

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC/ISED Test Report

Prepared for: Timpte Industries, Inc

Address: 100 Timpte Pkwy

PO Box 347

David City, NE 68632,

United States

Product: 400-661-002

Test Report No: R230831-20-E1A

Approved by:

Fox Lane,

EMC Test Engineer

DATE: February 16, 2024

Total Pages: 38

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Prepared for: Timpte Industries, Inc

REVISION PAGE

Rev. No.	Date	Description		
		Issued by FLane		
0	24 January 2024	Reviewed by KVepuri		
		Prepared by FLane		
A 46 February 2024		Updated HVIN		
A	16 February 2024	Added test setup graphic for High frequency - FL		

Page 2 of 38

Report Number:

R230831-20-E1A

Rev

Α

Prepared for:

Timpte Industries, Inc

CONTENTS

Rev	ision Pa	ge	2
1.0	Sur	nmary of test results	4
2.0	EUT	T Description	5
	2.1	Equipment under test	5
	2.2	Description of test modes	5
	2.3	Description of support units	5
3.0	Lab	oratory and General Test Description	
	3.1	Laboratory description	6
	3.2	Test personnel	
	3.3	Test equipment	7
	3.4	General Test Procedure and Setup for Radio Measuremnts	8
4.0	Res	ults	
	4.1	Output Power	11
	4.2	Bandwidth	12
	4.3	Duty Cycle	13
	4.4	Radiated emissions	14
	4.5	Conducted Spurious Emissions	20
	4.6	Band edges	26
	4.7	Power Spectral Density	28
Арр	endix A	: Sample Calculation	29
Арр	endix E	B – Measurement Uncertainty	30
Арр	endix C	– Graphs and Tables	31
DED	ODT E	ND	20

Report Number: R230831-20-E1A Rev Α Prepared for: Timpte Industries, Inc

1.0 **SUMMARY OF TEST RESULTS**

The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following section (Please see the checked box below for the rule part used):

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-247, Issue 3

APPLIED STANDARDS AND REGULATIONS						
Standard Section	Test Type	Result				
FCC Part 15.35 RSS Gen, Issue 5, Section 6.10	Duty Cycle	Pass				
FCC Part 15.247(b)(3) RSS-247 Issue 3 Section 5.4(d)	Peak output power	Pass				
FCC Part 15.247(a)(2) RSS-247 Issue 3 Section 5.2 (a)	Bandwidth	Pass				
FCC Part 15.209 RSS-Gen Issue 5, Section 7.3	Receiver Radiated Emissions	Pass				
FCC Part 15.209 (restricted bands), 15.247 (unrestricted) RSS-247 Issue 3 Section 5.5, RSS-Gen Issue 5, Section 8.9	Transmitter Radiated Emissions	Pass				
FCC Part 15.247(e) RSS-247 Issue 3 Section 5.2 (b)	Power Spectral Density	Pass				
FCC Part 15.209, 15.247(d) RSS-247 Issue 3 Section 5.5	Band Edge Measurement	Pass				
FCC Part 15.207 RSS-Gen Issue 5, Section 8.8	Conducted Emissions	NA*				

^{*}Device is replaceable battery powered

Page 4 of 38

Report Number:	R230831-20-E1A	Rev	А
Prepared for:	Timpte Industries, Inc		

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Summary and Operating Condition:

EUT	400-661-002
FCC ID	2BEKMKPD01
IC	28803-KPD01
EUT Received	26 July 2023
EUT Tested	26 July 2023 - 25 August 2023
Serial No.	NCEETEST2 (Lab Assigned Serial number)
Operating Band	900 – 928 MHz
Device Type	DTS
Power Supply / Voltage	1.5V internal AAA battery

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 DESCRIPTION OF TEST MODES

The operating range of the EUT is dependent on the device type found in section 2.1:

For Transmissions:

Channel	Frequency
Low	902.5 MHz
Mid	915.7 MHz
High	927.1 MHz

These are the only representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

2.3 DESCRIPTION OF SUPPORT UNITS

None

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 5 of 38

Report Number:	R230831-20-E1A	Rev	А
Prepared for:	Timpte Industries, Inc		

3.0 LABORATORY AND GENERAL TEST DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs)

4740 Discovery Drive

Lincoln, NE 68521

A2LA Certificate Number: 1953.01
FCC Accredited Test Site Designation No: US1060
Industry Canada Test Site Registration No: 4294A-1
NCC CAB Identification No: US0177

Environmental conditions varied slightly throughout the tests:

Relative humidity of $35 \pm 4\%$

Temperature of 22 \pm 3° Celsius

3.2 TEST PERSONNEL

No.	PERSONNEL	TITLE	ROLE			
1	Fox Lane	Test Engineer	Testing, Review, and Report			
2	Blake Winter	Test Engineer	Testing			
3	Ethan Schmidt	Test Technician	Testing and Report			
4	Karthik Vepuri	Test Engineer	Review			

Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 6 of 38

Prepared for: Timpte Industries, Inc

3.3 TEST EQUIPMENT

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (44GHz)	N9038A	MY59050109	July 17, 2023	July 17, 2025
Keysight MXE Signal Analyzer (26.5GHz)	N9038A	MY56400083	July 17, 2023	July 17, 2025
Keysight EXA Signal Analyzer	N9010A	MY56070862	July 18, 2023	July 17, 2025
SunAR RF Motion	JB1	A091418	July 27, 2023	July 26, 2024
ETS-Lindgren Red Horn Antenna	3115	218576	July 31, 2023	July 30, 2024
EMCO Horn Antenna	3116	2576	July 31, 2023	July 30, 2024
Com-Power LISN, Single Phase	LI-220C	20070017	July 17, 2023	July 17, 2025
Agilent Preamp*	87405A	3950M00669	June 5, 2023	June 5, 2025
Rohde & Schwarz Preamplifier*	TS-PR18	3545700803	June 5, 2023	June 5, 2025
Trilithic High Pass Filter*	6HC330	23042	June 5, 2023	June 5, 2025
RF Cable (antenna to 10m chamber bulkhead)	FSCM 64639	01E3872	June 5, 2023	June 5, 2025
RF Cable (10m chamber bulkhead to control room bulkhead)	FSCM 64639	01E3874	June 5, 2023	June 5, 2025
RF Cable (control room bulkhead to test receiver)	FSCM 64639	01F1206	June 5, 2023	June 5, 2025
N connector bulkhead (10m chamber)	PE9128	NCEEBH1	June 5, 2023	June 5, 2025
N connector bulkhead (control room)	PE9128	NCEEBH2	June 5, 2023	June 5, 2025
TDK Emissions Lab Software	V11.25	700307	NA	NA
ETS – Lindgren- VSWR on 10m Chamber	10m Semi- anechoic chamber- VSWR	4740 Discovery Drive	July 30, 2020	July 30, 2024
NCEE Labs-NSA on 10m Chamber	10m Semi- anechoic chamber- NSA	NCEE-001	May 25, 2022	May 25, 2025

^{*}Internal Characterization

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities. All Equipment was in cal for duration of testing

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 7 of 38

3.4 GENERAL TEST PROCEDURE AND SETUP FOR RADIO MEASUREMNTS

Measurement type presented in this report (Please see the checked box below):

Conducted ⊠

The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Figure 1 - Bandwidth Measurements Test Setup

Page 8 of 38

Radiated ⊠

All the radiated measurements were taken at a distance of 3m from the EUT. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

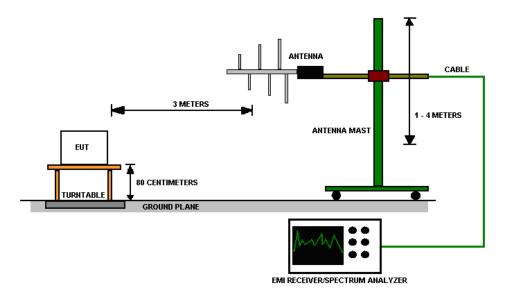


Figure 2 - Radiated Emissions Test Setup, 30MHz - 1GHz

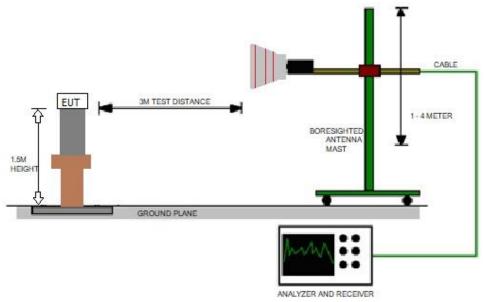


Figure 3 - Radiated Emissions Test Setup, >1GHz

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 9 of 38

Prepared for: Timpte Industries, Inc

4.0 RESULTS

	DTS Radio Measurements							
CH.	Mode	Occupied Bandwidth (MHz)	6 dB Bandwidth (MHz)	Peak Output Power (dBm)	Peak Output Power (mW)	PSD (dBm)	RESULT	
Low	900M	503.89	615.7	7.841	6.083	-9.653	PASS	
Mid	900M	514.29	628.0	7.729	5.928	-10.243	PASS	
High	900M	506.10	615.1	7.616	5.776	-10.042	PASS	
Occupied Bandwidth = N/A; 6 dB Bandwidth Limit > 500 kHz Peak Output Power Limit = 30 dBm; PSD Limit = 8 dBm								

Unrestricted Band-Edge							
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Relative Highest out of band level (dBuV)	Relative Fundamental (dBuV)	Delta (dB)	Min Delta (dB)	Result
Low	900M	902.0	-31.205	7.689	38.893	20.00	PASS
High	900M	928.0	-33.176	3.928	37.104	20.00	PASS
		Quasi	-Peak Restrict	ed Band-Edge			
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Measurement Type	Limit (dBuV/m @ 3m)	Margin	Result
High	900M	965.940	35.60	Quasi-Peak	53.98	18.38	PASS
*Limit shown is the peak limit taken from FCC Part 15.209							

R230831-20-E1A Report Number: Rev Α

Prepared for: Timpte Industries, Inc

4.1 **OUTPUT POWER**

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, Sec. 11.9.2.2.4

Limits of power measurements:

For FCC Part 15.247 Device:

The maximum allowed output power is 30 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the output power plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. Compiled values can be found in the Results section, 4.0.

Page 11 of 38

Report Number:	R230831-20-E1A	Rev	А
Prenared for:	Timpte Industries Inc		

4.2 BANDWIDTH

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of bandwidth measurements:

For FCC Part 15.247 Device:

The 99% occupied bandwidth is for informational purpose only. The 6dB bandwidth of the signal must be greater than 500 kHz.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

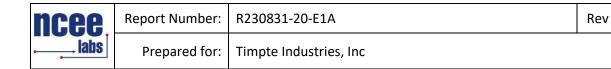
No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.


Test results:

Pass

Comments:

- 1. All the bandwidth plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.

Page 12 of 38

4.3 DUTY CYCLE

All transmitters/modulations pertaining to this report were found to have a duty cycle of >98%, no duty cycle correction used in this report.

Α

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Prepared for: | Timpte Industries, Inc

4.4 RADIATED EMISSIONS

Test Method: ANSI C63.10-2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (µV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.
- 4. The EUT was tested for spurious emissions while running off of battery power and external USB power. The worse-case emissions were produced while running off of USB power, so results from this mode are presented.

 Report Number:
 R230831-20-E1A
 Rev
 A

 Prepared for:
 Timpte Industries, Inc

Test procedures:

- a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.
- d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.
- e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

Prepared for: | Timpte Industries, Inc

Test setup:

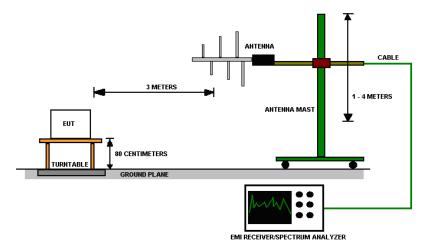


Figure 4 - Radiated Emissions Test Setup

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.
- 2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:

No deviation.

EUT operating conditions

Details can be found in section 2.1 of this report.

Prepared for: Timpte Industries, Inc

Test results:

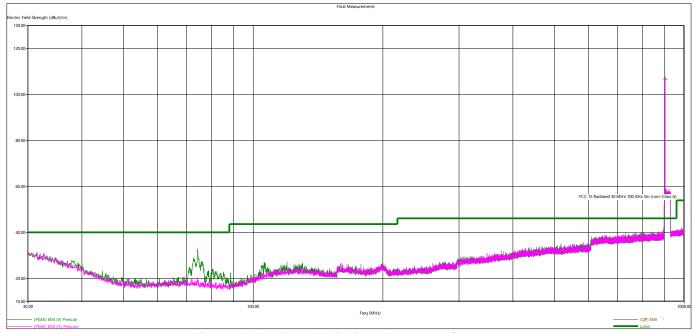


Figure 5 - Radiated Emissions Plot, Low Channel

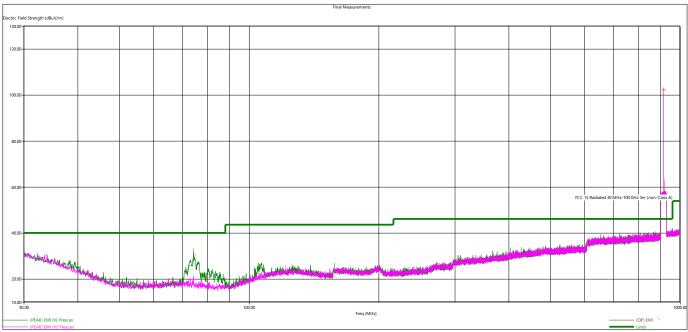


Figure 6 - Radiated Emissions Plot, Mid Channel

Prepared for: Timpte Industries, Inc

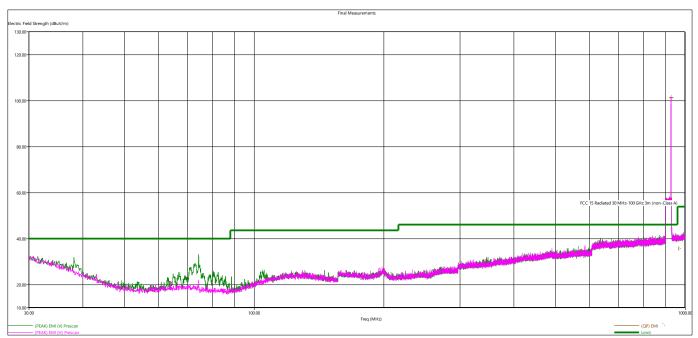


Figure 7 - Radiated Emissions Plot, High Channel

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission level

Quasi-Peak Measurements, 900 MHz Radio								
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Radio Band
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			MHz
902.475600	106.36	46.02	NA	103.31	336.75	Н	Low	900-928M
74.283120	30.29	40.00	9.71	107.67	123.00	V	Mid	900-928M
915.595440	102.06	46.02	NA	100.00	337.00	Н	Mid	900-928M
927.203760	101.04	46.02	NA	100.00	310.00	Н	High	900-928M
965.940000	35.60	53.98	18.38	298.77	159.25	V	High	900-928M

The worst-case is shown in the table above. All other emissions found to be at least 6dB below limit line

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 18 of 38

Report Number:	R230831-20-E1A	Rev	А

Prepared for: | Timpte Industries, Inc

Peak Measurements								
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			
2707.602000	50.33	73.98	23.65	112.08	5.50	V	Low	900 – 928M
2746.712000	51.88	73.98	22.10	174.17	12.00	V	Mid	900 – 928M
2781.324000	55.04	73.98	18.94	197.88	13.75	V	High	900 – 928M
9023.364000	58.12	73.98	15.86	475.73	333.00	V	Low	900 – 928M
9025.394000	57.74	73.98	16.24	459.49	337.75	V	Low	900 – 928M
9157.910000	59.55	73.98	14.43	258.95	351.50	V	Mid	900 – 928M
9158.660000	59.89	73.98	14.09	239.19	314.00	V	Mid	900 – 928M
9269.246000	60.94	NA	NA	545.40	356.75	V	High	900 – 928M

The worst-case is shown in the table above.
All other emissions found to be at least 6dB below limit line

Average Measurements								
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			
2707.602000	43.54	53.98	10.44	112.08	5.50	V	Low	900 – 928M
2746.712000	45.15	53.98	8.83	174.17	12.00	V	Mid	900 – 928M
2781.324000	49.75	53.98	4.23	197.88	13.75	٧	High	900 – 928M
9023.364000	44.18	53.98	9.80	475.73	333.00	V	Low	900 – 928M
9025.394000	43.73	53.98	10.25	459.49	337.75	V	Low	900 – 928M
9157.910000	45.45	53.98	8.53	258.95	351.50	V	Mid	900 – 928M
9158.660000	45.64	53.98	8.34	239.19	314.00	V	Mid	900 – 928M
9269.246000	46.64	NA	NA	545.40	356.75	V	High	900 – 928M

The worst-case is shown in the table above.
All other emissions found to be at least 6dB below limit line

Report Number: R230831-20-E1A Rev A

Prepared for: Timpte Industries, Inc

4.5 CONDUCTED SPURIOUS EMISSIONS

Test Method: ANSI C63.10-2013, Section 6.7

Limits of spurious emissions:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Test procedures:

The highest emissions level was measured and recorded. All spurious measurements were evaluated to 20dB below the fundamental. More details can be found in section 3.4 of this report.

Deviations from test standard:

None.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Please note: the line shown in the plot is merely a reference line, not a limit line.

Page 20 of 38

Prepared for: | Timpte Industries, Inc

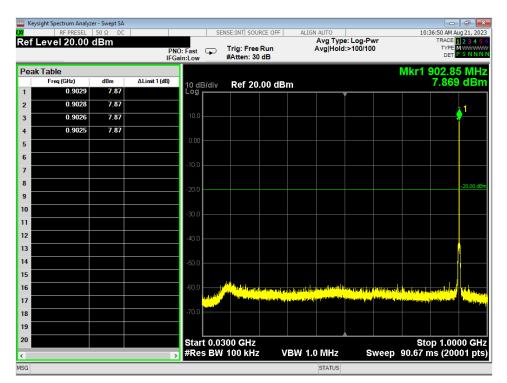


Figure 8 - Radiated Emissions Plot, Low Channel, 30M - 1G

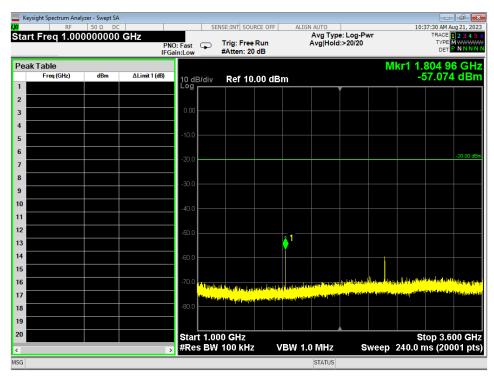


Figure 9 - Radiated Emissions Plot, Low Channel, 1G - 3.6G

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 21 of 38

Prepared for: | Timpte Industries, Inc

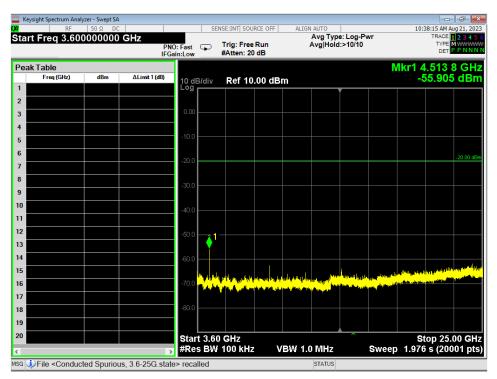


Figure 10 - Radiated Emissions Plot, Low Channel, 3.6G - 25G

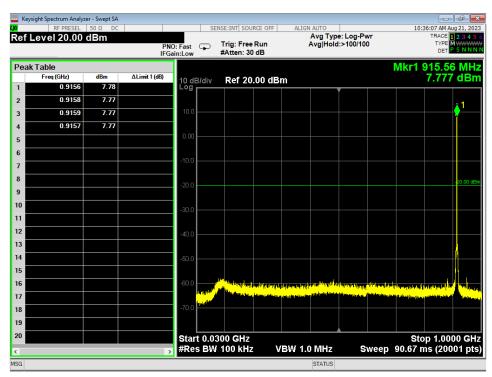


Figure 11 - Radiated Emissions Plot, Mid Channel, 30M - 1G

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 22 of 38

Prepared for: | Timpte Industries, Inc

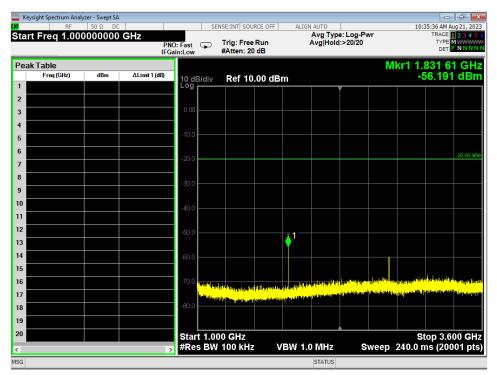


Figure 12 - Radiated Emissions Plot, Mid Channel, 1G - 3.6G

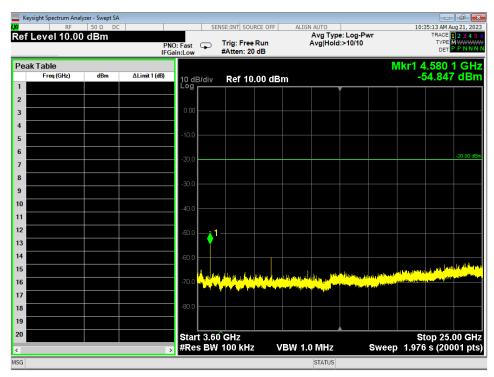


Figure 13 - Radiated Emissions Plot, Mid Channel, 3.6G - 25G

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 23 of 38

Prepared for: | Timpte Industries, Inc

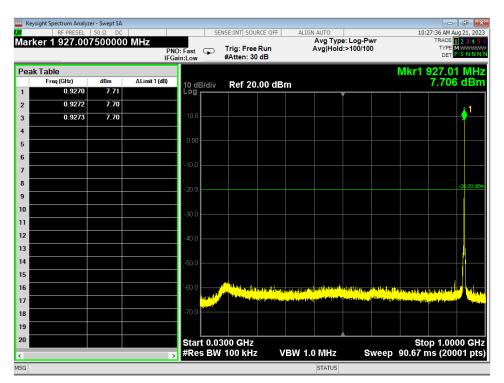


Figure 14 - Radiated Emissions Plot, High Channel, 30M - 1G

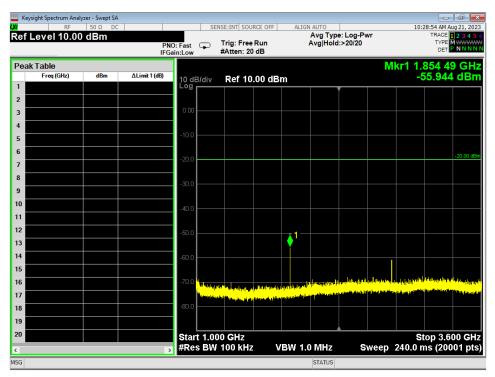


Figure 15 - Radiated Emissions Plot, High Channel, 1G - 3.6G

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 24 of 38

Prepared for: | Timpte Industries, Inc

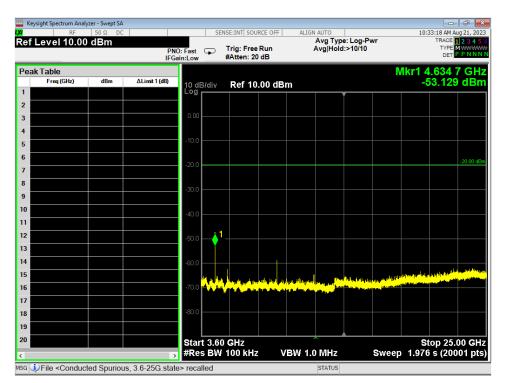


Figure 16 - Radiated Emissions Plot, High Channel, 3.6G - 25G

Page 25 of 38

Prepared for: Timpte Industries, Inc

4.6 BAND EDGES

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of band-edge measurements:

For FCC Part 15.247 Device:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

Test procedures:

The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209. More details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Page 26 of 38

Report Number: R230831-20-E1A Rev A

Prepared for: Timpte Industries, Inc

Test results:

Pass

Comments:

- 1. All the band edge plots can be found in Appendix C.
- 2. If the device falls under FCC Part 15.247 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 20 dB between peak and the band edge.
- 3. The restricted band edge compliance is shown by comparing to the general limit defined in Part 15.209.

Report Number:	R230831-20-E1A	Rev	А
Prepared for:	Timpte Industries, Inc		

4.7 **POWER SPECTRAL DENSITY**

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of power measurements:

For FCC Part 15.247 Device:

The maximum PSD allowed is 8 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the Power Spectral Density (PSD) plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. The measurements are reported on the graph.

Page 28 of 38

Prepared for:

Timpte Industries, Inc

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor, Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF - (-CF + AG) + AV$$

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added.

The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB_µV/m.

$$FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by taking the 20*log(Ton/100) where Ton is the maximum transmission time in any 100ms window.

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation.

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)] 2 / 30

Power (watts) = $10^{Power} (dBm)/10] / 1000$

Voltage $(dB\mu V)$ = Power (dBm) + 107 (for 50 Ω measurement systems)

Field Strength $(V/m) = 10^{field Strength} (dB\mu V/m) / 20] / 10^6$

Gain = 1 (numeric gain for isotropic radiator)

Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

10log(10^9) is the conversion from micro to milli

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 29 of 38

Report Number:	R230831-20-E1A	Rev	А
Prepared for:	Timpte Industries, Inc		

APPENDIX B - MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	±4.31
Radiated Emissions, 3m	1GHz - 18GHz	±5.08
Emissions limits, conducted	30MHz – 18GHz	±3.03

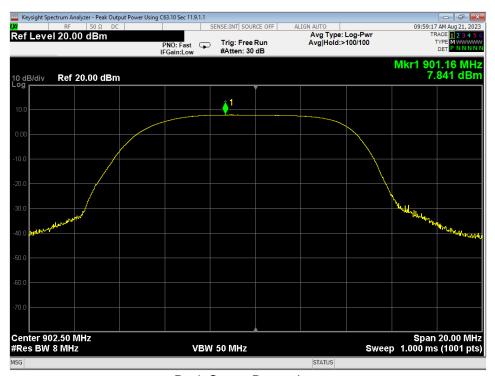
Expanded uncertainty values are calculated to a confidence level of 95%.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

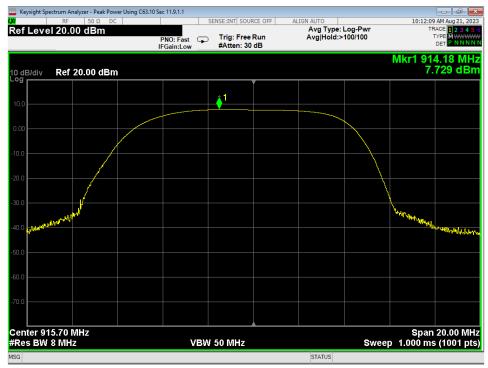
Page 30 of 38

Report Number: | 1

R230831-20-E1A


Rev

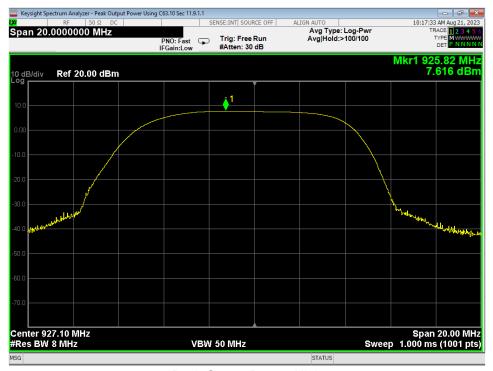
Α


Prepared for:

Timpte Industries, Inc

APPENDIX C - GRAPHS AND TABLES

Peak Output Power, Low


Peak Output Power, Mid

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 31 of 38

Prepared for: Timpte Industries, Inc

Peak Output Power, High

OBW, Low

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 32 of 38

Prepared for: | Timpte Industries, Inc

OBW, Mid

OBW, High

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

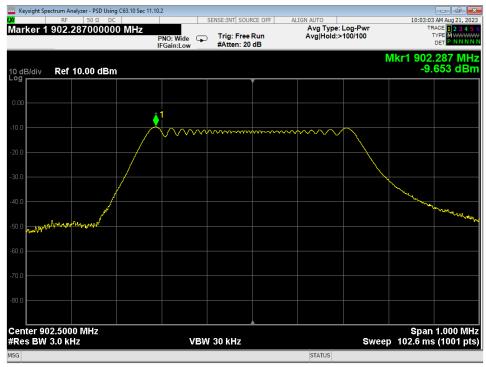
Page 33 of 38

Prepared for: | Timpte Industries, Inc

6dB BW, Low

6dB BW, Mid

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

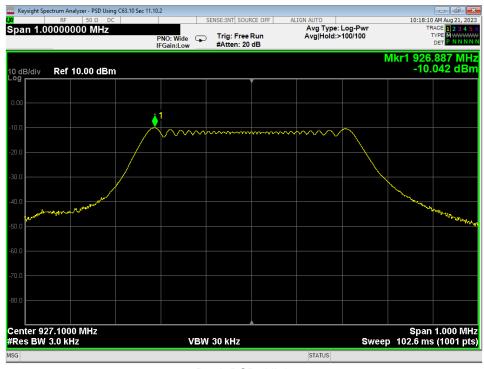

Page 34 of 38

Prepared for: | Timpte Industries, Inc

6dB BW, High

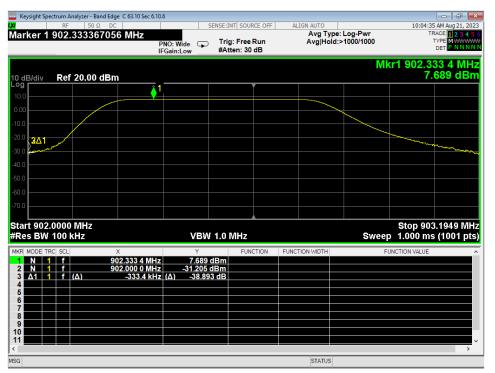
Peak PSD, Low

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

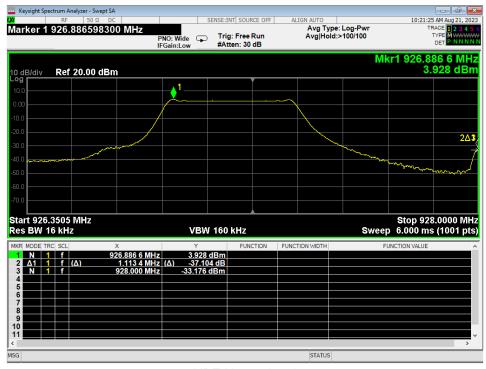

Page 35 of 38

Prepared for: | Timpte Industries, Inc

Peak PSD, Mid


Peak PSD, High

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521


Page 36 of 38

Prepared for: | Timpte Industries, Inc

LBE Unrestricted

HBE Unrestricted

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 37 of 38

 Report Number:
 R230831-20-E1A
 Rev
 A

 Prepared for:
 Timpte Industries, Inc

REPORT END

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 38 of 38