SAFEST V1.1 Antenna Datasheet

Introduction

SAFEST V1.1 (FCC ID: 2BEKJ-SAFESTV1-1) is a human activity monitor that leverages a Texas Instruments
64GHz mmWave radar chip with 7 antennas on package (IWR6843AO0P, 3 transmitter and 4 receiver
antennas).

A=Smm
RX2 RX1
A2
Tx2
Fixd4 A3
“ e 4
i ™
™ TH3
A
e I
Pin Al

Antenna Positions

SAFEST V1.1 also utilizes an Espressif Systems ESP32 microprocessor which has embedded Wi-Fl,
Bluetooth Classic, Bluetooth LE, and 2 antennas on package (ESP32-WROOM-DA-N16, FCC ID: 2AC7Z-
ESPWROOMDA). This diagram shows these 2 antennas (ANT1 and ANT2) and their distance to
IWR6843A0P’s closest transmitter, TX2 (33mm):
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IWR6843A0P

mmWave Radar Antenna Gain

The IWR6843A0P antenna gain was obtained from the manufacturer’s website

(https://www.ti.com/lit/an/swra705/swra705.pdf Pages 11 and 14. Entire document is incorporated at

the end of this Antenna Datasheet). The typical gain for the IWR6843A0P in the direction of maximal

radiation is 7.74dB:
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https://www.ti.com/lit/an/swra705/swra705.pdf

The output is fairly consistent across all frequencies utilized as obtained from the manufacturer’s
website (https://www.ti.com/lit/ds/symlink/iwr6843aop.pdf Page 34):
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8.10.1.2 Antenna Radiation Patterns for Transmitter

Figure 8-2 shows typical antenna radiation patterns for the three transmitters in both Azimuth (H-Plane) and Elevation (E-Plane) planes.
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Figure 8-2. Transmitter Antenna Radiation Pattern

Given that the IWR6843A0P radar chip in SAFEST uses a frequency band greater than 500MHz but less

than 4GHz, SAFEST meets the FCC requirement which limits peak radiated power to +10 dBm and peak
conducted power to -10 dBm.


https://www.ti.com/lit/ds/symlink/iwr6843aop.pdf%20Page%2034

In order to accomplish this, SAFEST V1.1 is configured to attenuate the transmission power. As configured,
SAFEST V1.1's measured IWR6843A0P’s maximum EIRP (Pradiated) = -3.77dBm = Peonducted + Gantenna:
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Note 1: Hand scans were performed at close distance around the EUT with vertical and horizontal
polarities to find the maximum emissions. The antenna was then moved and placed in a far field at 0.52
m.

Note 2: All factors, mixer conversion loss, antenna factors, cable factors, path loss factors, and distance
factors were internally compensated.

Product Standard: CFR47 FCC Part 15.255 Limit applied: 10 dB(m)
Pretest Verification w/BB source: Yes
Test Date Supervising Atmospheric Data
Test Personnel/ Initials Engineer/ Input VVoltage Mode Temp Relative Atmospheric
Initials c* Humidity % | Pressure mbar
L1z
09/26/2024 N Venl" \ |/ N/A 1%%\:',20 Cosn\ngggus 24 48 1010

Deviations, Additions, or Exclusions: None|

Given that the typical maximum Gantenna for the IWR6843A0P is 7.74dB, the SAFEST V1.1 Pconducted = -3.77dBm
-7.74dB =-11.51dBm which is below the -10dBm limit.

ESP32-WROOM-DA-N16 Antenna Gain

The ESP32-WROOM-DA-N16 is an ESP32 microprocessor which has embedded Wi-Fl, Bluetooth,
Bluetooth LE, and 2 antennas on package (FCC ID: 2AC7Z-ESPWROOMDA). Its antenna gain was obtained
from the manufacturer’s FCC RF Exposure Report (https://fcc.report/FCC-ID/2AC7Z-
ESPWROOMDA/5597064 RF_Exposure_Report Page 11) and was found to be 1.06dB:
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5.3. Summary of Evaluation Results
Highest Highest .
Numeric | Power .
Output Output Antenna ) Limit
Band Frequency Power Power | Gain(dBi) ant:innna stezngé% mW/em 2
(dBm) (mW) 9
BT 4.2 2402 9.0 7.94 1.06 1.276 0.002 1.000
BLE 2402 9.0 7.94 1.06 1.276 0.002 1.000
WI-FI2.4G
802 11b 2412 19.5 89.13 1.06 1.276 0.023 1.000
WI-FI2.4G
802.11g 2412 18.0 63.10 1.06 1.276 0.016 1.000
WI-FI2.4G
802.11n 2412 18.0 63.10 1.06 1.276 0.016 1.000

The product is under the MPE limits. All is pass.

This antenna gain does approximately correspond with analyses of the radiation pattern produced by
these 2 antennas (https://muehlhaus.com/support/antenna/esp32-dual-antenna-simulation):

Antenna 1:
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Gain (dBi)
2.45 GHz
Absolute

Antenna 2:

Gain (dBi)
245 GHz
Absolute
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Polar antenna pattern in the PCB plane:
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Application Report

mmWave Radar Radome Design Guide

i3 TeEXAS INSTRUMENTS

Chethan Kumar, Habeeb Ur Rahman Mohammed and Greg Peake
ABSTRACT

Radar technology has evolved in last decades from military applications such as missile control, ground
surveillance, air traffic control to numerous automotive and industrial applications such as adaptive cruise
control, park assist, autonomous parking, motion and presence detection, level sensing, people counting and
more. In order for a radar sensor to perform flawlessly in these applications it is critical to ensure that the
radome or housing is designed to minimize electrical and environmental interferences to the radar sensor
antenna. This application report provides an introduction to radome design and highlights key care abouts for
designing a mmWave radome whilst considering the radar sensor performance. It describes a concept of
radome design considerations, along with radome test and qualification. Examples of different radome
structures are presented with supporting design simulations and measurement results.
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1 Introduction and Challenges

A radome (radar dome) is an electromagnetically transparent protective shield that encloses mmWave Radar
sensors and the antenna. It protects the mmWave antenna and electronics from external environment effects
such as rain, sunlight, wind providing structural weatherproof enclosure. The radome minimally attenuates the
electromagnetic signal transmitted or received by the antenna and as such should effectively be transparent to
radio waves.

In some cases, a radome could be constructed as a lens that alters the beam characteristics intentionally. Such
a radome or lens needs to be designed using electro-magnetic simulation tools in conjunction with the antenna
and desired field of view in consideration.

Based on the needs of specific end equipment, radomes can be constructed in several shapes such as planar,
spherical, and geodesic where the shape will have some influence on the radiation pattern or field of view and
maximum achievable distance by radar sensor. The radome material choice, such as fiberglass, PTFE-coated
fabric, and polycarbonate, is generally dependent on the targeted application environmental use.

2 Radome Design Elements

2.1 Understanding Dielectric Constant and Loss tangent on Radome and Antenna Design

In order to understand the electromagnetic wave propagation in a material it is important to know the material
constitutive parameters, such as, permittivity, permeability and conductivity. These constitutive parameters
characterize the EM properties of the material. From these parameters, special care must be taken in selecting
the radome material with optimum relative permittivity (E;) or dielectric constant (Dk). (Most radomes are
designed out of a non-magnetic dielectric material such that the relative permeability = 1 and the conductivity
= 0.) Signal fade or “loss” occurs either by the reflection of the electromagnetic waves at the boundary of
radome structure or due to multiple reflections within the radome material itself. This is mainly due to the
difference in dielectric constant (Dk) of the radome relative to air. The dielectric constant (Dk) represents the
reflective, as well as the refractive, properties of a material. In general, the electromagnetic signal can be
thought of as “slowing down” as it moves through the radome when compared with air.

Definition of loss tangent: Dielectric loss quantifies a dielectric material's inherent dissipation of
electromagnetic energy. It can be parametrized in terms of either the loss angle & or the corresponding loss
tangent tan 6.

The dielectric constant and loss tangent together specify the transmission efficiency of a radome combined
with an antenna system where both together are ideally measured at the intended operating frequencies.
Dielectric loss quantifies a dielectric material's inherent dissipation of electromagnetic energy. It can be
parametrized in terms of either the loss angle & or the corresponding loss tangent tan(8). The lower the
dielectric constant and loss tangent, the smaller the effect of the radome on the antenna performance. Ideally
Dk should be close to 1, since free space Dk is 1. However, it is impractical to use materials that have Dk=1
(basically Styrofoam) since they are not suitable for other goals of the radome (aesthetics, cost, and
environmental robustness). Just to note that it is not the antenna design that forces Dk>1, but rather the
radome material properties and availability.

2.2 Impedance Mismatch at Radome Boundaries

Electromagnetic wave reflections occur at the boundaries of the plane of mismatch. This plane of mismatch
could be considered as boundary of two medium with different dielectric properties, that is, mediums with
different permittivity as shown in Figure 2-1.
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Figure 2-1. Boundary of Mismatch Between Dielectric Mediums
Radome Design Elements

These reflections due to impedance mismatch can be better understood by looking into electromagnetic wave
interaction at the impedance mismatch planes. The interaction of the electromagnetic wave at these planes
leads to the reflection and transmission of waves at the boundary of medium, which is quantized in terms of
reflection coefficient I and transmission coefficient t. The reflection coefficient is the ratio of reflected E; and
incident E; electric field strength and transmission coefficient is the ratio of transmitted E; and incident E;
electric field strength as shown in Equation 1 and Equation 2.

CF e
T Ve oo,

(1)

E

- =t 2‘—“1
TE VN

()

Note
(1) and (2) are the reflections at only a single interface boundary.

Essentially, there will be multiple reflections occurring within the radome material and resulting in the
accumulation shown in Figure 2-2. This results in a reflected wave (E;r) and transmitted wave (E) created from
the incident wave (Ex).
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Figure 2-2. Multiple Reflections at Boundaries of Dielectric Mediums
Radome Design Elements
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Reflections within the radome can be simplified as shown in Figure 2-3. Free space or air wave impedance is
about 377Q such that the wave impedance inside the radome is given by 377/Ve, Q. Electromagnetic waves will
be reflected back from such that both the air-radome interface and radome-air interface.

Thickness:
t1

Incident Transmitted
wave wave

R AR g
N

Reflected
wave

Air Radome Air

Zair =377 Q Zyaa =377 /Ne Q Zair =377 0Q

Figure 2-3. Reflections at Radome Boundaries (assumption is that radome has a solid
single wall

2.3 Radome Wall Thickness

The wall thickness of the radome plays a key role in arriving at the optimum performance of the mmWave
radar sensor. It is important to make sure that the radome wall thickness is equal to an integer multiple of the
radar wavelength/2 so that the radome becomes “nearly transparent” for the mmWave frequency range
intended. The thickness of radome is given in Equation 3. The wavelength in the radome material becomes
shorter versus free air and is an inverse function of the material's dielectric constant as shown in Equation 4.

n*Am

toptimum =~ 2 (3)

Am = PGfT (4)

Where,

e toptimum = Optimum thickness of radome wall or target thickness to make the radome transparent.
+ n:l1,23..

¢ Am: Wavelength of the material

+ C:speed of light
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+ f: mean carrier frequency used (for example, 62 GHz for a typical 60-64 GHz bandwidth) e € : relative

permittivity

Radome Design Elements

In general, radome performance depends mainly on the frequency of use, thickness, €, incident angle, and
shape. For the normal incident case, optimum thickness given in Equation 4 is plotted in Figure 2-4 and Figure

2-5.
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Figure 2-4. Radome Optimal Thickness versus Dielectric for Incident Waves of Different
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Figure 2-5. Radome Optimal Thickness versus Frequency for Different Dielectrics

2.4 Antenna to Radome Distance

The optimal distance between the antenna and the internal surface of the radome helps to minimize the
effects of reflections caused by the radome. These effects become minimal if the waves returned to the
antenna are in phase with the transmitted waves. Equation 5 shows the optimal distance that should be

between antenna and radome

2l
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Where,

« n:1,23..

+ D: optimal distance between radome and Antenna

* Ao wavelength in air

3 Typical Radome Material Examples
Materials with lower Dk (dielectric constant) and Df (loss tangent) are recommended for radome designs.
Typical materials used in radomes are PBT (Polybutylene terephthalate), Plexiglas, Polycarbonate, Teflon®
(PTFE), Polystyrene, and ABS. It is important to avoid metal fixings and coatings (especially metallic paint that
will reduce the signal strength significantly), see [10].

(5)

Typical Radome Material Examples

In addition, the material used should be homogeneous in nature, in order to not create any additional Dk
boundaries within the radome itself, with the design aiming for the walls to be solid with no air bubbles or
other material fragments inside. There are radome designs that incorporate a sandwich structure with
different materials, mainly for strength and possible bandwidth improvements, but those types are not

covered in this document.

Table 3-1. Permittivity and Dissipation Factor for Different Radome Materials

Materials Permittivity (er) Dissipation Factor (tand)

Polycarbonate 2.9 0.012

ABS 2.0-3.5 0.0050-0.019

PEEK 3.2 0.0048

PTFE (Teflon®) 2 <0.0002
Plexiglass® 2.6 0.009

Glass 5.75 0.003

Ceramics 9.8 0.0005

PE 2.3 0.0003

PBT 2.9-4.0 0.002

4 Radome Angle Dependent Error

Depending on type of radome, the distance traveled in the radome material can be angle dependent. For a
rectangular radome distance, the traversed radome wall would be larger at higher grazing angles. In a curved
radome, both at boresight and at the higher grazing angles, the distance traveled through the radome is the

same; therefore, the angle dependent error would be lower.

4.1 Rectangular Radome Angle Dependent Error

Electrical distance traveled through the radome in boresight is equivalent to the thickness of the radome wall.
However, this distance increases as angle of arrival increases and results in a higher angle estimation error. This
effect is shown in Figure 4-1.
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The theory behind this phenomenon is such that if the radome wall thickness is designed to be A/2 (half
wavelength), then the round trip of the radar signal passing through the inner wall surface, then reflected back
from the outer wall surface introduces a net 180° phase shift (180° -180° + 180°) emitted from the inner wall.

Therefore, at boresight of the rectangular radome, the reflections at the inner wall will cancel since they are
out of phase, resulting in low net reflections. However, when moving away from the boresight to higher
grazing angles of arrival, the distance traveled by the mmWave signal is greater than “optimal thickness” or
“half-wavelength”. This causes multiple reflections at the radome interface boundary resulting in ripples in the
antenna radiation patterns and leading to nulls. These ripples and nulls can cause inconsistency in the
detection of the objects at higher grazing angles resulting in angle estimation errors. This effect can be

counteracted by tapering the radome wall towards the extents of the radar FoV, however, this will also
compromise the strength of the radome.

Radome Angle Dependent Error

Radome Thickness: n* A,/2

Distance travelled - i

through the Radome is Antenna  —>i N2 &£—
distance

angle dependent,

higher the angle of

arrival larger would be

the error

Cross sectional view of Radome & antenna

Figure 4-1. Distance Traveled in Rectangular Radome Wall for Different Grazing Angles

4.2 Spherical Radome Angle Dependent Error

Figure 4-2 shows the distance traveled through a curved shaped spherical radome. In this case, at different
grazing angles, the radome performance can be shown to be similar to the boresight.

|
1

Thickness: n* A,/2

Radius|( n*Ay/2)

Distance travelled
through the Radome is
equal in curved
Radome

Antenna % N2 4\;
distance

Figure 4-2. Distance Traveled in Spherical Radome Wall for Different Grazing Angles
Radome Angle Dependent Error
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4.3 Effect of the Angle Error in the Application

Figure 4-3 and Figure 4-4 shows the effect of the angle estimation error on the detected objects due to both
rectangular and spherical radome. Due to the larger distance traveled at higher grazing angles in rectangular
radomes, the latter is more prone to an angle estimation error relative to spherical radome structures. It may
appear that the object is displaced from the original location. This angle estimation error gets more severe as
object to radar distance increases.

i N\(

A Small delta angle error

Detected person with
Radome with errors

7’
mmWave sensor, with
rectangular Radome

s

Curved Radome offers less angle
dependent errors

Displacement of the objects due to
higher angle errors

Figure 4-3. The Effect of Angle Estimation Error Figure 4-4. The Effect of Angle Estimation Error

With Rectangular Radomes With Spherical Radomes
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Radome Design and Simulations
This section highlights some radome designs and simulations performed with the IWR6843 ISK style antenna
using a spherical radome as a case study. In this section, far-field antenna radiation patterns with and without
radome are compared. For this simulation, a derivative of the IWR6843 ISK EVM design is being used.

Figure 5-1 through Figure 5-4 show the pictures of the radome simulations in a 3D EM field solver tool such as
the HFSS from Ansys.

Figure 5-1. Spherical Radome HFSS Model: 37.44 mm outer radius
Figure 5-2. Spherical Radome HFSS Model:
18.24 mm Outer Radius

o ” 25 50 (mm)

Figure 5-4. Larger Spherical HFSS Model:
Figure 5-3. Smaller Spherical HFSS Model: Corresponding Dimensions and Placement With
Corresponding Dimensions and Placement With ~ Semi-Transparent View of PCB Semi-Transparent View of PCB
Figure 5-5 shows the spherical radome design with radius selected based on the antenna aperture size and
desired field of view requirements. In this case, the design is optimized for a £70 degree Azimuth and +40°
elevation field of view. The radius of curvature selected is optimized for an integer multiple of Ao/2. For
analysis purposes, ABS-HG_FR material is used with Dk of 2.8 and Df of 7.90E-03.
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PCB cross section view *-ﬁ T 7 N 1
/ .
. . Centroid of the antenna array i .
Optimal distance to the radome Optimal distance to the radome

Figure 5-5. Radome Radius of Curvature is Based on Antenna Aperture and FoV
Requirement

The following images show simulated antenna radiation patterns for various outer radius integer multiples of
Ao/2 (18.24 mm, 31.2 mm, 37.44 mm) with the optimal thickness in comparison to the no radome pattern. For
the TX images, the three transmitters of the IWR6843 are shown, and similarly for the RX images, the four
receivers are shown in different colors. Both the azimuth and elevation aspects are analyzed in the
comparison. Based on the ripples seen in the antenna patterns and antenna gains at the edge of the FoV, the
31.2 mm radius seems to be optimal for this design. Approximately 2-3 dB of two-way loss could be expected
and needs to be accounted for in the system link budget analysis.
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Figure 5-13. Radiation Pattern Rx Azimuth With Radome Radius 32.64 mm The following images
show a similar analysis is done for the elevation field of view. For the +40° elevation field of view, there is minimal

ripple impact seen due to radome.
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Figure 5-17. Radiation Pattern Tx Elevation With Radome Radius 32.64 mm
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Figure 5-19. Radiation Pattern Rx Elevation With Radome Radius 18.24 mm
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Figure 5-21. Radiation Pattern Rx Elevation With Radome Radius 32.64 mm

6 Radome Lab Experiments
Lab measurements have been done using multiple radomes of different material, shape and thickness. This
section provides the measurement results for the different radomes.

6.1 Radome Experiment — 1: Flat Plastic Radome
A radome with 2 mm thickness is chosen with ABS plastic material construction. Figure 6-1 shows the picture of
this radome. Experiments are conducted centered around 62 GHz frequency on an IWR6843ISK EVM board.
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Figure 6-2 shows two graphs with the ABS plastic rectangular radome. Figure 6-3 shows antenna radiation

Figure 6-1. ABS Plastic Rectangular Radome With 2 mm Wall Thickness

Radome Lab Experiments

pattern without the radome and, correspondingly, Figure 6-2 shows antenna radiation patterns with the

radome. It can be seen from the plots that this radome significantly degraded the antenna radiation pattern.
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Figure 6-2. Azimuth Antenna Radiation Pattern for

6.2 PTFE Material Rectangular Radome

In the second experiment a rectangular radome with 1.524 mm wall thickness is chosen with the PTFE sheet
material. Figure 6-4 shows the picture of this Radome.

Figure 6-5 and Figure 6-6 shows antenna radiation patterns with and without PTFE rectangular radome. It can
be seen that using PTFE material reduces the amount of distortion or ripple amplitude compared to the regular
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Figure 6-4. PTFE-Based Rectangular Radome With 1.524 mm Wall Thickness

Radome Lab Experiments
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ABS radome. In this case, distortion is less because the radome thickness and material were chosen to optimize
transparency across the field of view.
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6.3 PTFE-Based Curved Radome

The third experiment was performed using a curved shaped radome with 1.524 mm wall thickness using PTFE
material as shown in Figure 6-7.

Figure 6-7. The PTFE Curved Shaped Radome With 1.524 mm Wall Thickness

Additional Considerations

Figure 6-8 through Figure 6-11 show the curved shaped PTFE material radome antenna radiation pattern and
angle estimation. Compared to rectangular radome, the curved shaped radome shows better results with less
distortion or ripples in antenna radiation patterns and lower angle estimation errors at wider FoV angles. The
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phase calibration applied in Figure 6-9 and Figure 6-11 is discussed in Section 7.1, and as can be seen in the
figures, it shifts the angle error curve such that the estimated angle is adjusted to zero at the antenna
boresight.
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7 Additional Considerations

7.1 Antenna Calibration

To improve antenna performance within a radome, SoC level antenna calibrations can be applied to
compensate for bias in the range and receiver gain as well as phase introduced from the RF path delays. At a
high level, the goal of this procedure is to determine the range bias offset common to all Tx-Rx paths and the
gain and phase mismatch of each virtual Tx-Rx pair of a reference object placed at a fixed known distance in the
far field at boresight. For more information on this subject, see [4].

Additional Considerations
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The mmWave SDK provides a method for generating the calibration coefficients over the command line
interface via the Out of Box (OOB) demo. For more details, see the mmWave SDK User’s Guide and look for the
compRangeBiasAndRxChanPhase procedure. Additionally, the procedure and implementation of the calibration
routine in the data-path processing chain can be found in the mmWave SDK install folder at:
mmwave_sdk_<ver>\packages\ti\datapath\dpc\objectdetection\<chain_type>\docs\doxygen\htmN\index.html
. You can use the OOB demo to perform the calibration or port the provided source code into your own custom
application.

Additionally, using the same OOB demo application and reading sources, there is a procedure for removing
near-field reflection from the air-radome boundaries. There can be antenna coupling signatures in the range
bins close to the radar that manifest around DC in the range FFT output (see calibDcRangeSig in the SDK user's
guide). The same calibration procedure can also be used to negate any near-field reflections caused by the
radome.

7.2 Radome Near Proximity Considerations

The radome will naturally provide an exterior surface where other environmental layers will form, and can
subsequently affect the performance of the system. This topic is not discussed in this document, however,
some of these example challenges are listed below:

+  Wet grass/mud deposits for lawn mowers

» Dust and mud deposits for off road vehicles

* Metallic dust, and other dusts deposits for factory vehicles

* Water absorption of the radome can be an important artifact since the electrical properties will change.

* Ice and snow formation on the radome for cars and outside vehicles or on the exterior of surveillance radar
sensors can significantly reduces the dynamic range of the radar detection capability. This is typically
handled by embedding a heater into the radome when the radar is deployed in areas where it can be
directly exposed to precipitation.

To address some of the above challenges requires either manual or built-in cleaning systems, which can
be triggered by the radar system after detecting that RF visibility has been obscured using custom built-in
diagnostics.

In the case of an enclosure with metal as part of structure, which can also serve as a heatsink, the metal parts
should not protrude into the field of view of antenna.

In some cases, within the radome, to prevent multiple reflections from the radome walls to PCB, it is good
practice to use absorber material wherever it’s feasible. Other techniques, such as the traditional use of PCB
potting for environmental protection, should be avoided when it comes to covering the antenna elements.
These materials tend to have a variable thickness with unknown Dk characteristics and can severely degrade
the performance of the antenna. However, a very thin (~1 um) low loss coating material [11] can be used over
the antenna structures for if additional protection is required.

8 Summary

The objective of an efficient radome design is to reduce the reflections at its surface for transmission and
reception of the signal, with minimum loss and beam distortion. For a general-purpose enclosure that covers
the radiating side of the sensor, the material should have a uniform thickness and must also have a good
surface smoothness.
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Material with lower Dk and Df (dielectric constant and loss tangent) are recommended. Typical materials used
in radomes are Polycarbonate, Teflon (PTFE), and Polystyrene. Paint, especially metallic-based, used to
enhance the aesthetic appearance of the radome, may further degrade the performance of the antenna.
Hence, care needs to be taken while adding paint onto the top surface of radome. Radome and antenna
simulations should be performed to determine if there is any degradation in the radiation pattern.

Thin-wall designs have been found to be suitable for use at low microwave frequencies where the wave length
of the electromagnetic energy is relatively large. But the resulting walls have had insufficient structural
integrity for many microwave applications. A thicker wall design which provides adequate strength and rigidity
allows transmission of electromagnetic energy within a relatively narrow bandwidth to which the radome is
tuned, however, electrical performance can quickly degrade at frequencies above and below the tuned wall
thickness.
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