

TESTING CENTRE TEC	TEST REPOR	T					
FCC ID:	2BEGI-CM100						
Test Report No::	TCT250619E024						
Date of issue::	Aug. 06, 2025	Aug. 06, 2025					
Testing laboratory:	SHENZHEN TONGCE TESTING	G LAB					
Testing location/ address:	2101 & 2201, Zhenchang Factor Fuhai Subdistrict, Bao'an District 518103, People's Republic of Ch	t, Shenzhen, Guangdong,					
Applicant's name::	Shenzhen WISO Technology Co	o., Ltd					
Address::	Room 913, Building 10, Shenzhe South 9th Rd, Nanshan District,	en Bay Tech-Eco Park, 10 Gaoxir Shenzhen, China					
Manufacturer's name:	Shenzhen Yilianyi Communicatio	on Technology Co., Ltd					
Address:	502 Room, building A, wenle Industrial Zone, Longzhu community, Xixiang street. Bao'an District. Shenzhen						
Standard(s)::	FCC CFR Title 47 Part 15 Subpa ANSI C63.10:2020	art C Section 15.249					
Product Name::	Chessnut Move Robotic Chessb	oard					
Trade Mark::	Chessnut						
Model/Type reference:	CM100, CM101, CM102, CM103	3, CM104					
Rating(s)::	DC Rating: DC 5V, 3A Rechargeable Li-ion Battery DC	3.7V					
Date of receipt of test item:	Jun. 19, 2025						
Date (s) of performance of test:	Jun. 19, 2025 ~ Aug. 04, 2025						
Tested by (+signature):	Aaron MO						
Check by (+signature):	Beryl ZHAO Roy ZETCT						
Approved by (+signature):	Tomsin	Tomsies &					

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Table of Contents

1.	General Product Information		
	1.1. EUT description		3
	1.2. Model(s) list		3
	1.3. Operation Frequency		3
2.	Test Result Summary		4
3.	General Information		5
	3.1. Test Environment and Mode		5
	3.2. Description of Support Units		5
4.	Facilities and Accreditations	,	6
	4.1. Facilities	(0)	6
	4.2. Location		6
5.	Measurement Uncertainty		6
6.	Test Results and Measurement Data		7
	6.1. Antenna Requirement		7
	6.2. Conducted Emission	(6)	8
	6.3. Radiated Emission Measurement		12
	6.4. 20dB Occupied Bandwidth		24
Аp	pendix A: Photographs of Test Setup		
Ap	pendix B: Photographs of EUT		

1. General Product Information

1.1. EUT description

Product Name:	Chessnut Move Robotic Chessboard		
Model/Type reference:	CM100		
Sample Number:	TCT250619E023-0101		
Operation Frequency:	2402MHz~2480MHz		
Channel Separation:	2MHz		
Number of Channel:	40		
Modulation Technology:	GFSK		
Antenna Type:	Internal Antenna		
Antenna Gain:	3.01dBi	(0)	
Rating(s):	DC Rating: DC 5V, 3A Rechargeable Li-ion Battery DC 3.7V		

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1	CM100	\boxtimes
Other models	CM101, CM102, CM103, CM104	

Note: CM100 is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of CM100 can represent the remaining models.

1.3. Operation Frequency

							_
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
(1)	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9 2420MHz 19 2440MHz 29 2460MHz 39 2480MHz							
Remark: Channel 0, 19 & 39 have been tested.							

Page 3 of 27

Report No.: TCT250619E024

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Field Strength of Fundamental	§15.249 (a)	PASS
Spurious Emissions	§15.249 (a) (d)/ §15.209	PASS
Band Edge	§15.249 (d)/ §15.205	PASS
20dB Occupied Bandwidth	§15.215 (c)	PASS

Note:

- 1. Pass: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test Environment and Mode

Operating Environment:					
Condition	Conducted Emission	Radiated Emission			
Temperature:	24.8 °C	24.6 °C			
Humidity:	51 % RH	50 % RH			
Atmospheric Pressure:	1010 mbar	1010 mbar			
Test Software:					
Software Information:	RFTest_0901_boxed				
Power Level:	Default				
Test Mode:					
Engineer mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery.					

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37H8AA3AJ1DK3		SAMSUNG

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 5 of 27

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-No.: 4320.01

SHENZHEN TONGCE TESTING LAB

The testing lab has been accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories.

4.2.Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

5. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

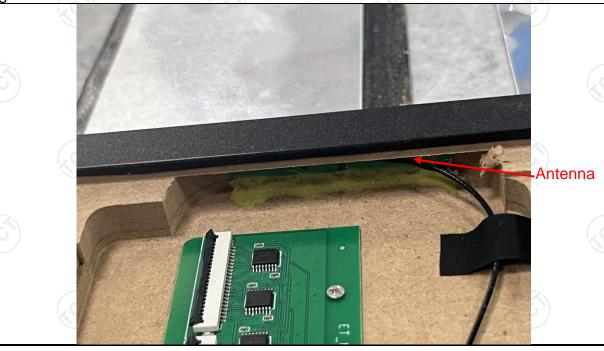
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT250619E024

6. Test Results and Measurement Data

6.1. Antenna Requirement

Standard requirement:


FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

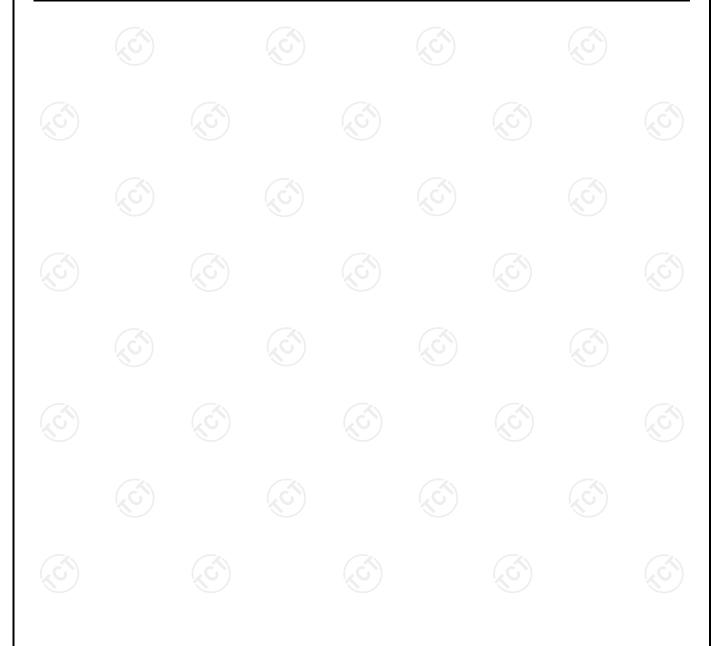
E.U.T Antenna:

The EUT antenna is Internal antenna which permanently attached, and the best case gain of the antenna is 3.01dBi.

Page 7 of 27

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

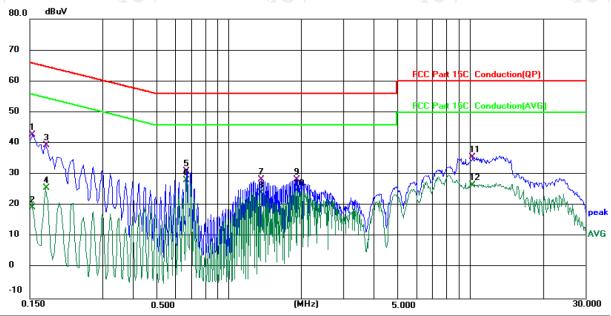
6.2. Conducted Emission


6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207	Ko				
Test Method:	ANSI C63.10:2020	ANSI C63.10:2020					
Frequency Range:	150 kHz to 30 MHz						
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto				
Limits:	Frequency range (MHz) Limit (dBuV) 0.15-0.5 66 to 56* 56 to 56* 0.5-5 56 4 5-30 60 5						
Test Setup:	Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m						
Test Mode:	Charging + Transmitting Mode						
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 						
	ANSI C63.10:2020 on conducted measurement. PASS						

6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)							
Equipment Manufacturer Model Serial Number Date of Cal. Due							
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025	Jun. 25, 2026		
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 21, 2025	Jan. 20, 2026		
Attenuator	N/A	10dB	164080	Jun. 26, 2025	Jun. 25, 2026		
Line-5	TCT	CE-05	1	Jun. 26, 2025	Jun. 25, 2026		
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2		1		



6.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: L1

Temperature: 24.8 (℃)

Humidity: 51 %

Report No.: TCT250619E024

Limit: FCC Part 15C Conduction(QP)

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1		0.1539	32.87	9.96	42.83	65.79	-22.96	QP	
2		0.1539	9.50	9.96	19.46	55.79	-36.33	AVG	
3		0.1739	29.53	9.94	39.47	64.77	-25.30	QP	
4		0.1739	15.62	9.94	25.56	54.77	-29.21	AVG	
5		0.6700	21.15	9.90	31.05	56.00	-24.95	QP	
6	*	0.6700	18.15	9.90	28.05	46.00	-17.95	AVG	
7		1.3660	18.41	9.97	28.38	56.00	-27.62	QP	
8		1.3660	14.10	9.97	24.07	46.00	-21.93	AVG	
9		1.9139	18.27	10.00	28.27	56.00	-27.73	QP	
10		1.9139	14.67	10.00	24.67	46.00	-21.33	AVG	
11		10.2460	25.23	10.29	35.52	60.00	-24.48	QP	
12		10.2460	16.36	10.29	26.65	50.00	-23.35	AVG	

Note:

Freq. = Emission frequency in MHz

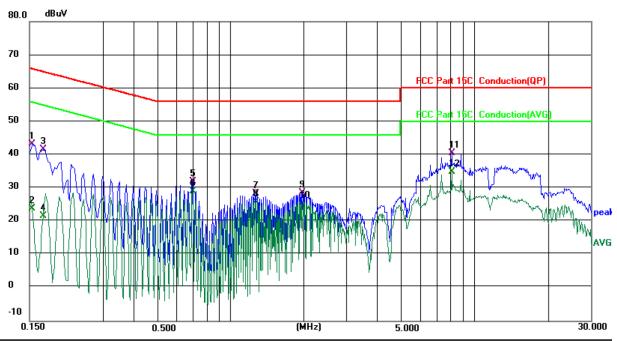
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: N

Temperature: 24.8 (°C)

Humidity: 51 %

Limit: FCC Part 15C Conduction(QP)

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1		0.1539	33.38	9.94	43.32	65.79	-22.47	QP	
2		0.1539	13.98	9.94	23.92	55.79	-31.87	AVG	
3		0.1700	31.62	9.94	41.56	64.96	-23.40	QP	
4		0.1700	11.63	9.94	21.57	54.96	-33.39	AVG	
5		0.6979	21.92	9.94	31.86	56.00	-24.14	QP	
6		0.6979	19.14	9.94	29.08	46.00	-16.92	AVG	
7		1.2700	18.28	9.98	28.26	56.00	-27.74	QP	
8		1.2700	16.01	9.98	25.99	46.00	-20.01	AVG	
9		1.9659	18.57	10.02	28.59	56.00	-27.41	QP	
10		1.9659	15.40	10.02	25.42	46.00	-20.58	AVG	
11		8.0860	30.17	10.26	40.43	60.00	-19.57	QP	
12	*	8.0860	24.70	10.26	34.96	50.00	-15.04	AVG	

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

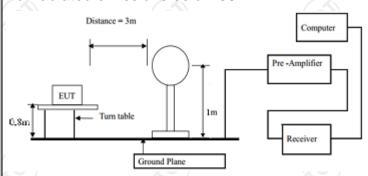
Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

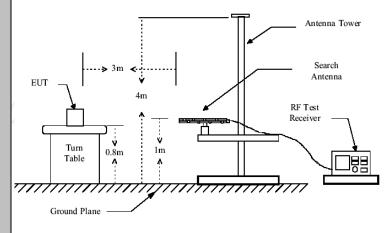
6.3. Radiated Emission Measurement

6.3.1. Test Specification

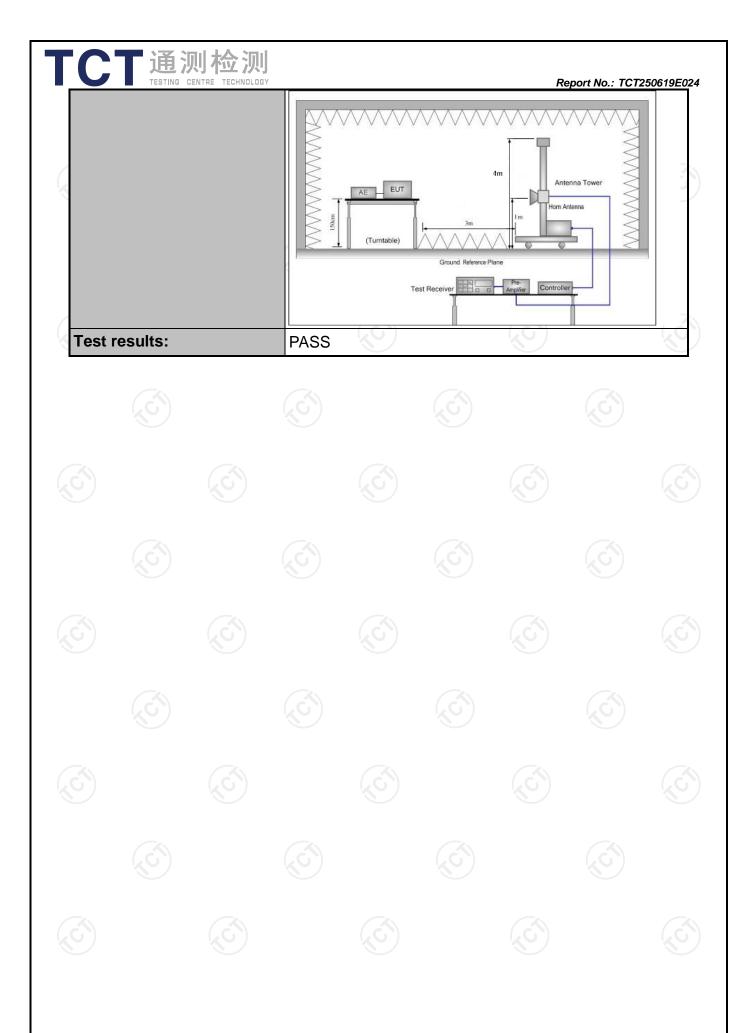

3.1. Test Specification		7							
Test Requirement: FCC Part15 C Section 15.209 ANSI C63.10:2020									
Test Method:									
Frequency Range:	9 kHz to 25	GHz							
Measurement Distance:	3 m	X							
Antenna Polarization:	Horizontal &	& Vertical							
	Frequency	Detector	RBW	VBW	Remark				
	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value				
Receiver Setup:	150kHz- Quasi-peak 30MHz		9kHz	30kHz	Quasi-peak Value				
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above Toriz	Peak	1MHz	10Hz	Average Value				
Limit(Field strength of the	Freque	ency	Limit (dBu\	//m @3m)	Remark				
fundamental signal):	2400MHz-2483 5MHz 94.00 Aver								
Tulluallielitai Sigilaij.	2400WII 12-2-	+03.3WII IZ	114	.00	Peak Value				
	Freque	ency	Limit (dBu\	//m @3m)	Remark				
	0.009-0		2400/F		Quasi-peak Value				
	0.490-1	1.705	24000/	` '	Quasi-peak Value				
	1.705	-30	3	0	Quasi-peak Value				
Limit(Spurious Emissions):	30MHz-8	38MHz	40	.0	Quasi-peak Value				
Emilioparious Emissions).	88MHz-2		43		Quasi-peak Value				
	216MHz-9		46	/	Quasi-peak Value				
	960MHz	-1GHz	54		Quasi-peak Value				
	Above	1GHz	54 74		Average Value Peak Value				
Limit (band edge):	bands, excelleast 50 dB	ept for hai below the diated em	rmonics, so e level of the hission lir	shall be a he funda nits in S	cified frequency attenuated by at mental or to the Section 15.209,				
Test Procedure:	meters below 1GHz. determing 2. The Elinterfere on the to 3. The anteres a value of vertical	above the IGHz, 1.5 The table ne the poseure the poseure the poseure the individual of the field in the statement of the field in the statement in the statemen	ground a some above was related a strengt on the control of the co	at a 3 me e the grotated 3 e highest neters a nna, whice that anten d from or determinent.	eter chamber in cound in above 60 degrees to radiation. away from the ch was mounted na tower. The meter to four ne the maximum horizontal and are set to make				

TCT通测检测

Report No.: TCT250619E024


- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

For radiated emissions below 30MHz


30MHz to 1GHz

Test setup:

Above 1GHz

(The diagram below shows the test setup that is utilized to make the measurements for emission from 1GHz to the tenth harmonic of the highest fundamental frequency or to 40GHz emissions, whichever is lower.)

6.3.2. Test Instruments

	F	Radiated Emission	n Test Site (966)		
Equipment	Manufacturer	Model	Serial Number	Date of Cal.	Due Date
EMI Test Receiver	R&S	ESCI7	100529	Jan. 21, 2025	Jan. 20, 2026
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025	Jun. 25, 2026
Pre-amplifier	SKET	LNPA_0118G-45	SK2021012102	Jan. 21, 2025	Jan. 20, 2026
Pre-amplifier	SKET	LNPA_1840G-50	SK202109203500	Apr. 11, 2025	Apr. 10, 2026
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025	Jun. 25, 2026
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 30, 2025	Jun. 29, 2026
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 29, 2025	Jun. 28, 2026
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 29, 2025	Jun. 28, 2026
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Jan. 24, 2025	Jan. 23, 2026
Coaxial cable	SKET	RE-03-D	/	Jun. 27, 2025	Jun. 26, 2026
Coaxial cable	SKET	RE-03-M	1-2	Jun. 27, 2025	Jun. 26, 2026
Coaxial cable	SKET	RE-03-L		Jun. 27, 2025	Jun. 26, 2026
Coaxial cable	SKET	RE-04-D	/	Jun. 27, 2025	Jun. 26, 2026
Coaxial cable	SKET	RE-04-M	1	Jun. 27, 2025	Jun. 26, 2026
Coaxial cable	SKET	RE-04-L	/	Jun. 27, 2025	Jun. 26, 2026
Antenna Mast	Keleto	RE-AM	/	/	/
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	1) 1

6.3.3. Test Data

Field Strength of Fundamental

equency (MHz)	Reading (dBuV)	Factor (dB/m)	Emission PK (dBuV/m)	Horizontal /Vertical	Limits PK (dBuV/m)	Margin (dB)
2402	108.08	-16.75	91.33	Н	114	-22.67
2402	101.73	-16.75	84.98	V	114	-29.02
2440	106.85	-16.63	90.22	Н	114	-23.78
2440	101.32	-16.63	84.69	V	114	-29.31
2480	108.62	-16.51	92.11	Н	114	-21.89
2480	102.27	-16.51	85.76	V	114	-28.24

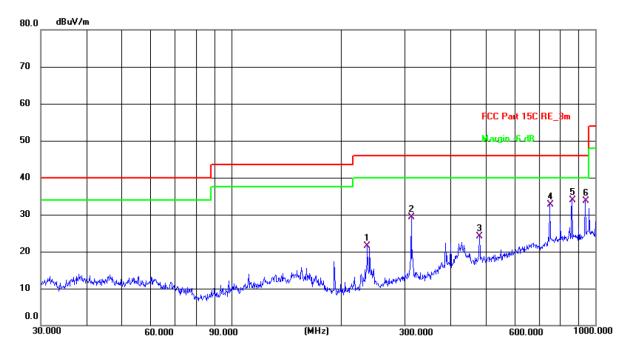
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Emission AV (dBuV/m)	Horizontal /Vertical	Limits AV (dBuV/m)	Margin (dB)
2402	107	-16.75	90.25	Н	94	-3.75
2402	100.73	-16.75	83.98	V	94	-10.02
2440	106.74	-16.63	90.11	Н	94	-3.89
2440	100.32	-16.63	83.69	V	94	-10.31
2480	108.01	-16.51	91.50	CA	94	-2.50
2480	101.64	-16.51	85.13	V	94	-8.87

Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
(, 6)-	(6) (6)	-(,6)
<u> </u>		
(h)	(k)	

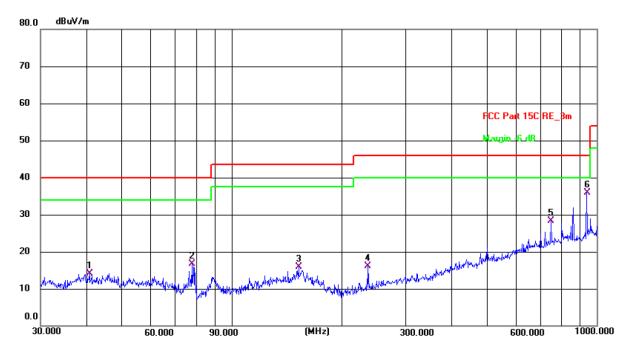
Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.


- 2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.
- 3. For fundamental frequency, RBW >20dB BW, VBW>=RBW, PK detector is for PK value, RMS detector is for AV value.

Page 16 of 27

Frequency Range (30MHz-1GHz)

Horizontal:


Temperature: 24.6(C) Humidity: 50 % Site 3m Anechoic Chamber2 Polarization: Horizontal

Ļimit: F	CC Part 15C F	RE_3m			Power:	DC 3.7 V			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	236.6447	41.56	-20.04	21.52	46.00	-24.48	QP	Р	
2	312.1794	46.96	-17.71	29.25	46.00	-16.75	QP	Р	
3	480.5276	36.88	-12.77	24.11	46.00	-21.89	QP	Р	
4	750.1083	40.41	-7.72	32.69	46.00	-13.31	QP	Р	
5 *	863.0562	40.46	-6.52	33.94	46.00	-12.06	QP	Р	
6	938.8326	39.16	-5.40	33.76	46.00	-12.24	QP	Р	

Vertical:

Site 3m Anechoic Chamber2 Polarization: Vertical Temperature: 24.6(C) Humidity: 50 %

Power: DC 3.7 V

Limit: FCC Part 15C RE_3m

938.8326

41.38

-5.40

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	40.8445	32.44	-18.37	14.07	40.00	-25.93	QP	Р	
2	77.8653	38.34	-21.65	16.69	40.00	-23.31	QP	Р	
3	152.6641	32.99	-17.07	15.92	43.50	-27.58	QP	Р	
4	236.6447	36.08	-20.04	16.04	46.00	-29.96	QP	Р	
5	750.1082	35.94	-7.72	28.22	46.00	-17.78	QP	Р	

Note: Measurements were conducted in all channels (high, middle, low), and the worst case (Highest channel) was submitted only.

46.00

-10.02

QΡ

Ρ

35.98

Above 1GHz

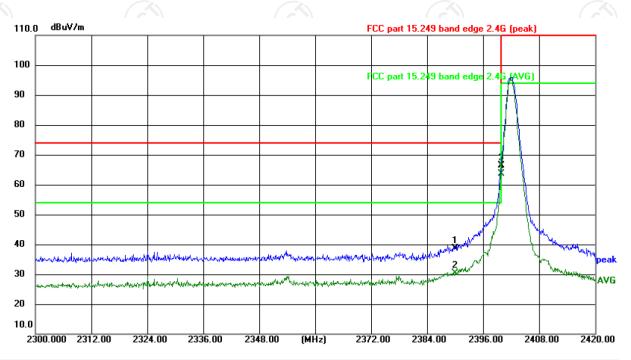
				Above	1GHZ				
				Low channe	el: 2402MH	lz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	56.12		-9.51	46.61		74	54	-7.39
7206	Н	46.60		-1.41	45.19		74	54	-8.81
4804	V	56.99		-9.51	47.48		74	54_	-6.52
7206	V	47.45	7.6	-1.41	46.04	<u></u>	74	54	-7.96
				/	'	/		(1 -	

	Middle channel: 2440MHz											
Freque	ncv	Ant. Pol.	Peak	AV	Correction	Emissio	n Level	Peak limit	Λ\/ limit	Margin		
(MH		H/V	reading	reading	Factor			(dBµV/m)		(dB)		
(1711 12	۷)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(ασμ ν/π)	(αυμ ۷/111)	(GD)		
488	0	Н	55.13		-9.36	45.77		74	54	-8.23		
732	0	Ι	46.58		-1.15	45.43		74	54	-8.57		
		44										
		(0)		KO.		1	(0)					
488	0	V	57.77		-9.36	48.41	<u> </u>	74	54	-5.59		
732	0	V	47.61		-1.15	46.46		74	54	-7.54		

	High channel: 2480MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)			
4960	Н	57.99	+ 6	-9.20	48.79	<u>-</u>	74	54	-5.21			
7440	Н	46.52		-0.96	45.56	<i>-</i> 4	74	54	-8.44			
4960	V	56.42		-9.20	47.22		74	54	-6.78			
7440	V	45.34		-0.96	44.38		74	54	-9.62			
<u></u>				0	J							

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 6. All the restriction bands are compliance with the limit of 15.209.


Report No.: TCT250619E024

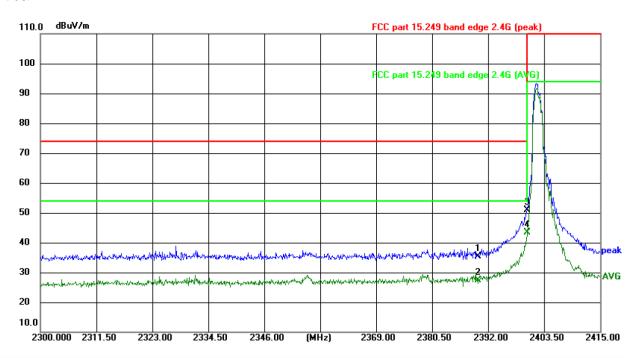
Band Edge Requirement

Lowest channel 2402:

Horizontal:

Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.6(°C) Humidity: 52 %

Limit: FCC part 15.249 band edge 2.4G (peak)

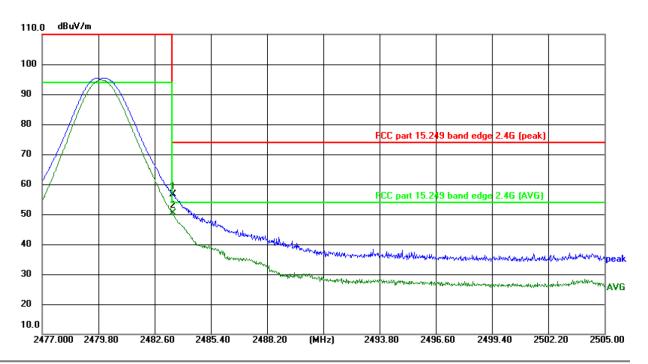

Power:DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2390.000	55.30	-16.76	38.54	74.00	-35.46	peak	Р	
2	2390.000	47.10	-16.76	30.34	54.00	-23.66	AVG	Р	
3	2400.000	83.20	-16.75	66.45	74.00	-7.55	peak	Р	
4 *	2400.000	80.37	-16.75	63.62	54.00	9.62	AVG	F	

Vertical:

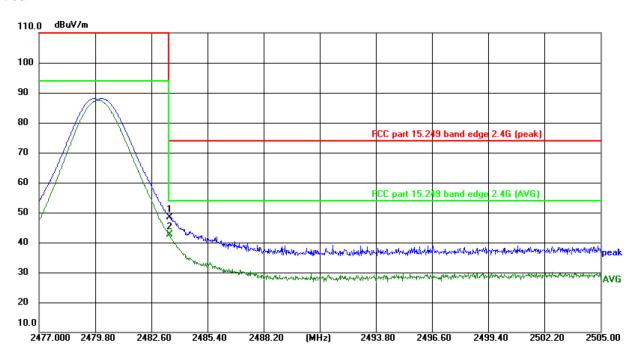
Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 24.6(°C) Humidity: 52 %

Limit: FCC part 15.249 band edge 2.4G (peak) Power:DC 3.7 V


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2390.000	52.14	-16.76	35.38	74.00	-38.62	peak	Р	
2	2390.000	44.10	-16.76	27.34	54.00	-26.66	AVG	Р	
3	2400.000	67.72	-16.75	50.97	74.00	-23.03	peak	Р	
4 *	2400.000	60.20	-16.75	43.45	54.00	-10.55	AVG	Р	

Highest channel 2480:

Horizontal:


Site: 3m Anechoic Chamber Temperature: 24.6(°C) Humidity: 52 % Polarization: Horizontal

Limit: FCC part 15.249 band edge 2.4G (peak)					Power:DC 3.7 V					
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
ı	1	2483.500	73.03	-16.50	56.53	74.00	-17.47	peak	Р	
ı	2 *	2483 500	66.91	-16.50	50 41	54.00	-3 59	AVG	Р	

Vertical:

Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.6(℃) Humidity: 52 %

Limit: FCC part 15.249 band edge 2.4G (peak)

Power:DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2483.500	64.88	-16.50	48.38	74.00	-25.62	peak	Р	
2 *	2483.500	59.14	-16.50	42.64	54.00	-11.36	AVG	Р	

6.4. 20dB Occupied Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.215(c)
Test Method:	ANSI C63.10:2020
Limit:	N/A
	 1. According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW≥1% of the 20 dB bandwidth; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.
Test setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test results:	PASS

6.4.2. Test Instruments

Equipment	Manufacturer	Model No.	Serial Number	Date of Cal.	Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025	Jun. 25, 2026

Page 24 of 27

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.4.3. Test data

Report No.	: TCT250619E024	1
		•

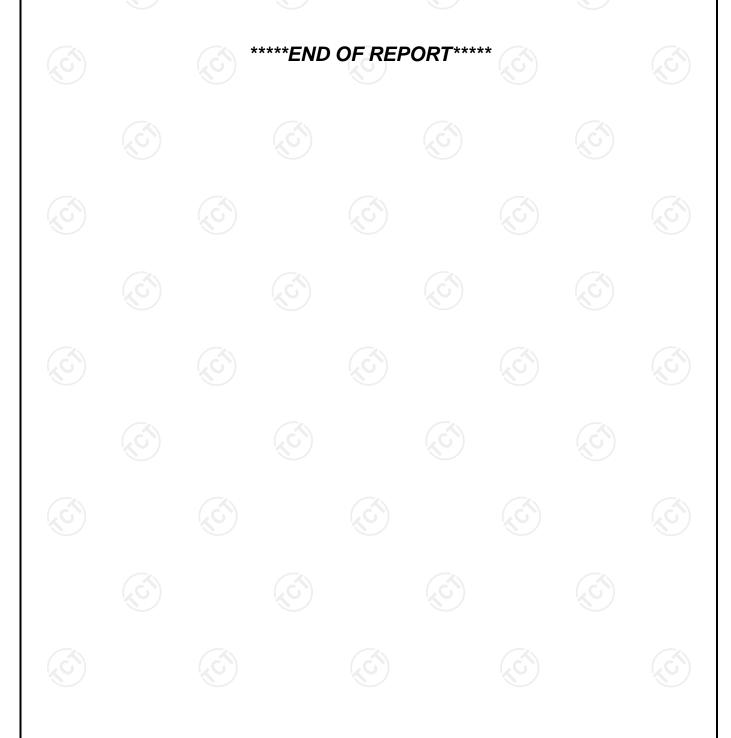
Test Channel	20dB Occupy Bandwidth (MHz)	Limit	Conclusion
Lowest	1.512	(d)	PASS
Middle	1.185		PASS
Highest	1.164		PASS

Test plots as follows:

Lowest channel

Middle channel

Highest channel


Appendix A: Photographs of Test Setup

Please refer to document Appendix No.: TCT250619E023-A

Appendix B: Photographs of EUT

Please refer to document Appendix No.: TCT250619E023-B & TCT250619E023-C

