

FCC Test Report

Report No.: HK2401240523-2E

Test report
On Behalf of
4CAST Inc
For
MVP
Model No.: HT3566

FCC ID: 2BE8Q-HT3566

Prepared For: 4CAST Inc

4CAST Inc, 2455 Camino Del Sol, Fullerton, CA 92833-1300 US

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai

Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Jan. 24, 2024 ~ Feb. 01, 2024

Date of Report: Feb. 01, 2024

Report Number: HK2401240523-2E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

Test Result Certification

Report No.: HK2401240523-2E

Applicant's name	4CAST Inc			
Address	4CAST Inc, 2455 Camir	no Del Sol, Fullerton, CA	92833-1300 L	JS
Manufacturer's Name	Shenzhen Hugsun Tech	nology Co., Ltd.		
Address		ngyi Industrial Zone, No. istrict, Shenzhen, China	1 Lirong Road	I, Xinshi
Product description				
Trade Mark:	N/A			
Product name	MVP			
Model and/or type reference	HT3566			
Standards	47 CFR FCC Part 15 S	ubpart C 15.247		
This publication may be	e reproduced in whole or	in part for non-commerc	ial purposes	as long as the
material. Shenzhen HU	AK Testing Technology (s acknowledged as copy Co., Ltd. takes no respor	sibility for and	d will not assume
liability for damages res	sulting from the reader's	interpretation of the repr	oduced mater	rial due to its

Testing Engineer

(Len Liao)

Technical Manager : (Sliver Wan)

Authorized Signatory: Jason Mwu

(Jason Zhou)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Table of Contents	ESTING

		Table of Contents	Page
1.	Sur	mmary	5
	1.1. 1.2. 1.3.	Alla, Alla,	5 6
2	1.4. Ger	Statement of the Measurement Uncertaintyneral Information	
۷.			
	2.1.	Environmental Conditions	7
	2.2.	General Description of EUT	
	2.3.	Description of Test Modes and Test Frequency	
	2.4. 2.5.	Equipments Used During the Test	
	2.5. 2.6.	Related Submittal(S) / Grant (S)	
	2.7.	Description of Test Setup	
	2.8.	Description of Support Units	
2		st Conditions and Results	
J .	. ies		
	3.1.	Conducted Emissions Test	
	3.2.	Radiated Emissions and Band Edge	
	3.3.	Maximum Peak Conducted Output Power	
	3.4.	20db Bandwidth	
	3.5.	Frequency Separation	
	3.6.	Number of Hopping Frequency	
	3.7. 3.8.	Time of Occupancy (Dwell Time)	35
	3.8. 3.9.	Out-of-Band Emissions Pseudorandom Frequency Hopping Sequence	39
	3.9. 3.10.	Antenna Requirement	
		NOOL NOOL	
4.	. Tes	st Setup Photos of the EUT	51
5	Dhe	otos of the FUT	53

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Page 4 of 53

** Modified History **

Report No.: HK2401240523-2E

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Feb. 01, 2024	Jason Zhou

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com.

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

1. Summary

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Test Description

FCC PART 15.247				
FCC Part 15.207	AC Power Conducted Emission	PASS		
FCC Part 15.215	20dB Bandwidth & 99% Bandwidth	PASS		
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS		
FCC Part 15.247(b)	Maximum Peak Output Power	PASS		
FCC Part 15.247(a)(1)	Pseudorandom Frequency Hopping Sequence	PASS		
FCC Part 15.247(a)(1)(iii)	Number of hopping frequency & Time of Occupancy	PASS		
FCC Part 15.247(a)(1)	Frequency Separation	PASS		
FCC Part 15.205/15.209	Radiated Emissions	PASS		
FCC Part 15.247(d)	Band Edge Compliance of RF Emission	PASS		
264		263		

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

Report No.: HK2401240523-2E

1.3. Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd. Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

1.4. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen HUAK Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for HUAK laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.37dB	(1)
Transmitter power Radiated	±3.35dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20dB	(1)
Occupied Bandwidth	±3.68%	(1)
Radiated Emission 30~1000MHz	±3.90dB	(1)
Radiated Emission Above 1GHz	±4.28dB	(1)
Conducted Disturbance0.15~30MHz	±2.71dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: HK2401240523-2E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2. General Information

2.1. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C	
Relative Humidity:	55 %	
Air Pressure:	101 kPa	

2.2. General Description of EUT

TO	The Juny Tes	
Product Name:	MVP	
Model/Type reference:	HT3566	
Series Model:	N/A	
Model Difference:	N/A HIANTES HUANTES HUANTES HUANTES	
Power supply:	DC 5V From Adapter	
Version:	Supported EDR	TING
Modulation:	GFSK, π/4DQPSK, 8DPSK	5.
Operation frequency:	2402MHz~2480MHz	
Channel number:	79CH	
Channel separation:	1MHz	
Antenna type:	PCB Antenna	
Antenna gain:	2.06dBi	NG A
Hardware Version:	V1.0	. 4
Software Version:	V1.0	

Note: For more details, refer to the user's manual of the EUT.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2.3. Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

There are 79 channels provided to the EUT and Channel 00/39/78 was selected for testing.

Operation Frequency:

operation i requei	icy.	the the same of th
	Channel	Frequency (MHz)
	00	2402
Y TESTIN	01 MILLER	2403
O HUM	1 (No.
	38	2440
	39	2441
HUNK, WHUNG	40	2442
		:
Din.	77	2479
	78	2480

Note: The line display in grey were the channel selected for testing.

Preliminary tests were performed in each mode and packet length of BT, and found worst case as bellow, finally test were conducted at those mode and recorded in this report.

Test Items	Worst case
Conducted Emissions	Working while charging
Radiated Emissions and Band Edge	DH5 Low channel
Maximum Conducted Output Power	DH5/2DH5/3DH5
20dB Bandwidth & 99% Bandwidth	DH5/2DH5/3DH5
Frequency Separation	DH5/2DH5/3DH5 Middle channel
Number of hopping frequency	DH5/2DH5/3DH5
Time of Occupancy (Dwell Time)	DH1/DH3/DH5 Middle channel 2DH1/2DH3/2DH5 Middle channel 3DH1/3DH3/3DH5 Middle channel
Out-of-band Emissions	DH5/2DH5/3DH5

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2.4. Equipments Used During the Test

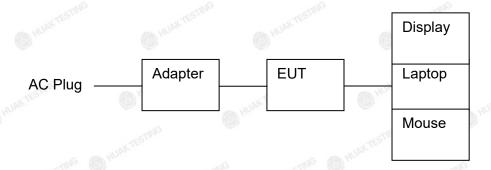
	Equipments 0.	Joa Barring tire	1651		GTIN	651
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N. Artificial Mains Network	R&S	ENV216	HKE-002	Feb. 17, 2023	1 Year
2.	Receiver	R&S	ESR-7	HKE-005	Feb. 17, 2023	1 Year
3.	RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 17, 2023	1 Year
4.	Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 17, 2023	¹1 Year
5.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	1 Year
6.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 17, 2023	1 Year
7.	EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 17, 2023	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Feb. 17, 2023	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 17, 2023	1 Year
10.	Horn Antenna	Schwarzbeck	9120D	HKE-013	Feb. 17, 2023	1 Year
11.	Pre-amplifier	EMCI	EMC051845 SE	HKE-015	Feb. 17, 2023	1 Year
12.	Pre-amplifier	Agilent	83051A	HKE-016	Feb. 17, 2023	1 Year
13.	EMI Test Software EZ-EMC	Tonscend	JS1120-B Version	HKE-083	N/A	N/A
14.	Power Sensor	Agilent	E9300A	HKE-086	Feb. 17, 2023	1 Year
15.	Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	1 Year
16.	Signal generator	Agilent	N5182A	HKE-029	Feb. 17, 2023	1 Year
17.	Signal Generator	Agilent	83630A	HKE-028	Feb. 17, 2023	1 Year
18.	Shielded room	Shiel Hong	4*3*3	HKE-039	Dec. 09, 2021	3 Year
19.	Power meter	Agilent	E4419B	HKE-085	Feb. 17, 2023	1 Year
20.	High gain antenna	Schwarzbeck	LB-180400K F	HKE-054	Feb. 17, 2023	1 Year
21.	10dB Attenuator	Schwarzbeck	VTSD9561F	HKE-153	Feb. 17, 2023	1 Year
L	100	10000	10%	(322)	200	1

The calibration interval was one year.

2.5. Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.6. Modifications


No modifications were implemented to meet testing criteria.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2.7. Description of Test Setup

Operation of EUT during conducted testing and below 1GHz radiation testing:

Operation of EUT during above1GHz radiation testing:

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2.8. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Trade Mark	Model/Type No.	Specification	Remark
1	MVP	N/A	HT3566	N/A	EUT
2	USB Cable	N/A	N/A	Length:0.92m	Accessory
3	HDMI Cable	N/A	N/A	Length:1.51m	Accessory
4	Adapter	N/A	MDY-10-EH	Input: 100-240V, 50/60Hz, 0.7A Output: 5V, 3A/9V, 3A/12V, 2.25A/20V, 1.35A	Peripheral
5 5	Adapter	N/A	N/A MARKETON	Input: 100-240V, 50/60Hz, 0.5A Output: 5VDC, 2A	Peripheral
6	Laptop	Lenovo	TP00096A	Input: DC 20V, 2.25A/3.25A	Peripheral
7	Display	N/A	24PFF3661/T3	N/A	Peripheral
8	Mouse	N/A	N/A	N/A	Peripheral
9	RF Cable	N/A	N/A	Length:0.1m	Peripheral
HUAKTE	O HUANGE	€ HU	W. J.C.	HUNKTER	HILDING

Note:

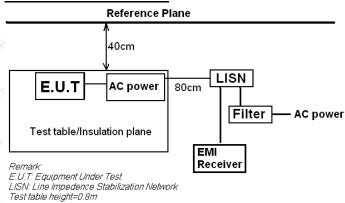
- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20db Bandwidth, Frequency Separation, Number of Hopping Frequency, Time of Occupancy (Dwell Time), Out-of-Band Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Report No.: HK2401240523-2E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3. Test Conditions and Results

3.1. Conducted Emissions Test


LIMIT

According to FCC CFR Title 47 Part 15 Subpart C Section 15.207 and RSS Gen 8.8, AC Power Line Conducted Emissions Limits for License-Exempt Radio Apparatus as below:

Francisco (Alle)	Limit (d	dBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

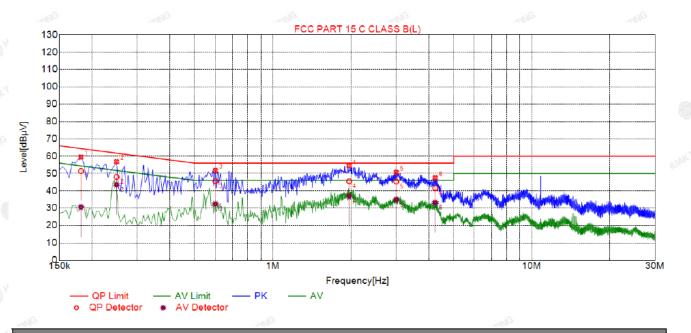
^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com



Report No.: HK2401240523-2E

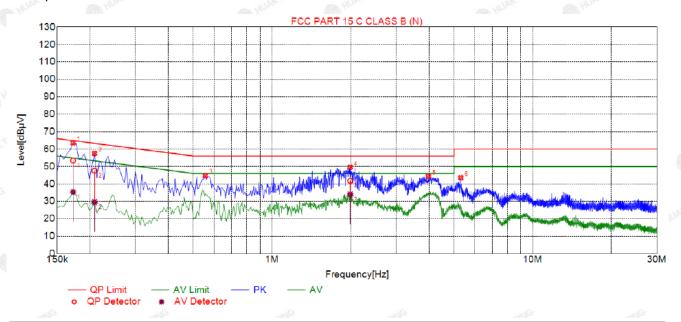
TEST RESULTS

Remark: All modes are tested; only the worst result of was reported as below:

Test Specification: Line

Sus	Suspected List												
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре					
1	0.1815	59.50	20.06	64.42	4.92	39.44	PK	L					
2	0.2490	56.79	20.04	61.79	5.00	36.75	PK	L					
3	0.6000	51.70	20.05	56.00	4.30	31.65	PK	L					
4	1.9725	54.46	20.14	56.00	1.54	34.32	PK	L					
5	2.9985	50.71	20.22	56.00	5.29	30.49	PK	L					
6	4.2405	47.50	20.25	56.00	8.50	27.25	PK	L					

Fin	al Data	a List									
NO.	Freq. [MHz]	Correction factor[dB]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	QP Reading [dBμV]	ΑV Value [dBμV]	ΑV Limit [dBμV]	AV Margin [dB]	AV Reading [dBμV]	Туре
1	0.1815	20.06	51.42	64.42	13.00	31.36	30.63	54.42	23.79	10.57	L
2	0.2490	20.04	48.01	61.79	13.78	27.97	43.58	51.79	8.21	23.54	L
3	0.6000	20.05	45.61	56.00	10.39	25.56	32.41	46.00	13.59	12.36	L
4	1.9725	20.14	45.52	56.00	10.48	25.38	36.91	46.00	9.09	16.77	L
5	2.9985	20.22	45.34	56.00	10.66	25.12	34.80	46.00	11.20	14.58	L
6	4.2405	20.25	41.60	56.00	14.40	21.35	33.19	46.00	12.81	12.94	L


Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss

Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Specification: Neutral

7	Sus	spected	l List						
~	NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBμV]	Detector	Туре
	1	0.1725	63.53	20.04	64.84	1.31	43.49	PK	N
	2	0.2085	57.52	20.04	63.26	5.74	37.48	PK	N
MONEY	3	0.5550	44.72	20.06	56.00	11.28	24.66	PK	N
-	4	1.9950	49.59	20.14	56.00	6.41	29.45	PK	N
	5	3.9840	44.41	20.25	56.00	11.59	24.16	PK	N
Z.	6	5.3025	43.50	20.26	60.00	16.50	23.24	PK	N

Final Data List											
NO.	Freq. [MHz]	Correction factor[dB]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	QP Reading [dBμV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	AV Reading [dBμV]	Туре
1	0.1725	20.04	53.42	64.84	11.42	33.38	35.37	54.84	19.47	15.33	N
2	0.2085	20.04	47.56	63.26	15.70	27.52	29.56	53.26	23.70	9.52	N
3	1.9950	20.14	41.78	56.00	14.22	21.64	33.87	46.00	12.13	13.73	N

Remark: Margin = Limit – Level Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

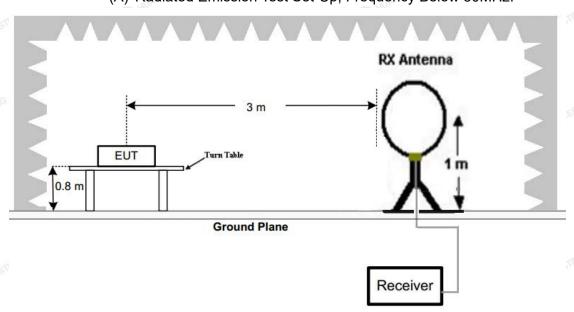
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3.2. Radiated Emissions and Band Edge

Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

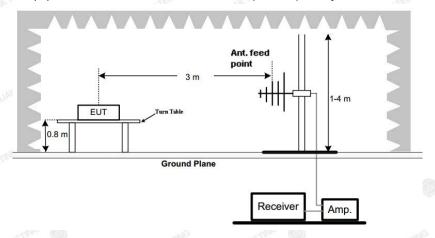

Except when the requirements applicable to a given device state otherwise, emissions from license-exempt transmitters shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

Radiated emission limits

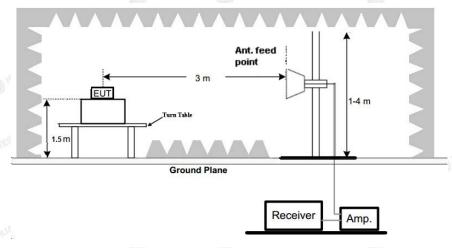
	itaa	ated cirilosion illinio	
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	0.009-0.49 3 20log(2400/F(KHz))+40log(300/		2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3 HUMA	40.0	100
88-216	3	43.5	150
216-960	3 - STING	46.0	200
Above 960	3	54.0	500

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com



(B) Radiated Emission Test Set-Up, Frequency below 1000MHz.

Report No.: HK2401240523-2E

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz.

Test Procedure

- 1. The EUT was placed on turn table which is 0.8m above ground plane for below 1GHz test, and on a low permittivity and low loss tangent turn table which is 1.5m above ground plane for above 1GHz test.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.

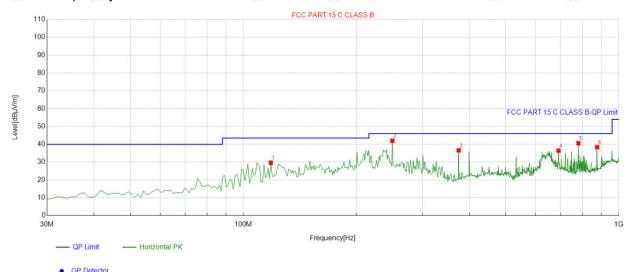
TEST RESULTS

Remark:

- 1. Radiated Emission measured at GFSK, $\pi/4$ DQPSK and 8DPSK mode from 9 KHz to 10th harmonic of fundamental and recorded worst case at GFSK DH5 mode.
- 2. There is no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- For below 1GHz testing recorded worst at GFSK DH5 low channel.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

6


875.71571

-0.99

39.42

Below 1GHz Test Results:

Antenna polarity: H

ı	Suspe	cted List								
J.		Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	
	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
5	1	118.35835	-15.29	44.98	29.69	43.50	13.81	100	154	Horizontal
	2	249.43943	-13.15	55.14	41.99	46.00	4.01	100	328	Horizontal
	3	374.69469	-10.89	47.47	36.58	46.00	9.42	100	3	Horizontal
3	4	691.23123	-4.03	40.48	36.45	46.00	9.55	100	193	Horizontal
	5	780.56056	-2.34	42.96	40.62	46.00	5.38	100	292	Horizontal

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

46.00

7.57

100

342

Horizontal

38.43

ESTAL.

Report No.: HK2401240523-2E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Antenna polarity: V

	Suspe	cted List								
Y	NO.	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Polarity
3	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polanty
	1	75.635636	-16.90	48.12	31.22	40.00	8.78	100	107	Vertical
3	2	153.31331	-18.65	54.68	36.03	43.50	7.47	100	21	Vertical
	3	208.65865	-14.61	51.05	36.44	43.50	7.06	100	181	Vertical
	4	249.43943	-13.15	54.67	41.52	46.00	4.48	100	307	Vertical
	5	532.96296	-6.81	40.77	33.96	46.00	12.04	100	354	Vertical
8	6	875.71571	-0.99	40.04	39.05	46.00	6.95	100	63	Vertical

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

Frequ	uency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
- MAKT	(9)	- MAXIE	- warte
	-	©	10
	XTESTI		V TESTIL
G	- mg HUM	mc M	O mig

Note: 1. Emission Level=Reading+ Cable loss+ Antenna factor-Amp factor.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Report No.: HK2401240523-2E

^{2.} The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

For 1GHz to 25GHz

CH Low (2402MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4804.00	54.26	-3.65	50.61	74.00	-23.39	peak
4804.00	43.21	-3.65	39.56	54.00	-14.44	AVG
7206.00	52.18	-0.95	51.23	74.00	-22.77	peak
7206.00	40.87	-0.95	39.92	54.00	-14.08	AVG
707.7					2000	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier;Level = Reading + Factor; Margin = Level -

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4804.00	55.42	-3.65	51.77	74.00	-22.23	peak
4804.00	44.01	-3.65	40.36	54.00	-13.64	AVG
7206.00	52.44	-0.95	51.49	74.00	-22.51	peak
7206.00	40.18	-0.95	39.23	54.00	-14.77	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier;Level = Reading + Factor; Margin = Level - Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

CH Middle (2441MHz)

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4882.00	53.71	-3.54	50.17	74.00	-23.83	peak
4882.00	43.45	-3.54	39.91	54.00	-14.09	AVG
7323.00	51.26	-0.81	50.45	74.00	-23.55	peak
7323.00	40.39	-0.81	39.58	54.00	-14.42	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier;Level = Reading + Factor; Margin = Level -_imit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4882.00	53.74	-3.54	50.20	74.00	-23.80	peak
4882.00	41.23	-3.54	37.69	54.00	-16.31	AVG
7323.00	52.17	-0.81	51.36	74.00	-22.64	peak
7323.00	40.65	-0.81	39.84	54.00	-14.16	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier;Level = Reading + Factor; Margin = Level - Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

CH High (2480MHz)

Horizontal:

	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
35	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
	4960.00	53.54	-3.43	50.11	74.00	-23.89	peak
Š	4960.00	41.94	-3.44	38.50	54.00	-15.50	AVG
Ī	7440.00	51.67	-0.77	50.90	74.00	-23.10	peak
	7440.00	39.66	-0.77	38.89	54.00	-15.11	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier;Level = Reading + Factor; Margin = Level -Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960.00	52.66	-3.43	49.23	74.00	-24.77	peak
4960.00	42.49	-3.44	39.05	54.00	-14.95	AVG
7440.00	51.42	-0.77	50.65	74.00	-23.35	peak
7440.00	39.26	-0.77	38.49	54.00	-15.51	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier;Level = Reading + Factor; Margin = Level - Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.
- (7) All modes of operation were investigated and the worst-case emissions are reported.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Radiated Band Edge Test:

Hopping

Horizontal (Worst case)

and the same of th	200	The state of the s	The state of the s		and the same of	- Con 1
Frequency	Meter Reading	Factor	Emission Level	Limits (Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310.00	55.26	-5.81	49.45	74	-24.55	peak
2310.00	1	-5.81	1	54	1	AVG
2390.00	53.18	-5.84	47.34	74	-26.66	peak
2390.00	HUAR I	-5.84	A HUAR IS	54	HUAKTE	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310.00	54.12	-5.81	48.31	74 TESTING	-25.69	peak
2310.00	TESTAG ()	-5.81	STING / TEST	54	ING	AVG
2390.00	51.82	-5.84	45.98	74	-28.02	peak
2390.00	1	-5.84	1	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Horizontal (Worst case)

1777	4.7	- 11/1	Chille, 11		77/71	Control of the Contro
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	53.17	-5.81	47.36	74 💍 🗥	-26.64	peak
2483.50	1	-5.81	1	54	TING 1	AVG
2500.00	50.22	-6.06	44.16	74	-29.84	peak
2500.00	1	-6.06	(a) H	54	1 0	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	, Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	54.19	-5.81	48.38	74	-25.62	peak
2483.50	TESTING /	-5.81	- WAK TESTING	54	1	AVG
2500.00	52.33	-6.06	46.27	74	-27.73	peak
2500.00	JG MY	-6.06	J. J.	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

NO hopping

Operation Mode: TX CH Low (2402MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits (Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310.00	56.03	-5.81	50.22	74	-23.78	peak
2310.00	1	-5.81	1	54 ESTING	1	AVG
2390.00	54.18	-5.84	48.34	74	-25.66	peak
2390.00	HUPA	-5.84	A HILAN	54	HUAKIL	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

KTES	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
G	2310.00	55.72	-5.81	49.91	74	-24.09	peak
	2310.00	JAK TESTING (1)	-5.81	ESTING / LOK TEST	54	W TE MIG	AVG
0	2390.00	51.49	-5.84	45.65	74	-28.35	peak
Ì	2390.00	1	-5.84	/	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Report No.: HK2401240523-2E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

Operation Mode: TX CH High (2480MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	54.36	-5.81	48.55	74	-25.45	peak
2483.50	TESTING /	-5.81	AK TESTING	54	1	AVG
2500.00	52.08	-6.06	46.02	74	-27.98	peak
2500.00	I ON P	-6.06	1	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.50	53.72	-5.81	47.91	74	-26.09	peak
2483.50	1	-5.81	01	54	1 0 1	AVG
2500.00	51.99	-6.06	45.93	74	-28.07	peak
2500.00	HUAKTES!	-6.06	STITUS / HUANTES!	54	WAK TESTING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Remark:

- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

3.3. Maximum Peak Conducted Output Power

Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the RF automatic control unit.

Test Configuration

Test Results

Type	Channel	Maximum Peak Conducted Output Power (dBm)	Limit (dBm)	Result
	00	-1.70		
GFSK	39	-0.79	21.00	Pass
	78	-0.39	W.	
	00	-0.99		A.G
π/4DQPSK	39	0.04	21.00	Pass
	78	0.41	0,,,	
	00	-0.57	TING	(W)
8DPSK	39	0.39	21.00	Pass
NK TESTING (1)	78	0.76		TESTING

Note: 1. The test results including the cable lose.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

3.4. 20db Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Report No.: HK2401240523-2E

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

RBW=1% to 5% of the OBW VBW=approximately 3 X RBW Detector=Peak

Trace Mode: Max Hold

Use the 99% power bandwidth function of the instrument to measure the Occupied Bandwidth and recoded.

Test Configuration

Test Results

Modulation	Channel	20dB bandwidth (MHz)	Result
HILAN	CH00	0.963	M HUAN
GFSK	CH39	0.951	
TEST	CH78	0.957	
(a) HUAN	CH00	1.320	
π/4DQPSK	CH39	1.278	Pass
TESTING	CH78	1.359	
D HUND	CH00	1.299	
8DPSK	CH39	1.323	
TESTING	CH78	1.317	

Test plot as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

20dB bandwidth

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3.5. Frequency Separation

LIMIT

Frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25 KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

Report No.: HK2401240523-2E

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 300 KHz RBW and 1000 KHz VBW.

TEST CONFIGURATION

TEST RESULTS

	12. Villa 2.	VIII 1	10 M/V	VSW 2.	V25007 A.
	Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
22	GFSK	Middle Channel	1.000	0.642	Pass
	π/4DQPSK	Middle Channel	0.994	0.906	Pass
	8DPSK	Middle Channel	0.990	0.882	Pass

Note: We have tested all mode at high, middle and low channel, and recorded worst case at middle.

Test plot as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.