

Zhejiang Guangwei Electric & Tools Co.,Ltd

RF TEST REPORT

Report Type:

FCC Part 15.225 RF report

Model:

EAD02-03, EAD02-07, EAD02-09, EAD02-11
EAP02-03, EAP02-07, EAP02-09, EAP02-11

REPORT NUMBER:

231100180SHA-002

ISSUE DATE:

March 27, 2024

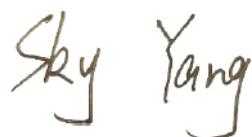
DOCUMENT CONTROL NUMBER:

TTRF15.225_V1 © 2018 Intertek

Applicant: Zhejiang Guangwei Electric & Tools Co.,Ltd
No.55th Lingxiu RD, Jiashan County, Zhejiang Province, China

Manufacturer: Zhejiang Guangwei Electric & Tools Co.,Ltd
No.55th Lingxiu RD, Jiashan County, Zhejiang Province, China

Factory: Zhejiang Guangwei Electric & Tools Co.,Ltd
No.55th Lingxiu RD, Jiashan County, Zhejiang Province, China


FCC ID: 2BEMCEAD02

SUMMARY:

The equipment complies with the requirements according to the following standard(s) or Specification:

47CFR Part 15 (2021): Radio Frequency Devices (Subpart C)

ANSI C63.10 (2020): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

PREPARED BY:

Project Engineer
Sky Yang

REVIEWED BY:

Reviewer
Eric Li

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

TEST REPORT**Content**

REVISION HISTORY	4
MEASUREMENT RESULT SUMMARY	5
1 GENERAL INFORMATION	6
1.1 DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	6
1.2 TECHNICAL SPECIFICATION	6
1.3 DESCRIPTION OF TEST FACILITY	7
2 TEST SPECIFICATIONS	8
2.1 STANDARDS OR SPECIFICATION	8
2.2 MODE OF OPERATION DURING THE TEST.....	8
2.3 TEST SOFTWARE LIST	8
2.4 TEST PERIPHERALS LIST	8
2.5 TEST ENVIRONMENT CONDITION:.....	8
2.6 INSTRUMENT LIST	9
2.7 MEASUREMENT UNCERTAINTY	10
3 FUNDAMENTAL EMISSION	11
3.1 LIMIT	11
3.2 MEASUREMENT PROCEDURE	11
3.3 TEST CONFIGURATION	12
3.4 TEST RESULTS OF FUNDAMENTAL EMISSIONS	13
4 SPURIOUS EMISSION	14
4.1 LIMIT	14
4.2 MEASUREMENT PROCEDURE	14
4.3 TEST RESULTS OF RADIATED EMISSIONS	16
5 FREQUENCY STABILITY (TEMPERATURE VARIATION)	20
5.1 TEST LIMIT	20
5.2 TEST CONFIGURATION	20
5.3 TEST PROCEDURE AND TEST SETUP	21
5.4 TEST PROTOCOL	21
6 FREQUENCY STABILITY (VOLTAGE VARIATION)	22
6.1 TEST LIMIT	22
6.2 TEST CONFIGURATION	22
6.3 TEST PROCEDURE AND TEST SETUP	22
6.4 TEST PROTOCOL	23
7 CONDUCTED EMISSIONS	24
7.1 LIMIT	24
7.2 TEST CONFIGURATION	24
7.3 MEASUREMENT PROCEDURE	25
7.4 TEST RESULTS OF CONDUCTED EMISSIONS.....	26
8 20DB BANDWIDTH	28
8.1 LIMIT.....	28
8.2 TEST CONFIGURATION	28
8.3 TEST PROCEDURE AND TEST SET UP	29
8.4 TEST PROTOCOL	30
9 ANTENNA REQUIREMENT	31

TEST REPORT**Revision History**

Report No.	Version	Description	Issued Date
231100180SHA-002	Rev. 01	Initial issue of report	March 27, 2024

TEST REPORT**Measurement result summary**

TEST ITEM	FCC REFERENCE	RESULT
Fundamental emission	15.225(a) (b) (c)	Pass
Spurious emission	15.225(d)	Pass
Frequency stability	15.225(e)	Pass
Conducted emissions	15.207	Pass
99% and 20dB Bandwidth	15.215(c)	Pass
Antenna requirement	15.203	Pass

Notes: 1: NA =Not Applicable

2: Determination of the test conclusion is based on IEC Guide 115 in consideration of measurement uncertainty.

TEST REPORT**1 GENERAL INFORMATION****1.1 Description of Equipment Under Test (EUT)**

Product name:	EV Charging Wallbox
Type/Model:	EAD02-03, EAD02-07, EAD02-09, EAD02-11, EAP02-03, EAP02-07, EAP02-09, EAP02-11
Description of EUT:	The EUT is an AC electric vehicle charger. EAD02-03, EAD02-07, EAD02-09 and EAD02-11 are electrically identical except rated power, same difference between EAP02-03, EAP02-07, EAP02-09 and EAP02-11. Two series are electrically identical except the appearance. We test EAD02-11 and list the worst results in the reports.
Rating:	EAD02-03, EAP02-03: 208VAC/240VAC, 50/60Hz, 16A Max EAD02-07, EAP02-07: 208VAC/240VAC, 50/60Hz, 32A Max EAD02-09, EAP02-09: 208VAC/240VAC, 50/60Hz, 40A Max EAD02-11, EAP02-11: 208VAC/240VAC, 50/60Hz, 48A Max
EUT type:	<input checked="" type="checkbox"/> Table top <input type="checkbox"/> Floor standing
Software Version:	-
Hardware Version:	-
Serial numbers:	A240105-56
Sample received date:	January 5, 2024
Date of test:	January 8, 2024~ January 10, 2024

1.2 Technical Specification

Frequency Range:	13.56 MHz ~ 13.56 MHz
Modulation:	ASK
Antenna:	PCB antenna

TEST REPORT**1.3 Description of Test Facility**

Name:	Intertek Testing Services Shanghai
Address:	Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. China
Telephone:	86 21 61278200
Telefax:	86 21 54262353

The test facility is recognized, certified, or accredited by these organizations:	CNAS Accreditation Lab Registration No. CNAS L0139
	FCC Accredited Lab Designation Number: CN0175
	IC Registration Lab CAB identifier.: CN0014
	VCCI Registration Lab Member No.: 3598 (Registration No.: R-14243, G-10845, C-14723, T-12252)
	A2LA Accreditation Lab Certificate Number: 3309.02

TEST REPORT**2 TEST SPECIFICATIONS****2.1 Standards or specification**

47CFR Part 15 (2021)

ANSI C63.10 (2020)

2.2 Mode of operation during the test

While testing, the internal modulation and continuously transmission was applied.

2.3 Test software list

Test Items	Software	Manufacturer	Version
Conducted emission	SKET Auto EMC Test Software	Keleto	V3.0
Radiated emission	SKET Auto EMC Test Software	Keleto	V3.0

2.4 Test peripherals list

Item No	Description	Band and Model	S/No

2.5 Test environment condition:

Test items	Temperature	Humidity
Radiated emission	26°C	53% RH
Power line conducted emission	27°C	53% RH

TEST REPORT
2.6 Instrument list

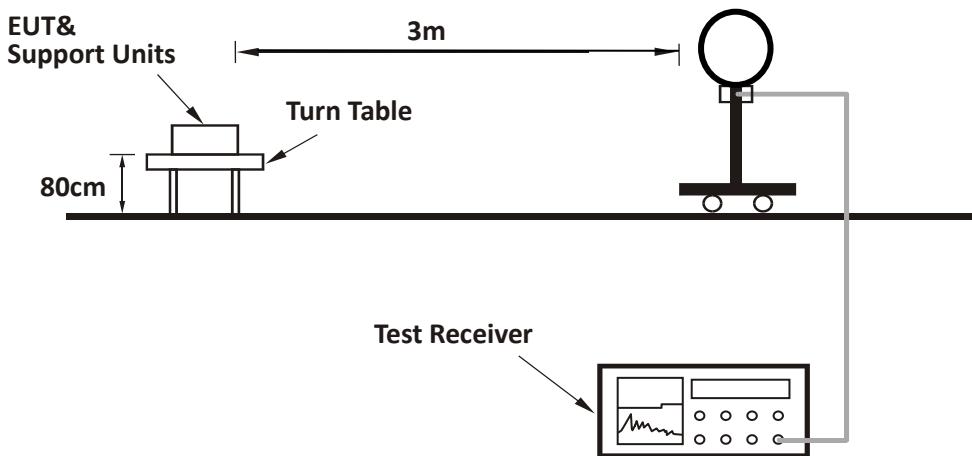
Conducted Emission					
Used	Equipment	Manufacturer	Type	Internal no.	Due date
<input checked="" type="checkbox"/>	Test Receiver	R&S	ESR7	EC 6194	2025-02-27
<input checked="" type="checkbox"/>	A.M.N.	R&S	ESH2-Z5	EC 3119	2024-11-19
<input checked="" type="checkbox"/>	Shielded room	Zhongyu	-	EC 2838	2025-01-11
Radiated Emission					
Used	Equipment	Manufacturer	Type	Internal no.	Due date
<input checked="" type="checkbox"/>	Test Receiver	R&S	ESIB 26	EC 3045	2024-08-22
<input checked="" type="checkbox"/>	TRILOG broadband Antenna	Schwarzbeck	VULB9168	EC 6402	2025-02-13
<input checked="" type="checkbox"/>	Active loop antenna	Schwarzbeck	FMZB1519	EC 5345	2024-07-16
<input checked="" type="checkbox"/>	Semi-anechoic chamber	Albatross project	-	EC 3048	2024-07-08
RF test					
Used	Equipment	Manufacturer	Type	Internal no.	Due date
<input checked="" type="checkbox"/>	Spectrum Analyzer	Keysight	N9030B	EC 6078	2024-06-15
<input type="checkbox"/>	Vector Signal Generator	Agilent	N5182B	EC 5175	2025-03-07
<input type="checkbox"/>	Universal Radio Communication Tester	R&S	CMW500	EC5944	2025-03-07
<input type="checkbox"/>	MXG Analog Signal Generator	Agilent	N5181A	EC 5338-2	2025-03-07
<input type="checkbox"/>	Mobile Test System	Litepoint	lqxl	EC 5176	2025-01-11
<input checked="" type="checkbox"/>	Climate chamber	GWS	MT3065	EC 6021	2025-03-06
Additional instrument					
Used	Equipment	Manufacturer	Type	Internal no.	Due date
<input checked="" type="checkbox"/>	Thermo-Hygrograph	Testo	175h1	EC 6640	2024-08-28
<input checked="" type="checkbox"/>	Thermo-Hygrograph	Testo	175h1	EC6642	2024-08-28

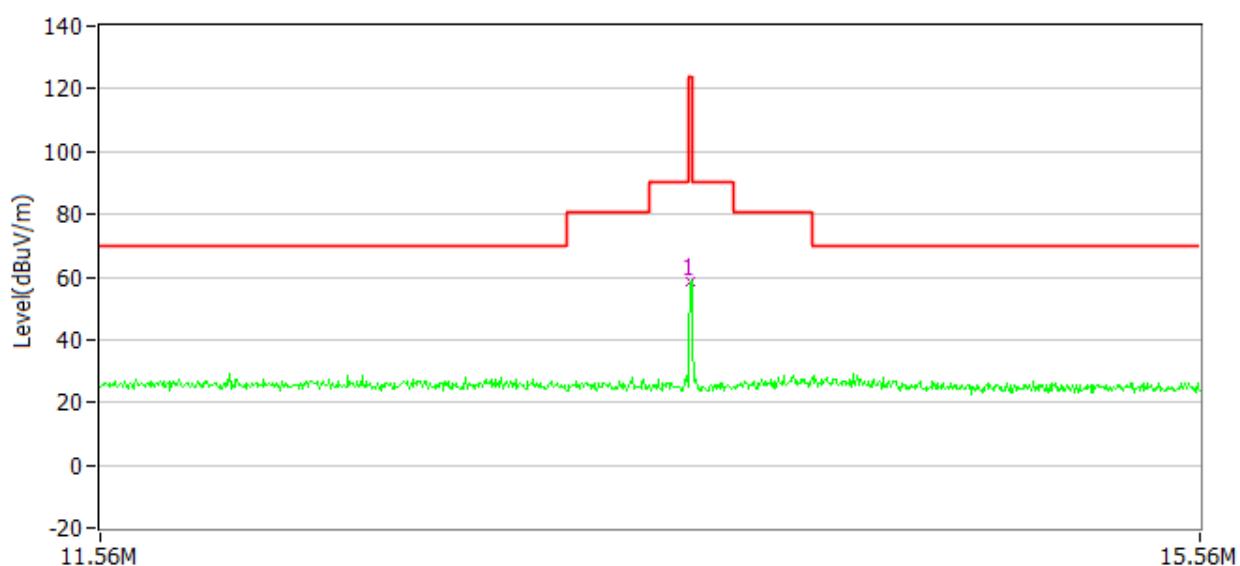
TEST REPORT**2.7 Measurement uncertainty**

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Frequency	Expanded Uncertainty (k=2)
Conducted emission at mains ports	9kHz ~ 150kHz	3.52 dB
	150kHz ~ 30MHz	3.19 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	3.06 dB
Radiated Emissions above 1 GHz	1GHz ~ 6GHz	5.02 dB
	6GHz ~ 18GHz	5.28 dB

TEST REPORT**3 Fundamental Emission****Test result:** **Pass****3.1 Limit**


Frequencies (MHz)	Limit at 30m (dBuV/m)	Limit at 3m (dBuV/m)
13.110 – 13.410	40.50	80.50
13.410 – 13.553	50.50	90.50
13.553 – 13.567	84.00	124.00
13.567 – 13.710	50.50	90.50
13.710 – 14.010	40.50	80.50


3.2 Measurement Procedure

- a) The EUT was placed on a 0.8m plank above the ground at a 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) Both X and Y axes of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to PK Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

TEST REPORT**3.3 Test Configuration**

TEST REPORT
3.4 Test Results of Fundamental Emissions

Antenna Polarization	Frequency (MHz)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin	Detector
X	13.56	58.5	124.00	65.5	PK
Y	13.56	55.1	124.00	68.9	PK

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.
 2. Corrected Reading = Original Receiver Reading + Correct Factor
 3. Margin = Limit - Corrected Reading

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB, Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV, Limit = 40.00dBuV/m.
 Then Correct Factor = $30.20 + 2.00 - 32.00 = 0.20$ dB/m;
 Corrected Reading = $10\text{dBuV} + 0.20\text{dB/m} = 10.20\text{dBuV/m}$;
 Margin = $40.00\text{dBuV/m} - 10.20\text{dBuV/m} = 29.80\text{dB}$.

TEST REPORT**4 Spurious Emission****Test result:** Pass**4.1 Limit**

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

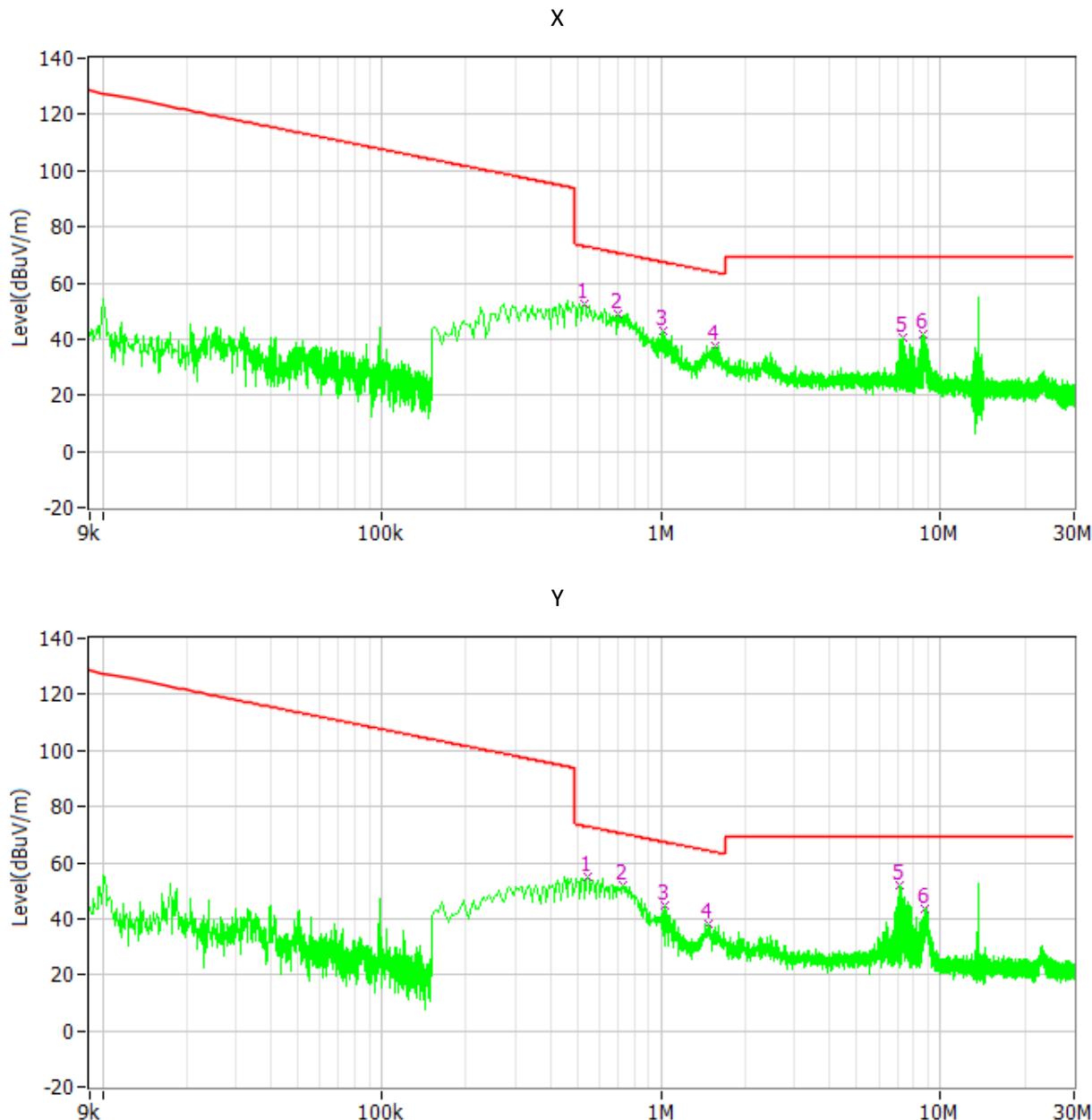
4.2 Measurement Procedure**For Radiated emission below 30MHz:**

- f) The EUT was placed on a 0.8m plank above the ground at a 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- g) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- h) Both X and Y axes of the antenna are set to make the measurement.
- i) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- j) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz:

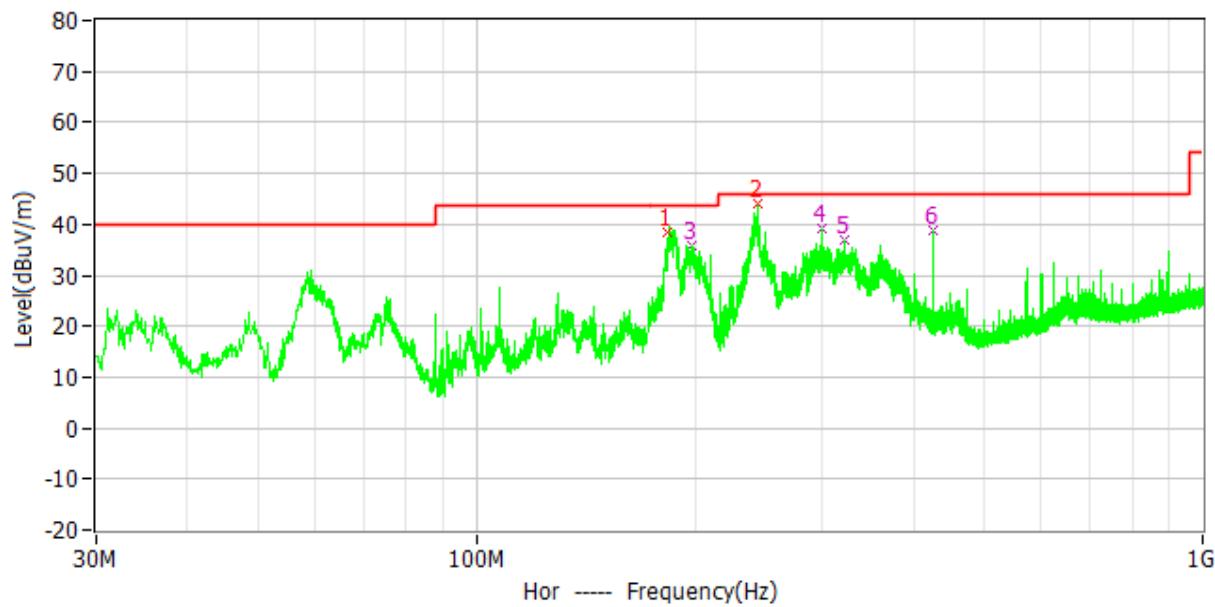
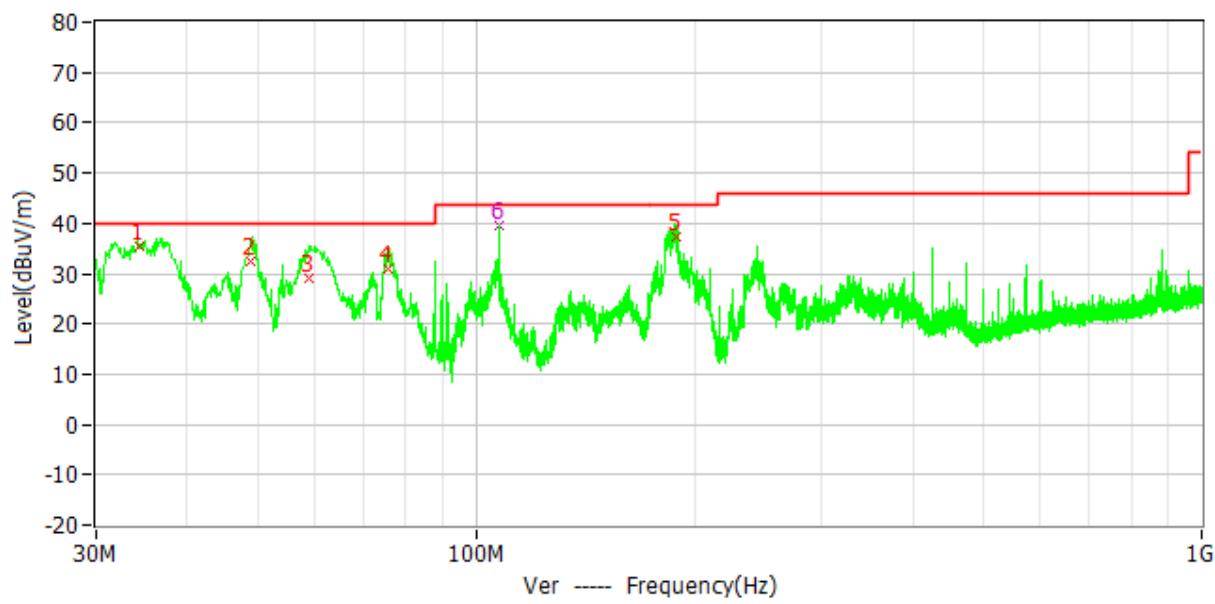

- a) The EUT was placed on a 0.8m plank above the ground at a 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

TEST REPORT

- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
3. All modes of operation were evaluated and the worst-case emissions were reported



TEST REPORT**4.3 Test Results of Radiated Emissions****Test Curve:**

TEST REPORT
Test data below 30MHz:

Frequency	Limit (dBuV/m)	Corrected Reading (dBuV/m)	Margin	Detector	Polarity
532.500kHz	73.1	52.7	20.4	PK	X
703.500kHz	70.7	48.9	21.7	PK	X
1.019MHz	67.5	42.7	24.8	PK	X
1.559MHz	63.8	37.4	26.4	PK	X
7.346MHz	69.5	40.7	28.8	PK	X
8.619MHz	69.5	41.8	27.7	PK	X
546.000kHz	72.9	54.8	18.1	PK	Y
726.000kHz	70.4	52.0	18.4	PK	Y
1.028MHz	67.4	44.6	22.8	PK	Y
1.478MHz	64.2	38.1	26.2	PK	Y
7.152MHz	69.5	51.7	17.8	PK	Y
8.718MHz	69.5	43.3	26.2	PK	Y

Remark: 1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.
 2. Corrected Reading = Original Receiver Reading + Correct Factor
 3. Margin = Limit - Corrected Reading
 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,
 Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV,
 Limit = 40.00dBuV/m.
 Then Correct Factor = $30.20 + 2.00 - 32.00 = 0.20$ dB/m;
 Corrected Reading = $10\text{dBuV} + 0.20\text{dB/m} = 10.20\text{dBuV/m}$;
 Margin = $40.00\text{dBuV/m} - 10.20\text{dBuV/m} = 29.80\text{dB}$.

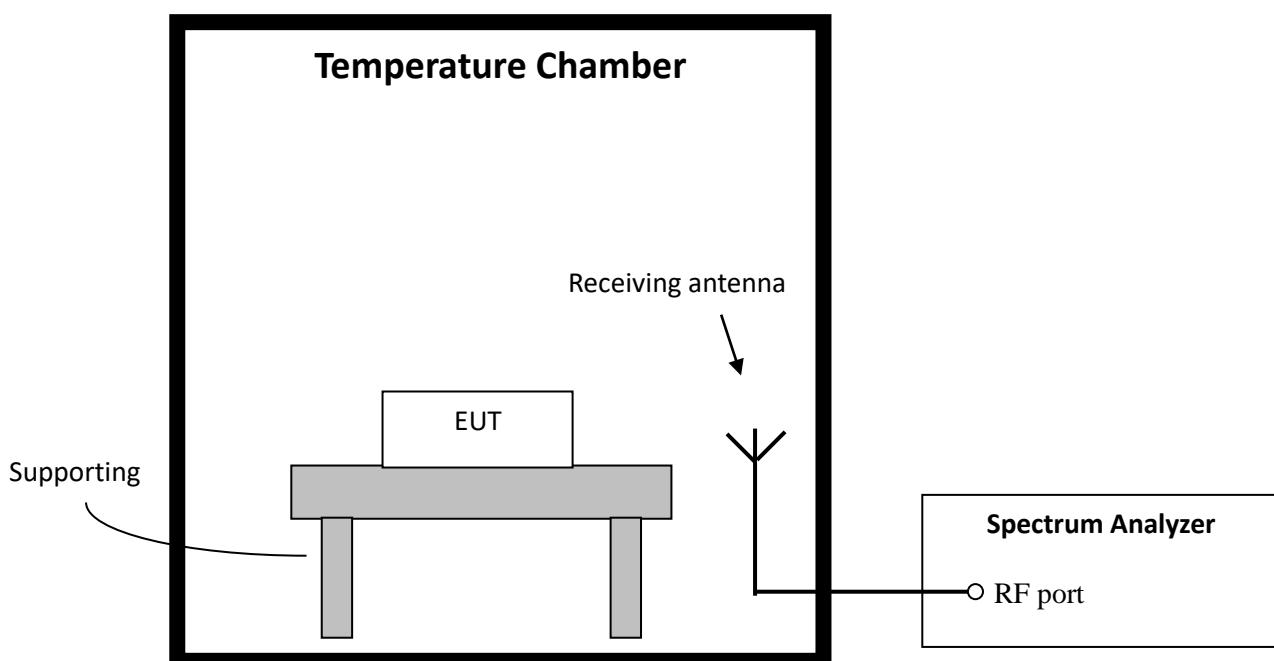
TEST REPORT**H****V**

TEST REPORT
Test data from 30MHz to 1000MHz:

Antenna Polarization	Frequency	Limit (dBuV/m)	Corrected Reading (dBuV/m)	Margin	Detector
H	183.761MHz	43.5	38.5	5.0	QP
H	244.083MHz	46.0	42.9	3.1	QP
H	198.489MHz	43.5	35.7	7.8	PK
H	299.951MHz	46.0	39.3	6.7	PK
H	321.097MHz	46.0	36.9	9.1	PK
H	424.984MHz	46.0	38.7	7.3	PK
V	34.375MHz	40.0	35.3	4.7	QP
V	48.982MHz	40.0	32.4	7.6	QP
V	58.957MHz	40.0	29.2	10.8	QP
V	75.850MHz	40.0	30.9	9.1	QP
V	188.566MHz	43.5	37.3	6.2	QP
V	107.600MHz	43.5	39.4	4.1	PK

Remark:

1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.
2. Corrected Reading = Original Receiver Reading + Correct Factor
3. Margin = Limit - Corrected Reading
4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.


Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,
 Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV,
 Limit = 40.00dBuV/m.
 Then Correct Factor = $30.20 + 2.00 - 32.00 = 0.20$ dB/m;
 Corrected Reading = $10\text{dBuV} + 0.20\text{dB/m} = 10.20\text{dBuV/m}$;
 Margin = $40.00\text{dBuV/m} - 10.20\text{dBuV/m} = 29.80\text{dB}$.

TEST REPORT**5 Frequency Stability (Temperature Variation)**

Test result: PASS

5.1 Test limit

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -30 degrees to $+50$ degrees C at normal supply voltage.

5.2 Test Configuration

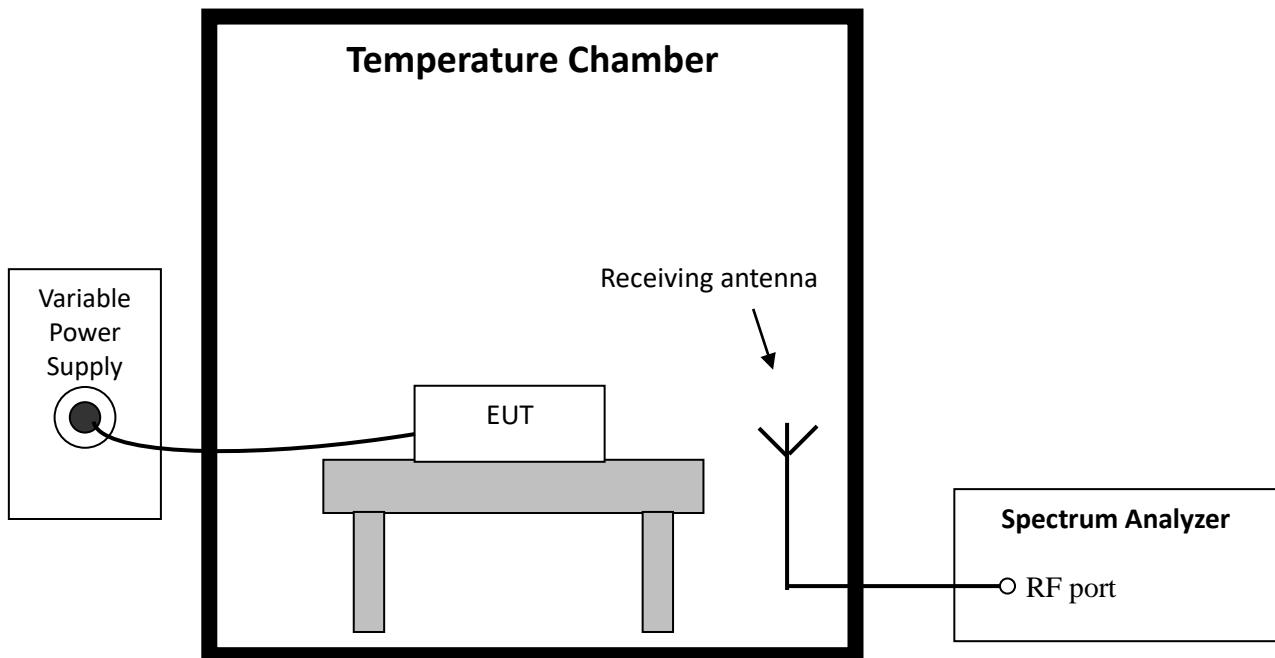
TEST REPORT**5.3 Test procedure and test setup**

Test Procedure as per ANSI 63.10 clause 6.8.1.

5.4 Test protocol

Voltage (V)	Temp (°C)	Freq measured (MHz)	Freq nominal (MHz)	Tolerance (%)	Limit (%)
240	-30	13.5594	13.56	-0.004	±.01
	-20	13.5596		-0.003	
	-10	13.5595		-0.004	
	0	13.5602		0.001	
	10	13.5601		0.0007	
	20	13.5600		0	
	30	13.5600		0	
	40	13.5605		0.004	
	50	13.5598		-0.001	

TEST REPORT


6 Frequency Stability (Voltage Variation)

Test result: PASS

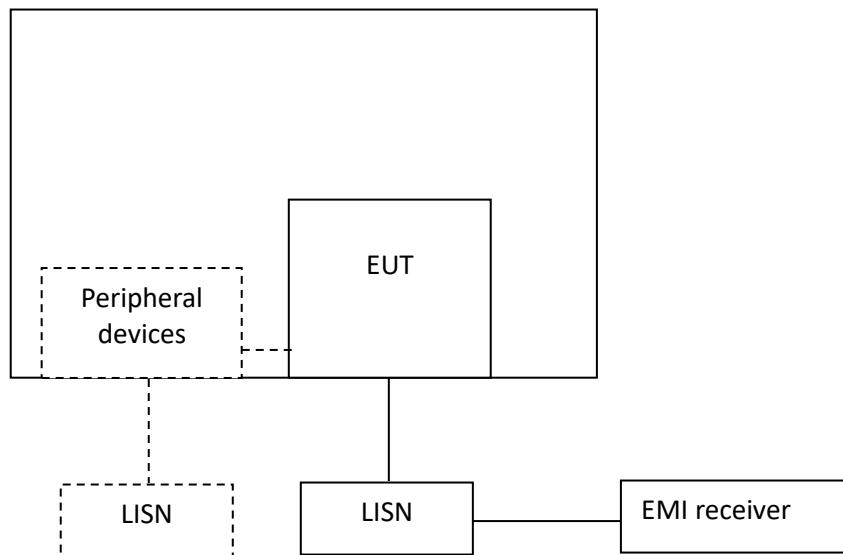
6.1 Test limit

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

6.2 Test Configuration

6.3 Test procedure and test setup

Test Procedure as per ANSI 63.10 clause 6.8.2.

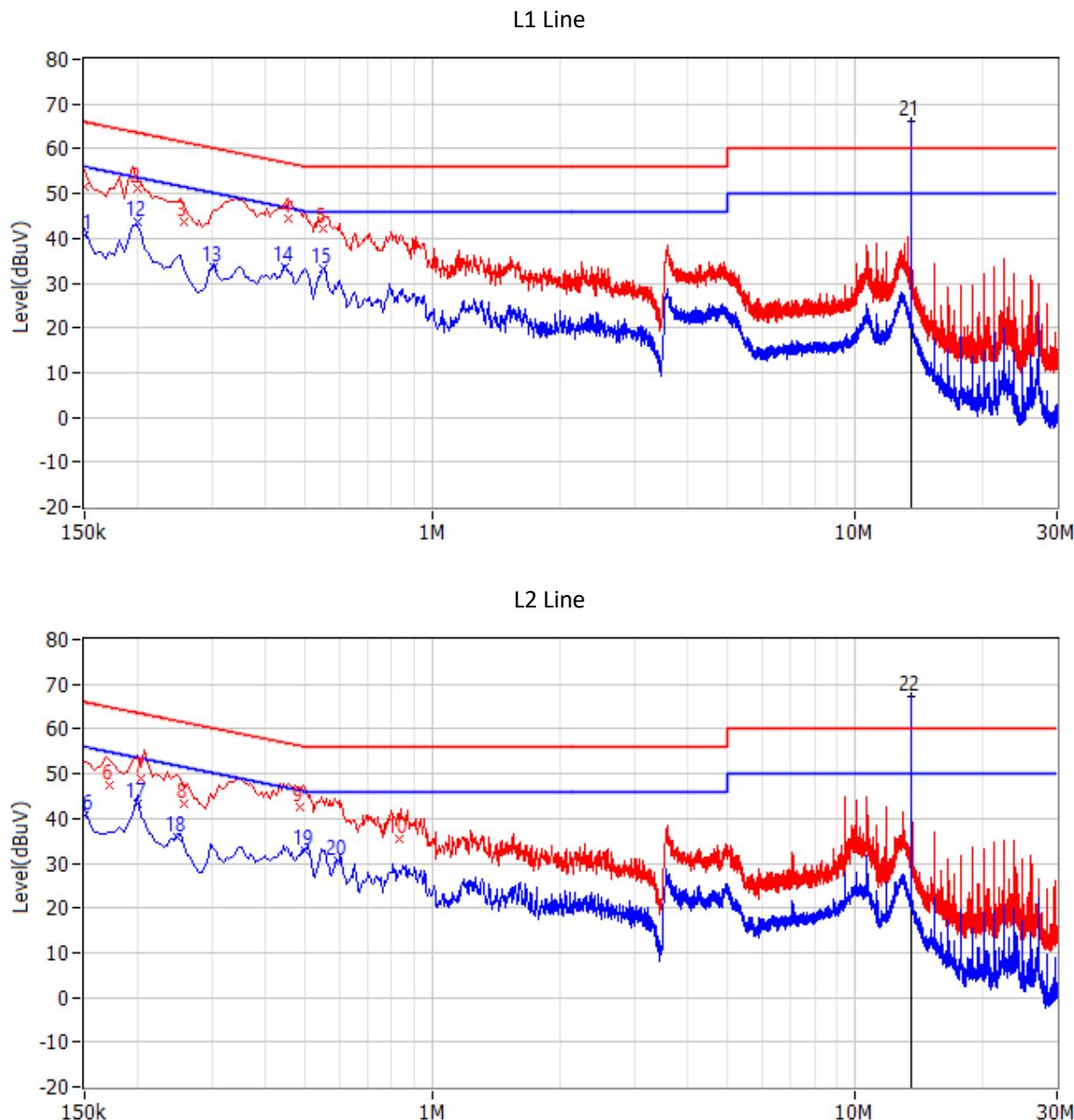

TEST REPORT**6.4 Test protocol**

Temp (°C)	Voltage (V)	Freq Measured (MHz)	Freq nominal (MHz)	Tolerance (%)	Limit (%)
20	216	13.5606	13.56	0.004	±0.01
	240	13.5600		0	
	264	13.5603		0.002	

TEST REPORT**7 Conducted emissions**Test result: **Pass****7.1 Limit**

Frequency of Emission (MHz)	Conducted Emissions Limit (dBuV)	
	QP	AV
0.15-0.5	66 to 56*	56 to 46 *
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.


7.2 Test Configuration

TEST REPORT**7.3 Measurement Procedure**

Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the $50\ \Omega$ LISN port (to which the EUT is connected), where permitted, terminated into a $50\ \Omega$ measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the $50\ \Omega$ measuring port is terminated by a measuring instrument having $50\ \Omega$ input impedance. All other ports are terminated in $50\ \Omega$ loads.

Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.

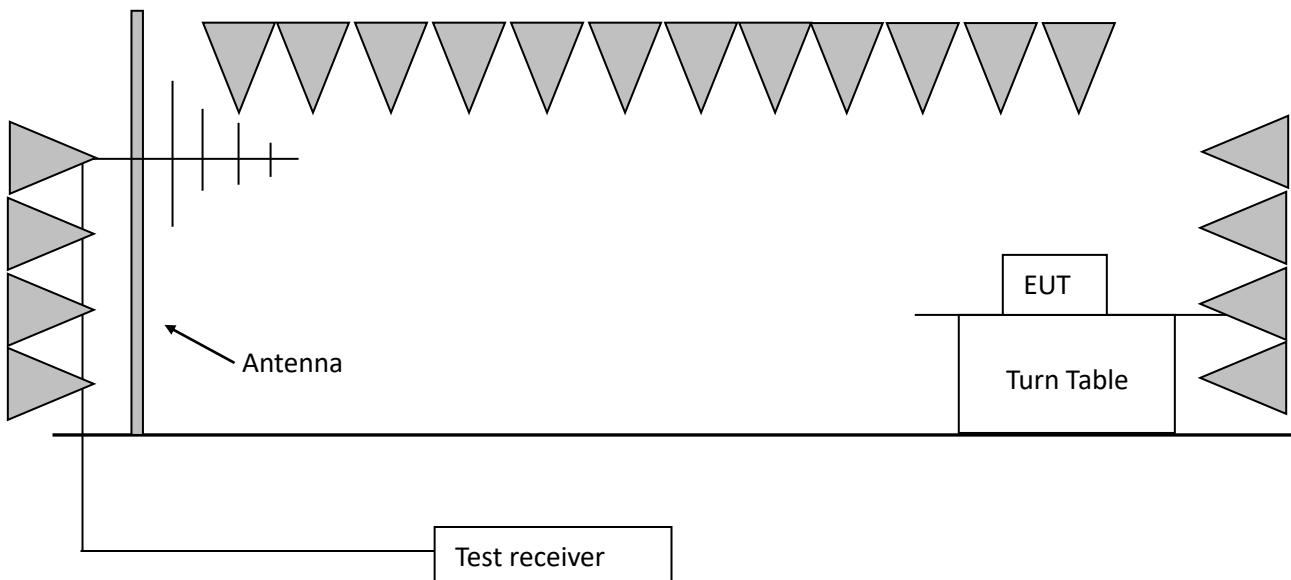
TEST REPORT**7.4 Test Results of Conducted Emissions****Test Voltage: 240VAC/60Hz****Test Curve:**

TEST REPORT
Test Data:

No.	Frequency	Limit dBuV	Level dBuV	Delta dB	Detector	Phase
1	150.000kHz	66.0	51.4	-14.6	QP	L1
2	199.500kHz	63.6	51.2	-12.4	QP	L1
3	258.000kHz	61.5	43.6	-17.9	QP	L1
4	456.000kHz	56.8	44.4	-12.4	QP	L1
5	550.500kHz	56.0	42.3	-13.7	QP	L1
6	172.500kHz	64.8	47.3	-17.5	QP	L2
7	204.000kHz	63.4	49.0	-14.4	QP	L2
8	258.000kHz	61.5	43.4	-18.1	QP	L2
9	483.000kHz	56.3	42.6	-13.7	QP	L2
10	834.000kHz	56.0	35.6	-20.4	QP	L2
11	150.000kHz	56.0	40.7	-15.3	CAV	L1
12	199.500kHz	53.6	43.6	-10.0	CAV	L1
13	303.000kHz	50.2	33.7	-16.5	CAV	L1
14	447.000kHz	46.9	33.6	-13.3	CAV	L1
15	550.500kHz	46.0	33.1	-12.9	CAV	L1
16	150.000kHz	56.0	40.8	-15.2	CAV	L2
17	199.500kHz	53.6	43.2	-10.4	CAV	L2
18	249.000kHz	51.8	35.8	-16.0	CAV	L2
19	496.500kHz	46.1	32.8	-13.3	CAV	L2
20	595.500kHz	46.0	30.6	-15.4	CAV	L2
21	13.560MHz	-	-	-	-	L1
22	13.560MHz	-	-	-	-	L2

Remark:

1. Factor = LISN Factor + Cable Loss, the value was added to Original Receiver Reading by the software automatically.
2. Level = Original Receiver Reading + Factor
3. Delta = Level - Limit
4. If the PK Level is lower than AV limit, the AV test can be elided.
5. the emissions of 13.56MHz are the product's RF signal.


Example: Assuming LISN Factor = 10.00dB, Cable Loss = 2.00dB,
 Original Receiver Reading = 10.00dBuV, Limit = 66.00dBuV.
 Then Factor = 10.00 + 2.00 = 12.00dB;
 Level = 10dBuV + 12.00dB = 22.00dBuV;
 Delta = 22.00dBuV - 66.00dBuV = -44.00dB.

TEST REPORT**8 20dB Bandwidth**

Test result: Pass

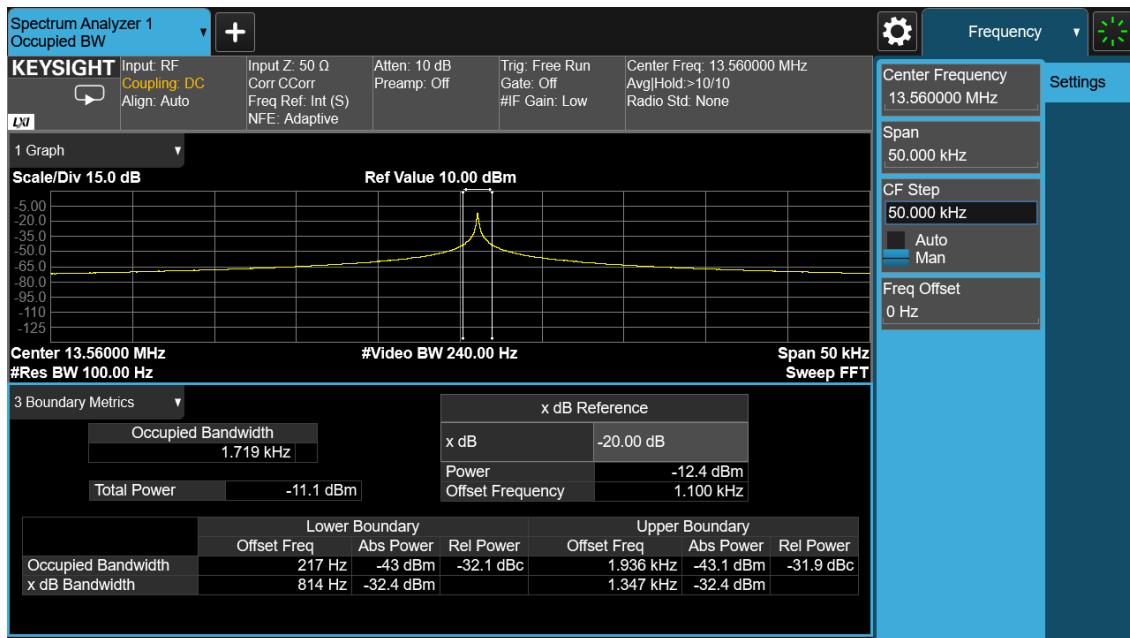
8.1 Limit

The 20dB bandwidth should be fallen in the allocated operating frequency range.
No limit for 99% bandwidth.

8.2 Test configuration

TEST REPORT**8.3 Test procedure and test set up**

The measurement was applied in a 3m semi-anechoic chamber.


The center of the loop antenna shall be 1 m above the horizontal metal ground plane.

The following procedure shall be used for measuring (99 %) power bandwidth:

1. Set center frequency to the nominal EUT channel center frequency.
2. Set RBW = 1 % to 5 % of the OBW
3. Set VBW $\geq 3 \cdot$ RBW
4. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
5. Use the 99 % power bandwidth function of the instrument (if available).
6. the 20dB bandwidth is also measured with the same setting.

TEST REPORT
8.4 Test protocol

	Lower point (MHz)	Higher point (MHz)	Bandwidth (kHz)	Allocated bandwidth (MHz)
20dB Bandwidth	13.560814	13.561347	0.533	13.553 ~ 13.567
Occupied bandwidth	13.560217	13.561936	1.719	13.553 ~ 13.567

TEST REPORT

9 Antenna requirement

Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Result:

EUT uses permanently attached antenna to the intentional radiator, so it can comply with the provisions of this section.

***** END *****