

Page 1 of 29

TEST REPORT

Report Number : TZ0035250802FRF19

Product Name : TOY SERIES

Model/Type reference : LZ093, LZ060A, LZ060B, LZ060C, LZ081, LZ060, LZ060D, LZ060E, LZ094,

LZ095, LZ096, LZ097, LZ098, LZ099, LZ100, LZ188

FCC ID : 2BEAJ-LZ093

Prepared for : Shantou Barbosheng Technology Co., Ltd

601, 6th Floor, No. 10 Donghuguan Xing Road, Fengxiang Street, Chenghai

District, Shantou, Guangdong, China, 515800

Prepared By : Shenzhen Tongzhou Testing Co.,Ltd.

1st Floor, Building 1, Haomai High-tech Park, Huating Road 387, Dalang Street,

Longhua, Shenzhen, China

Standards : FCC CFR Title 47 Part 95 Subpart B, ANSI C63.26-2015

Date of Test : 2025-08-01 ~ 2025-08-07

Date of Issue : 2025-08-07

Prepared by : Lena Wen

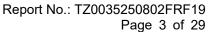
Reviewed by : Allen Lai

Approved by : Max Zhang

(Authorized Officer)

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Tongzhou Testing Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Tongzhou Testing Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. The test report apply only to the specific sample(s) tested under stated test conditions. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 1 of 29



Page 2 of 29

** Report Revise Record **

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	1	2025-08-07	Valid	Initial release

TABLE OF CONTENTS

1.	GEI	NERAL INFORMATION 4
	1.1.	Client Information4
	1.2.	Description of Device (EUT)4
	1.3.	Wireless Function Tested in this Report4
	1.4.	Description of Test Facility5
	1.5.	Statement of the Measurement Uncertainty5
	1.6.	Measurement Uncertainty 6
	1.7.	Description of Test Modes 6
	1.8.	Frequency of Channels6
2.	TES	ST METHODOLOGY7
	2.1.	EUT Configuration 7
	2.2.	EUT Related Submittal (s) / Grant (s)
	2.3.	Test Sample
3.	SYS	STEM TEST CONFIGURATION 8
	3.1.	Justification8
	3.2.	Special Accessories
	3.3.	Block Diagram/Schematics 8
	3.4.	Equipment Modifications 8
	3.5.	Test Setup8
4.	SUI	MMARY OF TEST RESULTS 9
5.	TES	ST RESULT10
	5.1.	Frequency Stability10
	5.2.	Bandwidth12
	5.3.	Transmitter Power
	5.4.	Modulation Characteristics16
	5.5.	Unwanted Emissions
	5.6.	Antenna Requirements
6.	LIS	T OF MEASURING EQUIPMENTS28
7.	TES	ST SETUP PHOTOGRAPHS OF EUT29
8.	EX1	TERIOR PHOTOGRAPHS OF THE EUT29
9.	INT	ERIOR PHOTOGRAPHS OF THE EUT29

Page 4 of 29

1. GENERAL INFORMATION

1.1. Client Information

Applicant : Shantou Barbosheng Technology Co., Ltd

Address 601, 6th Floor, No. 10 Donghuguan Xing Road, Fengxiang Street,

Chenghai District, Shantou, Guangdong, China, 515800

Manufacturer : Shantou Barbosheng Technology Co., Ltd

Address 601, 6th Floor, No. 10 Donghuguan Xing Road, Fengxiang Street,

Chenghai District, Shantou, Guangdong, China, 515800

1.2. Description of Device (EUT)

Product Name : TOY SERIES

Trade Mark : N/A

Model Number : LZ093, LZ060A, LZ060B, LZ060C, LZ081, LZ060, LZ060D, LZ060E,

LZ094, LZ095, LZ096, LZ097, LZ098, LZ099, LZ100, LZ188

Model Declaration : All are the same except the appearance color

Test Model : LZ093

Power Supply : DC 3.7V by battery

Hardware version : V1.0

Software version : V1.0

1.3. Wireless Function Tested in this Report

FRS Band

Operation Frequency Range : 462.5625MHz

Channel bandwidth : 12.5kHz

Rated Power : 3 ± 1 dBm

Modulation Technology : FM

Antenna Type And Gain : Fixed antenna, 0dBi

Note 1: Antenna position refer to EUT Photos.

Note 2: the above information was supplied by the applicant.

Page 5 of 29

1.4. Description of Test Facility

FCC

Designation Number: CN1275

Test Firm Registration Number: 167722

Shenzhen Tongzhou Testing Co.,Ltd. has been listed on the US Federal Communications Commission

list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA

Certificate Number: 5463.01

Shenzhen Tongzhou Testing Co.,Ltd. has been listed by American Association for Laboratory

Accreditation to perform electromagnetic emission measurement.

IC

ISED#: 22033

CAB identifier: CN0099

Shenzhen Tongzhou Testing Co.,Ltd. has been listed by Innovation, Science and Economic Development

Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4 and CISPR 16-1-4:2010

1.5. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Tongzhou Testing Co.,Ltd.'s quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Page 6 of 29

1.6. Measurement Uncertainty

Test Item		Uncertainty	Note
Radiation Uncertainty(9KHz~30MHz)	:	±3.26dB	(1)
Radiation Uncertainty(30MHz~1000MHz)	:	±3.92dB	(1)
Radiation Uncertainty(1GHz~40GHz)	:	±5.62dB	(1)
Occupied Channel Bandwidth	:	±3.0%	(1)
Audio Level	:	±0.4%	(1)
FM deviation		±1.2%	(1)
Frequency stability		±0.12ppm	(1)

^{(1).} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description of Test Modes

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

1.8. Frequency of Channels

Channel No.	Frequency(MHz)
1	462.5625

Page 7 of 29

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.26-2015, American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services. The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen Tongzhou Testing Co.,Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT

2.2. EUT Related Submittal (s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID**: **2BEAJ-LZ093** filing to comply with FCC Part 2, FCC Part 95 Subpart B of the FCC CFR 47 Rules.

2.3. Test Sample

Sample ID	Description	
TZ0035250802-1#	Normal sample – continuous transmit	

Page 8 of 29

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmits condition.

3.2. Special Accessories

No.	Equipment	Manufacturer	Model No.	Serial No.	Length	shielded/ unshielded	Notes
/	1	/	/	1	/	1	/

3.3. Block Diagram/Schematics

Please refer to the related document.

3.4. Equipment Modifications

Shenzhen Tongzhou Testing Co.,Ltd. has not done any modification on the EUT.

3.5. Test Setup

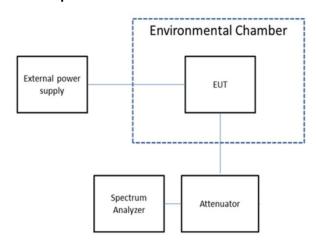
Please refer to the test setup photo.

Page 9 of 29

4. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Sample ID	Result
§95.587	Antenna Equipment	TZ0035250802-1#	Compliant
§ 95.567 & 2.1046(a)	Transmitter Power	TZ0035250802-1#	Compliant
§95.575 & 2.1047(a) (b)	Modulation Limit	TZ0035250802-1#	Compliant
§95.573 & §2.1049	§95.573 & §2.1049 Bandwidth		Compliant
§95.579 & 2.1049	Unwanted Emissions	TZ0035250802-1#	Compliant
§95.565 & 2.1055(a) (1) Frequency Stability		TZ0035250802-1#	Compliant

Page 10 of 29


5. TEST RESULT

5.1. Frequency Stability

5.1.1. Standard Applicable

Each FRS transmitter type must be designed such that the carrier frequencies remain within ±2.5 parts-permillion (ppm) of the channel center frequencies specified in §95.563 during normal operating conditions.

5.1.2. Block Diagram of Test Setup

5.1.3. Test Procedures

Frequency stability versus environmental temperature

- 1. Setup the configuration for frequencies measurement inside an environment chamber, Install new battery in the EUT.
- Turn on EUT and set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth
 to 300Hz and Video Resolution Bandwidth to 1kHz and Frequency Span to 10kHz.Record this frequency
 as reference frequency.
- 3. Set the temperature of chamber to 50 ℃. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 4. Repeat step 2 with a 10 °C decreased per stage until the lowest temperature -30 °C is measured, record all measured frequencies on each temperature step.

Frequency stability versus input voltage

- Setup the configuration per figure 1 for frequencies measured at temperature if it is within 15℃ to 25℃.
 Otherwise, an environment chamber set for a temperature of 20℃ shall be used. The EUT shall be powered by normal voltage.
- 2. Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 300Hz and Video Resolution Bandwidth to 1kHz. Record this frequency as reference frequency.
- 3. Supply the EUT primary voltage at the operating end point which is specified by manufacturer and record the frequency.

5.1.4. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Page 11

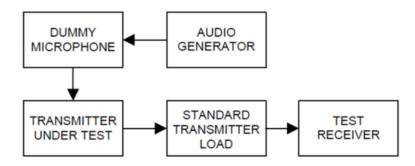
Report No.: TZ0035250802FRF19 Page 11 of 29

5.1.5. Test Results

Test Channel: 462.5625MHz

Test conditions		5
Voltage Condition	Temp(°C)	Frequency error (ppm)
	-20	-1.36
	-10	-1.35
NV	0	-1.34
	10	-1.33
	20	-1.31
	30	-1.33
	40	-1.31
	50	-1.33
LV	20	-1.31
HV	20	-1.31
Limit(ppm)		2.5
Result		PASS

NV: Normal Voltage 3.7V LV: Low Voltage 3.1V HV: High Voltage 4.3V


Page 12 of 29

5.2. Bandwidth

5.2.1. Standard Applicable

The authorized bandwidth for an FRS unit is 12.5 kHz.

5.2.2. Block Diagram of Test Setup

5.2.3. Test Procedures

- 1. The EUT was modulated by 2.5kHz sine wave audio signal; the level of the audio signal employed is 16dB greater than that necessary to produce 50% of rated system deviation.
- 2. Rated system deviation is 2.5 kHz for 12.5kHz channel spacing.
- 3. Spectrum set as follow:

Centre Frequency = Fundamental Frequency,

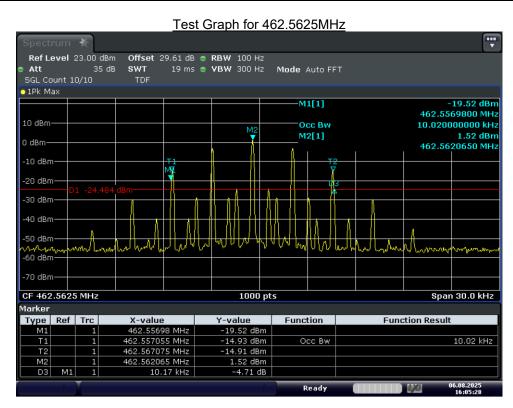
Span=30kHz for 12.5kHz channel spacing, RBW=300Hz, VBW=1kHz, Sweep = Auto,

Detector Function = Peak, Trace = Max hold

- 4. Set 99% Occupied Bandwidth and 26dB Emission Bandwidth.
- 5. Measure and record the results in the test report.

5.2.4. EUT Operation during Test

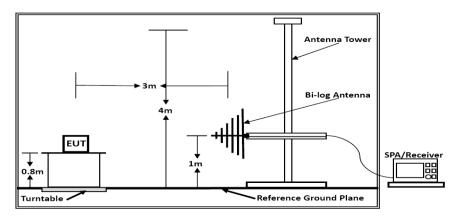
The EUT was programmed to be in continuously transmitting mode.



Page 13 of 29

5.2.5. Test Results

Test Channel		Occupied Bandwidth (kHz)	Emission Bandwidth (kHz)	Limits (kHz)	Result
	462.5625 MHz	10.02	10.17	12.5	Pass


Page 14 of 29

5.3. Transmitter Power

5.3.1. Standard Applicable

Each FRS transmitter type must be designed such that the effective radiated power (ERP) on channels 8 through 14 does not exceed 0.5 Watts and the ERP on channels 1 through 7 and 15 through 22 does not exceed 2.0 Watts.

5.3.2. Block Diagram of Test Setup

Below 1GHz

5.3.3. Test Procedures

The EUT shall be placed on a RF-transparent table or support at a nominal height of 80 cm above the reference ground plane. Radiated measurements shall be made with the measurement antenna positioned in both horizontal and vertical polarization. The measurement antenna shall be varied from 1 m to 4 m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level (i.e., field strength or received power). When orienting the measurement antenna in vertical polarization, the minimum height of the lowest element of the antenna shall clear the site reference ground plane by at least 25 cm.

Cables or wires inclusive to the EUT shall be configured so as to maximize the measured emission levels. The EUT controls shall also be adjusted to maximize the emission according to the manufacturer's specifications. The modulation applied shall be based on the guidance provided in the manufacturer's specifications. When necessary, field strength measurements shall be converted to ERP or EIRP for comparison to the applicable regulatory limits.

 $E (dB\mu V/m) = Measured amplitude level (dB\mu V) + Cable Loss (dB) + Antenna Factor (dB/m).$ EIRP (dBm) = E (dBuV/m) + 20log(D) - 104.8, where D is the measurement distance (in the fardfield region) in m.

5.3.4. EUT Operation during Test

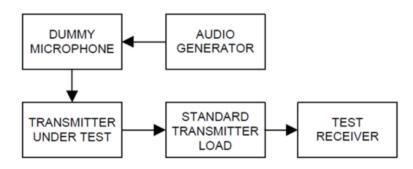
The EUT was programmed to be in continuously transmitting mode.

Page 15 of 29

5.3.5. Test Results

Frequency	Antenna Polarization	Measured amplitude level	Cable Loss	Antenna Factor	Field Strength	ERP Result	ERP Result	Limit	Result
(MHz)		(dBµV)	(dB)	dB/m	(dBµV/m)	(dBm)	(W)	(W)	
462.5625	V	83.94	1.6	15.8	101.34	3.99	0.0025	2	Pass
462.5625	Н	80.11	1.6	15.8	97.51	0.16	0.0010	2	Pass

Page 16 of 29


5.4. Modulation Characteristics

5.4.1. Standard Applicable

According to FCC§2.1047 and §95.575, for Voice Modulation Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000Hz shall be measured.

Each FRS transmitter type must be designed such that the peak frequency deviation does not exceed 2.5 kHz, and the highest audio frequency contributing substantially to modulation must not exceed 3.125 kHz.

5.4.2. Block Diagram of Test Setup

5.4.3. Test Procedures

Modulation Limit

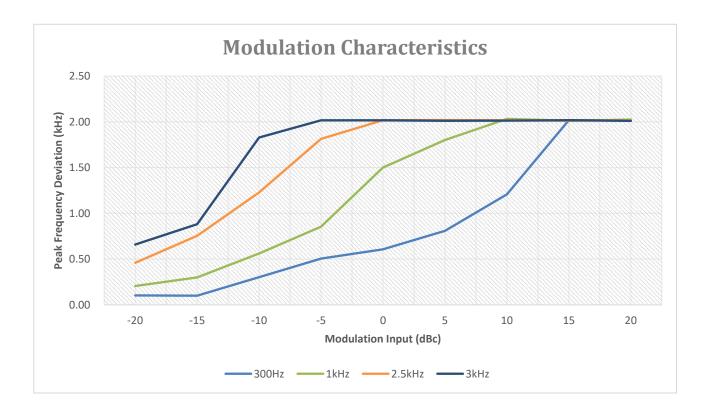
- 1. Test layout and build equipment as shown above.
- 2. adjust the audio input for 60% of rated system deviation at 1kHz using this level as a reference (0dB).
- 3. Vary the input level from -20 to +20dB.
- 4. Record the frequency deviation obtained as a function of the input level.
- 5. Repeat step 2 with input frequency changing to 300, 1000, 1500 and 3000Hz in sequence.

Audio Frequency Response

- 1. Test layout and build equipment as shown above.
- 2. Adjust the audio input for 20% of rated system deviation at 1 kHz using this level as a reference (0 dB).
- 3. Vary the Audio frequency from 100 Hz to 10 kHz and record the frequency deviation.
- 4. Audio Frequency Response = 20log10 (Deviation of test frequency/Deviation of 1 kHz reference).

5.4.4. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

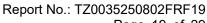


5.4.5. Test Results

Report No.: TZ0035250802FRF19 Page 17 of 29

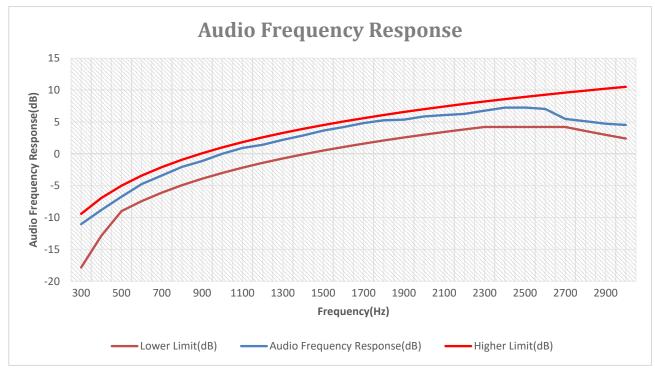
Modulation Limit:

	Test Frequency: 462.5625MHz							
Modulation Level	Peak Freq.	Peak Freq.	Peak Freq.	Peak Freq.				
	Deviation At 300	Deviation At 1000	Deviation At 1500	Deviation At 3000				
(dB)	Hz (kHz)	Hz (kHz)	Hz (kHz)	Hz (kHz)				
-20	0.10	0.21	0.46	0.65				
-15	0.11	0.30	0.76	0.88				
-10	0.31	0.56	1.22	1.82				
-5	0.50	0.85	1.81	2.01				
0	0.60	1.50	2.02	2.01				
+5	0.81	1.81	2.02	2.01				
+10	1.20	2.03	2.01	2.02				
+15	2.02	2.01	2.01	2.02				
+20	2.02	2.02	2.01	2.02				



Page 18 of 29

Audio Frequency Response:


	Test F	requency: 462.5625MHz	
Frequency (Hz)	Lower Limit(dB)	Audio Frequency Response(dB)	Higher Limit(dB)
300	-17.84	-11.03	-9.42
400	-12.86	-8.82	-6.93
500	-9.00	-6.74	-5.00
600	-7.42	-4.75	-3.42
700	-6.09	-3.41	-2.09
800	-4.93	-2.06	-0.93
900	-3.91	-1.13	0.09
1000	-3	0.01	1.00
1100	-2.17	0.92	1.83
1200	-1.42	1.41	2.58
1300	-0.73	2.20	3.27
1400	-0.09	2.88	3.91
1500	0.51	3.64	4.51
1600	1.07	4.19	5.07
1700	1.59	4.82	5.59
1800	2.09	5.26	6.09
1900	2.56	5.36	6.56
2000	3.00	5.87	7.00
2100	3.42	6.08	7.42
2200	3.83	6.27	7.83
2300	4.21	6.76	8.21
2400	4.21	7.25	8.58
2500	4.21	7.25	8.93
2600	4.21	7.04	9.27
2700	4.21	5.48	9.60
2800	3.58	5.11	9.91
2900	2.97	4.72	10.22
3000	2.39	4.53	10.51

Page 19 of 29

least 30 kHz.

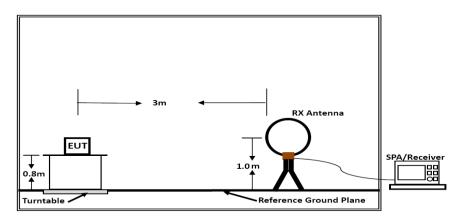
Report No.: TZ0035250802FRF19

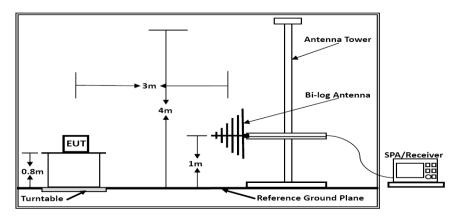
Page 20 of 29

5.5. Unwanted Emissions

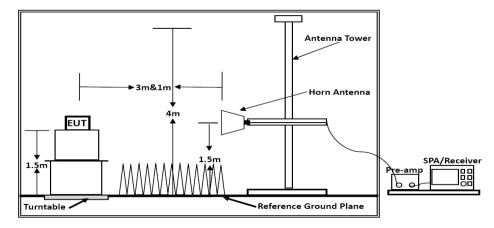
5.5.1. Standard Applicable

Each FRS transmitter type must be designed to satisfy the applicable unwanted emissions limits in this paragraph.


- (a) Attenuation requirements. The power of unwanted emissions must be attenuated below the carrier power output in Watts (P) by at least:
- (1) 25 dB (decibels) in the frequency band 6.25 kHz to 12.5 kHz removed from the channel center frequency.
- (2) 35 dB in the frequency band 12.5 kHz to 31.25 kHz removed from the channel center frequency.
- (3) 43 + 10 log (P) dB in any frequency band removed from the channel center frequency by more than 31.25 kHz.
- (b) Measurement bandwidths. The power of unwanted emissions in the frequency bands specified in paragraphs (a)(1) and (2) of this section is measured with a reference bandwidth of 300 Hz. The power of unwanted emissions in the frequency range specified in paragraph (a)(3) is measured with a reference bandwidth of at
- c) Measurement conditions. The requirements in this section apply to each FRS transmitter type both with and without the connection of permitted attachments, such as an external speaker, microphone and/or power cord.



Page 21 of 29


5.5.2. Block Diagram of Test Setup

Below 30MHz

Below 1GHz

Above 1GHz

5.5.3. Test Procedures

The power of unwanted emissions in the frequency range specified in paragraph (a)(3)

For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table or support at a nominal height of 80 cm above the reference ground plane. Radiated measurements shall be made with the measurement antenna positioned in both horizontal and vertical polarization. The measurement antenna shall be varied from 1 m to 4 m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level (i.e., field strength or received power). When orienting the measurement antenna in vertical polarization, the

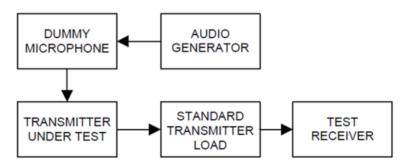
Page 22 of 29

minimum height of the lowest element of the antenna shall clear the site reference ground plane by at least 25 cm

For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table or support at a nominal height of 1.5 m above the ground plane. Radiated measurements shall be made with the measurement antenna positioned in both horizontal and vertical polarization. The height scan of the measurement antenna shall be varied from 1 m to 4 m in a search for the relative positioning that produces the maximum radiated signal level (i.e., field strength or received power). When using the direct field strength method and the EUT is manipulated through three different orientations, then the scan height range of the measurement antenna is limited to 2.5 m, or 0.5 m above the top of the EUT, whichever is higher.

Cables or wires inclusive to the EUT shall be configured so as to maximize the measured emission levels. The EUT controls shall also be adjusted to maximize the emission according to the manufacturer's specifications. The modulation applied shall be based on the guidance provided in the manufacturer's specifications. When necessary, field strength measurements shall be converted to ERP or EIRP for comparison to the applicable regulatory limits.

 $E (dB\mu V/m) = Measured amplitude level (dB\mu V) + Cable Loss (dB) + Antenna Factor (dB/m).$ EIRP (dBm) = E (dBuV/m) + 20log(D) - 104.8, where D is the measurement distance (in the fardfield region) in m.



Page 23 of 29

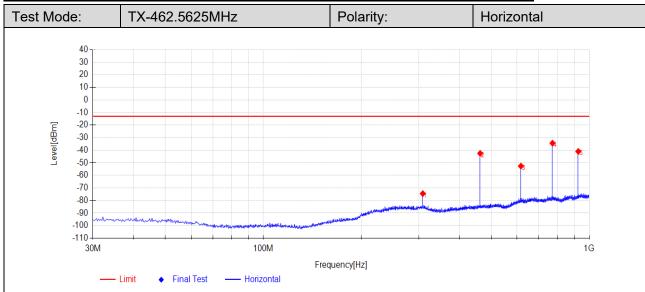
The power of unwanted emissions in the frequency bands specified in paragraphs (a)(1) and (2)

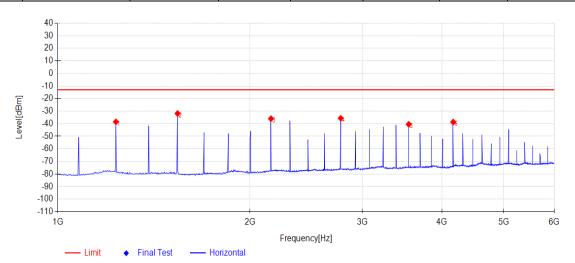
The detailed procedure employed for Emission Mask measurements are specified as following:

- -Connect the equipment as illustrated.
- -Spectrum set as follow:
- 1. Centre frequency = fundamental frequency, Span=150kHz for 12.5kHz, RBW=300Hz, VBW=1000Hz;
- 2. Sweep = auto, Detector function = peak, Trace = max hold
- 3. Key the transmitter, and set the level of the unmodulated carrier to a full scale reference line. This is the 0dB reference for the measurement.
- 4. Modulate the transmitter with a 2500 Hz sine wave at an input level 16 dB greater than that necessary to produce 50% of rated system deviation (Rated system deviation is 2.5 kHz for 12.5kHz channel spacing). The input level shall be established at the frequency of maximum response of the audio modulating circuit.
- 5. Transmitters employing digital modulation techniques that bypass the limiter and the audio low-pass filter shall be modulated as specified by the manufacturer.
- 6. Measure and record the results in the test report.

5.5.4. EUT Operation during Test

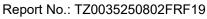
The EUT was programmed to be in continuously transmitting mode.



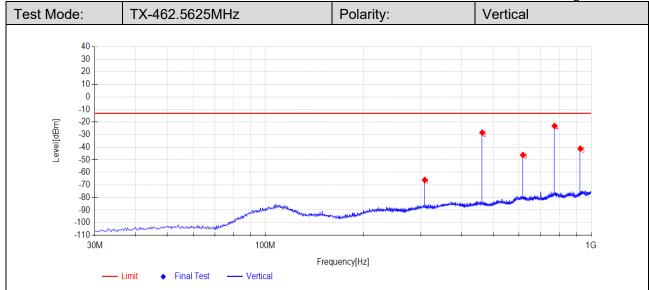

Page 24 of 29

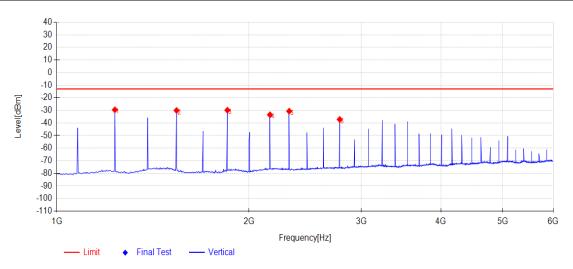
5.5.5. Test Results

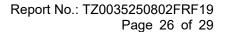
The power of unwanted emissions in the frequency range specified in paragraph (a)(3)


NO.	Freq.	Reading	Factor	Level	Limit	Margin	Polarity
	[MHz]	[dBm]	[dB]	[dBm]	[dBm]	[dB]	
1	308.39	-77.00	2.46	-74.54	-13.00	61.54	Horizontal
2	462.62	-46.11	3.61	-42.50	-13.00	29.50	Horizontal
3	616.85	-59.36	6.73	-52.63	-13.00	39.63	Horizontal
4	771.08	-42.68	8.30	-34.38	-13.00	21.38	Horizontal
5	925.31	-52.39	11.42	-40.97	-13.00	27.97	Horizontal

NO.	Freq. [MHz]	Reading [dBm]	Factor [dB]	Level [dBm]	Limit [dBm]	Margin [dB]	Polarity
1	1232.5	-35.96	-2.54	-38.5	-13.00	25.50	Horizontal
2	1540	-28.10	-3.77	-31.87	-13.00	18.87	Horizontal
3	2157.5	-35.21	-0.79	-36	-13.00	23.00	Horizontal
4	2775	-36.13	0.44	-35.69	-13.00	22.69	Horizontal
5	3547.5	-42.86	2.41	-40.45	-13.00	27.45	Horizontal
6	4165	-42.10	3.41	-38.69	-13.00	25.69	Horizontal

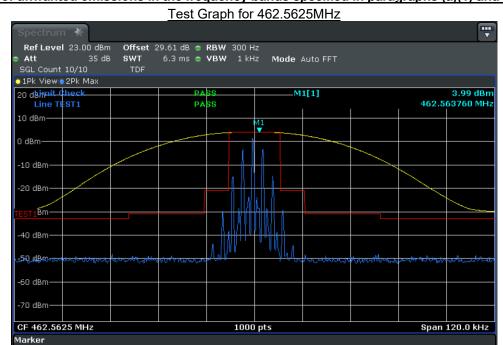

Page 24 of 29




Page 25 of 29

NO.	Freq.	Reading	Factor	Level	Limit	Margin	Polarity
140.	[MHz]	[dBm]	[dB]	[dBm]	[dBm]	[dB]	loiding
1	308.39	-66.77	0.63	-66.14	-13.00	53.14	Vertical
2	462.62	-31.98	3.61	-28.37	-13.00	15.37	Vertical
3	616.85	-53.02	6.81	-46.21	-13.00	33.21	Vertical
4	771.08	-32.50	9.42	-23.08	-13.00	10.08	Vertical
5	925.31	-52.41	11.28	-41.13	-13.00	28.13	Vertical

NO.	Freq.	Reading	Factor	Level	Limit	Margin	Dolority
	[MHz]	[dBm]	[dB]	[dBm]	[dBm]	[dB]	Polarity
1	1232.5	-26.87	-2.70	-29.57	-13.00	16.57	Vertical
2	1540	-28.63	-1.47	-30.1	-13.00	17.10	Vertical
3	1850	-28.28	-1.61	-29.89	-13.00	16.89	Vertical
4	2157.5	-33.66	0.14	-33.52	-13.00	20.52	Vertical
5	2312.5	-30.55	-0.12	-30.67	-13.00	17.67	Vertical
6	2775	-38.22	1.01	-37.21	-13.00	24.21	Vertical



Type Ref Trc

X-value 462.56376 MHz

The power of unwanted emissions in the frequency bands specified in paragraphs (a)(1) and (2)

Y-value 3.99 dBm

Function

Function Result

Page 27 of 29

5.6. Antenna Requirements

5.6.1. Standard Applicable

The antenna of each FRS transmitter type must meet the following requirements.

- (1) The antenna must be a non-removable integral part of the FRS transmitter type.
- (2) The gain of the antenna must not exceed that of a half-wave dipole antenna.
- (3) The antenna must be designed such that the electric field of the emitted waves is vertically polarized when the unit is operated in the normal orientation.
- The antenna of this device is permanently attached.
- There are no provisions for connection to an external antenna.

5.6.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is refer to section 1.3 of this report, and the antenna is an internal antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

5.6.3. Results

Compliance

Page 28 of 29

6. LIST OF MEASURING EQUIPMENTS

					Calibration	Calibration
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Date	Due Date
1	EMI Test Receiver	R&S	ESCI-7	100849/003	2024-12-31	2025-12-30
2	Signal Generator	Keysight	N5182A	MY4620709	2024-12-31	2025-12-30
3	Signal Generator	R&S	SML03	102924/0013	2024-12-31	2025-12-30
4	Climate Chamber	KRUOMR	KRM-1000	KRM16072901	2024-12-31	2025-12-30
5	RF COMMUNICATION TEST SET	HP	8921A	3430A01131	2024-12-31	2025-12-30
6	Wideband Antenna	schwarzbeck	VULB 9163	958	2022-11-13	2025-11-12
7	Wideband Antenna	Sunol	JB3	A020115	2022-11-13	2025-11-12
8	Amplifier	schwarzbeck	BBV 9743	209	2024-12-31	2025-12-30
9	Amplifier	Tonscend	TSAMP- 0518SE		2024-12-31	2025-12-30
10	Horn Antenna	schwarzbeck	BBHA 9120D	01989	2022-11-13	2025-11-12
11	Horn Antenna	schwarzbeck	9120D- 1141	1574	2022-11-13	2025-11-12
12	50Ω RF Load	MKRF	RFA001	RFA001	2024-12-31	2025-12-30
13	Attenuator	JS	RFA004	RFA004	2024-12-31	2025-12-30
14	Controller	MF	MF7802	N/A	N/A	N/A
15	Spectrum Analyzer	R&S	FSV40	101321	2025-07-14	2026-07-13
16	Test Software	Tonscend	JS36-RSE	V5.0.0.0	N/A	N/A

Page 29 of 29

7. TEST SETUP Photographs of EUT

Please refer to separated files for Test Setup Photos of the EUT.

8. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

9. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.	
THE END OF REPORT	

