

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

TEST REPORT

Report Reference No......CTA24022202605

FCC ID: 2BE9V-D6

Compiled by

File administrators Zoey Cao (position+printed name+signature)..:

Supervised by

Project Engineer Amy Wen (position+printed name+signature)...

Approved by

RF Manager Eric Wang (position+printed name+signature)..:

Date of issue...... Mar. 05, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name Shenzhen Hongjie Chuang Technology Co., Ltd

Building A2, Wuhe Avenue and prospecting industrial zone, Bantian,

Longgang District, Shenzhen, China

Test specification....:

IEC 62209-2:2010; IEEE 1528:2013; FCC 47 CFR Part 2.1093;

ANSI/IEEE C95.1:2005; Reference FCC KDB 447498;

KDB 248227; KDB 616217; KDB 865664

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: Notebook computer

Trade Mark....: N/A

Manufacturer..... Shenzhen Hongjie Chuang Technology Co. , Ltd

Model/Type reference : D6

D7, D8, D9, E6, E7, E8, E9, Q6, Q7, Q8, Q9, T6, T7, TB, T9, Z6, Z7,

Z8. Z9

Rating DC 7.7V From battery and DC 12.0V From external circuit

Result..... PASS

Report No.: CTA24022202605 Page 2 of 74 CTA TESTING

REPORT TEST

Equipment under Test Notebook computer

Model /Type D6

Series Model No. D7, D8, D9, E6, E7, E8, E9, Q6, Q7, Q8, Q9, T6, T7, TB, T9, Z6, Z7, Z8,

Z9 (

Shenzhen Hongjie Chuang Technology Co., Ltd **Applicant**

Building A2, Wuhe Avenue and prospecting industrial zone, Bantian, Address

Longgang District, Shenzhen, China

Shenzhen Hongjie Chuang Technology Co., Ltd Manufacturer

Address. Building A2, Wuhe Avenue and prospecting industrial zone, Bantian,

Longgang District, Shenzhen, China

Test Result: **PASS**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

Ge	- CTF	
	neral Information	
2.1		7
2.2		
2.3	Device Category and SAR Limits	8
2.4	Applied Standard	8
2.5	Test Facility	9
2.6	Environment of Test Site	9
2.7		
3 Sp	ecific Absorption Rate (SAR)	10
3.1	Introduction	10
3.2	SAR Definition	10
4 SA	R Measurement System	11
4.1	E-Field Probe	11
4.2	Data Acquisition Electronics (DAE)	12
4.3		
4.4	Measurement Server	13
4.5	Phantom	13
4.6	Device Holder	14
4.7	Data Storage and Evaluation	15
5 Te	st Equipment List	
6 Tis	sue Simulating Liquids	19
	stem Verification Procedures	
-	IT Testing Position	
8.1		
9 Me	easurement Procedures	25
9.1	Spatial Peak SAR Evaluation	25
9.2	Power Reference Measurement	25
9.3		
9.4		
9.5		
9.6	TA!	
10 TE	ST CONDITIONS AND RESULTS	
10		
10		
10		
10		
10		
10		
10		
10	8 Simultaneous Transmission Analysis	

Report No.: C	TA24022202605	Page 4 o	f 74
11 Measureme	ent Uncertainty		40
Appendix A.	EUT Photos and Test Setup Photos		42
Appendix B.	Plots of SAR System Check		43
Appendix C.	Plots of SAR Test Data		46
Appendix D.	DASY System Calibration Certificate	- ING	49
		CTATES.	

Report No.: CTA24022202605

Page 5 of 74

	TESTING	Version		
C	Version No.	Date	Description	
	R00	Mar. 05, 2024	Original	
			CTATES	
		(2)		C C
, NG				CAL.
ESTING		Co		
	TES	TING		
	EM CTA	CTATESTI		
			CTATES	
			CTATE	

Report No.: CTA24022202605 Page 6 of 74

Statement of Compliance

<Highest SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

		Highest Reported 1g-SAR(W/Kg)	Simultaneous
,	Frequency Band	Body (0mm)	Reported SAR (W/Kg)
	WLAN2.4G	0.650	4
	WLAN5.2G	0.611	1.318
	WLAN5.8G	0.479	CTATE
	SAR Test Limit (W/Kg)	1.60	CVA
	Test Result	PASS	77.70

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 CTATESTIN

General Information

2.1 General Remarks

2.1 General Remarks				
Date of receipt of test sample	area in	Feb. 21, 2024		
	(E, VI)			
Testing commenced on		Feb. 21, 2024	ito ud	
			Propositely.	
Testing concluded on	:	Mar. 02, 2024		

2.2 Description of Equipment Under Test (EUT)

Product Name:	Notebook computer					
Model/Type reference:	D6	·cT	ING			
Power supply:	DC 7.7V From battery	DC 7.7V From battery and DC 12.0V From external circuit				
Testing sample ID:	CTA240222026-1# (E CTA240222026-2# (N			CTATESTIN		
Hardware version:	V1.0					
Software version:	V1.0					
WIFI 2.4GHz:						
Supported type:	802.11b/802.11g/802.	11n(H20)/ 802.11n(H40)			
Modulation:	802.11b: DSSS 802.11g/802.11n(H20	302.11b: DSSS 302.11g/802.11n(H20)/ 802.11n(H40): OFDM				
Operation frequency:		02.11b/802.11g/802.11n(H20): 2412MHz~2462MHz 02.11n(H40): 2422MHz~2452MHz				
Channel number:	802.11b/802.11g/802. 802.11n(H40):7	802.11b/802.11g/802.11n(H20): 11 802.11n(H40):7				
Channel separation:	5MHz					
Antenna type:	PIFA antenna		NG.			
Antenna gain:	0.95 dBi	TEST				
WIFI 5GHz						
	20MHz system	40MHz system	80MHz system	160MHz system		
Supported type:	802.11a 802.11n 802.11ac	802.11n 802.11 ac	802.11 ac	N/A		
Operation frequency:	5180MHz-5240MHz 5745MHz-5825MHz	5190MHz-5230MHz 5755MHz-5795MHz	5210MHz 5775MHz	N/A		
Modulation:	OFDM	OFDM	OFDM	N/A		
Channel number:	9 6	4	2 511	N/A		
Channel separation:	20MHz	40MHz	80MHz	N/A		
Antenna type:	PIFA antenna		W	N/A		

Report No.: CTA24022202605 Page 8 of 74

	Antenna gain:	0.74 dBi	
	Bluetooth:		
	Supported Type:	Bluetooth BR/EDR	
	Modulation:	GFSK, π/4DQPSK, 8DPSK	
	Operation frequency:	2402MHz~2480MHz	
	Channel number:	79	
	Channel separation:	1MHz	TAI
	Antenna type:	PIFA antenna	
	Antenna gain:	0.95 dBi	
C.	Bluetooth BLE:		
	Supported type:	Bluetooth low Energy	
	Modulation:	GFSK	
	Operation frequency:	2402MHz to 2480MHz	
	Channel number:	40	
	Channel separation:	2 MHz	
	Antenna type:	PIFA antenna	
	Antenna gain:	0.95 dBi	

2.3 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.4 Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093:2013)
- ANSI/IEEE C95.1:2005
- IEEE Std 1528:2013
- KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- KDB 865664 D02 RF Exposure Reporting v01r02
- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02
- KDB 616217 D04 SAR for laptop and tablets v01r02

Page 9 of 74 Report No.: CTA24022202605

Test Facility 2.5

Designation Number: CN1318 FCC-Registration No.: 517856

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

CAB identifier: CN0127 ISED#: 27890

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

2.6 Environment of Test Site

Items	Required		Actual	
Temperature (°C)	18-25		22~23	
Humidity (%RH)	30-70	10 14 2 2 1	55~65	TE.
2.7 Test Configuration				

2.7 Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal.

Page 10 of 74 Report No.: CTA24022202605

Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density CTA TESTING (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

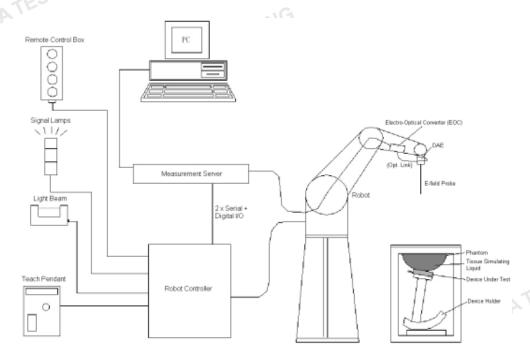
SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δtisthe exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$


Where:σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically CTATES applied.

Page 11 of 74 Report No.: CTA24022202605

SAR Measurement System

DASY System Configurations

The DASYsystem for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- CTATESTING A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
 - A probe alignment unit which improves the accuracy of the probe positioning
 - A computer operating Windows XP
 - DASY software
 - Remove control with teach pendant and additional circuitry for robot safety such as warming CTATE! lamps, etc.
 - The SAM twin phantom
 - A device holder
 - Tissue simulating liquid
 - Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

4.1 **E-Field Probe**

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface

Report No.: CTA24022202605 Page 12 of 74

detection system to prevent from collision with phantom.

E-Field Probe Specification <EX3DV4 Probe>

	272.7		
Construction	Symmetrical design with triangular core		
	Built-in shielding against static charges		
	PEEK enclosure material (resistant to	C	
	organic solvents, e.g., DGBE)		
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB		
Directivity	± 0.3 dB in HSL (rotation around probe		
	axis)		
	± 0.5 dB in tissue material (rotation		
	normal to probe axis)	\G	
Dynamic Range	10 μW/g to 100 W/kg; Linearity: ± 0.2		
	dB (noise: typically< 1 μW/g)	9	
Dimensions	Overall length: 330 mm (Tip: 20 mm)		Phot
	Tip diameter: 2.5 mm (Body: 12 mm)		
	Typical distance from probe tip to dipole		
	centers: 1 mm		

E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than ± 10%. The spherical isotropy shall be evaluated and within ± 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Photo of DAE

Report No.: CTA24022202605 Page 13 of 74

4.3 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controllersystem, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäublirobot series have many features that are important for our application: CTATES

- ➤ High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

4.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

4.5 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm;	a)G	
	Center ear point: 6 ± 0.2 mm	ESTING	
Filling Volume	Approx. 25 liters	CTATE	
Dimensions	Length: 1000 mm; Width: 500 mm;	W.	TES
			CTA

Page 14 of 74 Report No.: CTA24022202605

	Height: adjustable fe	et		
Measurement	Left Hand, Right	t Hand, Fla		
Areas	Phantom		Photo of SAM Phantom	CTATES

CTATESTIN The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom CTA. position with respect to the robot.

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)		
Filling Volume	Approx. 30 liters		
Dimensions	Major ellipse axis: 600 mm Minor axis:400 mm	Photo of ELI4 Phantom	

CTATESTING The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

4.6 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ± 20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric

Report No.: CTA24022202605 Page 15 of 74

parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Device Holder

4.7 Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [W/kg]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

- Conversion factor ConvF_i

- Diode compression point dcp_i

Page 16 of 74 Report No.: CTA24022202605

> **Device parameters:** - Frequency

> > - Crest factor cf

Media parameters: - Conductivity σ

> - Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly CTA TESTING compensate for peak power.

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

CTATES From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes:
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field Probes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i,(i= x, y, z)

CTA TESTING Norm_i= sensor sensitivity of channel i, (i= x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF= sensitivity enhancement in solution

aii= sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i= electric field strength of channel iin V/m

H_i= magnetic field strength of channel iin A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

Report No.: CTA24022202605 Page 17 of 74

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in W/kg

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Report No.: CTA24022202605 Page 18 of 74

5 Test Equipment List

Manufacturer	Name of Environment	Trus (Madal	Carial Number	Calib	ration
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	2450MHz System Validation Kit	D2450V2	745	Aug. 28,2023	Aug. 27,2026
SPEAG	5GHz System Validation Kit	D5GHzV2	1102	May. 19,2023	May. 18,2026
Rohde & Schwarz	UNIVERSAL RADIO COMMUNICATION TESTER	CMW500	1201.0002K50- 104209-JC	Nov.05, 2023	Nov.04, 2024
SPEAG	Data Acquisition Electronics	DAE3	428	Aug.30,2023	Aug.29,2024
SPEAG	Dosimetric E-Field Probe	EX3DV4	7380	June 21,2023	June 20,2024
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Oct.25, 2023	Oct.24, 2024
SPEAG	DAK	DAK-3.5	1226	NCR	NCR
SPEAG	SAM Twin Phantom	QD000P40CD	1802	NCR	NCR
SPEAG	ELI Phantom	QDOVA004AA	2058	NCR	NCR
AR	Amplifier	ZHL-42W	QA1118004	NCR	NCR
Agilent	Power Meter	N1914A	MY50001102	Oct.25, 2023	Oct.24, 2024
Agilent	Power Sensor	N8481H	MY51240001	Oct.25, 2023	Oct.24, 2024
R&S	Spectrum Analyzer	N9020A	MY51170037	Oct.25, 2023	Oct.24, 2024
Agilent	Signal Generation	N5182A	MY48180656	Oct.25, 2023	Oct.24, 2024
Worken	Directional Coupler	0110A05601O-10	COM5BNW1A2	Oct.25, 2023	Oct.24, 2024

Note:

- 1. The calibration certificate of DASY can be referred to appendix D of this report.
- 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- 3. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
- 4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- 5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it

Report No.: CTA24022202605 Page 19 of 74

6 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

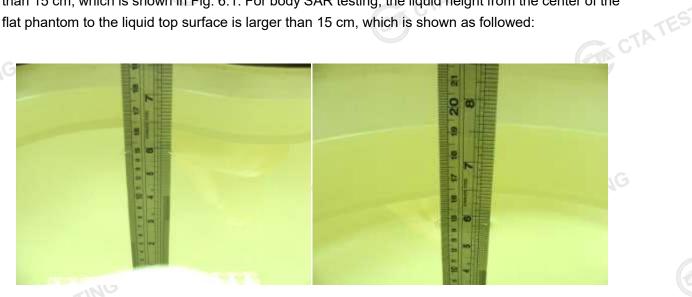


Photo of Liquid Height for Head SAR

Photo of Liquid Height for Body SAR

The following table gives the recipes for tissue simulating liquid.

Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(εr)
				For Hea	nd			
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
1800,1900,2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	3 0	0	0	45.0	1.80	39.2
2600	54.8	0	0	0.1	0	45.1	1.96	39.0
				For Boo	dy			
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
1800,1900,2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7
2600	65.5	0	0	0	0	31.5	2.16	52.5
CTATESTIN			CTATEST					

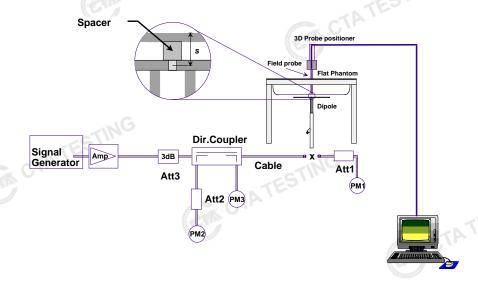
Report No.: CTA24022202605 Page 20 of 74

The following table shows the measuring results for simulating liquid.

Measured	Target	Tissue		Measure	d Tissue		l iaurial	
Frequency (MHz)	٤r	σ	٤r	Dev. (%)	σ	Dev. (%)	Liquid Temp.	Test Data
2450	39.2	1.80	39.467	0.68%	1.793	-0.37%	22.2	03/04/2024
5250	35.9	4.71	36.345	1.24%	4.692	-0.38%	22.6	03/05/2024
5750	35.4	5.22	34.897	-1.42%	5.168	-1.00%	22.2	03/05/2024
TING								23005
ESTING		TESTIN						
		TES'I"						

Report No.: CTA24022202605 Page 21 of 74

7 System Verification Procedures


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

System Setup for System Evaluation

ESTING

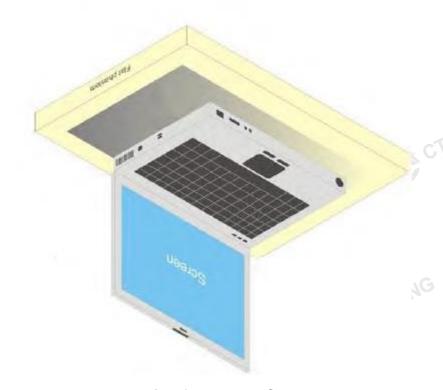
Report No.: CTA24022202605 Page 22 of 74

Photo of Dipole Setup

Validation Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix B of this report.

Date	Frequency (MHz)	Power fed onto reference dipole (mW)	Targeted SAR 1g (W/kg)	Measured SAR 1g (W/kg)	Normalized SAR (W/kg)	Deviation (%)
03/04/2024	2450	250	52.7	12.98	51.90	-1.52%
03/05/2024	5250	100	78.7	8.03	80.30	2.03%
03/05/2024	5750	100	77.3	7.98	79.80	3.23%


ESTING

Report No.: CTA24022202605 Page 23 of 74

EUT Testing Position

8.1 Body-Supported Device Configurations

For laptop PC, according to KDB 616217 D04, SAR evaluation is required for the bottom surface of the keyboard. This EUT was tested in the base of EUT directly against the flat phantom. The required minimum test separation distance for incorporating transmitters and antennas into laptop computer display is determined with the display screen opened at an angle of 90° to the keyboard compartment.

Illustration for Laptop Setup

CTATESTING For full-size tablet, according to KDB 616217 D04, SAR evaluation is required for back surface and edges of the devices. The back surface and edges of the tablet are tested with the tablet touching the phantom. Exposures from antennas through the front surface of the display section of a tablet are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary. When voice mode is supported on a tablet and it is limited to speaker mode or headset operations only, additional SAR testing for this type of voice use is not required. ...U CTATESTING

Page 24 of 74 Report No.: CTA24022202605 CTA. **Illustration for Tablet Setup**

Report No.: CTA24022202605 Page 25 of 74

Measurement Procedures 9

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- Measure SAR transmitting at the middle channel for all applicable exposure positions. (f)
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels at the worst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average CTATES SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller

Page 26 of 74 Report No.: CTA24022202605

than the distance of sensor calibration points to probe tip as defined in the probe properties.

Area Scan Procedures 9.3

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°		
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$		
Maximum area scan spatial resolution: $\Delta x_{\text{Area}},\Delta y_{\text{Area}}$	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			
Zoom Scan Procedures	CO CO	CONCTP		

Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 CTATES! GHz.

Report No.: CTA24022202605 Page 27 of 74

				≤ 3 GHz	> 3 GHz	
	GV		~1	IN		
	Maximum zoom scan s	spatial reso	olution: Axzoom, Avzoom	≤ 2 GHz: ≤ 8 mm	$3-4 \text{ GHz: } \leq 5 \text{ mm}^*$	
		1	200m; —, 200m	$2-3 \text{ GHz: } \leq 5 \text{ mm}^{\circ}$	4 – 6 GHz: ≤ 4 mm°	
					3 – 4 GHz: ≤ 4 mm	
		uniform	grid: $\Delta z_{Zoom}(n)$	≤ 5 mm	4 – 5 GHz: ≤ 3 mm	TES
					5 – 6 GHz: ≤ 2 mm	CTATES
1	Maximum zoom scan		$\Delta z_{Z_{oom}}(1)$: between		3 – 4 GHz: ≤ 3 mm	
	spatial resolution,		1 st two points closest	≤ 4 mm	4 – 5 GHz: ≤ 2.5 mm	
	normal to phantom surface	graded	to phantom surface		5 – 6 GHz: ≤ 2 mm	
		grid	Δz _{Zoom} (n>1):			
			between subsequent points	≤ 1.5·Δz	Z _{Zoom} (n-1)	ING
			1		3 – 4 GHz: ≥ 28 mm	-
	Minimum zoom scan	x, y, z		≥ 30 mm	4 – 5 GHz: ≥ 25 mm	
	volume				5 – 6 GHz: ≥ 22 mm	
		•			-	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

9.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

ESTING

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page 28 of 74 Report No.: CTA24022202605

10 TEST CONDITIONS AND RESULTS

**************************************	onducted	Power>	TESTING			
			Ant1			
Mode	Channel	Frequency (MHz)	Conducted Peak Output Power(dBm)	Conducted Average Output Power(dBm)	Tune-up limit (dBm)	
	1	2412	14.46	13.10	14.0	
802.11b	6	2437	14.95	13.63	14.0	
	11	2462	15.05	13.72	14.0	
802.110	1	2412	13.94	10.00	11.0	
802.11g	6	2437	14.73	10.61	11.0	
	11	2462	14.70	10.69	11.0	
	× C1	2412	14.12	9.68	11.0	
802.11n(HT20)	6	2437	14.38	10.19	11.0	
	11	2462	14.47	10.27	11.0	
	3	2422	12.87	8.76	10.0	
802.11n(HT40)	6	2437	13.75	9.19	10.0	
	9	2452	13.78	9.37	10.0	

Ant2

				/\II(E		
	Mode	Channel	Frequency (MHz)	Conducted Peak Output Power(dBm)	Conducted Average Output Power(dBm)	Tune-up limit (dBm)
		1	2412	14.39	13.05	14.0
	802.11b	6	2437	14.87	13.50	14.0
		11	2462	14.86	13.54	14.0
		1	2412	13.91	9.94	11.0
	802.11g	6	2437	14.61	10.46	11.0
		11	2462	14.69	10.73	11.0
		1	2412	13.87	9.47	11.0
	802.11n(HT20)	6	2437	14.44	10.24	11.0
		11	2462	14.32	10.20	11.0
TES		3	2422	12.94	8.86	10.0
CTATES	802.11n(HT40)	6	2437	13.86	9.35	10.0
0.		9	2452	13.87	9.43	10.0
	E	CTA		MIMO mode	STING	
				Conducted Book	0	

W. d.		Frequency	Conducted Peak Output Power(dBm)		Conducted Average Ou Power(dBm)			tput
Mode	Channel	(MHz)	Ant1	Ant2	Ant1	Tune- up limit (dBm)	Ant2	Tune- up limit (dBm)
802.11n(HT20)	1	2412	14.12	13.87	9.68	11.0	9.47	11.0
	6	2437	14.38	14.44	10.19	11.0	10.24	11.0
	11	2462	14.47	14.32	10.27	11.0	10.20	11.0
	3	2422	12.87	12.94	8.76	10.0	8.86	10.0
11n(HT40)	6	2437	13.75	13.86	9.19	10.0	9.35	10.0
	9	2452	13.78	13.87	9.37	10.0	9.43	10.0
					CT CT			

Page 29 of 74 Report No.: CTA24022202605

<WLAN 5.2GHz Conducted Power>

Ant1

	Туре	Channel	Frequency (MHz)	Conducted Average Output Power(dBm)	Tune-up limit (dBm)	
		36	5180	14.75	15.0	
	802.11a	40	5200	13.91	15.0	TATES
		48	5240	13.96	15.0	TATE
		36	5180	14.15	14.5	
-59	802.11n(HT20)	40	5200	12.88	14.5	
CTATES		48	5240	12.95	14.5	
		38	5190	13.72	14.5	
	802.11n(HT40)	46	5230	13.20	14.5	
		36	5180	14.29	14.5	3
	802.11ac(HT20)	40	5200	12.94	14.5	
		48	5240	12.97	14.5	
G	902 44cc/UT40\	38	5190	13.83	14.5	
	802.11ac(HT40)	46	5230	13.20	14.5	and the second
	802.11ac(HT80)	42	5210	13.66	14.5	

Ant2

30) 42	5210	13.66	14.5
	Ant2	G	
Channel	Frequency (MHz)	Conducted Average Output Power(dBm)	Tune-up limit (dBm)
36	5180	14.47	14.5
40	5200	13.20	14.5
48	5240	13.15	14.5
36	5180	13.32	14.0
0) 40	5200	12.15	14.0
48	5240	12.14	14.0
38	5190	12.90	14.0
46	5230	12.20	14.0
36	5180	13.37	14.0
20) 40	5200	12.02	14.0
48	5240	12.11	14.0
38	5190	12.85	14.0
46	5230	12.22	14.0
30) 42	5210	12.73	14.0
	CTATESTING		ESTING
	Channel 36 40 48 36 40 48 36 40 48 40 48 40 48 40 48 40 48 40 48 40 48 40 48 40 48 40 48 40 48 40 48 40 48 40 48 40 48 40 48 40 40 48 40 48 40 40 48 40 40 48 40 40 48 40 40 40 40 40 40 40 40 40 40 40 40 40	Channel Frequency (MHz) 36 5180 40 5200 48 5240 36 5180 40 5200 48 5240 30 5180 40 5200 41 5200 42 5210 Ant 2	Channel Frequency (MHz) Conducted Average Output Power(dBm) 36 5180 14.47 40 5200 13.20 48 5240 13.15 36 5180 13.32 40 5200 12.15 48 5240 12.14 38 5190 12.90 46 5230 12.20 36 5180 13.37 40 5200 12.02 48 5240 12.11 40 5200 12.85 40 5230 12.85 40 5230 12.22

Report No.: CTA24022202605 Page 30 of 74

MIMO mode

			F	Conducted Average Output Power(dBm)					
	Туре	Channel	Frequency (MHz)	Ant1	Tune-up limit (dBm)	Ant2	Tune-up limit (dBm)		
		36	5180	14.15	14.5	13.32	14.0		
802.11n(HT20)	802.11n(HT20)	40	5200	12.88	14.5	12.15	14.0		
	48	5240	12.95	14.5	12.14	14.0			
802.11n(HT40) 802.11ac(HT20)	38	5190	13.72	14.5	12.90	14.0			
	802.11N(H140)	46	5230	13.20	14.5	12.20	14.0		
	36	5180	14.29	14.5	13.37	14.0			
	802.11ac(HT20)	40	5200	12.94	14.5	12.02	14.0		
		48	5240	12.97	14.5	12.11	14.0		
	000 44 (UT40)	38	5190	13.83	14.5	12.85	14.0		
	802.11ac(HT40)	46	5230	13.20	14.5	12.22	14.0		
	802.11ac(HT80)	42	5210	13.66	14.5	12.73	14.0		
						(A)	CTATE		

ESTING

CTATESTING

CTATESTING

CTATESTING

CTATESTING

CTATESTING

CTATESTING

CTATESTING

<WLAN 5.8GHz Conducted Power>

Ant1

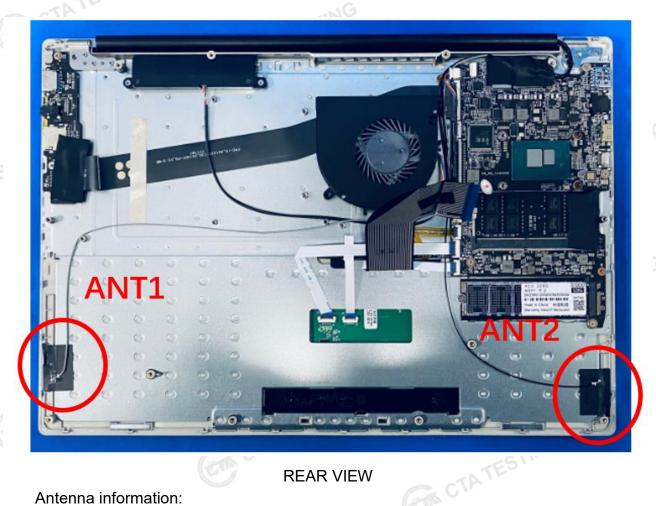
	Туре	Channel	Frequency (MHz)	Conducted Average Output Power(dBm)	Tune-up limit (dBm)	
		149	5745	12.28	12.5	
	802.11a	157	5785	13.44	13.5	
		165	5825	14.37	14.5	
	802.11n(HT20)	149	5745	11.44	12.5	
		157	5785	12.57	13.5	
		165	5825	14.17	14.5	
CTATES	000 44(UT40)	151	S 5755	11.59	12.0	
	802.11n(HT40)	159	5795	12.68	13.0	
	802.11ac(HT20)	149	5745	11.40	12.5	
		157	5785	12.52	13.5	
		165	5825	14.19	14.5	
	000 44 (LIT40)	151	5755	11.67	12.0	
G	802.11ac(HT40)	159	5795	12.74	13.0	
	802.11ac(HT80)	155	5775	12.51	13.0	

Ant2

	- IN		AIILE		
	Туре	Channel	Frequency (MHz)	Conducted Average Output Power(dBm)	Tune-up limit (dBm)
		149	5745	11.62	12.5
	802.11a	157	5785	12.65	13.5
		165	5825	14.39	14.5
		149	5745	10.58	12.0
	802.11n(HT20)	157	5785	11.68	13.0
		165	5825	13.36	14.0
ATES	802.11n(HT40)	151	5755	10.72	12.0
IN.		159	5795	11.73	13.0
	802.11ac(HT20)	149	5745	10.52	12.0
		157	5785	11.65	13.0
		165	5825	13.42	14.5
	000 44 (LIT40)	151	5755	10.72	12.0
	802.11ac(H140)	159	5795	11.74	13.0
	802.11ac(HT80)	155	5775	11.46	13.0
	802.11ac(HT40) 802.11ac(HT80)	159 155	5795	11.74	13.0

Page 32 of 74 Report No.: CTA24022202605

MIMO mode


Channel 149	Frequency (MHz)	Ant1	Tune-up limit (dBm)	Ant2	Tune-up limit
	5745				(dBm)
	5,40	11.44	12.5	10.58	12.0
157	5785	12.57	13.5	11.68	13.0
165	5825	14.17	14.5	13.36	14.0 12.0
151	5755	11.59	12.0	10.72	12.0
159	5795	12.68	13.0	11.73	13.0
149	5745	11.40	12.5	10.52	12.0
157	5785	12.52	13.5	11.65	13.0
165	5825	14.19	14.5	13.42	14.5
151	5755	11.67	12.0	10.72	12.0
159	5795	12.74	13.0	11.74	13.0
155	5775	12.51	13.0	11.46	13.0
cted Power	r>	100 mg/mg/			CTA
	151 159 149 157 165 151 159 155	151 5755 159 5795 149 5745 157 5785 165 5825 151 5755 159 5795 155 5775 cted Power>	151 5755 11.59 159 5795 12.68 149 5745 11.40 157 5785 12.52 165 5825 14.19 151 5755 11.67 159 5795 12.74 155 5775 12.51	151 5755 11.59 12.0 159 5795 12.68 13.0 149 5745 11.40 12.5 157 5785 12.52 13.5 165 5825 14.19 14.5 151 5755 11.67 12.0 159 5795 12.74 13.0 155 5775 12.51 13.0	151 5755 11.59 12.0 10.72 159 5795 12.68 13.0 11.73 149 5745 11.40 12.5 10.52 157 5785 12.52 13.5 11.65 165 5825 14.19 14.5 13.42 151 5755 11.67 12.0 10.72 159 5795 12.74 13.0 11.74 155 5775 12.51 13.0 11.46

<Bluetooth Conducted Power>

	Mode	Channel	Frequency (MHz)	Conducted Average Output Power(dBm)	Tune-up limit (dBm)	
Ī		0	2402	2.46	3	
	GFSK	39	2441	2.05	3	
		78	2480	2.19	3	
		0	2402	0.84	G 2	
	π/4DQPSK	39	2441	0.38	2	
		78	2480	0.47	2	
		0	2402	1.47	2	
	8DPSK	39	2441	0.97	2	TATE
		78	2480	1.07	2	-11×.
Ī		00	2402	5.48	6	
	BLE1M(GFSK)	19	2440	5.32	6	
7E9	,	39	2480	5.13	6	
TATES		TATESTIN		CTATESTING	STING	

Report No.: CTA24022202605 Page 33 of 74

10.2 Transmit Antennas

REAR VIEW

Antenna information:

Ant1: WLAN Main/BT TX RX antenna Ant2:WLAN Aux TX RX antenna CTATESTING

Report No.: CTA24022202605 Page 34 of 74

10.3 Standalone SAR Test Exclusion Considerations

General Note:

1 The below table, when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW"

- 2 Maximum power is the source-based time-average power and represents the maximum RF output power among production units
- 3 Per KDB 447498 D01v06, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 4 Per KDB 447498 D01v06, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold.
- Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz.
- Power and distance are rounded to the nearest mW and mm before calculation.
- The result is rounded to one decimal place for comparison.
- 6 Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following:
 - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
 - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·10] mW at > 1500 MHz and ≤ 6 GHz
- 7 The below table, exemption limits for routine evaluation based on frequency and separation distance was according to SAR-based Exemption §1.1307(b)(3)(i)(B).

	Standalone SAR test exclusion considerations Ant1								
(1)	Wireless	Frequency (MHz)	Configuration	Maximum Average Power		Separation Distance	Calculation Result	SAR Exclusion	Standalone SAR
	Interface			dBm	mW	(mm)	Result	Thresholds	Exclusion
	Bluetooth*	2480	Bottom Side	7.00	5.012	0	1.6	3	yes

Remark:

- Maximum average power including tune-up tolerance;
- 2. Bluetooth including BLE-Lower Energy Bluetooth and Classical Bluetooth;
- 3. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
- 4. Per KDB 648474, if overall diagonal dimension of the display section of a tablet lager than 20 cm, no need consider Hotspot mode.

Report No.: CTA24022202605 Page 35 of 74

10.4 Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√ f(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm

Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg.When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio=
$$\frac{(SAR_1 + SAR_2)^{1.5}}{(peak location separation,mm)} < 0.04$$

	Ratio	$= \frac{(SAR_1 + S)}{(peak location s)}$	 <0.0	94	(ATESTING
		Estimated star	nd alone SAR		
Communication system	Frequency (MHz)	Configuration	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR _{1-g} (W/kg)
Bluetooth	2480	Body	1G 6	0	0.167
1	/	TATES	1	1	1
1	1	K G 7	1	ESTING	/

Remark:

- Maximum average power including tune-up tolerance;
- When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
- Body including Hotspot mode as body use distance is 10mm from manufacturer declaration of user manual. Juy CTATESTING

Report No.: CTA24022202605 Page 36 of 74

10.5 SAR Test Results Summary

General Note:

1 Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

- a) Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
- b) For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
- For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tuneup scaling factor
- Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3 Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.

WLAN Note:

- Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2 Per KDB 248227 D01v02r02, WLAN 5.2GHz SAR testing is not required when the WLAN5.3GHz band highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for WLAN5.2GHz band.
- When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
- 4 For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- For WLAN SAR testing was performed on single antenna RF power in SISO mode is larger or equal to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission exclusion analysis was performed with SAR test results of each antenna in SISO mode.
- 6 Per KDB 248227 D01v02r02, the simultaneous SAR provisions in KDB publication 447498 should be applied to determine simultaneous transmission SAR test exclusion for WiFi MIMO. If the sum of 1g single transmission chain SAR measurements is < 1.6W/kg and SAR peak to location ratio ≤ 0.04, no additional SAR measurements for MIMO.
- 7 During SAR testing the WLAN transmission was verified using a spectrum analyzer.

Report No.: CTA24022202605 Page 37 of 74

10.6 SAR Results

Body SAR

SAR Values [WIFI 2.4G]

Plot No.	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
	Measured / Reported SAR numbers-Body Ant1										
#1	802.11b	Bottom	0	11	2462	13.72	14.0	1.067	0.03	0.605	0.645
	Measured / Reported SAR numbers-Body Ant2										
	802.11b	Bottom	0	11	2462	13.54	14.0	1.112	-0.07	0.585	0.650
Pomar	k. The high	est reported	SAR for	OFDM i	e adjusted	by the ratio	of OEDM to	DSSS sner	rified mavim	um quitnut n	NVAL WAS

Remark: The highest reported SAR for OFDM is adjusted by the ratio of OFDM to DSSS specified maximum output power was 0.507 W/Kg(0.645*(11/14)=0.507) So ODFM SAR test is not required for Ant1.

TATESTING The highest reported SAR for OFDM is adjusted by the ratio of OFDM to DSSS specified maximum output power was 0.511 W/Kg (0.650*(11/14)=0.511) So ODFM SAR test is not required for Ant2.

SAR Values [WIFI 5.2G]

Plot No.	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
	Measured / Reported SAR numbers-Body Ant1										
#2	802.11a	Bottom	0	36	5180	14.75	15.0	1.059	0.05	0.577	0.611
	Measured / Reported SAR numbers-Body Ant2										
	802.11a	Bottom	0	36	5180	14.47	14.5	1.007	-0.03	0.536	0.540

SAR Values [WIFI 5.8G]

Plot No.	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
	Measured / Reported SAR numbers-Body Ant1										
#3	802.11a	Bottom	0	165	5825	14.37	14.5	1.030	-0.03	0.465	0.479
			Meas	ured /	Reported	SAR num	bers-Body	Ant2			
	802.11a	Bottom	0	165	5825	14.39	14.5	1.026	0.07	0.452	0.464

Note:

- 1. Per KDB 865664 D01V01, for each frequency band, repeated SAR measurement is required only when the measured SAR is≥0.8W/Kg.
- 2. Per KDB 865664 D01V01, if the ratio of largest to smallest SAR for the original and first repeated measurement is≤1.2 and the measured SAR<1.45W/Kg, only one repeated measurement is required.
- 3. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45W/Kg
- The ratio is the difference in percentage between original and repeated measured SAR.

Report No.: CTA24022202605 Page 38 of 74

10.7 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required.

- 1 Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2 When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

SAR Measurement Variability

	CIA	Test		Spacing	Original	First Repeated	The	Second
Band	Mode	Position	Ch.	(mm)	SAR (W/kg)	SAR (W/kg)	Ratio	Repeated SAR (W/kg)
			10		(TT/Ng)			Chirt (Thig)
							- TOT	
		1		1		(8	-	

Report No.: CTA24022202605 Page 39 of 74

10.8 Simultaneous Transmission Analysis

Application Simultaneous Transmission information:

No.	Simultaneous Transmission Configurations	Body	
1	2.4GHz WLAN Ant 1 + 2.4GHz WLAN Ant 2	Yes	
2	5GHz WLAN Ant 1 + 5GHz WLAN Ant 2 + Bluetooth Ant 1	Yes	
10.8.2 Ev	valuation of Simultaneous SAR Simultaneous transmission SAR	CTA	

10.8.2 Evaluation of Simultaneous SAR

Simultaneous transmission SAR

		1	2	3	4	5			
TES		2.4GHz	2.4GHz	5GHz	5GHz	Diverse	1+2	3+4+5	
CTATES	Exposure	WLAN	WLAN	WLAN	WLAN	Bluetooth	Summed	Summed	CDI CD
	Position	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	1g SAR	1g SAR	SPLSR
		1g SAR	(W/kg)	(W/kg)					
		(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)			
	Bottom	0.645	0.650	0.611	0.540	0.167	1.295	1.318	N/A

MAX. $\Sigma SAR_{1g} = 1.318W/kg < 1.6 W/kg$, so the Simultaneous transmission SAR with volume scan are not required.

Report No.: CTA24022202605 Page 40 of 74

11 Measurement Uncertainty

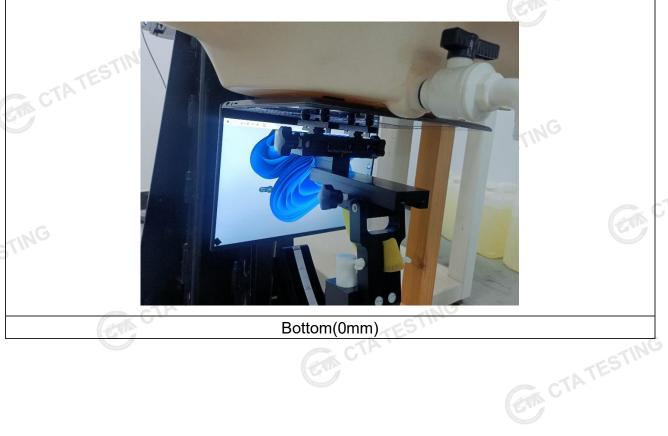
NO	Source	Uncert. ai (%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	Stand.U ncert. ui (1g)	Stand.U ncert. ui (10g)	Veff
1	Repeat	0.4	N	1	1	1	0. 4	0. 4	9
			Instr	ument			G tr		
2	Probe calibration	7	N	2	1	The state of the s	3.5	3.5	∞ co uu
3	Axial isotropy	4.7	R	_ √3	0.7	0.7	1.9	1.9	8
4	Hemispherical isotropy	9.4	R	<u>-</u> √3	0.7	0.7	3.9	3.9	∞
5	Boundary effect	1.0	R	<u>√</u> 3	1	1	0.6	0.6	8
6	Linearity	4.7	R		15	5 ¹ 1	2.7	2.7	8
7	Detection limits	1.0	R	$\frac{-}{\sqrt{3}}$	1	1	0.6	0.6	8
8	Readout electronics	0.3	N	1	1	1	0.3	0.3	8
9	Response time	0.8	R	_ √3	1	1	0.5	0.5	8
10	Integration time	2.6	R	_ √3	1	1	1.5	1.5	8
11	Ambient noise	3.0	R	√3	1	1	1.7	1.7	∞
12	Ambient reflections	3.0	R		1	1	1.7	1.7	8
13	Probe positioner mech. restrictions	0.4	R	_ 3	1	1	0.2	0.2	8
14	Probe positioning with respect to phantom shell	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
15	Max.SAR evaluation	1.0	R		1	1	0.6	0.6	8
15	CTATE!	STING				STING	3		ESTIN

Report No.: CTA24022202605 Page 41 of 74

				Test samp	le rel	ated					
	16	Device positioning	3.8	N	1	1	1	3.8	3.8	99	
ST. Control	17	Device holder	5.1	N	NP	1	1	5.1	5.1	5	
	18	Drift of output power	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞	
			CVIA	Phantom a	nd s	et-up		TATE	5		
	19	Phantom uncertainty	4.0	R	√3	1	11	2.3	2.3	∞	CTAT
	20	Liquid conductivity (target)	5.0	R	√ 3	0.64	0.43	1.8	1.2	∞	CTA
TATEST	21	Liquid conductivity (meas)	2.5	N	1	0.64	0.43	1.6	1.2	∞	
TAIL	22	Liquid Permittivity (target)	5.0	R	_ 3	0.6	0.49	1.7	1.5	∞	
	23	Liquid Permittivity (meas)	2.5	N	1	0.6	0.49	1.5	1.2	∞	
	C	combined standard		RSS	U_{c}	$= \sqrt{\sum_{i,K=1}^{n} C}$	U^2U^2	11.4%	11.3%	236	(G
	u	Expanded incertainty(P=95%)	U =	kυ c		₩,K=	2	22.8%	22.6%	TESTI	
									CVA		•

Page 42 of 74 Report No.: CTA24022202605

Appendix A. EUT Photos and Test Setup Photos


CTATESTING

CTATESTING

CTATES

CTATES"

Bottom(0mm)

Page 43 of 74 Report No.: CTA24022202605

Date: 03/04/2024

Appendix B. Plots of SAR System Check

2450MHz System Check

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 745

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.793$ S/m; $\epsilon r = 39.467$; $\rho = 1000$ kg/m3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(7.50, 7.50, 7.50); Calibrated: June 21, 2023;

Sensor-Surface: 4mm (Mechanical Surface Detection)

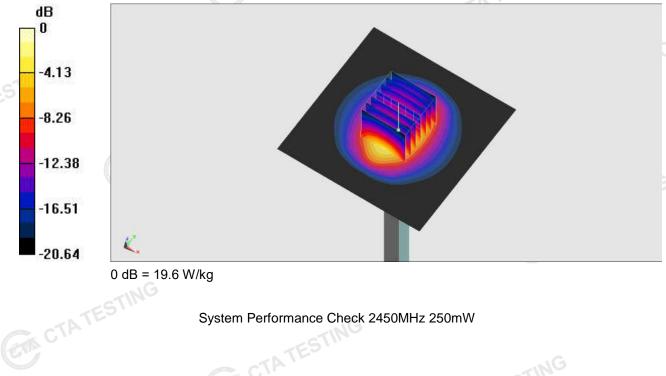
Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

Phantom: SAM 1; Type: SAM;

CTA TESTING Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 19.6 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 110.3 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 23.6 W/kg

SAR(1 g) = 12.98 W/kg; SAR(10 g) = 5.85 W/kg

Maximum value of SAR (measured) = 19.6 W/kg

0 dB = 19.6 W/kg

System Performance Check 2450MHz 250mW CTATESTII

Report No.: CTA24022202605 Page 44 of 74

Date: 03/05/2024

5250MHz System Check

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1102

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5250 MHz; $\sigma = 4.692 \text{ S/m}$; $\epsilon r = 36.345$; $\rho = 1000 \text{ kg/m}$ 3 CTATESTIN'

Phantom section: Flat Section

DASY5 Configuration:

•Probe: EX3DV4 - SN7380; ConvF(5.45, 5.45, 5.45); Calibrated: June 21, 2023;

Sensor-Surface: 4mm (Mechanical Surface Detection)

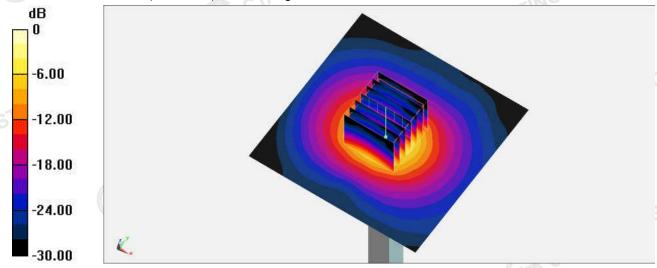
Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 19.5 W/kg


Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.54 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 35.8 W/kg

SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.21 W/kg

Maximum value of SAR (measured) = 20.4 W/kg

0 dB = 20.4 W/kg

System Performance Check 5250MHz 100mW CTATESTING

Report No.: CTA24022202605 Page 45 of 74

Date: 03/05/2024

5750MHz System Check

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1102

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5750 MHz; $\sigma = 5.168$ S/m; $\epsilon r = 34.897$; $\rho = 1000$ kg/m3 CTATESTIN'

Phantom section: Flat Section

DASY5 Configuration:

•Probe: EX3DV4 - SN7380; ConvF(4.96, 4.96, 4.96); Calibrated: June 21, 2023;

Sensor-Surface: 4mm (Mechanical Surface Detection)

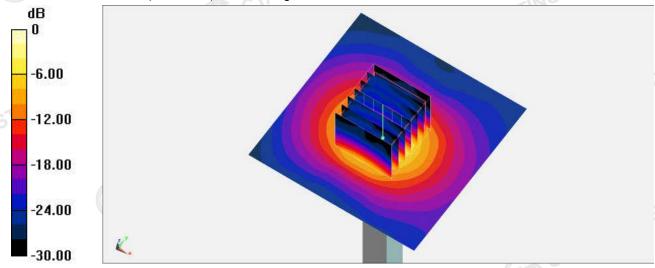
Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 20.2 W/kg


Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.55 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 39.5 W/kg

SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 20.5 W/kg

0 dB = 20.5 W/kg

System Performance Check 5750MHz 100mW

Page 46 of 74 Report No.: CTA24022202605

Appendix C. Plots of SAR Test Data

Date: 03/04/2024

WLAN 802.11b_Bottom_CH 06_0mm_Ant1

Communication System: UID 0, Generic WLAN (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.786$ S/m; $\epsilon r = 39.658$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 – SN7380; ConvF(7.50, 7.50, 7.50); Calibrated: June 21, 2023;

Sensor-Surface: 4mm (Mechanical Surface Detection)

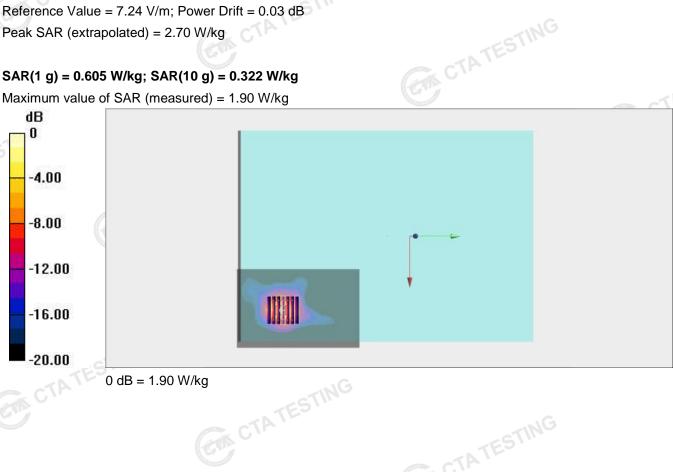
Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (71x111x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.91 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.24 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 2.70 W/kg

SAR(1 g) = 0.605 W/kg; SAR(10 g) = 0.322 W/kg

Maximum value of SAR (measured) = 1.90 W/kg

0 dB = 1.90 W/kg

Page 47 of 74 Report No.: CTA24022202605

#2

Date: 03/05/2024

WLAN 802.11a 5.2G_Bottom_CH 36_0mm_Ant1

Communication System: UID 0, Generic WLAN (0); Frequency: 5180 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5180 MHz; $\sigma = 4.665 \text{ S/m}$; $\epsilon r = 36.235$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 – SN7380; ConvF(5.45, 5.45, 5.45); Calibrated: June 21, 2023;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

Phantom: SAM 1; Type: SAM;

CTA TESTING Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (101x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.95 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 6.47 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 2.25 W/kg

SAR(1 g) = 0.577 W/kg; SAR(10 g) = 0.296 W/kg

Maximum value of SAR (measured) = 1.67 W/kg

0 dB = 1.67 W/Kg

Page 48 of 74 Report No.: CTA24022202605

#3

Date: 03/05/2024

WLAN 802.11a 5.8G_ Bottom_CH 165_0mm_Ant1

Communication System: UID 0, Generic WLAN (0); Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 5825 MHz; σ = 5.305 S/m; ϵ r = 35.369; ρ = 1000 kg/m3

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7380; ConvF(4.96, 4.96, 4.96); Calibrated: June 21, 2023;

• Sensor-Surface: 4mm (Mechanical Surface Detection)

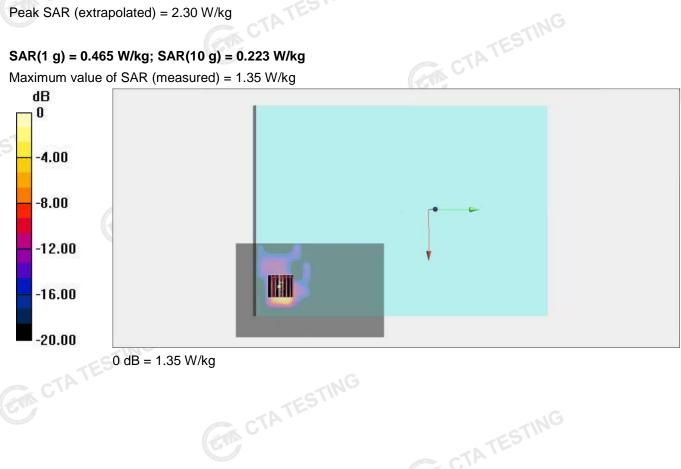
Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;

Phantom: SAM 1; Type: SAM;

CTA TESTING Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

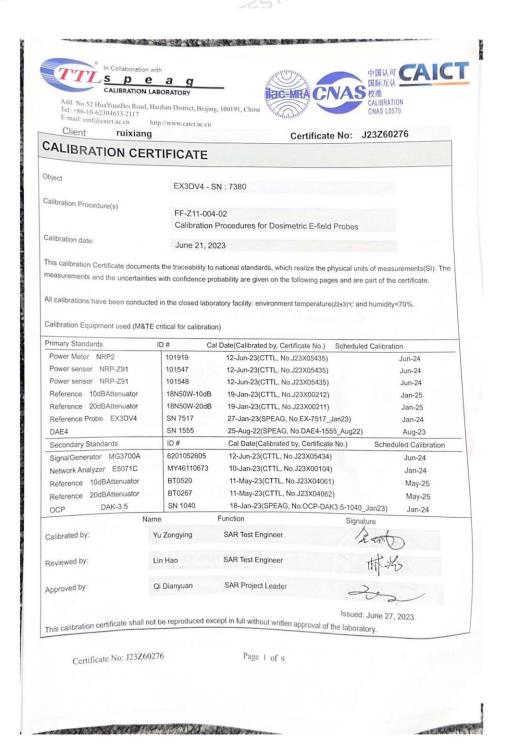
Area Scan (101x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.41 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 5.46 V/m; Power Drift = - 0.03 dB

Peak SAR (extrapolated) = 2.30 W/kg


SAR(1 g) = 0.465 W/kg; SAR(10 g) = 0.223 W/kg

Maximum value of SAR (measured) = 1.35 W/kg

Report No.: CTA24022202605 Page 49 of 74

Appendix D. DASY System Calibration Certificate

CTA TESTING

CTATES CTATES

Report No.: CTA24022202605 Page 50 of 74

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn

E-mail: emf@caict.ac.cn

Glossary:

tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Φ rotation around probe axis Polarization Φ

Polarization θ

 θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

0=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)",

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the

E²-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.

DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (polymertainty required). DCP does not depend on frequency nor media

(no uncertainty required). DCP does not depend on frequency nor media.

PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal

characteristics

Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the

Ax,y,z; Bx,y,z; Cx,y,z;Vxx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters realized for houndary compensation (alpha, depth) of which typical uncertainty volved and the parameters assessed based on the data of power for the parameters. applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to allows extending the validity from ±50MHz to±100MHz.

allows extending the validity from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

phantom exposed by a patent antenne.

Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the

probe tip (on probe axis). No total and required.

Connector Angle: The angle is assessed using the information gained by determining the NORMx

Certificate No:J23Z60276

Page 2 of 9

Page 51 of 74 Report No.: CTA24022202605

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cmf@caict.ac.cn http://www.caict.ac.cn

· 有四次以外中學以及所有所有的一個在120日日

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7380

Basic Calibration Parameters

.,	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(μV/(V/m)²) ^A	0.44	0.35	0.41	±10.0%
DCP(mV) ^B	100.5	101.6	100.6	2101070

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0 CM	CM	X	0.0	0.0	1.0	0.00	161.9	±2.2%
		Y	0.0	0.0	1.0		139.0	
		Z	0.0	0.0	1.0		149.3	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:J23Z60276

A STATE OF THE STA

Page 3 of 9

Page 52 of 74 Report No.: CTA24022202605

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn http://www.caict.ac.cn

11. CENTER OF THE SECRET OF THE SECRET

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7380

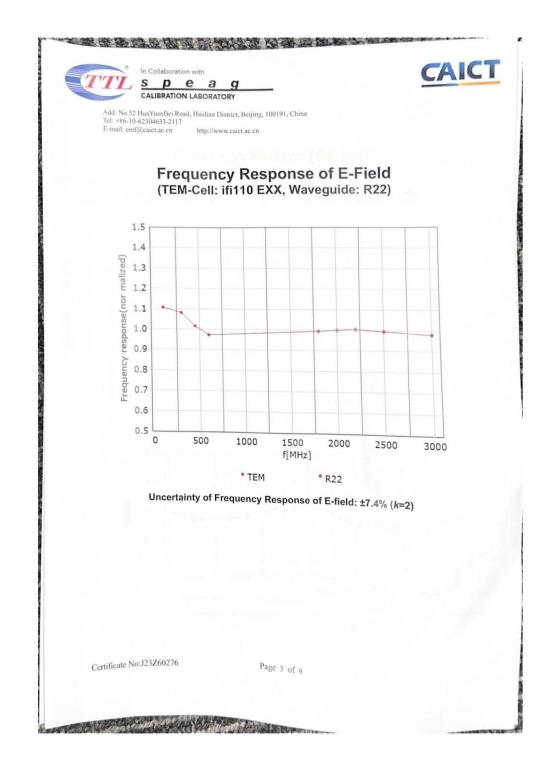
Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	10.02	10.02	10.02	0.17	1.27	
835	41.5	0.90	9.62	9.62	9.62		(370,000	±12.7%
1750	40.1	1.37	8.35	8.35		0.18	1.30	±12.7%
1900	40.0	1.40	8.05		8.35	0.28	1.02	±12.7%
2100	39.8			8.05	8.05	0.24	1.11	±12.7%
2300		1.49	8.00	8.00	8.00	0.24	1.11	±12.7%
2450	39.5	1.67	7.75	7.75	7.75	0.65	0.67	±12.7%
	39.2	1.80	7.50	7.50	7.50	0.65	0.69	±12.7%
2600	39.0	1.96	7.35	7.35	7.35	0.47	0.85	±12.7%
3500	37.9	2.91	6.85	6.85	6.85	0.41	1.03	±13.9%
3700	37.7	3.12	6.69	6.69	6.69	0.43	1.03	± 13.9%
3900	37.5	3.32	6.58	6.58	6.58	0.30	1.50	±13.9%
4100	37.2	3.53	6.62	6.62	6.62	0.35	1.25	
4200	37.1	3.63	6.52	6.52	6.52	0.30		±13.99
4400	36.9	3.84	6.44	6.44	6.44	0.30	1.45	±13.99
4600	36.7	4.04	6.41	6.41	6.41		1.50	±13.99
4800	36.4	4.25	6.36	6.36		0.35	1.48	±13.9
4950	36.3	4.40	5.95		6.36	0.35	1.50	±13.9
5250	35.9	4.71		5.95	5.95	0.35	1.55	±13.9
5600	35.5	5.07	5.45	5.45	5.45	0.40	1.55	±13.9
			4.86	4.86	4.86	0.45	1.40	±13.9
5750	35.4	5.22	4.96	4.96	4.96	0.45	1.40	±13.9

© Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

150 and 220 km is the FALL frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

tissue parameters.

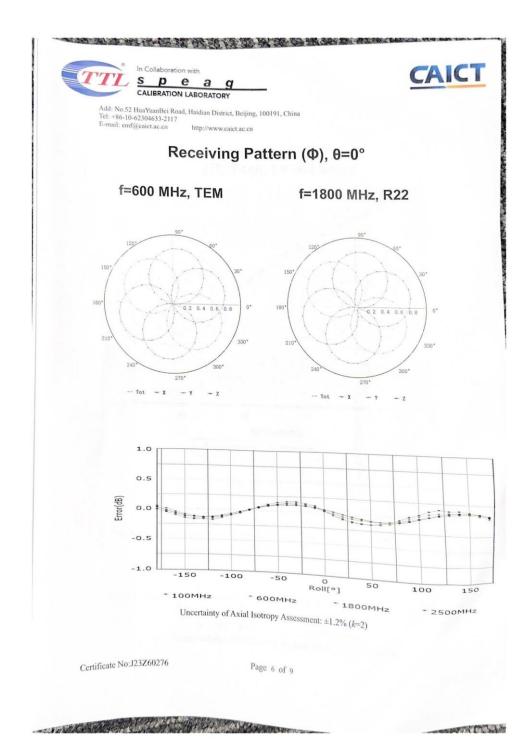

6 Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:J23Z60276

Section 1997 The Section 1998 To the Section 1

Page 4 of 9

Report No.: CTA24022202605 Page 53 of 74

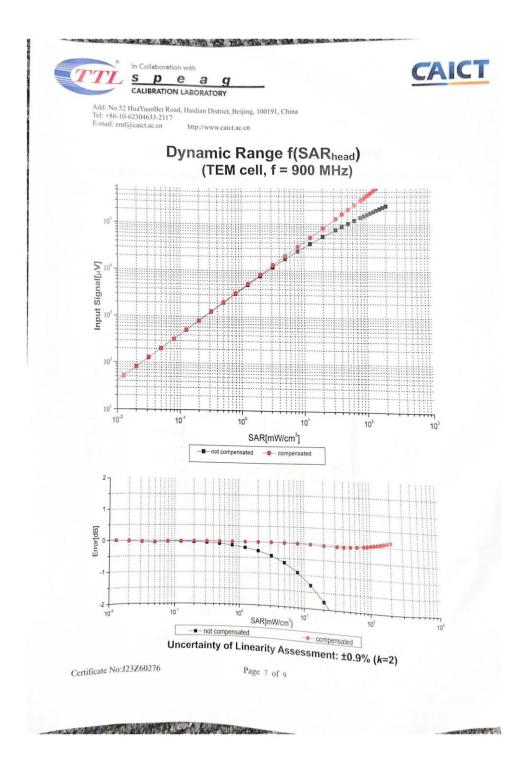

CTA TESTING

CTA TESTING

CATESTING

ESTING

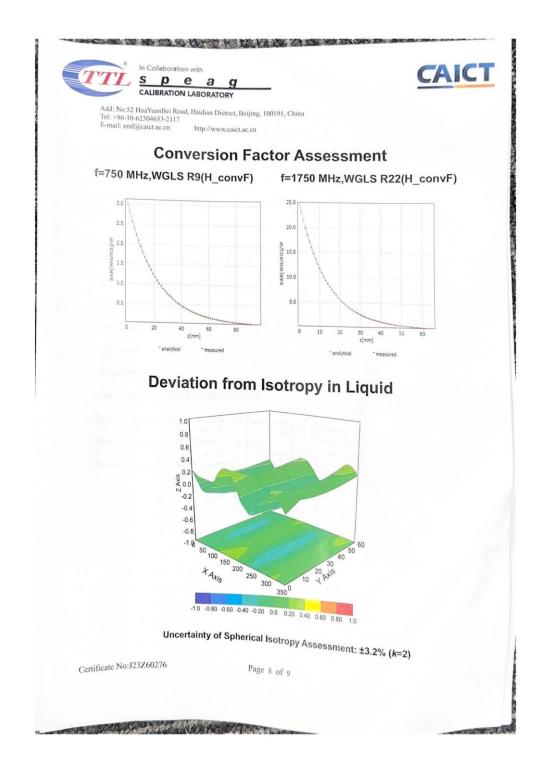
Report No.: CTA24022202605 Page 54 of 74



CTATESTING

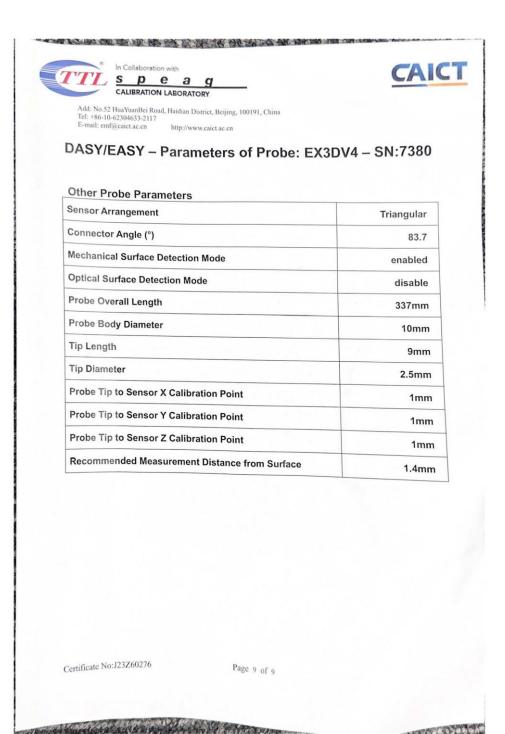
CTATESTING

STI


Report No.: CTA24022202605 Page 55 of 74

CTATESTING

ESTING


Report No.: CTA24022202605 Page 56 of 74

CTA TESTING

CTING

Report No.: CTA24022202605 Page 57 of 74

CTATESTIN

CTA TESTING

ESTING

Page 58 of 74 Report No.: CTA24022202605

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.en http://www.caict.ac.cn

CTA Client :

Certificate No: J23Z60391

CALIBRATION CERTIFICATE

Object DAE3 - SN: 428

Calibration Procedure(s) FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date: August 30, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Process Calibrator 753 1971018 12-Jun-23 (CTTL, No.J23X05436) Jun-24

Calibrated by:

Reviewed by:

Name

Function Yu Zongying SAR Test Engineer

Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

Issued: September 06, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J23Z60391

Page 1 of 3

Page 59 of 74 Report No.: CTA24022202605

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No; J23Z60391

Page 2 of 3

Report No.: CTA24022202605 Page 60 of 74

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1μV , full range = -100...+300 mV

Low Range: 1LSB = 61nV , full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	Х	Υ	Z
High Range	404.468 ± 0.15% (k=2)	404.804 ± 0.15% (k=2)	404.579 ± 0.15% (k=2)
Low Range	3.95934 ± 0.7% (k=2)	3.95437 ± 0.7% (k=2)	3.91875 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	258.5° ± 1 °

Certificate No: J23Z60391

Page 3 of 3

Report No.: CTA24022202605 Page 61 of 74

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117

http://www.caict.ac.cn E-mail: cttl@chinattl.com

Certificate No: J23Z60389

CTA **CALIBRATION CERTIFICATE**

Object D2450V2 - SN: 745

Calibration Procedure(s)

Client

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: August 28, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Power sensor NRP8S	104291	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Reference Probe EX3DV4	SN 3617	31-Mar-23(CTTL-SPEAG,No.Z23-60161)	Mar-24
DAE4	SN 1556	11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Jan-24
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	05-Jan-23 (CTTL, No. J23X00107)	Jan-24
NetworkAnalyzer E5071C	MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	**
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	SNR

Issued: September 1, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J23Z60389

Page 1 of 6

Report No.: CTA24022202605 Page 62 of 74

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J23Z60389

Page 2 of 6

Report No.: CTA24022202605 Page 63 of 74

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		_

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.7 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 18.7 % (k=2)

Certificate No: J23Z60389

Page 3 of 6

LING

Report No.: CTA24022202605 Page 64 of 74

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: ettl@chinattl.com http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.2Ω+ 5.40jΩ
Return Loss	- 23.7dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.077 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manadata by	

Certificate No: J23Z60389

Page 4 of 6

Page 65 of 74 Report No.: CTA24022202605

Date: 2023-08-28

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 745

Communication System: UID 0, CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.835$ S/m; $\varepsilon_r = 39.03$; $\rho = 1000$ kg/m³

Phantom section: Right Section

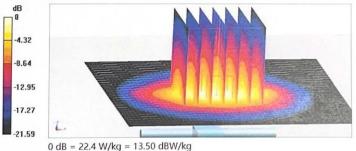
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.68, 7.68, 7.68) @ 2450 MHz; Calibrated: 2023-03-31
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2023-01-11
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.5 V/m; Power Drift = -0.05 dB

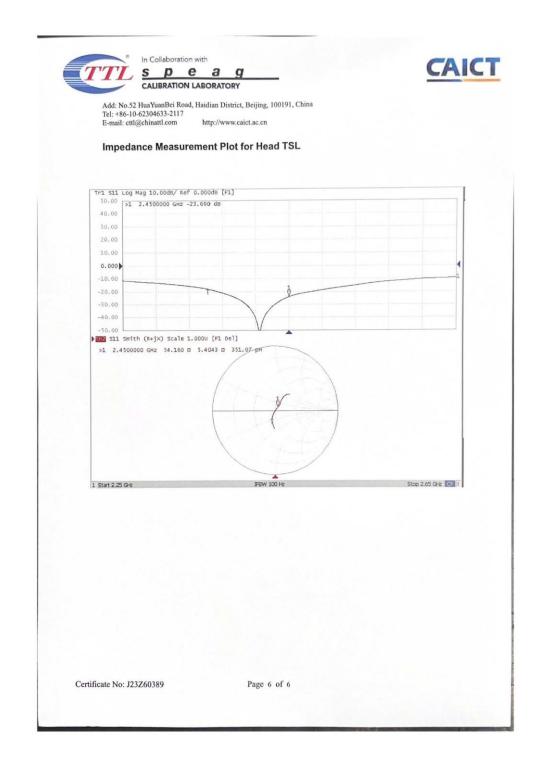

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.16 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 48.5%

Maximum value of SAR (measured) = 22.4 W/kg



Certificate No: J23Z60389

Page 5 of 6

Report No.: CTA24022202605 Page 66 of 74

(e)

CTATESTING

CTA TESTING

ESTING

ESTING

k CTATE

NNG

Report No.: CTA24022202605 Page 67 of 74

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn

Client audix

Certificate No: J23Z60245

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1102

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

May 19, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Power sensor NRP8S	104291	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Reference Probe EX3DV4	SN 3617	31-Mar-23(CTTL-SPEAG,No.Z23-60161)	Mar-24
DAE4	SN 1556	11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Jan-24
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	05-Jan-23 (CTTL, No. J23X00107)	Jan-24
NetworkAnalyzer E5071C	MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24
 247 for stratilists 	The past chairful	no i formationale dell'intere electrica	

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	3
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	300

Issued: May 25, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J23Z60245

Page 1 of 8

ESTING

TESTING

Report No.: CTA24022202605 Page 68 of 74

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn

Glossary:

TSL tissue simulating liquid sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J23Z60245

Page 2 of 8

Report No.: CTA24022202605 Page 69 of 74

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caic.ac.cn E-mail: emf@caict.ac.cn

Measurement Conditions

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	1.00

Head TSL parameters at 5250MHz

The following parameters and calculations were applied. Conductivity Temperature Permittivity 35.9 4.71 mho/m 22.0 °C Nominal Head TSL parameters 4.73 mho/m ± 6 % 35.7 ± 6 % (22.0 ± 0.2) °C Measured Head TSL parameters <1.0 °C

SAR result with Head TSL at 5250MHz

Head TSL temperature change during test

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.88 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.7 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 24.2 % (k=2)

Certificate No: J23Z60245

Page 3 of 8

Report No.: CTA24022202605 Page 70 of 74

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caic.ac.cn

Head TSL parameters at 5600MHz

The following parameters and calculations were applied.

Temperature Permittivity Conductivity

Nominal Head TSL parameters 22.0 °C 35.5 5.07 mho/m

The conductivity Permittivity Conductivity Conducti

Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	5.11 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	_	

SAR result with Head TSL at 5600MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.8 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 24.2 % (k=2)

Head TSL parameters at 5750MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	5.28 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	mental To be such	of other bases

SAR result with Head TSL at 5750MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	All and the second second
SAR measured	100 mW input power	7.75 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.3 W/kg ± 24.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.6 W/kg ± 24.2 % (k=2)

Certificate No: J23Z60245

Page 4 of 8

(ESTING

Report No.: CTA24022202605 Page 71 of 74

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caic.ac.cn

E-mail: emt@caict.ac.cn http://www.caic.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL at 5250MHz

Impedance, transformed to feed point	50.4Ω- 4.07jΩ
Return Loss	- 27.8dB

Antenna Parameters with Head TSL at 5600MHz

Impedance, transformed to feed point	56.8Ω+ 0.61jΩ	
Return Loss	- 23.9dB	

Antenna Parameters with Head TSL at 5750MHz

Impedance, transformed to feed point	52.5Ω+ 1.21jΩ	
Return Loss	- 31.2dB	

General Antenna Parameters and Design

Floatrical Delay (and discussion)		
Electrical Delay (one direction)	1.115 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: J23Z60245

Page 5 of 8

ESTING

Page 72 of 74 Report No.: CTA24022202605

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emt@caict.ac.cn http://www.caic.ac.cn

DASY5 Validation Report for Head TSL

Date: 2023-05-19

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1102

Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz,

Frequency: 5750 MHz

Medium parameters used: f = 5250 MHz; σ = 4.73 S/m; ϵ_r = 35.7; ρ = 1000 kg/m³ Medium parameters used: f = 5600 MHz; σ = 5.112 S/m; ϵ_r = 35.1; ρ = 1000 kg/m³

Medium parameters used: f = 5750 MHz; σ = 5.277 S/m; ϵ_r = 34.88; ρ = 1000 kg/m³ Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(5.5, 5.5, 5.5) @ 5250 MHz; ConvF(5.01, 5.01, 5.01) @ 5600 MHz; ConvF(5.15, 5.15, 5.15) @ 5750 MHz; Calibrated:
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2023-01-11
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial:
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 50.36 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.0 W/kg SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.23 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.8% Maximum value of SAR (measured) = 18.3 W/kg

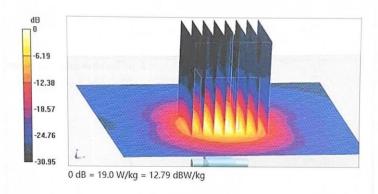
Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 50.96 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 36.3 W/kg SAR(1 g) = 8.2 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 61.6% Maximum value of SAR (measured) = 19.6 W/kg

Certificate No: J23Z60245

Page 6 of 8

Report No.: CTA24022202605 Page 73 of 74

Add: No.52 HuaYuanBci Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn


Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

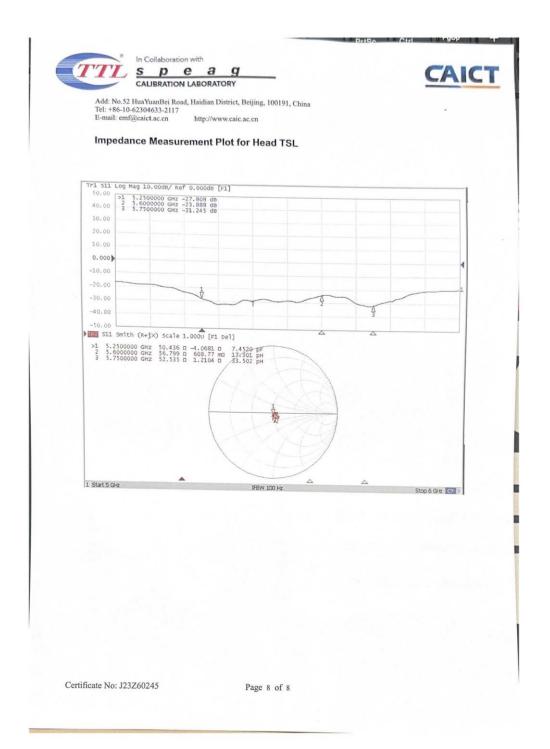
Reference Value = 49.04 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 35.9 W/kg

SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.17 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 60.5%

Maximum value of SAR (measured) = 19.0 W/kg

Certificate No: J23Z60245


Page 7 of 8

CTA TESTING

CTATES!

CTA T

Report No.: CTA24022202605 Page 74 of 74

****END OF REPORT****

CTA TESTING

CTATESTING

ESTING