, use 120KHz RBW and $VBW \geq 3RBW$ for QP reading.
7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High - Low scan is not required in this case.
8. Only the worst case is reported.

The following table is the setting of spectrum analyzer and receiver.


Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RBW 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RBW 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RBW 120KHz for QP

4.2. TEST SETUP

Radiated Emission Test-Setup Frequency Below 30MHz

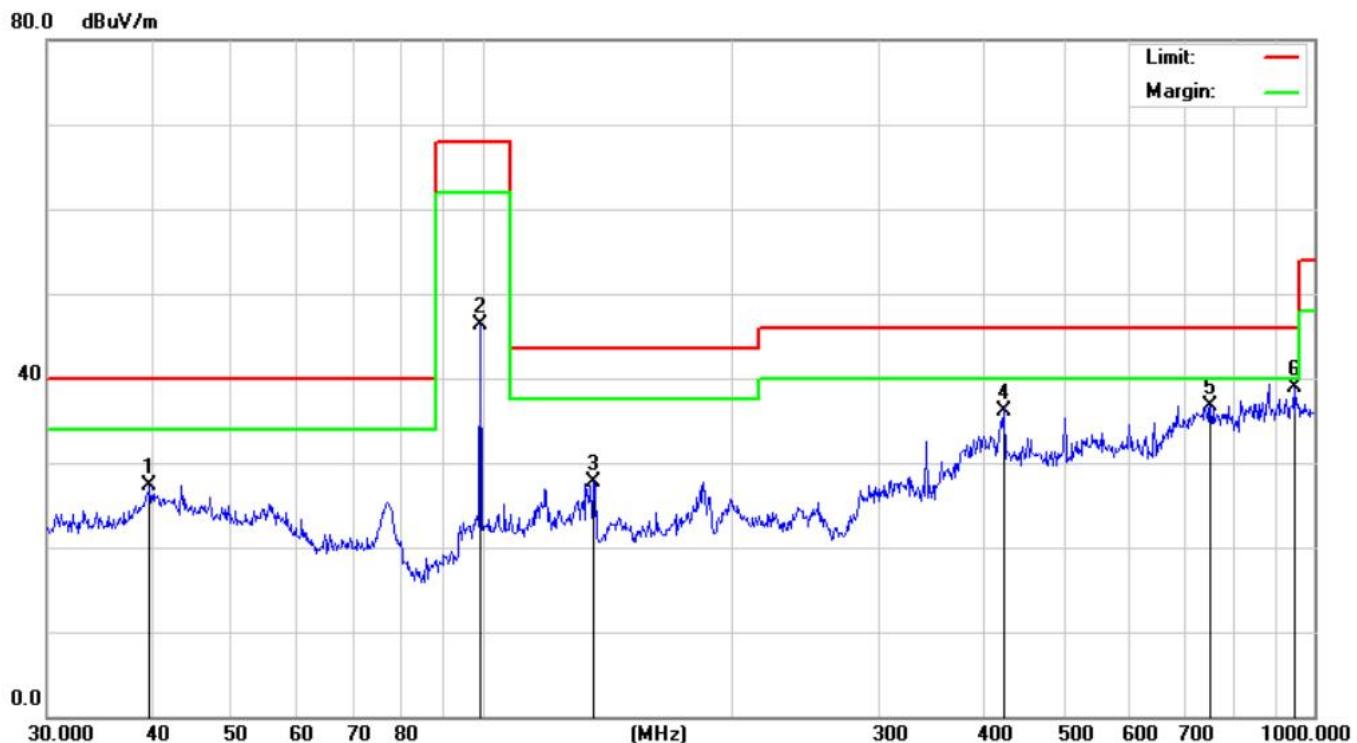
RADIATED EMISSION TEST SETUP 30MHz-1000MHz

4.3. TEST RESULT FOR FIELD STRENGTH OF FUNDAMENTAL

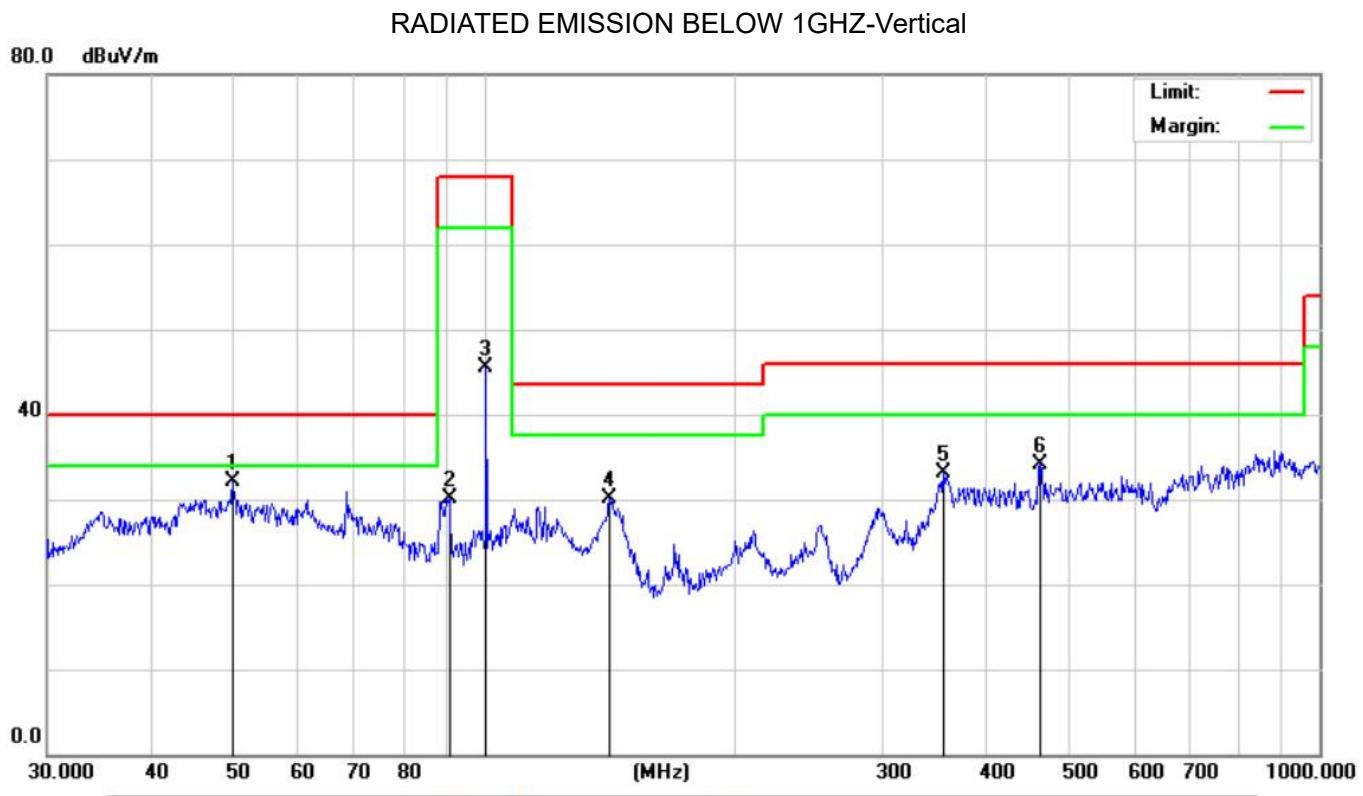
Frequency MHz	Polarization	Level dB(uV/m) PK	Limit dB(uV/m) PK	Margin dB	Pass/Fail	Detector
100	H	46.42	67.96	21.54	Pass	PK
100	V	44.12	67.96	23.84	Pass	PK
103.9	H	45.98	67.96	21.98	Pass	PK
103.9	V	43.85	67.96	24.11	Pass	PK
107.900	H	46.24	67.96	21.72	Pass	PK
107.900	V	43.72	67.96	24.24	Pass	PK
Frequency MHz	Polarization	Level dB(uV/m) AV	Limit dB(uV/m) AV	Margin dB	Pass/Fail	Detector
100	H	44.85	47.96	3.11	Pass	AV
100	V	43.12	47.96	4.84	Pass	AV
103.9	H	44.78	47.96	3.18	Pass	AV
103.9	V	43.02	47.96	4.94	Pass	AV
107.900	H	44.35	47.96	3.61	Pass	AV
107.900	V	42.72	47.96	5.24	Pass	AV

4.4. TEST RESULT FOR FIELD STRENGTH OF BAND EDGE EMISSION

Frequency MHz	Polarization	Level dB(uV/m) QP	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Detector
100	H	36.68	40.00	3.32	Pass	QP
100	V	35.75	40.00	4.25	Pass	QP
108.000	H	33.98	43.50	9.52	Pass	QP
108.000	V	32.71	43.50	10.79	Pass	QP


Note: The above two frequencies are the worst case for the band edge emission test.

4.5. TEST RESULT FOR SPURIOUS EMISSION


RADIATED EMISSION BELOW 30MHz

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHZ-Horizontal

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Over
			Level	Factor	ment			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		39.8541	23.34	3.89	27.23	40.00	-12.77	peak
2	*	99.9979	48.28	-1.98	46.30	----	----	peak
3		135.9822	29.43	-1.63	27.80	40.00	-12.20	peak
4		423.5403	29.06	7.14	36.20	47.00	-10.80	peak
5		750.1082	24.72	12.08	36.80	47.00	-10.20	peak
6		945.4397	26.48	12.52	39.00	47.00	-8.00	peak

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector
			Level	Factor	ment			
		MHz	dBuV	dB	dBuV/m			
1		50.0566	32.35	-0.25	32.10	40.00	-7.90	peak
2		90.8554	34.65	-4.45	30.20	40.00	-9.80	peak
3	*	100.0016	48.13	-2.63	45.50	-----	-----	peak
4		141.3298	31.62	-1.54	30.08	40.00	-9.92	peak
5		354.1831	28.03	5.17	33.20	47.00	-13.80	peak
6		462.3455	29.53	4.67	34.20	47.00	-12.80	peak

RESULT: PASS

Note:

1. Factor=Antenna Factor + Cable loss - Amplifier gain, Margin=Measurement-Limit.
2. The "Factor" value can be calculated automatically by software of measurement system.
3. All test modes had been tested. The Low channel is the worst case and recorded in the report.

5. BANDWIDTH

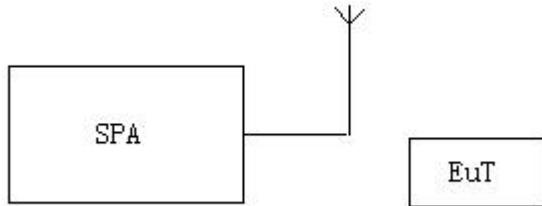
8.1. MEASUREMENT PROCEDURE

1. Set the parameters of SPA as below:

Centre frequency = Operation Frequency

RBW=1KHz

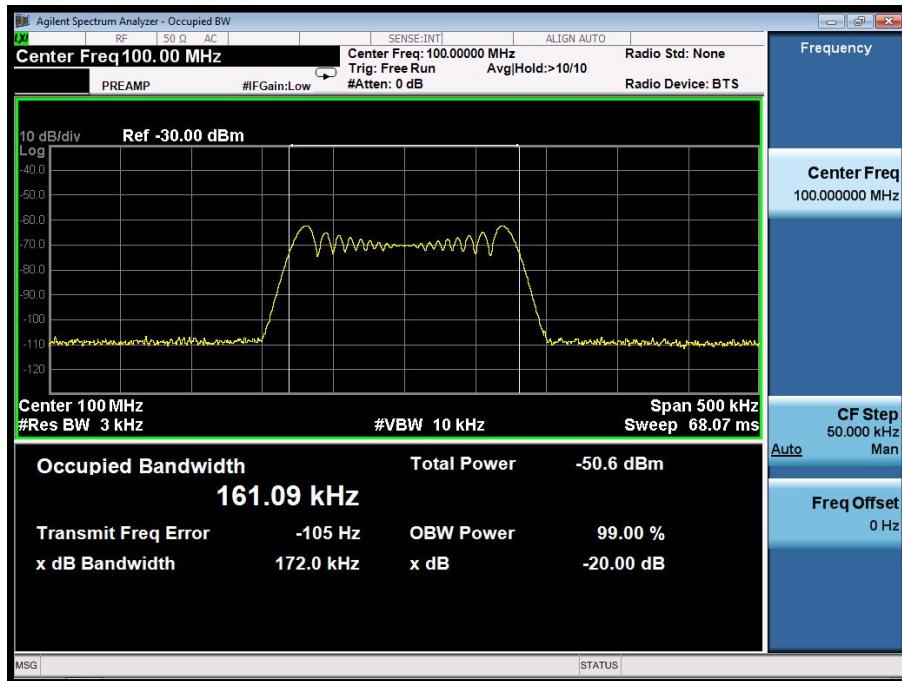
VBW=3KHz

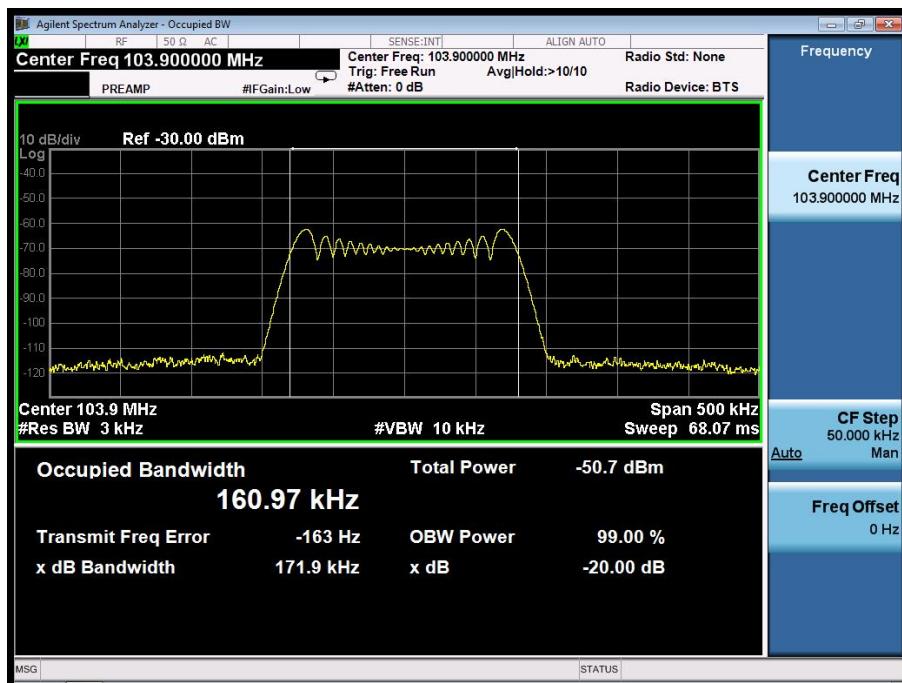

Span: 500kHz

Sweep time: Auto

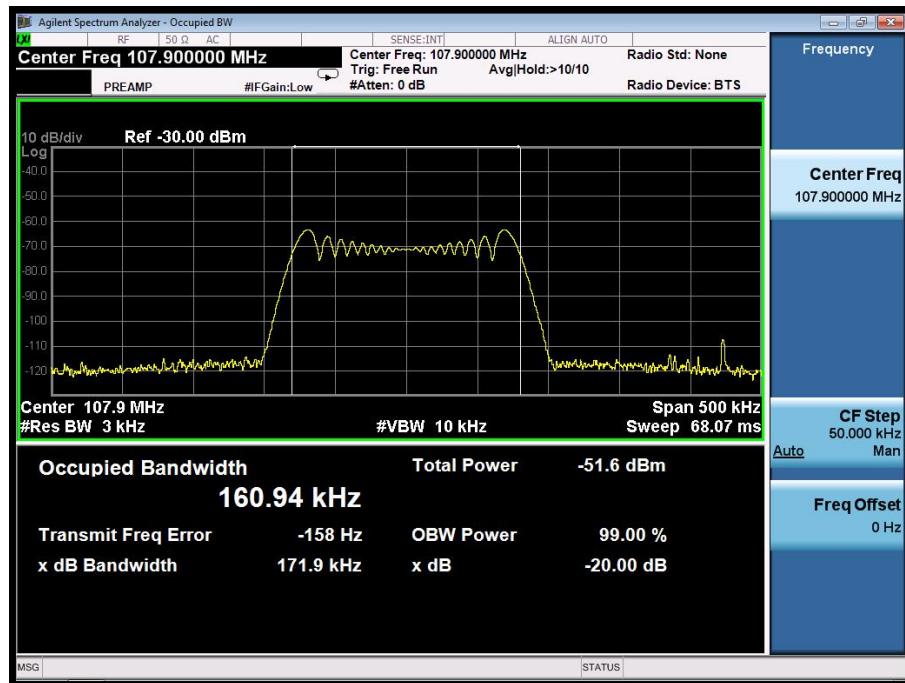
2. Set the EUT to continue transmitting mode. Allow the trace to stabilize. Use the “N dB down” function of SPA to define the bandwidth.

3. Record the plots and Reported.


8.2. TEST SETUP


8.3. TEST RESULT

Channel	Channel Frequency(MHz)	-20dB bandwidth (kHz)	Occupied Bandwidth (kHz)	Limit(kHz)
Low	100	172.0	161.09	200
Middle	103.9	171.9	160.97	200
High	107.9	171.9	160.94	200


TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

APPENDIX I: PHOTOGRAPHS OF TEST SETUP

Refer to the Report No.: Test Setup Photo

APPENDIX II: PHOTOGRAPHS OF TEST EUT

Refer to the Report No.: EUT Photo

-----END OF REPORT-----