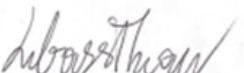


FCC PART 15, SUBPART C


TEST REPORT

For

Dusty Robotics, Inc.

909 San Rafael Avenue
Mountain View, CA 94043, USA

FCC ID: 2BE9F-FLDPRNTR200

Report Type:	Product Type:
Class II Permissive Change	Robot Printer
Prepared By: Libass Thiaw RF Test Engineer	
Report Number: R2411213-247	
Report Date: 2024-12-04	
Reviewed By: Christian McCaig RF Lead Engineer	
Bay Area Compliance Laboratories Corp. 1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732-9164	

Note: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This test report shall not be used by the customer to claim product certification, approval, or endorsement by A2LA or any agency of the United States Government or any foreign government.

* This test report may contain data and test methods that are not covered by BACL's scope of accreditation as of the test report date shown above. These items are marked within the test report text with an asterisk **

TABLE OF CONTENTS

1 GENERAL DESCRIPTION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2 MECHANICAL DESCRIPTION OF EUT	4
1.3 OBJECTIVE	4
1.4 RELATED SUBMITTAL(S)/GRANT(S).....	5
1.5 TEST METHODOLOGY	5
1.6 MEASUREMENT UNCERTAINTY.....	5
1.7 TEST FACILITY REGISTRATIONS.....	5
1.8 TEST FACILITY ACCREDITATIONS.....	6
2 SYSTEM TEST CONFIGURATION	8
2.1 JUSTIFICATION	8
2.2 EUT EXERCISE SOFTWARE	8
2.3 EQUIPMENT MODIFICATION.....	8
2.4 LOCAL SUPPORT EQUIPMENT.....	8
2.5 REMOTE SUPPORT EQUIPMENT	9
2.6 POWER SUPPLY AND LINE FILTERS	9
2.7 INTERFACE PORTS AND CABLING.....	9
3 SUMMARY OF TEST RESULTS.....	10
4 FCC §2.1091, FCC §15.247(I) – RF EXPOSURE	11
4.1 APPLICABLE STANDARDS	11
4.2 MPE PREDICTION	12
4.3 FCC MPE RESULTS	12
5 FCC §15.35(B), §15.205, §15.209, §15.247(D) – SPURIOUS RADIATED EMISSIONS.....	13
5.1 APPLICABLE STANDARDS	13
5.2 TEST SETUP.....	15
5.3 TEST PROCEDURE	15
5.4 CORRECTED AMPLITUDE AND MARGIN CALCULATION	16
5.5 TEST SETUP BLOCK DIAGRAM	17
5.6 TEST EQUIPMENT LIST AND DETAILS.....	18
5.7 TEST ENVIRONMENTAL CONDITIONS	19
5.8 SUMMARY OF TEST RESULTS	19
5.9 RADIATED EMISSIONS TEST RESULTS	20
6 APPENDIX A (NORMATIVE) – EUT TEST SETUP PHOTOGRAPHS.....	28
7 APPENDIX B (NORMATIVE) – EUT EXTERNAL PHOTOGRAPHS.....	29
8 APPENDIX C (NORMATIVE) – EUT INTERNAL PHOTOGRAPHS	30
9 APPENDIX D (NORMATIVE) – A2LA ELECTRICAL TESTING CERTIFICATE.....	31

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R2411213-247	Class II Permissive Change	2024-12-04

1 General Description

1.1 Product Description for Equipment Under Test (EUT)

This test report is prepared on behalf of *Dusty Robotics, Inc., Inc.*, and their product model: Field Printer2 with radio modules WIFI/BT - AzureWave AW-CB375NF - FCC ID: TX2-RTL8822CE, LTE - Quectel EC25-AFDL - FCC ID: XMR2021EC25AFDL, LoRa - LoRa 1276-C1-915 - FCC ID: 2BE9F-FLDPRNTR200, the "EUT" as referred to in this report. The EUT is a Robot Printer, capable of Wi-Fi/BT, LTE, and LoRa capabilities.

1.2 Mechanical Description of EUT

The EUT measures approximately 37.0 cm (L) x 35.0 cm (W) x 17.0 (H) and weighs approximately 15.0 kg.

The data gathered was from a production sample provided by Dusty Robotics, Inc. with S/N: 1020010101D49230019

1.3 Objective

This report is prepared on behalf of *Dusty Robotics, Inc.* in accordance with Part 2, Subpart J, and Part 15, Subpart C of the Federal Communication Commission's rules.

The objective is to determine compliance with FCC Part 15.247 for RF Exposure and Radiated Spurious Emissions for the purpose of evaluating colocation of the pre-certified LoRa radio module with the Wi-Fi/BT and LTE modules.

In order to determine compliance, the manufacturer or a contracted laboratory makes measurements and takes the necessary steps to ensure that the equipment complies with the appropriate technical standards.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product maybe which result in lowering the immunity should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing and/or I/O cable changes, etc.).

1.4 Related Submittal(s)/Grant(s)

N/A

1.5 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and FCC KDB 558074 D01 DTS Meas Guidance v05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247.

1.6 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Parameter	Measurement uncertainty
Occupied Channel Bandwidth	±5%
RF output power, conducted	±0.57 dB
Power Spectral Density, conducted	±1.48 dB
Unwanted Emissions, conducted	±1.57 dB
All emissions, radiated	±4.0 dB
AC power line Conducted Emission	±2.0 dB
Temperature	±2°C
Humidity	±5%
DC and low frequency voltages	±1.0%
Time	±2%
Duty Cycle	±3%

1.7 Test Facility Registrations

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently recognized by the Federal Communications Commission as Accredited with NIST Designation Number US1129.

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently registered with Industry Canada under Registration Numbers: 3062A.

BACL is a Chinese Taipei Bureau of Standards Metrology and Inspection (BSMI) validated Conformity Assessment Body (CAB), under Appendix B, Phase I Procedures of the APEC Mutual Recognition Arrangement (MRA). BACL's BSMI Lab Code Number is: SL2-IN-E-1002R

BACL's test facilities that are used to perform AC Line Conducted Emissions, Telecommunications Line Conducted Emissions, Radiated Emissions from 30 MHz to 1 GHz, and Radiated Emissions from 1 GHz to 6 GHz are currently recognized as Accredited in accordance with the Voluntary Control Council for Interference [VCCI] Article 15 procedures under Registration Number A-428.

1.8 Test Facility Accreditations

Bay Area Compliance Laboratories Corp. (BACL) is:

A- An independent, 3rd-Party, Commercial Test Laboratory accredited to ISO/IEC 17025:2017 by A2LA (Test Laboratory Accreditation Certificate Number 3297.02), in the fields of: Electromagnetic Compatibility and Telecommunications. Unless noted by an Asterisk (*) in the Compliance Matrix (See Section 3 of this Test Report), BACL's ISO/IEC 17025:2017 Scope of Accreditation includes all of the Test Method Standards and/or the Product Family Standards detailed in this Test Report..

BACL's ISO/IEC 17025:2017 Scope of Accreditation includes a comprehensive suite of EMC Emissions, EMC Immunity, Radio, RF Exposure, Safety and wireline Telecommunications test methods applicable to a wide range of product categories. These product categories include Central Office Telecommunications Equipment [including NEBS - Network Equipment Building Systems], Unlicensed and Licensed Wireless and RF devices, Information Technology Equipment (ITE); Telecommunications Terminal Equipment (TTE); Medical Electrical Equipment; Industrial, Scientific and Medical Test Equipment; Professional Audio and Video Equipment; Industrial and Scientific Instruments and Laboratory Apparatus; Cable Distribution Systems, and Energy Efficient Lighting.

B- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3297.03) to certify

- For the USA (Federal Communications Commission):

- 1- All Unlicensed radio frequency devices within FCC Scopes A1, A2, A3, and A4;
- 2- All Licensed radio frequency devices within FCC Scopes B1, B2, B3, and B4;
- 3- All Telephone Terminal Equipment within FCC Scope C.

- For the Canada (Industry Canada):

- 1 All Scope 1-Licence-Exempt Radio Frequency Devices;
- 2 All Scope 2-Licensed Personal Mobile Radio Services;
- 3 All Scope 3-Licensed General Mobile & Fixed Radio Services;
- 4 All Scope 4-Licensed Maritime & Aviation Radio Services;
- 5 All Scope 5-Licensed Fixed Microwave Radio Services
- 6 All Broadcasting Technical Standards (BETS) in the Category I Equipment Standards List.

- For Singapore (Info-Communications Development Authority (IDA)):

- 1 All Line Terminal Equipment: All Technical Specifications for Line Terminal Equipment – Table 1 of IDA MRA Recognition Scheme: 2011, Annex 2
2. All Radio-Communication Equipment: All Technical Specifications for Radio-Communication Equipment – Table 2 of IDA MRA Recognition Scheme: 2011, Annex 2

- For the Hong Kong Special Administrative Region:

- 1 All Radio Equipment, per KHCA 10XX-series Specifications;
- 2 All GMDSS Marine Radio Equipment, per HKCA 12XX-series Specifications;
- 3 All Fixed Network Equipment, per HKCA 20XX-series Specifications.

- For Japan:

- 1 MIC Telecommunication Business Law (Terminal Equipment):
 - All Scope A1 - Terminal Equipment for the Purpose of Calls;
 - All Scope A2 - Other Terminal Equipment
- 2 Radio Law (Radio Equipment):
 - All Scope B1 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 1 of the Radio Law
 - All Scope B2 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 2 of the Radio Law
 - All Scope B3 - Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 3 of the Radio Law

C- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3297.01) to certify Products to USA's Environmental Protection Agency (EPA) ENERGY STAR Product Specifications for:

- 1 Electronics and Office Equipment:
 - for Telephony (ver. 3.0)
 - for Audio/Video (ver. 3.0)
 - for Battery Charging Systems (ver. 1.1)
 - for Set-top Boxes & Cable Boxes (ver. 4.1)
 - for Televisions (ver. 6.1)
 - for Computers (ver. 6.0)
 - for Displays (ver. 6.0)
 - for Imaging Equipment (ver. 2.0)
 - for Computer Servers (ver. 2.0)
- 2 Commercial Food Service Equipment
 - for Commercial Dishwashers (ver. 2.0)
 - for Commercial Ice Machines (ver. 2.0)
 - for Commercial Ovens (ver. 2.1)
 - for Commercial Refrigerators and Freezers
- 3 Lighting Products
 - For Decorative Light Strings (ver. 1.5)
 - For Luminaires (including sub-components) and Lamps (ver. 1.2)
 - For Compact Fluorescent Lamps (CFLs) (ver. 4.3)
 - For Integral LED Lamps (ver. 1.4)
- 4 Heating, Ventilation, and AC Products
 - for Residential Ceiling Fans (ver. 3.0)
 - for Residential Ventilating Fans (ver. 3.2)
- 5 Other
 - For Water Coolers (ver. 3.0)

D- A NIST Designated Phase-I and Phase-II Conformity Assessment Body (CAB) for the following economies and regulatory authorities under the terms of the stated MRAs/Treaties:

- Australia: ACMA (Australian Communication and Media Authority) – APEC Tel MRA -Phase I;
- Canada: (Innovation, Science and Economic development Canada - ISED) Foreign Certification Body – FCB – APEC Tel MRA -Phase I & Phase II;
- Chinese Taipei (Republic of China – Taiwan):
 - o BSMI (Bureau of Standards, Metrology and Inspection) APEC Tel MRA -Phase I;
 - o NCC (National Communications Commission) APEC Tel MRA -Phase I;
- European Union:
 - o EMC Directive 2014/30/EU US-EU EMC & Telecom MRA CAB (NB)
 - o Radio Equipment (RE) Directive 2014/53/EU US-EU EMC & Telecom MRA CAB (NB)
 - o Low Voltage Directive (LVD) 2014/35/EU
- Hong Kong Special Administrative Region: (Office of the Telecommunications Authority – OFTA) APEC Tel MRA -Phase I & Phase II
- Israel – US-Israel MRA Phase I
- Republic of Korea (Ministry of Communications - Radio Research Laboratory) APEC Tel MRA -Phase I
- Singapore: (Infocomm Media Development Authority - IMDA) APEC Tel MRA -Phase I & Phase II;
- Japan: VCCI - Voluntary Control Council for Interference US-Japan Telecom Treaty VCCI Side Letter-
- USA:
 - o ENERGY STAR Recognized Test Laboratory – US EPA
 - o Telecommunications Certification Body (TCB) – US FCC;
 - o Nationally Recognized Test Laboratory (NRTL) – US OSHA
- Vietnam: APEC Tel MRA -Phase I;

2 System Test Configuration

2.1 Justification

The EUT was configured for testing according to ANSI C63.10-2013 and FCC KDB 558074 D01 DTS Meas Guidance v05r02.

The EUT was tested in a testing mode to represent worst-case results during the final qualification test.

2.2 EUT Exercise Software

The exercising software used during testing was PuTTy, provided by Dusty Robotics, Inc. The software is compliant with the standard requirements being tested against.

Radio	Mode	Channel	Frequency (MHz)	Power setting
2.4 GHz Wi-Fi	802.11b	6	2437	Default
LoRa	Default	Middle	915	Default
LTE	Band 2	-	1880	Default
5 GHz Wi-Fi	802.11a	36	5180	Default
Bluetooth	BT-EDR	39	2441	Default

2.3 Equipment Modification

No modifications were made to the EUT during testing.

2.4 Local Support Equipment

N/A

2.5 Remote Support Equipment

Manufacturer	Model	Serial Number
Samsung	NP940X5N	-

2.6 Power Supply and Line Filters

N/A

2.7 Interface Ports and Cabling

N/A

3 Summary of Test Results

FCC Rules	Description of Test	Results
FCC §2.1053, §15.35(b), §15.205, §15.209, §15.247(d)	Radiated Spurious Emissions	Compliant
FCC §2.1091, §15.247(i)	RF Exposure	Compliant

***Disclaimer:** BACL is responsible for all the information provided in this report, except when information is provided by the customer as identified in this report. Information provided by the customer, e.g., antenna gain, can affect the validity of results.*

4 FCC §2.1091, FCC §15.247(i) – RF Exposure

4.1 Applicable Standards

According to FCC §15.247(i), Radio frequency devices operating under the provisions of this part are subject to the radio frequency radiation exposure requirements specified in §§ 1.1307(b), 1.1310, 2.1091, and 2.1093 of this chapter, as appropriate. Applications for equipment authorization of mobile or portable devices operating under this section must contain a statement confirming compliance with these requirements. Technical information showing the basis for this statement must be submitted to the Commission upon request.

According to FCC §2.1091 and §1.1310(e)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	* (100)	30
1.34-30	824/f	2.19/f	* (180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

4.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

4.3 FCC MPE Results

Radio	Frequency (MHz)	Antenna Gain (dBi)	Maximum Power (dBm)	Maximum EIRP (dBm)	Maximum EIRP (mW)	Power Density at 20cm (mW/cm^2)	Limit (mW/cm^2)
LoRa	927.5	4.2	18.50	22.7	186.21	0.037	0.618
BT	2402	3.3	12.8	16.1	40.74	0.008	1.000
5 GHz Wi-Fi	5745	6.31	24.9	31.21	1321.3	0.26	1.000
2.4 GHz Wi-Fi	2437	5.01	24.2	29.21	833.7	0.17	1.000
LTE	1710	4	25	29	794.33	0.158	1.000

NOTE: LoRa determined from original test report (SZ24090158S01 by MORLAB)

NOTE: 2.4 GHz and 5 GHz Wi-Fi cannot transmit simultaneously.

NOTE: Wi-Fi antenna gain is considering worst-case MIMO antenna gain. i.e. single antenna gain + 10*log(2)

Worst Case Sum of Ratios:

LoRa + BT + 2.4 Wi-Fi + LTE: $0.037/0.618+0.008/1.0+0.17/1.0+0.158/1.0 = 0.396 < 1$

LoRa + BT + 5 Wi-Fi + LTE: $0.037/0.618+0.008/1.0+0.26/1.0+0.158/1.0 = 0.486 < 1$

For the different combination of transmitters, a separation distance of 20 cm complies with the MPE simultaneous transmission limit of ≤ 1.0 .

5 FCC §15.35(b), §15.205, §15.209, §15.247(d) – Spurious Radiated Emissions

5.1 Applicable Standards

As per FCC §15.35(b): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 – 0.110	16.42 – 16.423	960 – 1240	4.5 – 5.15
0.495 – 0.505	16.69475 – 16.69525	1300 – 1427	5.35 – 5.46
2.1735 – 2.1905	25.5 – 25.67	1435 – 1626.5	7.25 – 7.75
4.125 – 4.128	37.5 – 38.25	1645.5 – 1646.5	8.025 – 8.5
4.17725 – 4.17775	73 – 74.6	1660 – 1710	9.0 – 9.2
4.20725 – 4.20775	74.8 – 75.2	1718.8 – 1722.2	9.3 – 9.5
6.215 – 6.218	108 – 121.94	2200 – 2300	10.6 – 12.7
6.26775 – 6.26825	123 – 138	2310 – 2390	13.25 – 13.4
6.31175 – 6.31225	149.9 – 150.05	2483.5 – 2500	14.47 – 14.5
8.291 – 8.294	156.52475 – 156.52525	2690 – 2900	15.35 – 16.2
8.362 – 8.366	156.7 – 156.9	3260 – 3267	17.7 – 21.4
8.37625 – 8.38675	162.0125 – 167.17	3.332 – 3.339	22.01 – 23.12
8.41425 – 8.41475	167.72 – 173.2	3 3458 – 3 358	23.6 – 24.0
12.29 – 12.293	240 – 285	3.600 – 4.400	31.2 – 31.8
12.51975 – 12.52025	322 – 335.4		36.43 – 36.5
12.57675 – 12.57725	399.9 – 410		Above 38.6
13.36 – 13.41	608 – 614		

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC §15.247 (d),

in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

5.2 Test Setup

The radiated emissions tests were performed in the 5-meter chamber, using the setup in accordance with ANSI C63.10-2013. The specification used was the FCC §15.247 limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundled when necessary.

5.3 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The EUT was set 3 meter away from the testing antenna, which was varied from 1-4 meters, and the EUT was placed on a turntable, which was 0.8 meters and 1.5 meters above the ground plane for below and above 1,000 MHz measurements, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna's polarity should be changed between horizontal and vertical.

The spectrum analyzer or receiver was set as:

Below 1000 MHz:

RBW = 100 kHz / VBW = 300 kHz / Sweep = Auto

Above 1000 MHz:

- (1) Peak: RBW = 1MHz / VBW = 1MHz / Sweep = Auto
- (2) Average: RBW = 1MHz / VBW = 10Hz or 1/T / Sweep = Auto

5.4 Corrected Amplitude and Margin Calculation

For emissions below 1 GHz,

The Corrected Amplitude (CA) is calculated by adding the Correction Factor to the S.A. Reading. The basic equation is as follows:

$$CA = S.A. \text{ Reading} + \text{Correction Factor}$$

For example, a corrected amplitude of 40.3 dBuV/m = S.A. Reading (32.5 dBuV) + Correction Factor (7.8 dB/m)

The Correction Factor is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) together. This calculation is done in the measurement software, and reported in the test result section. The basic equation is as follows:

$$\text{Correction Factor} = AF + CL + Atten - Ga$$

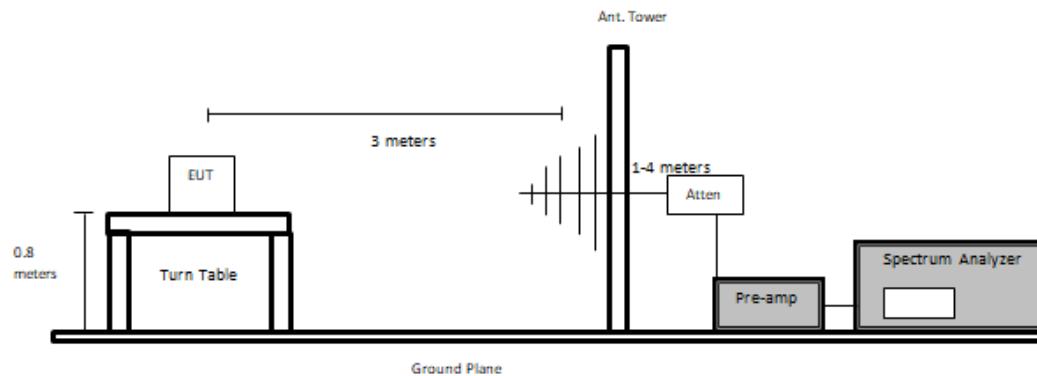
The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corrected Amplitude} - \text{Limit}$$

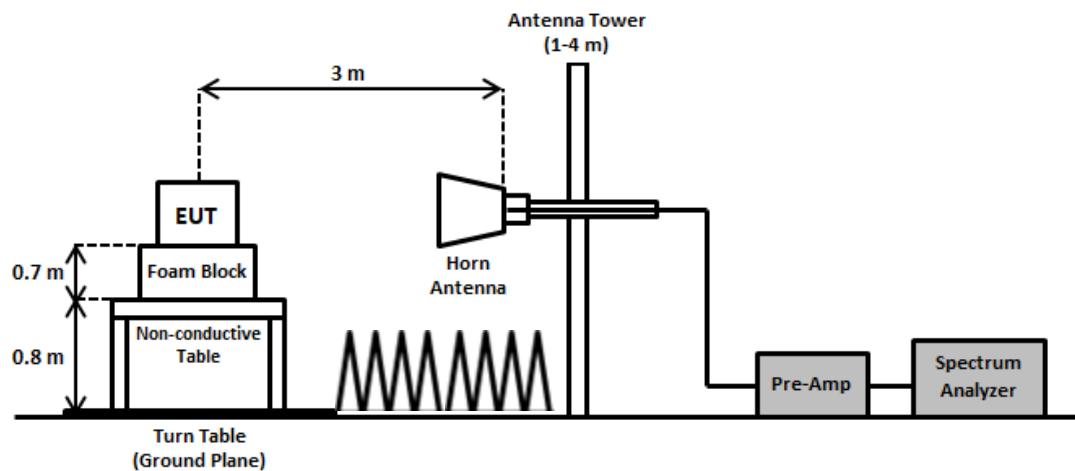
For emission above 1 GHz,

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + AF + CL + Atten - Ga$$


For example, a corrected amplitude of 40.3 dBuV/m = Indicated Reading (32.5 dBuV) + Antenna Factor (+23.5dB) + Cable Loss (3.7 dB) + Attenuator (10 dB) - Amplifier Gain (29.4 dB)

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:


$$\text{Margin} = \text{Corrected Amplitude} - \text{Limit}$$

5.5 Test Setup Block Diagram

30 MHz to 1 GHz

1 GHz to 40 GHz

5.6 Test Equipment List and Details

BACL No.	Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
310	Rhode & Schwarz	EMI Test Receiver	ESCI 1166.5950.03	100338	2024-05-29	1 year
424	Agilent	Spectrum Analyzer	E4440A	US45303156	2024-03-06	1 year
624	Agilent	Spectrum Analyzer	E4446A	MY48250238	2024-06-14	1 year
614	Rhode & Schwarz	Wideband Radio Communication Tester	CMW500	1201.0002K5 0-120503-Um	2024-06-11	1 year
327	Sunol Science Corp	System Controller	SC110V	122303-1	N/R	N/A
1075	Sunol Sciences	Boresight Tower	TLT3	050119-7	N/R	N/A
1388	Sunol Sciences	Flush Mount Turntable	FM	112005-2	N/R	N/A
316	Sonoma Instruments	Preamplifier 10 kHz - 2.5 GHz	317	260406	2024-02-27	6 months
658	HP/Agilent	Pre-Amplifier	8449B OPT HO2	3008A01103	2024-06-18	6 months
827	AH Systems	Preamplifier	PAM 1840 VH	170	2024-07-08	6 months
321	Sunol Sciences	Biconilog Antenna	JB3	A020106-2; 1504	2023-12-18	2 years
1192	ETS Lindgren	Horn Antenna	3117	00218973	2022-09-29	2 years
91	ETS Lindgren	Horn Antenna	ARH-4223-02	10555-02	2024-03-14	2 years
230	Wisewave	Horn Antenna	ARH-2823-02	10555-02	2024-03-14	2 years
188	Sunol Sciences	Horn Antenna	DRH-118	A052704	2023-11-06	2 years
1248	Pasternack	RG214 COAX Cable	PE3062	-	2024-04-04	1 year
1249	Time Microwave	LMR-400 Cable Dc-3 GHz	AE13684	2k80612-5 6fts	2024-04-09	1 year
1356	Pasternack	N 28ft RF Cable	RG213	062421	2023-12-11	1 year
-	-	RF Cable (x2)	-	-	Each Time ¹	Each Time ¹
1245	-	6dB Attenuator	PE7390-6	01182018A	2023-12-18	2 year
1246	HP	RF Limiter	11867A	01734	2024-04-09	1 year
387	Micro-Tronics	5150-5350 MHz Notch Filter	BRC50703	006	2024-03-06	1 year
1175	Micro-Tronics	Notch band 5725-5875 MHz filter	BRC50705	006	2023-12-12	1 year
920	UMTS	Notch Filter 1865 - 2025 MHz	-	938147A 60656 0944	Each Time ¹	Each Time ¹

Note¹: cables, attenuators and notch filters included in the test set-up were checked each time before testing.

Statement of Traceability: **BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with the latest version of A2LA policy P102 “A2LA Policy on Metrological Traceability”.

5.7 Test Environmental Conditions

Temperature:	24.5°C
Relative Humidity:	55.7%
ATM Pressure:	101.9 kPa

The testing was performed by Libass Thiaw from 2024-07-30 to 2024-07-31 in 5m chamber 3.

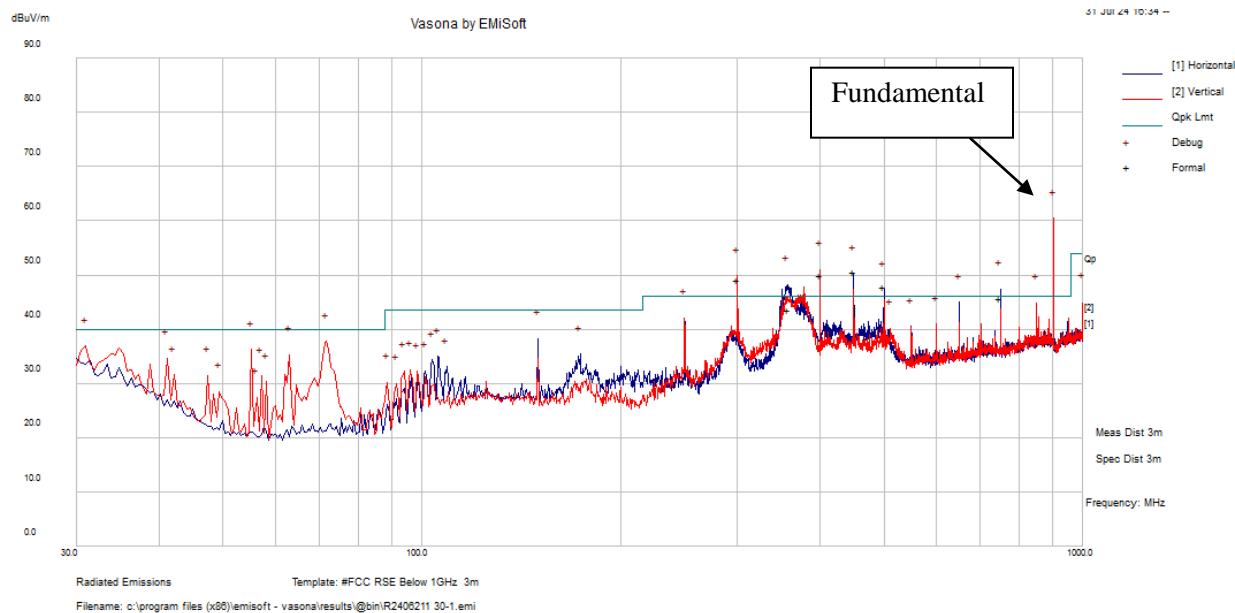
5.8 Summary of Test Results

According to the data hereinafter, the EUT complied with the FCC Part 15.209, 15.247 standards' radiated emissions limits, and had the worst margin of:

Worst Case – Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Configuration
-0.26	749.992	Horizontal	LoRa + 2.4 Wi-Fi + BT + LTE

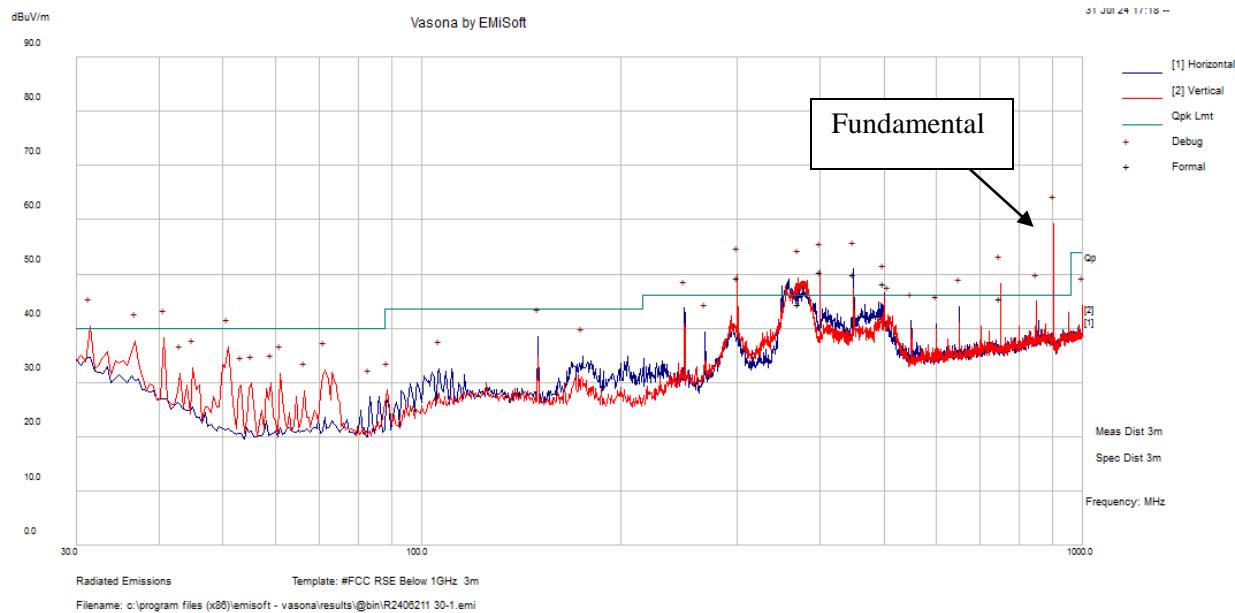
Please refer to the tables and plots in the next section for detailed test results.

5.9 Radiated Emissions Test Results


Note: The EUT is not transmitting at below 30 MHz, thus 9 kHz to 30 MHz was not evaluated for Spurious Emissions.

Note: In cases where Peak emissions were shown to comply with average/QP limits, such emissions' measurements positions (i.e. azimuth and height) are shown in nearest step size since scan was performed with a peak/max. hold trace at all positions.

Note: The wideband emissions at 350-390 MHz fall out of restricted bands per FCC §15.205, thus 30dBc limit was applicable. Limit in unrestricted bands in the frequency range of 30-1000MHz @3m distance = EIRP [dBm] – $20 \cdot \log(d) + 104.88 + 4.7 - 30 = 22.7 - 20 \cdot \log(3) + 104.88 + 4.7 - 30 = 92.74$ dBuV/m.


1) 30 MHz – 1 GHz, Measured at 3 meters

LoRa + 2.4 Wi-Fi + BT + LTE

Frequency (MHz)	S.A. Reading (dBuV)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Antenna Polarity (H/V)	Antenna Height (cm)	Turntable Azimuth (degrees)	Limit (dB μ V/m)	Margin (dB)	Detector
400.0158	49.09	4.12	44.97	V	122	177	46	-1.03	QP
450.021	48.12	2.43	45.69	H	152	189	46	-0.31	QP
300.0155	50.67	6.47	44.2	V	117	7	46	-1.8	QP
357.5495	48.56	4.88	43.68	H	264	201	46	-2.32	QP
749.992	43.29	-2.45	45.74	H	265	7	46	-0.26	QP
500.0095	44.19	1.31	42.88	H	141	56	46	-3.12	QP

Note: The wideband emissions at 350-390 MHz fall out of restricted bands per FCC §15.205, thus 30 dBc limit was applicable, instead.

LoRa + 5 Wi-Fi + BT + LTE

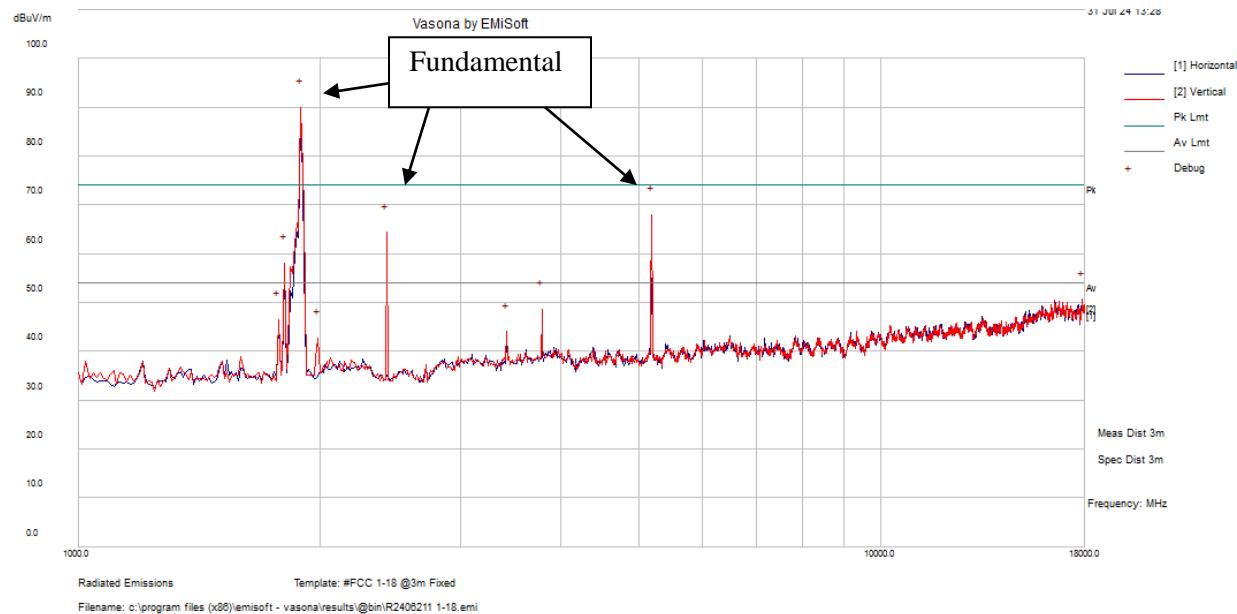
Frequency (MHz)	S.A. Reading (dBuV)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Antenna Polarity (H/V)	Antenna Height (cm)	Turntable Azimuth (degrees)	Limit (dB μ V/m)	Margin (dB)	Detector
450.016	47.47	2.42	45.05	H	174	286	46	-0.95	QP
400.0028	49.51	4.12	45.39	V	107	161	46	-0.61	QP
300.0085	50.96	6.47	44.49	V	117	32	46	-1.51	QP
371.219	49.03	4.63	44.4	V	114	211	46	-1.6	QP
749.996	43.1	-2.45	45.55	V	130	331	46	-0.45	QP
499.9995	44.72	1.31	43.41	H	153	39	46	-2.59	QP
31.455	40.96	-1.93	39.03	V	187	351	40	-0.97	QP

Note: The wideband emissions at 350-390 MHz fall out of restricted bands per FCC §15.205, thus 30 dBc limit was applicable, instead.

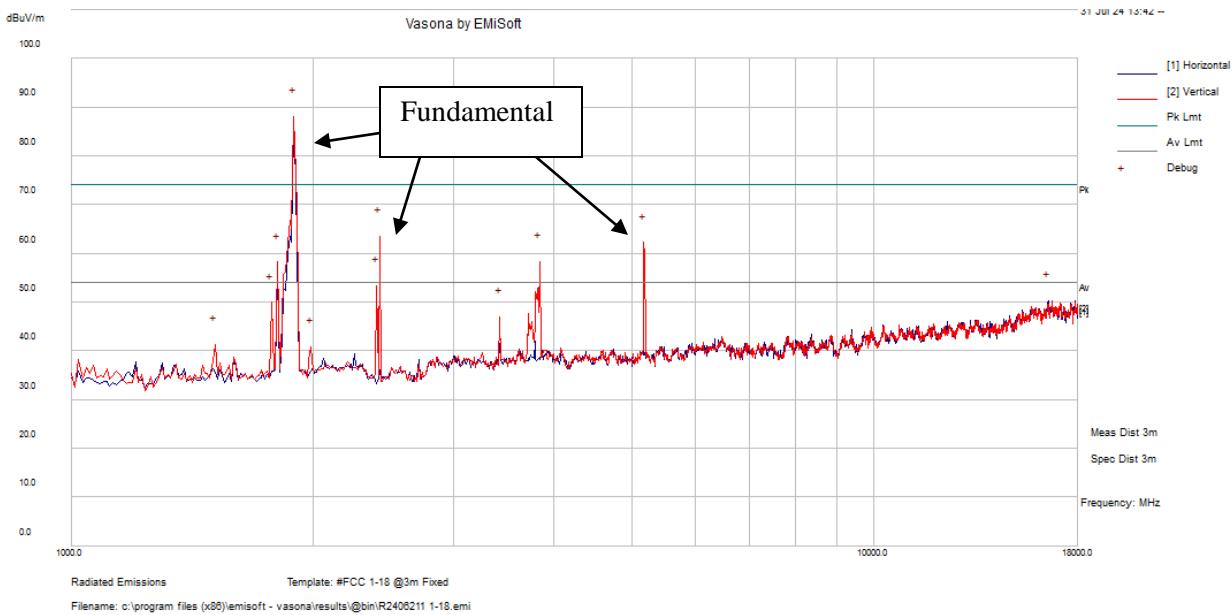
FCC Limits for 1 GHz to 40 GHz				
Applicability	(dBm)	(uV/m at 3meters)	(dBuV/m at 3meters)	(dBuV/m at 1meter)
Restricted Band Average Limit	-	500	54 ²	64 ³
Restricted Band Peak Limit ¹	-	-	74	84

Note 1: Restricted Band Peak Limit is defined to be 20dB higher than Average Limit.

Note 2: Above 1GHz limit calculation:

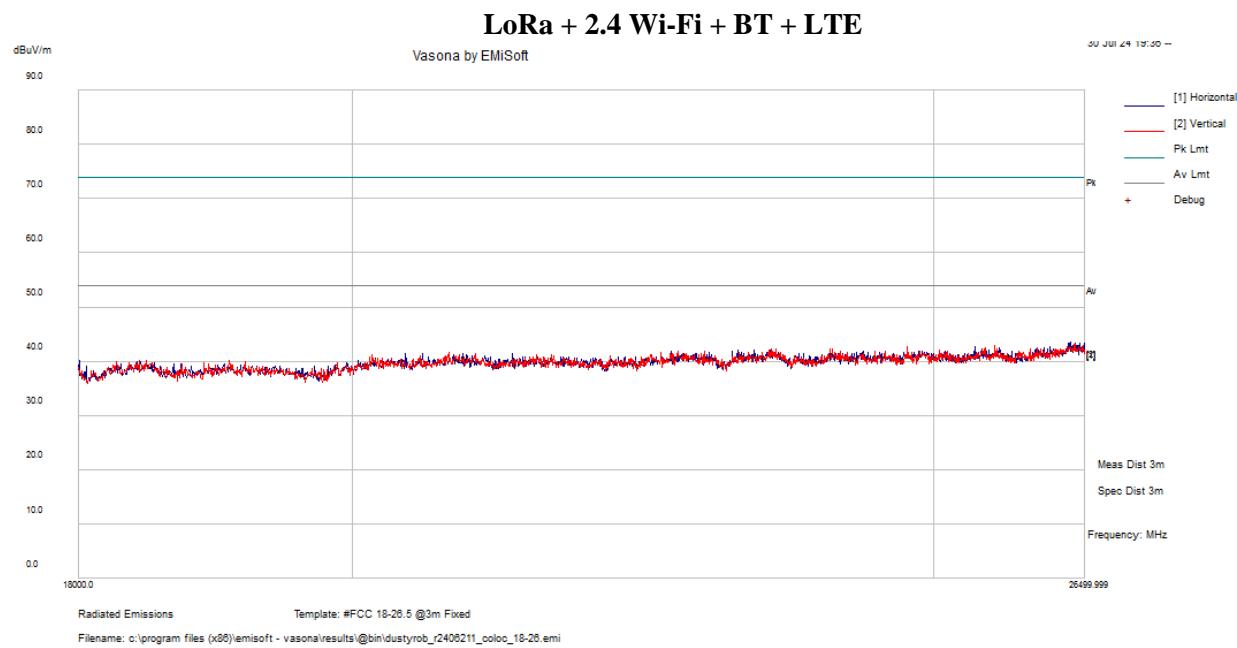

$$\text{dBuV/m} = 20 * \log(\text{V/m}) + 120 = 20 * \log((500 \text{ [uV/m]} / 1000000)) + 120 = 54 \text{ [dBuV/m]}$$

Note 3: Limits at 1 meter are determined by applying a Distance correction factor accounts for extrapolation from 1 meter to 3 meters. Formula used is as follows: $20 * \log (3 \text{ meters} / 1 \text{ meter}) = 9.54$ (According to ANSI C63.10-2013 Section 9.4). Extrapolation calculation from 3m to 1m distance:


$$54 \text{ [dBuV/m at 3m]} + 9.54 \text{ [dB]} = 63.54 \text{ [dBuV/m at 1m]}$$

2) 1 GHz – 18 GHz, Measured at 3 meters

LoRa + 5 Wi-Fi + BT + LTE

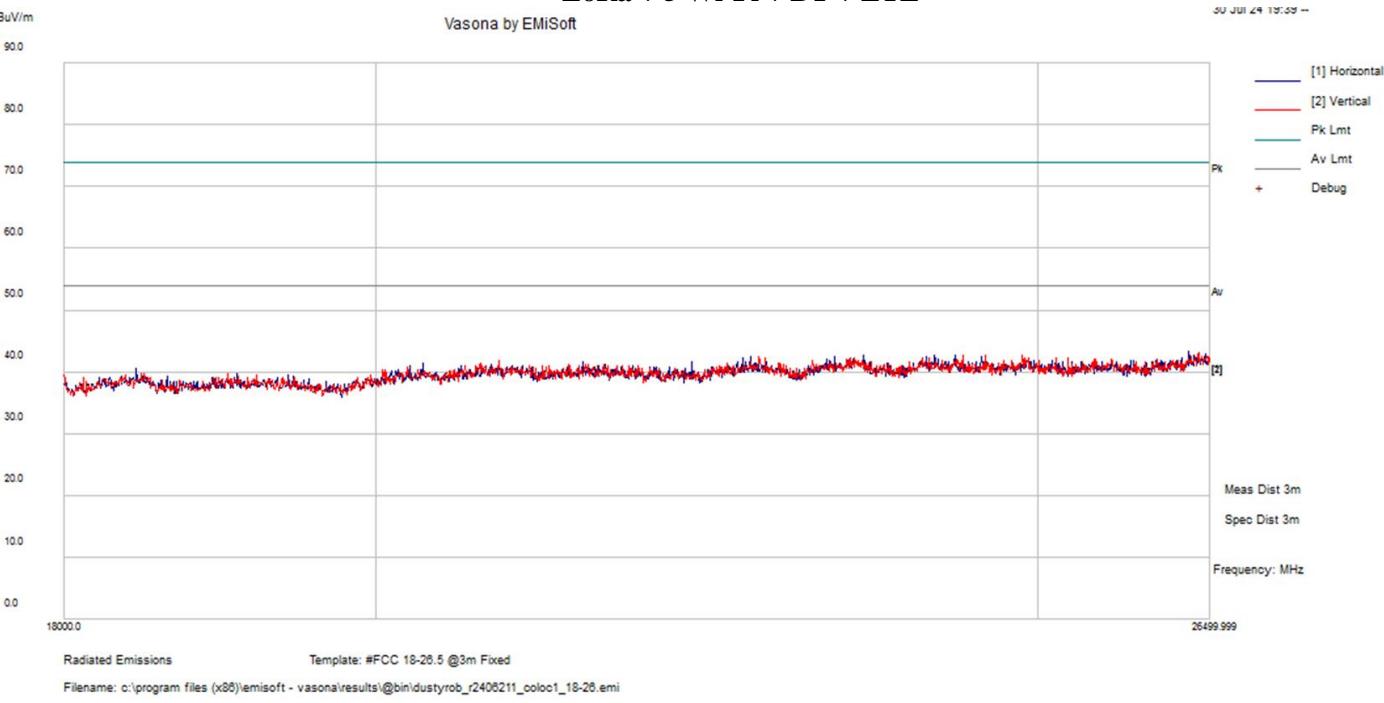

Frequency (MHz)	S.A. Reading (dBuV)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Antenna Polarity (H/V)	Antenna Height (cm)	Turntable Azimuth (degrees)	Limit (dB μ V/m)	Margin (dB)	Detector
1807.5	67.25	-9.13	58.12	V	159	25	74	-15.88	Peak
1807.5	61.81	-9.13	52.68	V	159	25	54	-1.32	Avg

LoRa + 2.4 Wi-Fi + BT + LTE

Frequency (MHz)	S.A. Reading (dBuV)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Antenna Polarity (H/V)	Antenna Height (cm)	Turntable Azimuth (degrees)	Limit (dB μ V/m)	Margin (dB)	Detector
1807.5	67.33	-9.13	58.2	V	160	28	74	-15.8	Peak
1807.5	61.50	-9.13	52.37	V	160	28	54	-1.63	Avg
3836.875	63.89	-5.59	58.3	V	212	10	74	-15.7	Peak
3836.875	42.33	-5.59	47.92	V	212	10	54	-6.08	Avg

Note: 5 GHz Wi-Fi intermittently transmitting as well above.

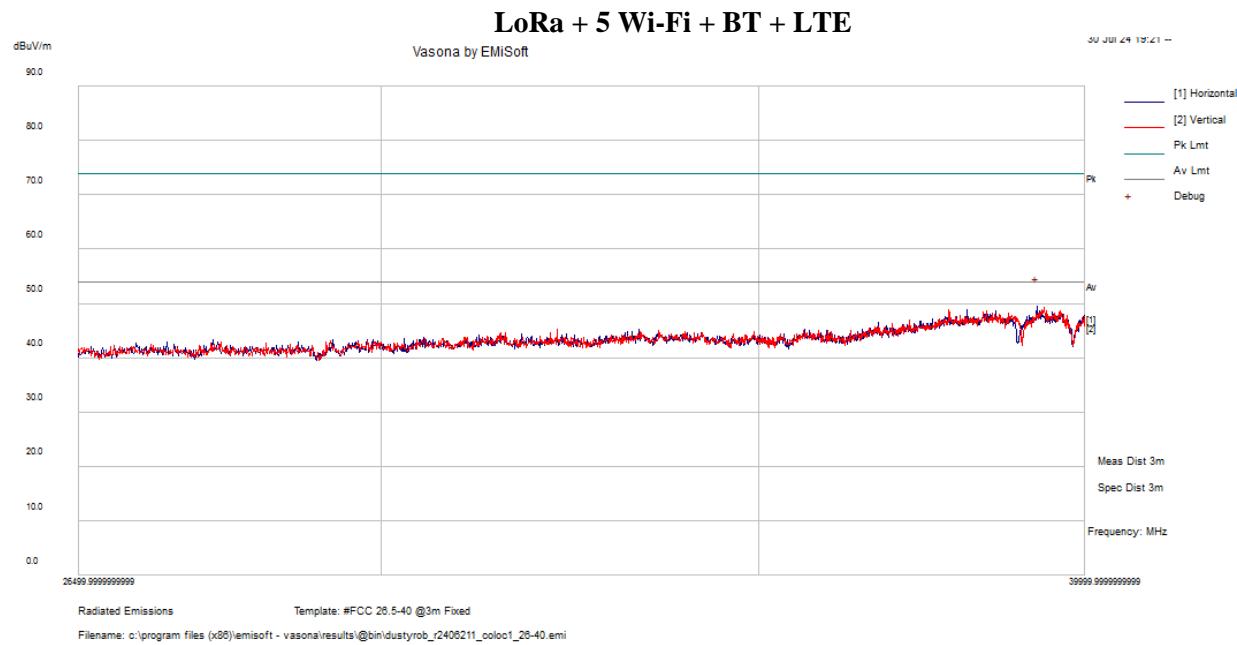
3) 18 GHz – 26.5 GHz, Measured at 3 meters


Frequency (MHz)	S.A. Reading (dB μ V)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Antenna Polarity (H/V)	Antenna Height (cm)	Turntable Azimuth (degrees)	Limit (dB μ V/m)	Margin (dB)	Detector
26377.29	51.14	8.29	42.85	V	200	352	54	-11.15	Peak

Note: Peak emission meet average limits to show worst-case compliance.

LoRa + 5 Wi-Fi + BT + LTE

Vasona by EMiSoft


30 JUL 24 15:39 --

Frequency (MHz)	S.A. Reading (dBuV)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Antenna Polarity (H/V)	Antenna Height (cm)	Turntable Azimuth (degrees)	Limit (dB μ V/m)	Margin (dB)	Detector
26321.24	50.64	8.39	42.25	V	200	352	54	-11.75	Peak

Note: Peak emission meet average limits to show worst-case compliance.

4) 26.5 GHz to 40 GHz, measured at 3 meters

Frequency (MHz)	S.A. Reading (dBuV)	Correction Factor (dB/m)	Corrected Amplitude (dB μ V/m)	Antenna Polarity (H/V)	Antenna Height (cm)	Turntable Azimuth (degrees)	Limit (dB μ V/m)	Margin (dB)	Detector
39223.75	54.53	4.97	49.56	H	200	0	54	-4.44	Peak
40000	52.24	4.32	47.92	H	200	0	54	-6.08	Peak

Note: Peak emission meet average limits to show worst-case compliance.

6 Appendix A (Normative) – EUT Test Setup Photographs

Please refer to the attachment.

7 Appendix B (Normative) – EUT External Photographs

Please refer to the attachment

8 Appendix C (Normative) – EUT Internal Photographs

Please refer to the attachment

9 Appendix D (Normative) – A2LA Electrical Testing Certificate

Accredited Laboratory

A2LA has accredited

BAY AREA COMPLIANCE LABORATORIES CORP.
Sunnyvale, CA

for technical competence in the field of
Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017
General requirements for the competence of testing and calibration laboratories. This laboratory also meets A2LA R222

- Specific Requirements EPA ENERGY STAR Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system
(refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 13th day of September 2024.

A blue ink signature of the name 'Mr. Trace McInturff'.

Mr. Trace McInturff, Vice President, Accreditation Services
For the Accreditation Council
Certificate Number 3297.02
Valid to September 30, 2026

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Please follow the web link below for a full ISO 17025 scope.

<https://www.a2la.org/scopepdf/3297-02.pdf>

--- END OF REPORT ---