

TEST REPORT

Applicant: RATTA US INC

Address: Office NO.1414 601W 1st Ave Suite 1400 Spokane
WASHINGTON United States

Product Name: SUPERNOTE

FCC ID: 2BE5Y-A5X2

47 CFR Part 15, Subpart E(15.407)

Standard(s): ANSI C63.10-2013
KDB 789033 D02 General U-NII Test Procedures New Rules
v02r01

Report Number: 2402V88141E-RF-00D

Report Date: 2024/9/26

The above device has been tested and found compliant with the requirement of the relative standards by Bay Area Compliance Laboratories Corp. (Dongguan).

Reviewed By: Gavin Xu

Approved By: Ivan Cao

Title: RF Engineer

Title: EMC Manager

Bay Area Compliance Laboratories Corp. (Dongguan)
No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China

Tel: +86-769-86858888

Fax: +86-769-86858891

www.baclcorp.com.cn

Note: The information marked ▲ is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with ★. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

CONTENTS

DOCUMENT REVISION HISTORY	4
1. GENERAL INFORMATION	5
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
1.2 ACCESSORY INFORMATION	5
1.3 ANTENNA INFORMATION DETAIL▲	5
1.4 EQUIPMENT MODIFICATIONS	5
2. SUMMARY OF TEST RESULTS	6
3. DESCRIPTION OF TEST CONFIGURATION	7
3.1 OPERATION FREQUENCY DETAIL	7
3.2 EUT OPERATION CONDITION	8
3.3 SUPPORT EQUIPMENT LIST AND DETAILS	8
3.4 SUPPORT CABLE LIST AND DETAILS	8
3.5 BLOCK DIAGRAM OF TEST SETUP	9
3.6 TEST FACILITY	10
3.7 MEASUREMENT UNCERTAINTY	10
4. REQUIREMENTS AND TEST PROCEDURES	11
4.1 AC LINE CONDUCTED EMISSIONS	11
4.1.1 Applicable Standard	11
4.1.2 EUT Setup	12
4.1.3 EMI Test Receiver Setup	12
4.1.4 Test Procedure	13
4.1.5 Corrected Amplitude & Margin Calculation	13
4.1.6 Test Result	13
4.2 RADIATION SPURIOUS EMISSIONS	14
4.2.1 Applicable Standard	14
4.2.2 EUT Setup	15
4.2.3 EMI Test Receiver & Spectrum Analyzer Setup	16
4.2.4 Test Procedure	17
4.2.5 Test Result	17
4.3 EMISSION BANDWIDTH	18
4.3.1 Applicable Standard	18
4.3.2 EUT Setup	18
4.3.3 Test Procedure	18
4.3.4 Test Result	19
4.4 MAXIMUM CONDUCTED OUTPUT POWER	20
4.4.1 Applicable Standard	20
4.4.2 EUT Setup	20
4.4.3 Test Procedure	20
4.4.4 Test Result	20
4.5 MAXIMUM POWER SPECTRAL DENSITY	21
4.5.1 Applicable Standard	21
4.5.2 EUT Setup	21

4.5.3 Test Procedure	21
4.5.4 Test Result	22
4.6 DUTY CYCLE	23
4.6.1 EUT Setup	23
4.6.2 Test Procedure	23
4.6.3 Judgment	23
4.7 ANTENNA REQUIREMENT	24
4.7.1 Applicable Standard	24
4.7.2 Judgment	24
5. Test DATA AND RESULTS	25
5.1 AC LINE CONDUCTED EMISSIONS	25
5.2 RADIATION SPURIOUS EMISSIONS	28
5.3 EMISSION BANDWIDTH	46
5.4 99% OCCUPIED BANDWIDTH	51
5.5 MAXIMUM CONDUCTED OUTPUT POWER	56
5.6 POWER SPECTRAL DENSITY	58
5.7 DUTY CYCLE	63
EXHIBIT A - EUT PHOTOGRAPHS	65
EXHIBIT B - TEST SETUP PHOTOGRAPHS	66

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	2402V88141E-RF-00D	Original Report	2024/9/26

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	SUPERNOTE
EUT Model:	A5 X2
Operation Frequency:	Band1: 5180-5240 MHz(802.11a/n ht20/ac vht20) 5190-5230 MHz(802.11n ht40/ac vht40) 5210 MHz(802.11ac vht80) Band4: 5745-5825 MHz (802.11a/n ht20/ac vht20) 5755-5795 MHz(802.11n ht40/ac vht40) 5775 MHz(802.11ac vht80)
Maximum Average Conducted Output Power:	13.7dBm(5150-5250MHz) 8.59dBm(5725-5850MHz)
Modulation Type:	802.11a/n/ac: OFDM-BPSK, QPSK, 16QAM, 64QAM,256QAM
Rated Input Voltage:	DC 3.85V from Battery or DC 5V from USB
Serial Number:	2P77-1(for RF Conducted Test) 2P77-2(for Radiated Spurious Emissions and AC Line Conducted Emissions Test)
EUT Received Date:	2024/8/2
EUT Received Status:	Good

1.2 Accessory Information

Accessory Description	Manufacturer	Model	Parameters
/	/	/	/

1.3 Antenna Information Detail ▲

Antenna Manufacturer	Antenna Type	input impedance (Ohm)	Frequency Range	Antenna Gain
RATTA US INC	FPC	50	5.15~5.25GHz	1.9dBi
			5.725~5.85 GHz	1.5dBi

The design of compliance with §15.203:

<input checked="" type="checkbox"/>	Unit uses a permanently attached antenna.
<input type="checkbox"/>	Unit uses a unique coupling to the intentional radiator.
<input type="checkbox"/>	Unit was professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

1.4 Equipment Modifications

No modifications are made to the EUT during all test items.

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.203	Antenna Requirement	Compliant
FCC §15.207(a)	AC Line Conducted Emissions	Compliant
FCC§15.205& §15.209 &§15.407(b)	Undesirable Emission& Restricted Bands	Compliant
FCC§15.407(a) (e)	Emission Bandwidth	Compliant
FCC§15.407 (a)	Maximum Conducted Output Power	Compliant
FCC§15.407 (a)	Power Spectral Density	Compliant

Note 1: For AC line conducted emissions, the maximum output power mode and channel was tested.
Note 2: For Radiated Spurious Emissions 9kHz~ 1GHz, the maximum output power mode and channel was tested.

3. DESCRIPTION OF TEST CONFIGURATION

3.1 Operation Frequency Detail

For 802.11a/n ht20/ac vht20:

5150-5250MHz Band		5725-5850MHz Band	
Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	149	5745
40	5200	153	5765
44	5220	157	5785
48	5240	161	5805
/	/	165	5825

For 802.11n ht40/ac vht40:

5150-5250MHz		5725-5850MHz	
Channel	Frequency (MHz)	Channel	Frequency (MHz)
38	5190	151	5755
46	5230	159	5795

For 802.11ac vht80:

5150-5250MHz		5725-5850MHz	
Channel	Frequency (MHz)	Channel	Frequency (MHz)
42	5210	155	5775

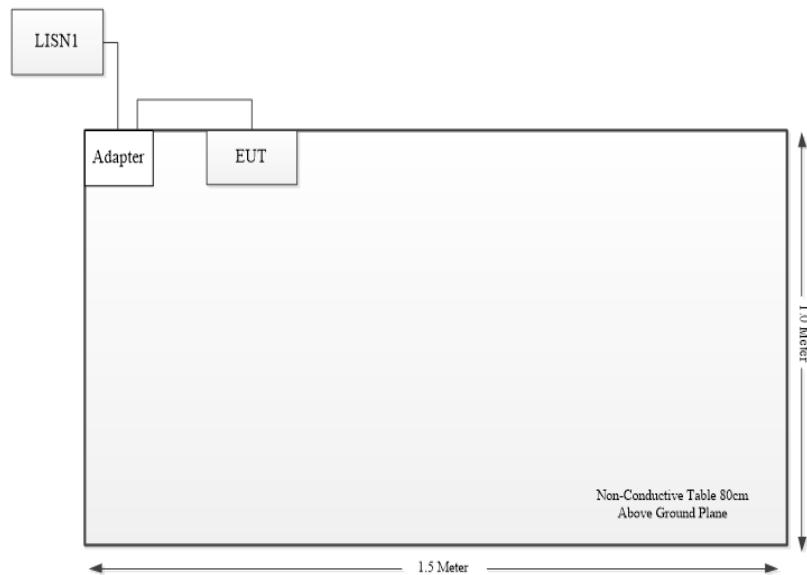
3.2 EUT Operation Condition

The system was configured for testing in Engineering Mode, which was provided by the manufacturer.

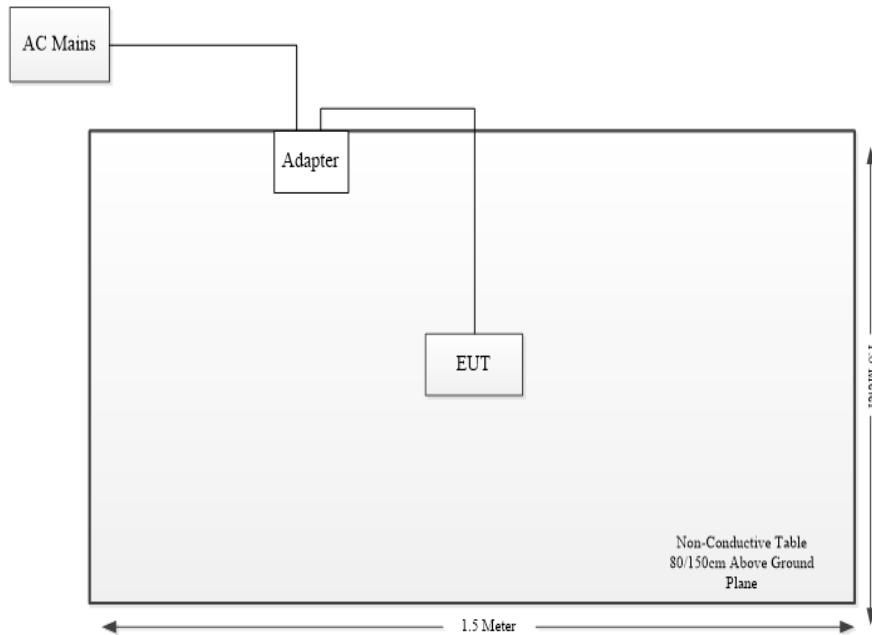
The EUT configuration is below:

EUT Exercise Software: adb				
The software was provided by manufacturer. The maximum power was configured as below, that was provided by the manufacturer▲:				
5150-5250 MHz Band:				
Test Modes	Test Channels	Test Frequency	Data rate	Power Level Setting
802.11a	Lowest	5180	6Mbps	-1
	Middle	5200	6Mbps	-1
	Highest	5240	6Mbps	-1
802.11n ht20	Lowest	5180	MCS0	-1
	Middle	5200	MCS0	-1
	Highest	5240	MCS0	-1
802.11n ht40	Lowest	5190	MCS0	-1
	Highest	5230	MCS0	-1
802.11ac vht80	Middle	5210	MCS0	-1
5725-5850 MHz Band:				
Test Modes	Test Channels	Test Frequency	Data rate	Power Level Setting
802.11a	Lowest	5745	6Mbps	10
	Middle	5785	6Mbps	10
	Highest	5825	6Mbps	10
802.11n ht20	Lowest	5745	MCS0	10
	Middle	5785	MCS0	10
	Highest	5825	MCS0	10
802.11n ht40	Lowest	5755	MCS0	10
	Highest	5795	MCS0	10
802.11ac vht80	Middle	5775	MCS0	10
Note:				
1.The system support 802.11a/n ht20/n ht40/ac vht20/vht40/vht80, the vht20/vht40 were reduced since the identical parameters with 802.11n ht20 and ht40.				
2.The above are the worst-case data rates, which are determined for each mode based upon investigations by measuring the average power and PSD across all data rates, bandwidths, and modulations.				

3.3 Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Razer	Adapter	RZ0503000W2	EMZBCA220330001EN

3.4 Support Cable List and Details


Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	To
USB-C Cable	No	No	1	Adapter	EUT

3.5 Block Diagram of Test Setup

AC line conducted emissions:

Spurious Emissions:

3.6 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 829273, the FCC Designation No. : CN5044.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

3.7 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	9kHz~30MHz: 3.3dB, 30MHz~200MHz: 4.55 dB, 200MHz~1GHz: 5.92 dB, 1GHz~6GHz: 4.98 dB, 6GHz~18GHz: 5.89 dB, 18GHz~26.5GHz: 5.47 dB, 26.5GHz~40GHz: 5.63 dB
Unwanted Emissions, conducted	±2.47 dB
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%
AC Power Lines Conducted Emission	3.11 dB (150 kHz to 30 MHz)

4. REQUIREMENTS AND TEST PROCEDURES

4.1 AC Line Conducted Emissions

4.1.1 Applicable Standard

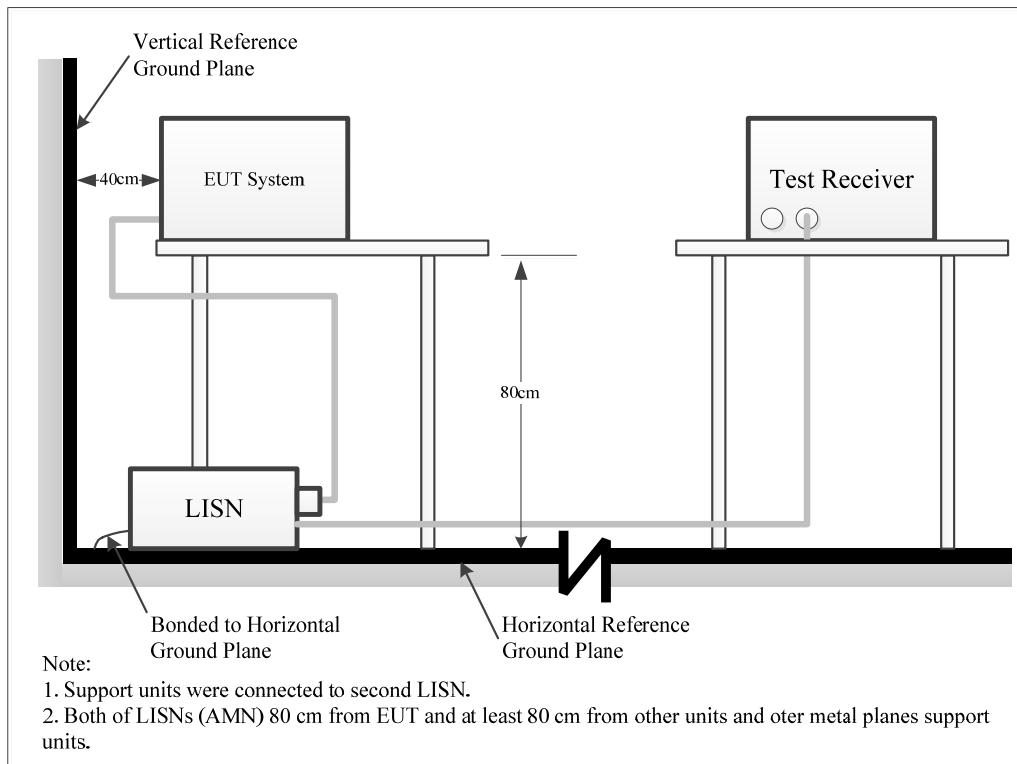
FCC§15.207(a).

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:


(1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 μ V within the frequency band 535-1705 kHz, as measured using a 50 μ H/50 ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtainig their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

4.1.2 EUT Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

4.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

4.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase (“hot”) line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

4.1.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor

Factor = attenuation caused by cable loss + voltage division factor of AMN

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

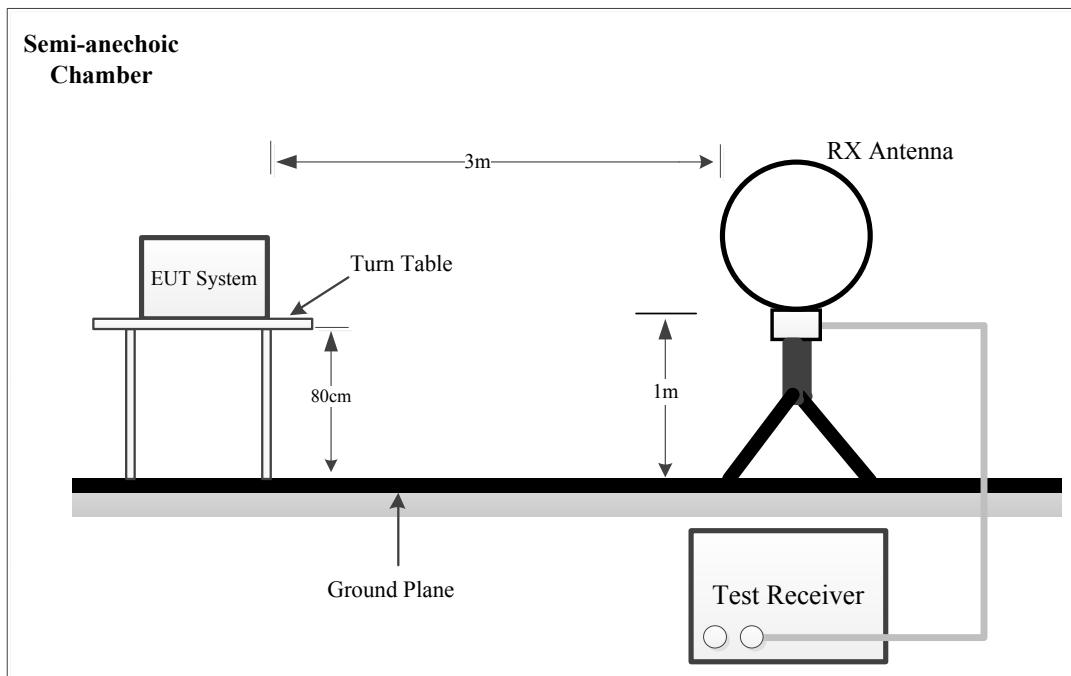
Margin = Limit – Result

4.1.6 Test Result

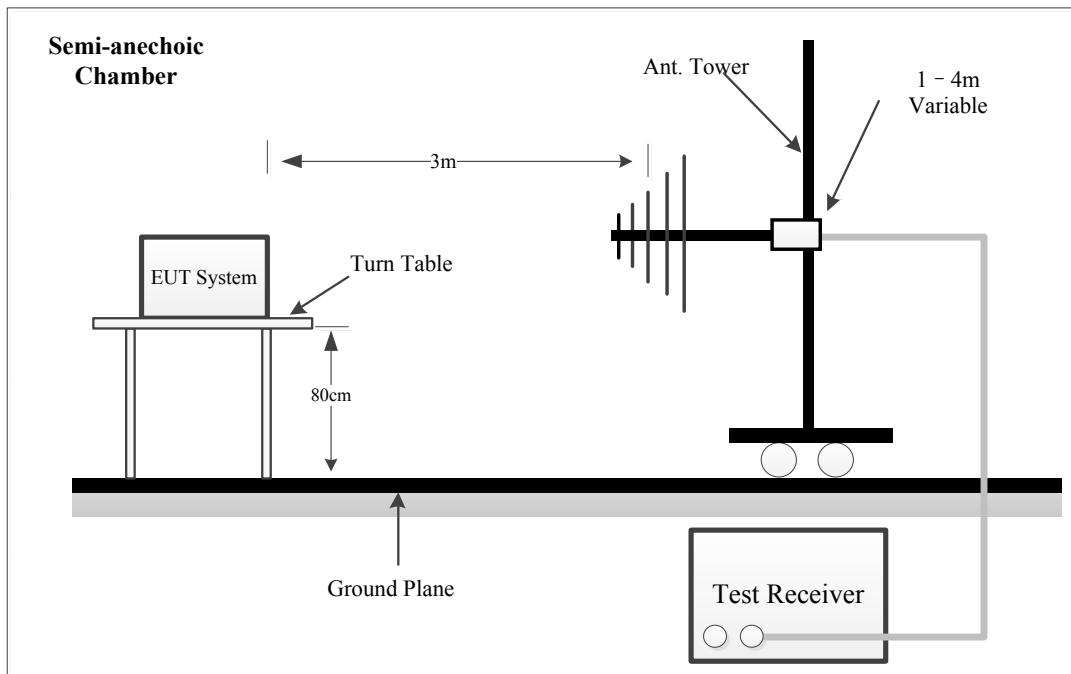
Please refer to section 5.1.

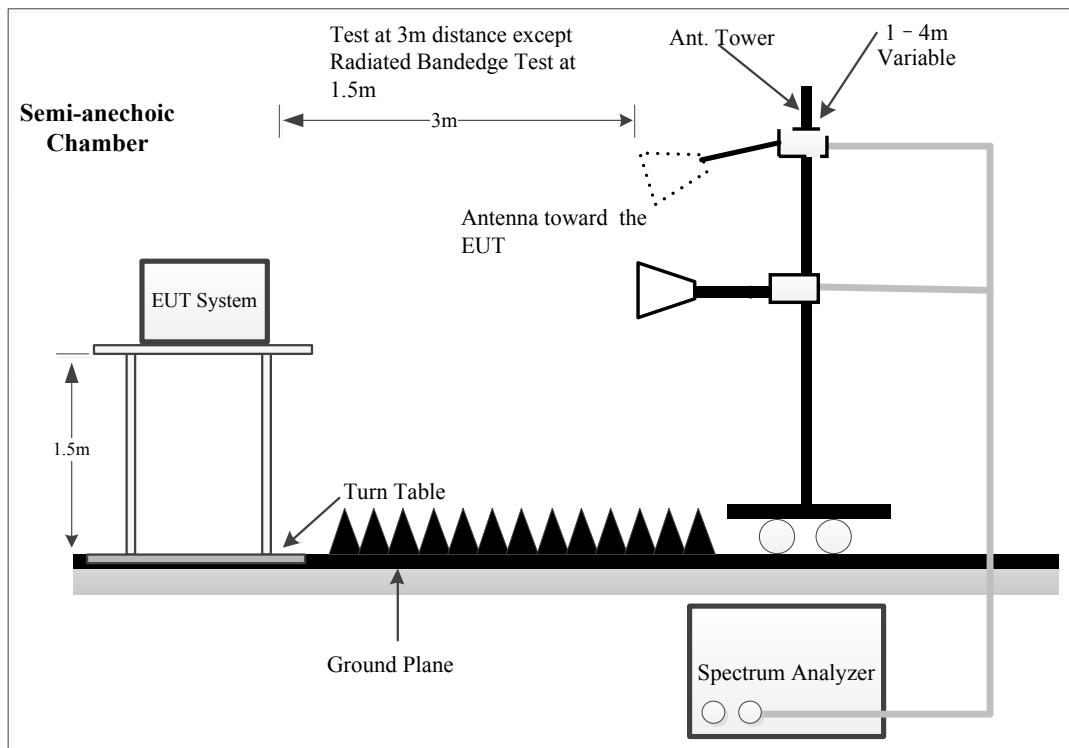
4.2 Radiation Spurious Emissions

4.2.1 Applicable Standard


FCC §15.407 (b);

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:


- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating solely in the 5.725-5.850 GHz band:
 - (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
 - (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (8) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (9) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.
- (10) The provisions of § 15.205 apply to intentional radiators operating under this section.
- (11) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.
- (c) The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signalling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.


4.2.2 EUT Setup

9kHz~30MHz:

30MHz~1GHz:

Above 1GHz:

The radiated emission tests were performed in the semi-anechoic chamber, using the setup accordance with the ANSI C63.10-2013. The specification used was FCC 15.209, FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

For 9kHz-30MHz test, the lowest height of the magnetic antenna shall be 1 m above the ground and three antenna orientations (parallel, perpendicular, and ground-parallel) shall be measured.

4.2.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9kHz-1000MHz:

Frequency Range	Measurement	RBW	Video B/W	IF B/W
9 kHz – 150 kHz	QP/AV	200 Hz	1 kHz	200 Hz
150 kHz – 30 MHz	QP/AV	9 kHz	30 kHz	9 kHz
30 MHz – 1000 MHz	PK	100 kHz	300 kHz	/
	QP	/	/	120 kHz

1GHz- 40GHz:

Measurement	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
Ave.	>98%	1MHz	10 Hz
	<98%	1MHz	$\geq 1/T$

Note: T is minimum transmission duration

If the maximized peak measured value is under the QP limit by more than 6dB, then it is unnecessary to perform an QP measurement.

If the maximized peak measured value is under the average limit, then it is unnecessary to perform an QP measurement.

4.2.4 Test Procedure

Data was recorded in Quasi-peak detection mode for frequency range of 9 kHz -1 GHz, except 9-90 kHz, 110-490 kHz, employing an average detector, peak and Average detection modes for frequencies above 1 GHz.

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01, emission shall be computed as: $E [dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

For Radiated Bandedge test, which was performed at 1.5 m distance, according to C63.10, the test result shall be extrapolated to the specified distance using an extrapolation Factor of 20dB/decade from 3m to 1.5m

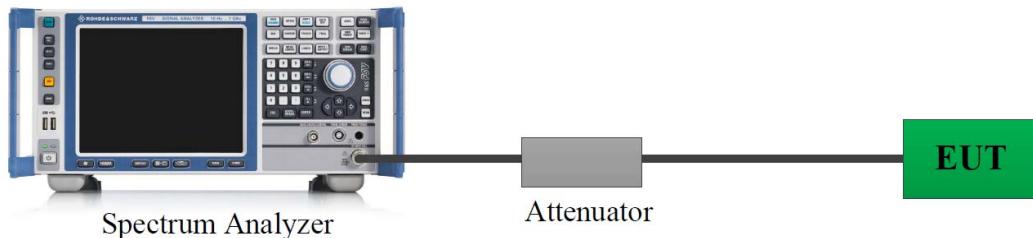
Distance extrapolation Factor = $20 \log (\text{specific distance [3m]}/\text{test distance [1.5m]})$ dB = 6.0 dB

4.2.5 Test Result

Please refer to section 5.2.

4.3 Emission Bandwidth

4.3.1 Applicable Standard


FCC §15.407 (a),(h)

(h)(2) Radar Detection Function of Dynamic Frequency Selection (DFS). U-NII devices operating with any part of its 26 dB emission bandwidth in the 5.25-5.35 GHz and 5.47-5.725 GHz bands shall employ a DFS radar detection mechanism to detect the presence of radar systems and to avoid co-channel operation with radar systems.

FCC §15.407 (e)

Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

4.3.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer.

4.3.3 Test Procedure

26dB Emission Bandwidth:

According to ANSI C63.10-2013 Section 12.4.1

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = peak.
- d) Trace mode = max hold
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

6 dB emission bandwidth:

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described in this section. For devices that use channel aggregation refer to III.A and III.C for determining emission bandwidth.

99% Occupied Bandwidth:

According to ANSI C63.10-2013 Section 12.4.2&6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than $[10 \log (\text{OBW}/\text{RBW})]$ below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

4.3.4 Test Result

Please refer to section 5.3 and section 5.4.

4.4 Maximum Conducted Output Power

4.4.1 Applicable Standard

FCC §15.407(a) (1)(iv)

For client devices in the 5.15 – 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (3)(i)

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

4.4.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The cable loss of this RF cable was offset into the setting of test equipment, which was provided by manufacturer ▲.

4.4.3 Test Procedure

According to ANSI C63.10-2013 Section 12.3.3.1

Method PM-G is measurement using a gated RF average power meter.

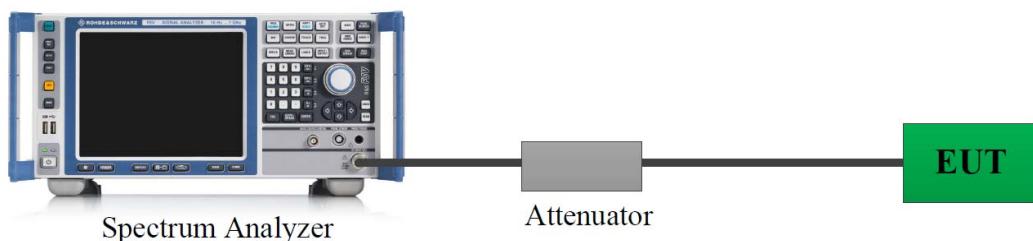
Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

4.4.4 Test Result

Please refer to section 5.5.

4.5 Maximum Power Spectral Density

4.5.1 Applicable Standard


FCC §15.407(a) (1)(iv)

For client devices in the 5.15 – 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC §15.407(a) (3)(i)

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

4.5.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The cable loss of this RF cable was offset into the setting of test equipment, which was provided by manufacturer ▲.

4.5.3 Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

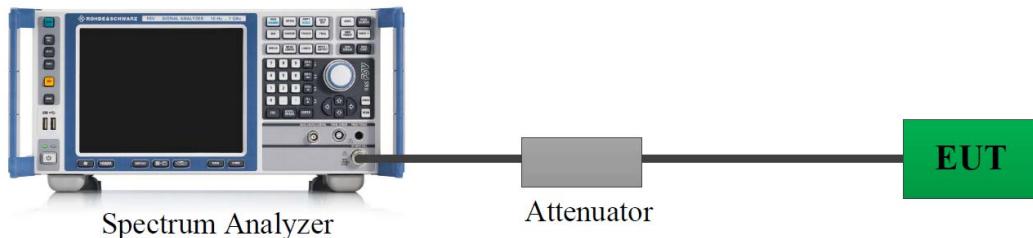
Duty cycle ≥98%

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-1 should be applied.

Duty cycle <98%, duty cycle variations are less than ±2%

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-2 should be applied.

Duty cycle <98%, duty cycle variations exceed ±2%


KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-3 should be applied.

4.5.4 Test Result

Please refer to section 5.6.

4.6 Duty Cycle

4.6.1 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer.

4.6.2 Test Procedure

According to ANSI C63.10-2013 Section 12.2

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

- 1) Set the center frequency of the instrument to the center frequency of the transmission.
- 2) Set $RBW \geq OBW$ if possible; otherwise, set RBW to the largest available value.
- 3) Set $VBW \geq RBW$. Set detector = peak or average.
- 4) The zero-span measurement method shall not be used unless both RBW and VBW are $> 50/T$ and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \leq 16.7 \mu s$.)

4.6.3 Judgment

Report Only. Please refer to section 5.7.

4.7 Antenna Requirement

4.7.1 Applicable Standard

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

4.7.2 Judgment

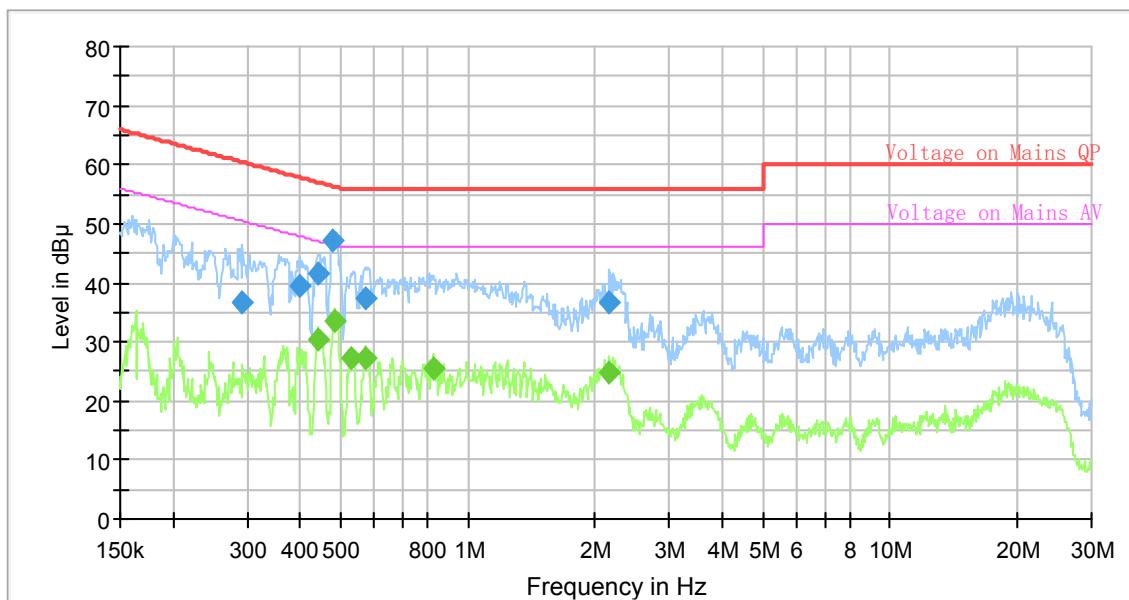
Compliant. Please refer to the Antenna Information detail in Section 1.3.

5. Test DATA AND RESULTS

5.1 AC Line Conducted Emissions

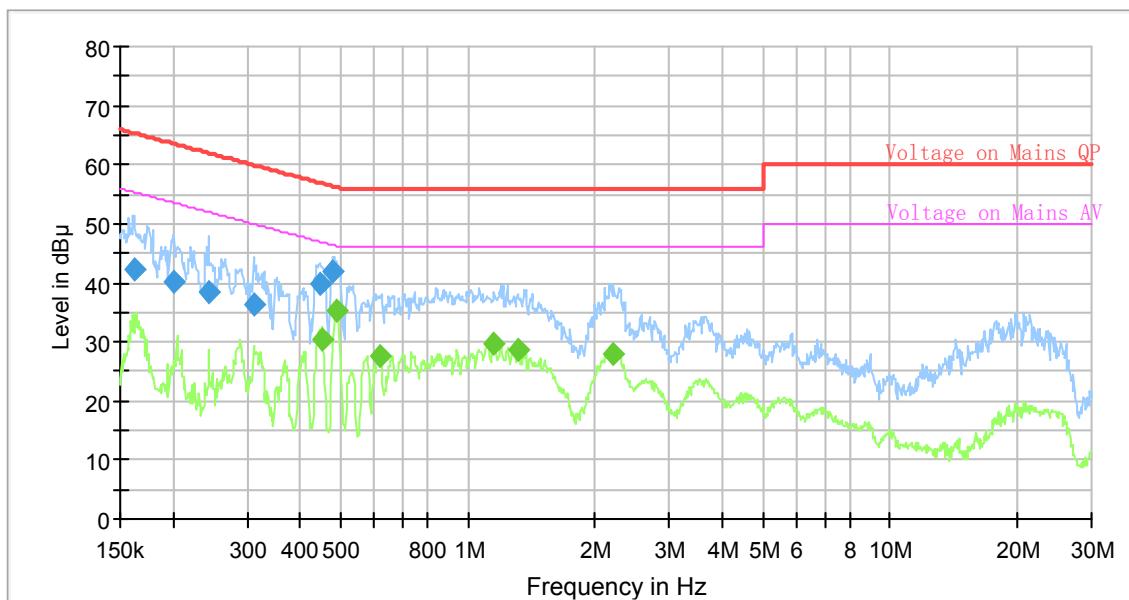
Serial Number:	2P77-2	Test Date:	2024/8/16
Test Site:	CE	Test Mode:	Transmitting
Tester:	Yukin Qiu	Test Result:	Pass

Environmental Conditions:


Temperature: (°C)	26.3	Relative Humidity: (%)	64	ATM Pressure: (kPa)	100.2
-------------------	------	------------------------	----	---------------------	-------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV216	101614	2023/10/18	2024/10/17
MICRO-COAX	Coaxial Cable	C-NJNJ-50	C-0200-01	2023/9/7	2024/9/6
R&S	EMI Test Receiver	ESCI	100035	2023/8/18	2024/8/17
R&S	Test Software	EMC32	V9.10.00	N/A	N/A


* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Project No: 2402V88141E-RF
 Test Engineer: Yukin Qiu
 Test Date: 2024-8-16
 Port: L
 Test Mode: Transmitting
 Power Source: AC 120V/60Hz
 Note: 802.11n ht20 5180 MHz

Frequency (MHz)	QuasiPeak (dB μ V)	Average (dB μ V)	Limit (dB μ V)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.292647	36.77	---	60.45	23.68	9.000	L1	10.8
0.400687	39.42	---	57.84	18.42	9.000	L1	10.8
0.440515	---	30.26	47.05	16.79	9.000	L1	10.8
0.442717	41.49	---	57.01	15.52	9.000	L1	10.8
0.477109	47.06	---	56.39	9.33	9.000	L1	10.8
0.484301	---	33.54	46.26	12.72	9.000	L1	10.8
0.527156	---	27.08	46.00	18.92	9.000	L1	10.8
0.570947	37.55	---	56.00	18.45	9.000	L1	10.8
0.573802	---	27.34	46.00	18.66	9.000	L1	10.8
0.825818	---	25.67	46.00	20.33	9.000	L1	10.9
2.162391	---	24.75	46.00	21.25	9.000	L1	10.8
2.162391	36.85	---	56.00	19.15	9.000	L1	10.8

Project No: 2402V88141E-RF
 Test Engineer: Yukin Qiu
 Test Date: 2024-8-16
 Port: N
 Test Mode: Transmitting
 Power Source: AC 120V/60Hz
 Note: 802.11n ht20 5180 MHz

Frequency (MHz)	QuasiPeak (dB μ V)	Average (dB μ V)	Limit (dB μ V)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.161652	42.23	---	65.38	23.15	9.000	N	10.9
0.200319	40.16	---	63.60	23.44	9.000	N	10.8
0.243332	38.55	---	61.98	23.43	9.000	N	10.8
0.310696	36.39	---	59.95	23.56	9.000	N	10.8
0.444931	40.00	---	56.97	16.97	9.000	N	10.8
0.451638	---	30.56	46.84	16.28	9.000	N	10.8
0.479495	42.06	---	56.35	14.29	9.000	N	10.7
0.489157	---	35.28	46.18	10.90	9.000	N	10.7
0.618376	---	27.62	46.00	18.38	9.000	N	10.7
1.153481	---	29.52	46.00	16.48	9.000	N	10.9
1.319758	---	28.52	46.00	17.48	9.000	N	10.9
2.194990	---	27.83	46.00	18.17	9.000	N	10.9

5.2 Radiation Spurious Emissions

1) 9kHz - 1GHz

Serial Number:	2P77-2	Test Date:	2024/8/13
Test Site:	Chamber10m	Test Mode:	Transmitting
Tester:	Zoo Zou	Test Result:	Pass

Environmental Conditions:					
Temperature: (°C)	29.5	Relative Humidity: (%)	57	ATM Pressure: (kPa)	100.7

Test Equipment List and Details:

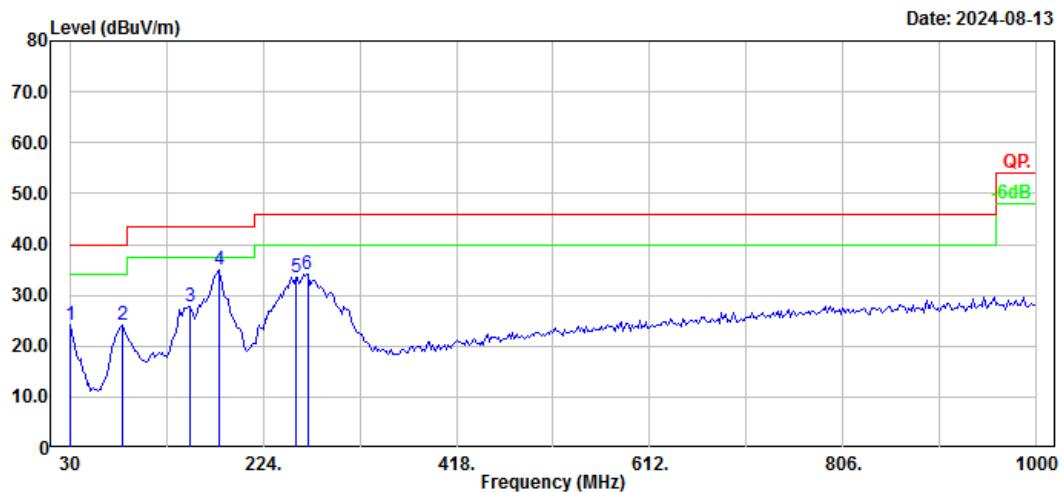
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
EMCO	Passive Loop Antenna	6512	9706-1206	2023/10/21	2026/10/20
Sunol Sciences	Hybrid Antenna	JB3	A060611-1	2023/9/6	2026/9/5
Narda	Coaxial Attenuator	779-6dB	04269	2023/9/6	2026/9/5
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2024/8/1	2025/7/31
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-04	2024/8/1	2025/7/31
Unknown	Coaxial Cable	C-NJNJ-50	C-0530-01	2024/8/1	2025/7/31
Sonoma	Amplifier	310N	185914	2024/8/1	2025/7/31
R&S	EMI Test Receiver	ESCI	101121	2023/10/18	2024/10/17
Audix	Test Software	E3	191218 V9	N/A	N/A

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Please refer to the below table and plots.

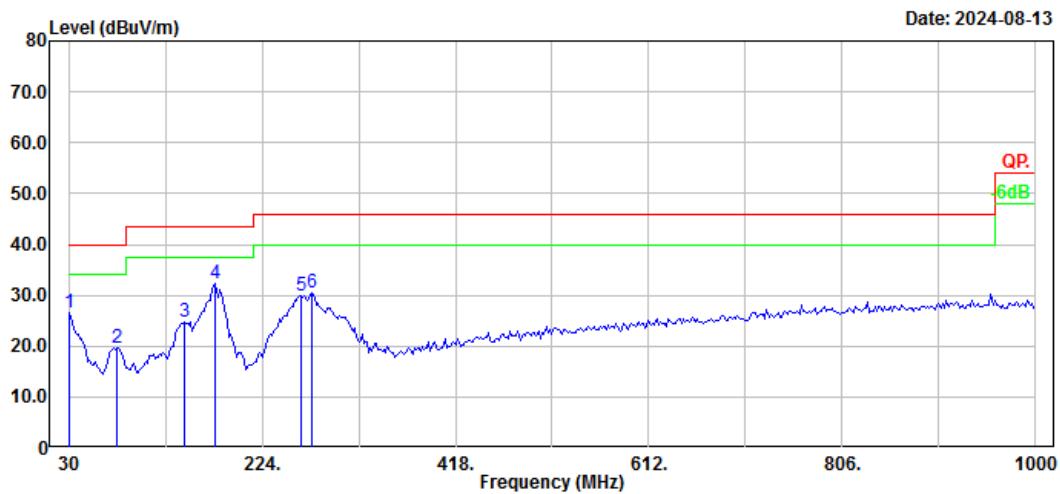
After pre-scan in the X, Y and Z axes of orientation, the worst case is refer to table and plots.


9kHz~30MHz

The 802.11n ht20 5180 MHz was tested. The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

30MHz-1GHz

Project No.: 2402V88141E-RF
 Polarization: Horizontal
 Test Mode: Transmitting
 Note: 802.11n ht20 5180MHz


Serial No.: 2P77-2
 Tester: Zoo Zou

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	30.00	27.84	-3.80	24.04	40.00	15.96	Peak
2	82.38	40.61	-16.56	24.05	40.00	15.95	Peak
3	150.28	38.98	-11.06	27.92	43.50	15.58	Peak
4	179.38	47.39	-12.32	35.07	43.50	8.43	Peak
5	256.98	44.83	-11.22	33.61	46.00	12.39	Peak
6	268.62	44.33	-10.22	34.11	46.00	11.89	Peak

Project No.: 2402V88141E-RF
Polarization: Vertical
Test Mode: Transmitting
Note: 802.11n ht20 5180MHz

Serial No.: 2P77-2
Tester: Zoo Zou

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1	30.00	30.32	-3.80	26.52	40.00	13.48	Peak
2	78.50	35.95	-16.38	19.57	40.00	20.43	Peak
3	146.40	35.74	-10.84	24.90	43.50	18.60	Peak
4	177.44	44.44	-12.21	32.23	43.50	11.27	Peak
5	262.80	40.59	-10.83	29.76	46.00	16.24	Peak
6	274.44	40.42	-9.92	30.50	46.00	15.50	Peak

2) 1-40GHz:

Serial Number:	2P77-2	Test Date:	2024/8/13
Test Site:	Chamber B	Test Mode:	Transmitting
Tester:	Nat Zhou	Test Result:	Pass

Environmental Conditions:

Temperature: (°C)	26.4	Relative Humidity: %	45	ATM Pressure: (kPa)	100.7
-------------------	------	----------------------	----	---------------------	-------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
ETS-Lindgren	Horn Antenna	3115	000 527 35	2023/9/7	2026/9/6
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726-02 1304	2023/2/22	2026/2/21
Ducommun Technologies	Horn Antenna	ARH-2823-02	1007726-01 1302	2023/2/22	2026/2/21
Xinhang Macrowave	Coaxial Cable	XH750A-N/J-SMA/J-10M	20231117004 #0001	2023/11/17	2024/11/16
Xinhang Macrowave	Coaxial Cable	XH360A-2.92/J-2.92/J-6M-A	20231208001 #0001	2023/12/11	2024/12/10
AH	Preamplifier	PAM-0118P	469	2023/8/19	2024/8/18
AH	Preamplifier	PAM-1840VH	191	2023/9/7	2024/9/6
R&S	FSV40	FSV40	101944	2023/10/18	2024/10/17
Audix	Test Software	E3	191218 (V9)	N/A	N/A
Sinoscite	Band Rejection Filter	BSF5150-5850MN	0899003	2024/2/21	2025/2/20
Mini-Circuits	High Pass Filter	VHF-6010+	31118	2023/12/1	2024/11/30

* Statement of Traceability: Bay Area Compliance Laboratories Corp.(Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

After pre-scan in the X, Y and Z axes of orientation, the worst case is below:

802.11a_U-NII-1

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin
MHz	dB μ V	PK/QP/AV	H/V	dB/m	dB μ V/m	dB μ V/m	dB
Low channel				5180	MHz		
5150.00	34.68	PK	H	34.76	63.44	74.00	10.56
5150.00	21.77	AV	H	34.76	50.53	54.00	3.47
5150.00	32.85	PK	V	34.76	61.61	74.00	12.39
5150.00	20.93	AV	V	34.76	49.69	54.00	4.31
10360.00	56.50	PK	H	0.33	56.83	68.20	11.37
10360.00	58.69	PK	V	0.33	59.02	68.20	9.18
15540.00	48.89	PK	H	0.6	49.49	74.00	24.51
15540.00	38.77	AV	H	0.6	39.37	54.00	14.63
15540.00	49.42	PK	V	0.6	50.02	74.00	23.98
15540.00	39.19	AV	V	0.6	39.79	54.00	14.21
Middle channel				5200	MHz		
10400.00	54.74	PK	H	0.4	55.14	68.20	13.06
10400.00	56.93	PK	V	0.4	57.33	68.20	10.87
15600.00	48.14	PK	H	0.58	48.72	74.00	25.28
15600.00	38.10	AV	H	0.58	38.68	54.00	15.32
15600.00	48.23	PK	V	0.58	48.81	74.00	25.19
15600.00	38.15	AV	V	0.58	38.73	54.00	15.27
High channel				5240	MHz		
5350.00	30.29	PK	H	35.15	59.44	74.00	14.56
5350.00	19.85	AV	H	35.15	49.00	54.00	5.00
5350.00	30.00	PK	V	35.15	59.15	74.00	14.85
5350.00	19.67	AV	V	35.15	48.82	54.00	5.18
10480.00	54.24	PK	H	0.56	54.80	68.20	13.40
10480.00	56.69	PK	V	0.56	57.25	68.20	10.95
15720.00	47.82	PK	H	0.55	48.37	74.00	25.63
15720.00	37.55	AV	H	0.55	38.10	54.00	15.90
15720.00	47.48	PK	V	0.55	48.03	74.00	25.97
15720.00	37.21	AV	V	0.55	37.76	54.00	16.24

802.11n20_U-NII-1

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin
MHz	dB μ V	PK/QP/AV	H/V	dB/m	dB μ V/m	dB μ V/m	dB
Low channel				5180	MHz		
5150.00	37.88	PK	H	34.76	66.64	74.00	7.36
5150.00	24.07	AV	H	34.76	52.83	54.00	1.17
5150.00	34.36	PK	V	34.76	63.12	74.00	10.88
5150.00	21.54	AV	V	34.76	50.30	54.00	3.70
10360.00	52.89	PK	H	0.33	53.22	68.20	14.98
10360.00	56.55	PK	V	0.33	56.88	68.20	11.32
15540.00	47.97	PK	H	0.6	48.57	74.00	25.43
15540.00	38.02	AV	H	0.6	38.62	54.00	15.38
15540.00	48.31	PK	V	0.6	48.91	74.00	25.09
15540.00	38.28	AV	V	0.6	38.88	54.00	15.12
Middle channel				5200	MHz		
10400.00	52.79	PK	H	0.4	53.19	68.20	15.01
10400.00	56.37	PK	V	0.4	56.77	68.20	11.43
15600.00	47.91	PK	H	0.58	48.49	74.00	25.51
15600.00	38.09	AV	H	0.58	38.67	54.00	15.33
15600.00	48.24	PK	V	0.58	48.82	74.00	25.18
15600.00	38.20	AV	V	0.58	38.78	54.00	15.22
High channel				5240	MHz		
5350.00	29.57	PK	H	35.15	58.72	74.00	15.28
5350.00	19.78	AV	H	35.15	48.93	54.00	5.07
5350.00	29.25	PK	V	35.15	58.40	74.00	15.60
5350.00	19.67	AV	V	35.15	48.82	54.00	5.18
10480.00	52.64	PK	H	0.56	53.20	68.20	15.00
10480.00	56.16	PK	V	0.56	56.72	68.20	11.48
15720.00	47.98	PK	H	0.55	48.53	74.00	25.47
15720.00	38.10	AV	H	0.55	38.65	54.00	15.35
15720.00	48.32	PK	V	0.55	48.87	74.00	25.13
15720.00	38.46	AV	V	0.55	39.01	54.00	14.99

802.11n40_U-NII-1

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin
MHz	dB μ V	PK/QP/AV	H/V	dB/m	dB μ V/m	dB μ V/m	dB
Low channel				5190	MHz		
5150.00	34.08	PK	H	34.76	62.84	74.00	11.16
5150.00	22.78	AV	H	34.76	51.54	54.00	2.46
5150.00	31.21	PK	V	34.76	59.97	74.00	14.03
5150.00	21.22	AV	V	34.76	49.98	54.00	4.02
10380.00	50.33	PK	H	0.37	50.70	68.20	17.50
10380.00	50.96	PK	V	0.37	51.33	68.20	16.87
15570.00	47.98	PK	H	0.59	48.57	74.00	25.43
15570.00	38.10	AV	H	0.59	38.69	54.00	15.31
15570.00	47.91	PK	V	0.59	48.50	74.00	25.50
15570.00	38.01	AV	V	0.59	38.60	54.00	15.40
High channel				5230	MHz		
5350.00	30.13	PK	H	35.15	59.28	74.00	14.72
5350.00	19.82	AV	H	35.15	48.97	54.00	5.03
5350.00	29.76	PK	V	35.15	58.91	74.00	15.09
5350.00	19.68	AV	V	35.15	48.83	54.00	5.17
10460.00	49.40	PK	H	0.51	49.91	68.20	18.29
10460.00	51.32	PK	V	0.51	51.83	68.20	16.37
15690.00	48.19	PK	H	0.56	48.75	74.00	25.25
15690.00	38.32	AV	H	0.56	38.88	54.00	15.12
15690.00	47.79	PK	V	0.56	48.35	74.00	25.65
15690.00	37.83	AV	V	0.56	38.39	54.00	15.61

802.11ac80_U-NII-1

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin
MHz	dB μ V	PK/QP/AV	H/V	dB/m	dB μ V/m	dB μ V/m	dB
Middle channel				5210	MHz		
5150.00	34.97	PK	H	34.76	63.73	74.00	10.27
5150.00	24.32	AV	H	34.76	53.08	54.00	0.92
5150.00	31.87	PK	V	34.76	60.63	74.00	13.37
5150.00	21.99	AV	V	34.76	50.75	54.00	3.25
5350.00	29.90	PK	H	35.15	59.05	74.00	14.95
5350.00	19.95	AV	H	35.15	49.10	54.00	4.90
5350.00	30.07	PK	V	35.15	59.22	74.00	14.78
5350.00	20.09	AV	V	35.15	49.24	54.00	4.76
10420.00	48.53	PK	H	0.43	48.96	68.20	19.24
10420.00	47.94	PK	V	0.43	48.37	68.20	19.83
15630.00	48.60	PK	H	0.57	49.17	74.00	24.83
15630.00	38.58	AV	H	0.57	39.15	54.00	14.85
15630.00	48.30	PK	V	0.57	48.87	74.00	25.13
15630.00	38.29	AV	V	0.57	38.86	54.00	15.14

802.11a_U-NII-3

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin
MHz	dB μ V	PK/QP/AV	H/V	dB/m	dB μ V/m	dB μ V/m	dB
Low channel				5745	MHz		
5725.00	39.34	PK	H	35.81	69.15	122.20	53.05
5720.00	36.39	PK	H	35.8	66.19	110.80	44.61
5700.00	31.79	PK	H	35.77	61.56	105.20	43.64
5650.00	30.95	PK	H	35.69	60.64	68.20	7.56
5725.00	35.28	PK	V	35.81	65.09	122.20	57.11
5720.00	34.63	PK	V	35.8	64.43	110.80	46.37
5700.00	32.70	PK	V	35.77	62.47	105.20	42.73
5650.00	31.55	PK	V	35.69	61.24	68.20	6.96
11490.00	48.43	PK	H	1.55	49.98	74.00	24.02
11490.00	39.76	AV	H	1.55	41.31	54.00	12.69
11490.00	50.25	PK	V	1.55	51.80	74.00	22.20
11490.00	41.50	AV	V	1.55	43.05	54.00	10.95
17235.00	47.75	PK	H	4.2	51.95	68.20	16.25
17235.00	47.69	PK	V	4.2	51.89	68.20	16.31
Middle channel				5785	MHz		
11570.00	49.28	PK	H	1.59	50.87	74.00	23.13
11570.00	39.33	AV	H	1.59	40.92	54.00	13.08
11570.00	49.41	PK	V	1.59	51.00	74.00	23.00
11570.00	39.52	AV	V	1.59	41.11	54.00	12.89
17355.00	47.93	PK	H	4.37	52.30	68.20	15.90
17355.00	47.88	PK	V	4.37	52.25	68.20	15.95
High channel				5825	MHz		
5850.00	38.55	PK	H	36	68.55	122.20	53.65
5855.00	35.49	PK	H	36.01	65.50	110.80	45.30
5875.00	32.89	PK	H	36.04	62.93	105.20	42.27
5925.00	31.80	PK	H	36.12	61.92	68.20	6.28
5850.00	34.74	PK	V	36	64.74	122.20	57.46
5855.00	33.70	PK	V	36.01	63.71	110.80	47.09
5875.00	32.89	PK	V	36.04	62.93	105.20	42.27
5925.00	31.81	PK	V	36.12	61.93	68.20	6.27
11650.00	49.49	PK	H	1.59	51.08	74.00	22.92
11650.00	39.65	AV	H	1.59	41.24	54.00	12.76
11650.00	49.92	PK	V	1.59	51.51	74.00	22.49
11650.00	40.17	AV	V	1.59	41.76	54.00	12.24
17475.00	48.05	PK	H	4.56	52.61	68.20	15.59
17475.00	48.37	PK	V	4.56	52.93	68.20	15.27

802.11n20_U-NII-3

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin
MHz	dB μ V	PK/QP/AV	H/V	dB/m	dB μ V/m	dB μ V/m	dB
Low channel				5745	MHz		
5725.00	42.32	PK	H	35.81	72.13	122.20	50.07
5720.00	41.41	PK	H	35.8	71.21	110.80	39.59
5700.00	32.27	PK	H	35.77	62.04	105.20	43.16
5650.00	31.90	PK	H	35.69	61.59	68.20	6.61
5725.00	37.25	PK	V	35.81	67.06	122.20	55.14
5720.00	36.65	PK	V	35.8	66.45	110.80	44.35
5700.00	31.77	PK	V	35.77	61.54	105.20	43.66
5650.00	30.74	PK	V	35.69	60.43	68.20	7.77
11490.00	49.06	PK	H	1.55	50.61	74.00	23.39
11490.00	39.21	AV	H	1.55	40.76	54.00	13.24
11490.00	49.48	PK	V	1.55	51.03	74.00	22.97
11490.00	39.56	AV	V	1.55	41.11	54.00	12.89
17235.00	47.64	PK	H	4.2	51.84	68.20	16.36
17235.00	48.64	PK	V	4.2	52.84	68.20	15.36
Middle channel				5785	MHz		
11570.00	49.44	PK	H	1.59	51.03	74.00	22.97
11570.00	39.59	AV	H	1.59	41.18	54.00	12.82
11570.00	49.73	PK	V	1.59	51.32	74.00	22.68
11570.00	39.91	AV	V	1.59	41.50	54.00	12.50
17355.00	47.94	PK	H	4.37	52.31	68.20	15.89
17355.00	48.41	PK	V	4.37	52.78	68.20	15.42
High channel				5825	MHz		
5850.00	38.98	PK	H	36	68.98	122.20	53.22
5855.00	35.79	PK	H	36.01	65.80	110.80	45.00
5875.00	32.80	PK	H	36.04	62.84	105.20	42.36
5925.00	32.16	PK	H	36.12	62.28	68.20	5.92
5850.00	35.40	PK	V	36	65.40	122.20	56.80
5855.00	32.78	PK	V	36.01	62.79	110.80	48.01
5875.00	32.88	PK	V	36.04	62.92	105.20	42.28
5925.00	31.87	PK	V	36.12	61.99	68.20	6.21
11650.00	50.10	PK	H	1.59	51.69	74.00	22.31
11650.00	40.22	AV	H	1.59	41.81	54.00	12.19
11650.00	49.30	PK	V	1.59	50.89	74.00	23.11
11650.00	39.54	AV	V	1.59	41.13	54.00	12.87
17475.00	48.27	PK	H	4.56	52.83	68.20	15.37
17475.00	48.29	PK	V	4.56	52.85	68.20	15.35

802.11n40_U-NII-3

Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin
MHz	dB μ V	PK/QP/AV	H/V	dB/m	dB μ V/m	dB μ V/m	dB
Low channel				5755	MHz		
5725.00	45.74	PK	H	35.81	75.55	122.20	46.65
5720.00	42.70	PK	H	35.8	72.50	110.80	38.30
5700.00	36.15	PK	H	35.77	65.92	105.20	39.28
5650.00	31.98	PK	H	35.69	61.67	68.20	6.53
5725.00	39.55	PK	V	35.81	69.36	122.20	52.84
5720.00	38.23	PK	V	35.8	68.03	110.80	42.77
5700.00	33.21	PK	V	35.77	62.98	105.20	42.22
5650.00	32.38	PK	V	35.69	62.07	68.20	6.13
11510.00	50.89	PK	H	1.57	52.46	74.00	21.54
11510.00	41.14	AV	H	1.57	42.71	54.00	11.29
11510.00	49.74	PK	V	1.57	51.31	74.00	22.69
11510.00	39.95	AV	V	1.57	41.52	54.00	12.48
17265.00	48.23	PK	H	4.24	52.47	68.20	15.73
17265.00	48.11	PK	V	4.24	52.35	68.20	15.85
High channel				5795	MHz		
5850.00	35.48	PK	H	36	65.48	122.20	56.72
5855.00	33.95	PK	H	36.01	63.96	110.80	46.84
5875.00	32.66	PK	H	36.04	62.70	105.20	42.50
5925.00	31.67	PK	H	36.12	61.79	68.20	6.41
5850.00	33.30	PK	V	36	63.30	122.20	58.90
5855.00	32.57	PK	V	36.01	62.58	110.80	48.22
5875.00	32.61	PK	V	36.04	62.65	105.20	42.55
5925.00	31.31	PK	V	36.12	61.43	68.20	6.77
11590.00	50.92	PK	H	1.58	52.50	74.00	21.50
11590.00	41.20	AV	H	1.58	42.78	54.00	11.22
11590.00	48.93	PK	V	1.58	50.51	74.00	23.49
11590.00	39.21	AV	V	1.58	40.79	54.00	13.21
17385.00	48.12	PK	H	4.42	52.54	68.20	15.66
17385.00	48.57	PK	V	4.42	52.99	68.20	15.21

802.11ac80_U-NII-3

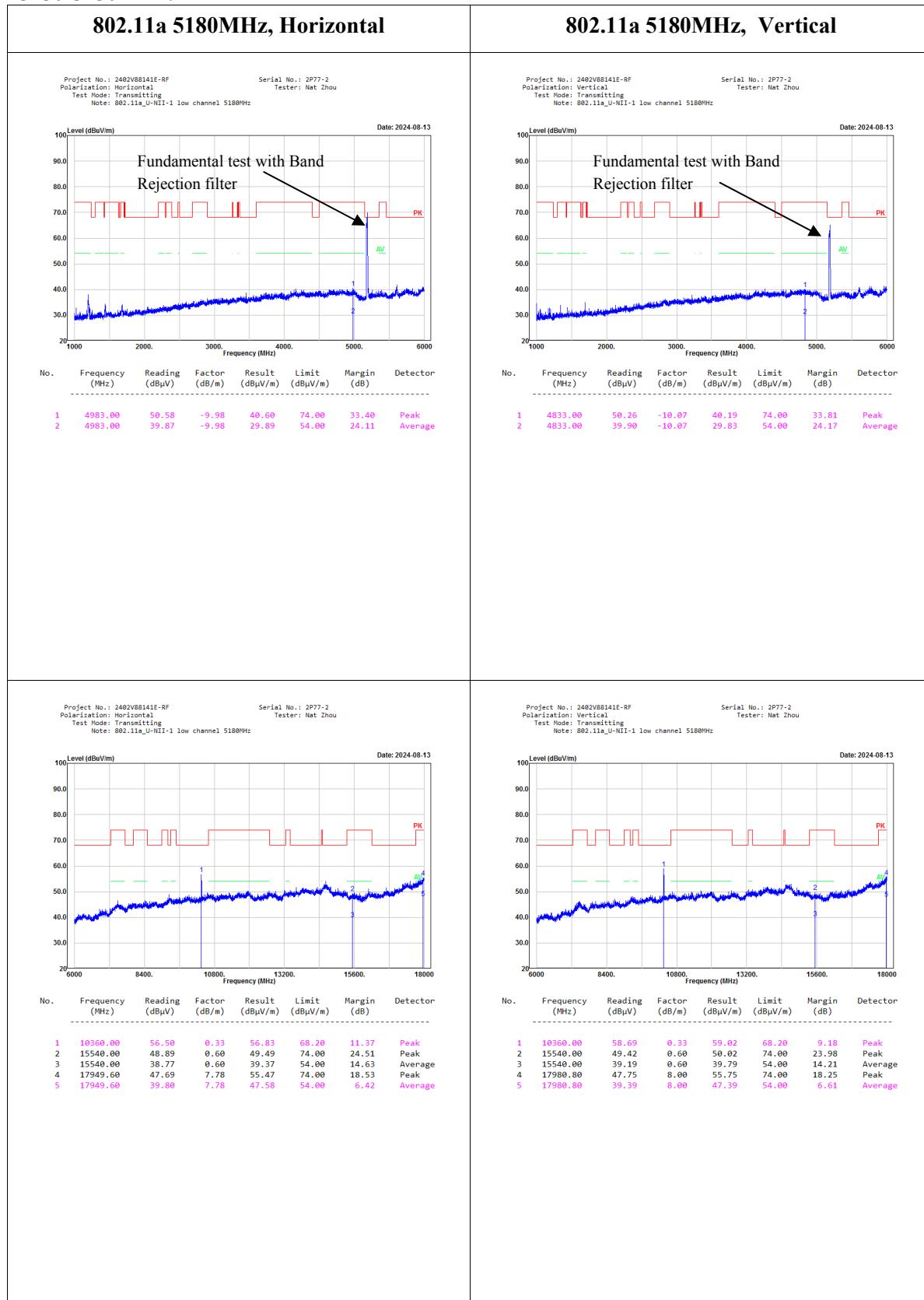
Frequency	Reading	Detector	Polar	Factor	Corrected Amplitude	Limit	Margin
MHz	dB μ V	PK/QP/AV	H/V	dB/m	dB μ V/m	dB μ V/m	dB
Middle channel				5775	MHz		
5725.00	44.98	PK	H	35.81	74.79	122.20	47.41
5720.00	43.54	PK	H	35.8	73.34	110.80	37.46
5700.00	42.67	PK	H	35.77	72.44	105.20	32.76
5650.00	33.17	PK	H	35.69	62.86	68.20	5.34
5850.00	40.40	PK	H	36	70.40	122.20	51.80
5855.00	37.47	PK	H	36.01	67.48	110.80	43.32
5875.00	34.06	PK	H	36.04	64.10	105.20	41.10
5925.00	32.45	PK	H	36.12	62.57	68.20	5.63
5725.00	41.21	PK	V	35.81	71.02	122.20	51.18
5720.00	39.30	PK	V	35.8	69.10	110.80	41.70
5700.00	38.37	PK	V	35.77	68.14	105.20	37.06
5650.00	32.55	PK	V	35.69	62.24	68.20	5.96
5850.00	36.83	PK	V	36	66.83	122.20	55.37
5855.00	35.64	PK	V	36.01	65.65	110.80	45.15
5875.00	33.09	PK	V	36.04	63.13	105.20	42.07
5925.00	32.87	PK	V	36.12	62.99	68.20	5.21
11550.00	51.12	PK	H	1.57	52.69	74.00	21.31
11550.00	39.90	AV	H	1.57	41.47	54.00	12.53
11550.00	48.01	PK	V	1.57	49.58	74.00	24.42
11550.00	37.78	AV	V	1.57	39.35	54.00	14.65
17325.00	50.04	PK	H	4.33	54.37	68.20	13.83
17325.00	49.44	PK	V	4.33	53.77	68.20	14.43

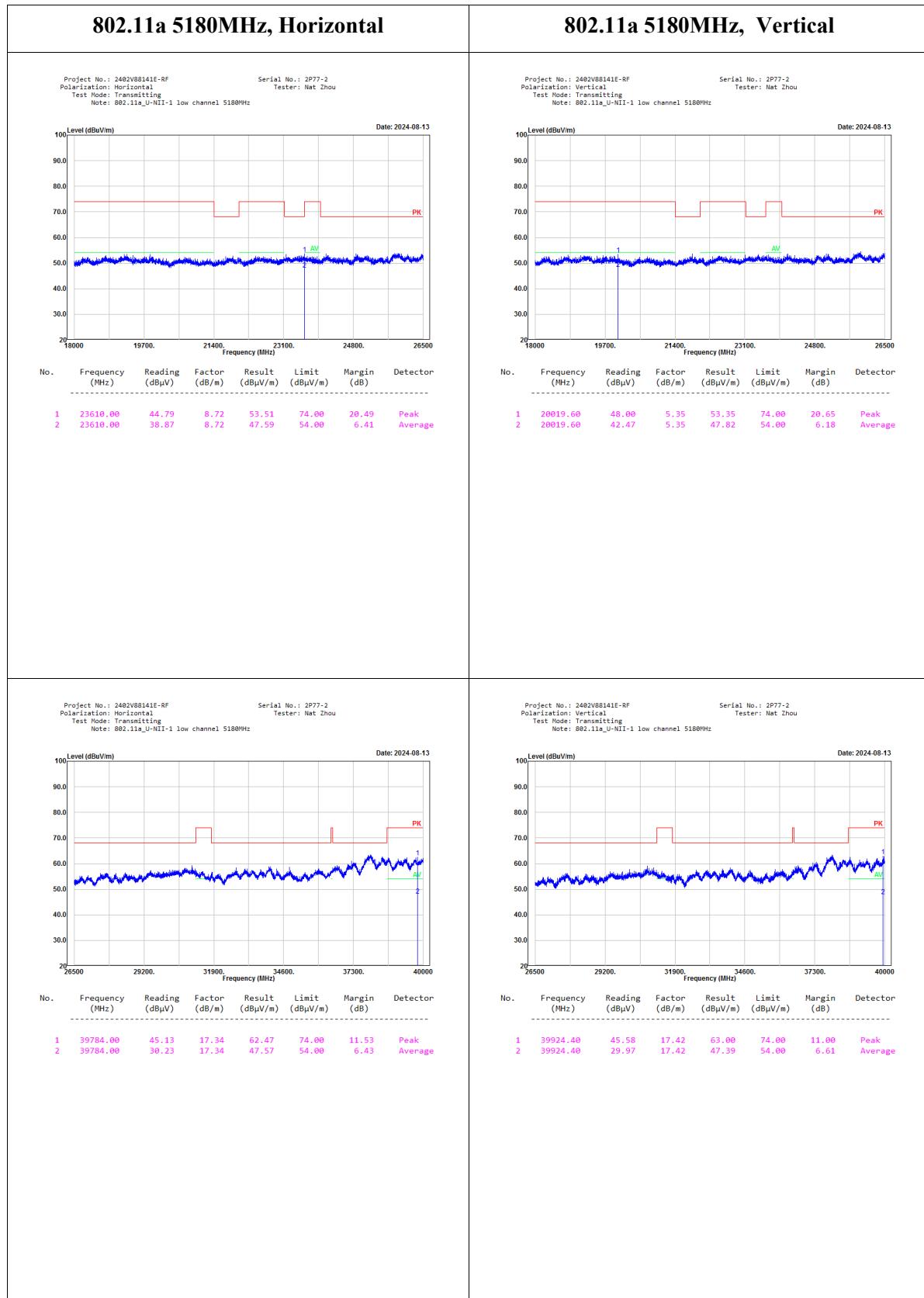
Note:

Factor = Antenna Factor + Cable Loss- Amplifier Gain

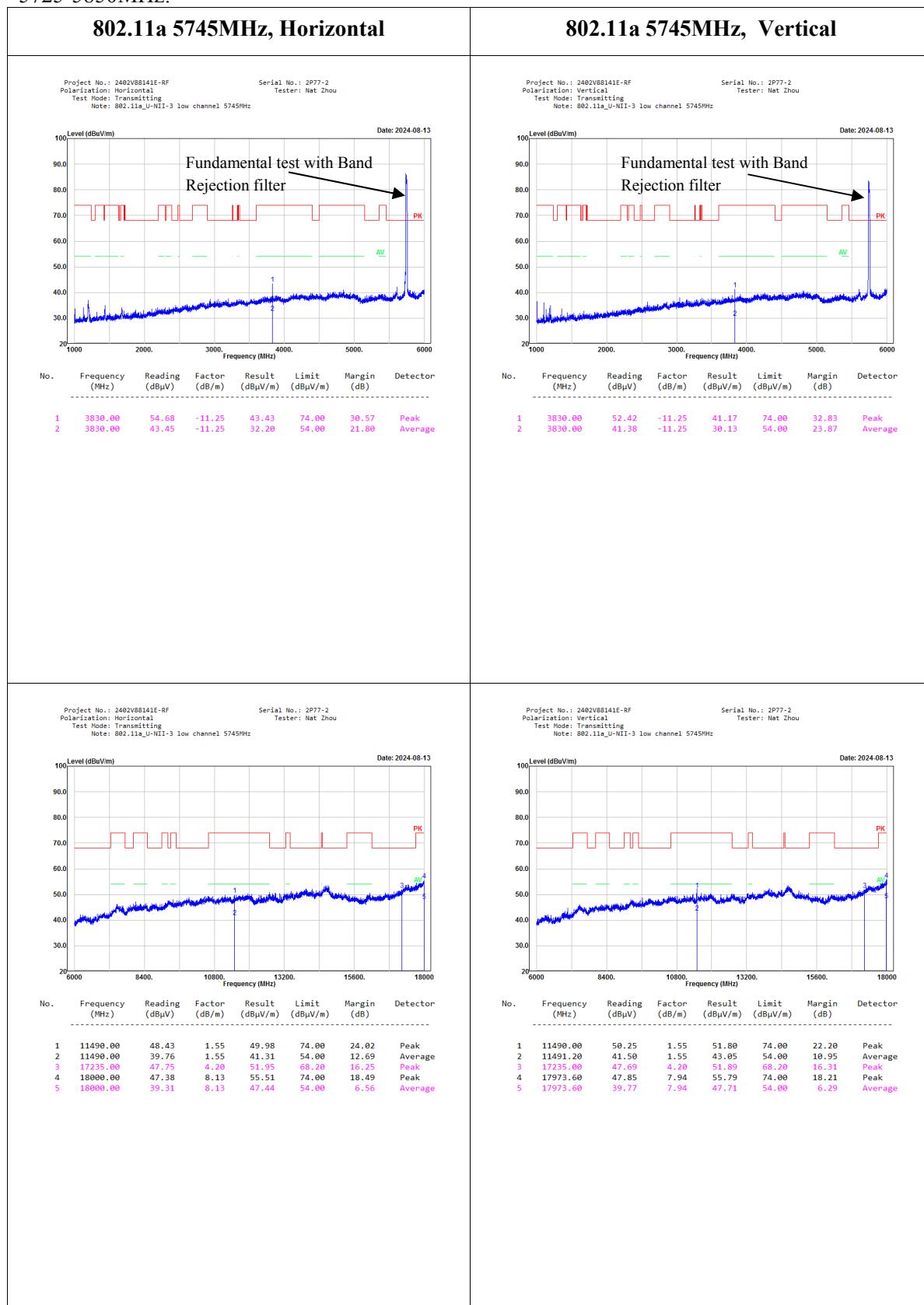
Corrected Amplitude= Reading + Factor

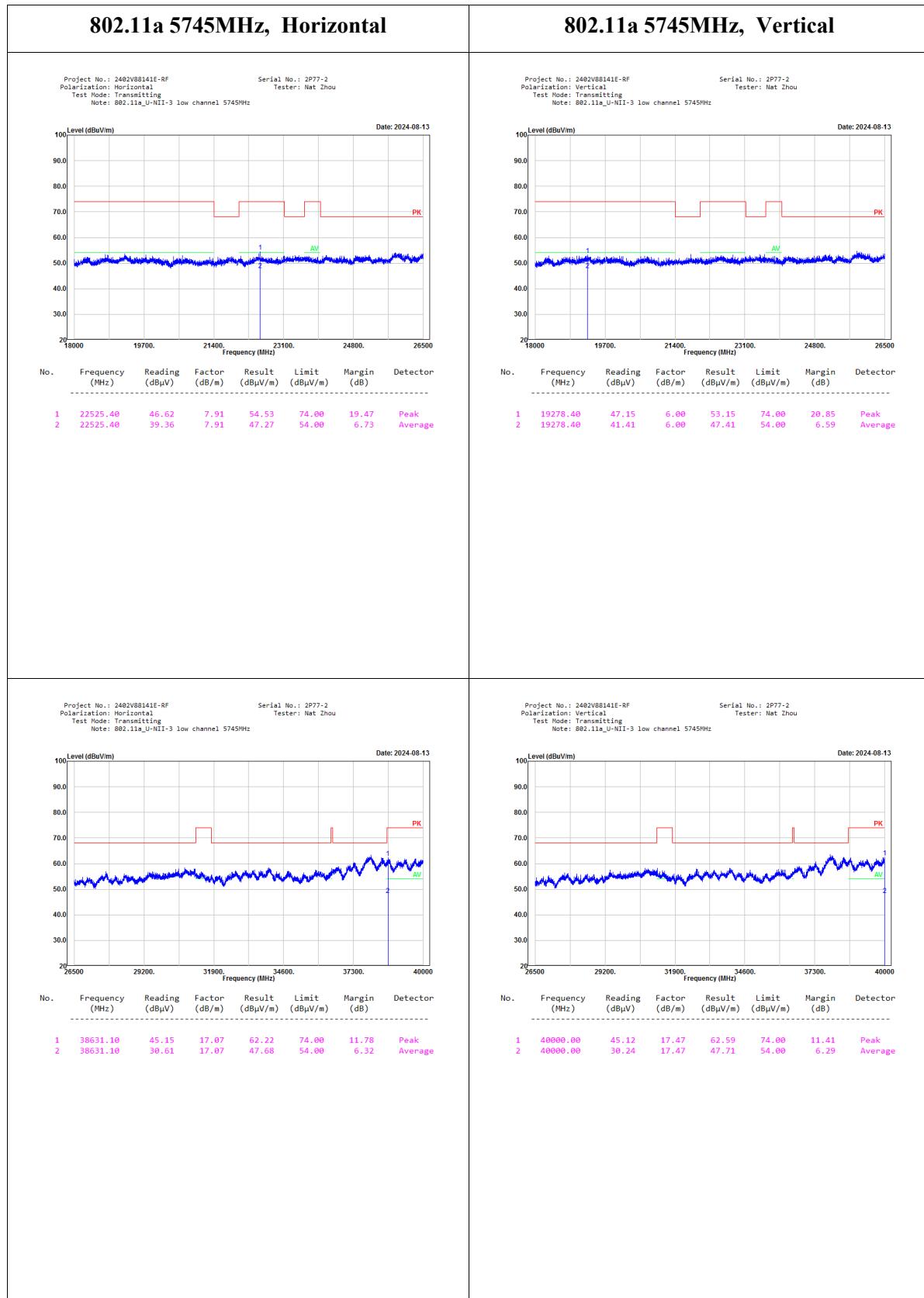
Extrapolation Result = Corrected Amplitude- Extrapolation Factor

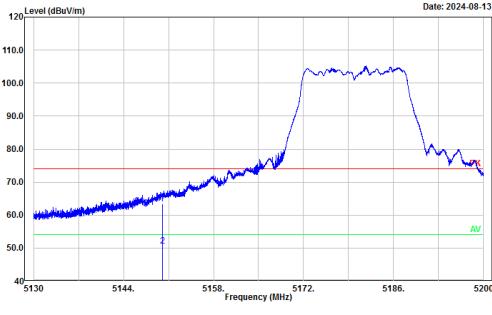
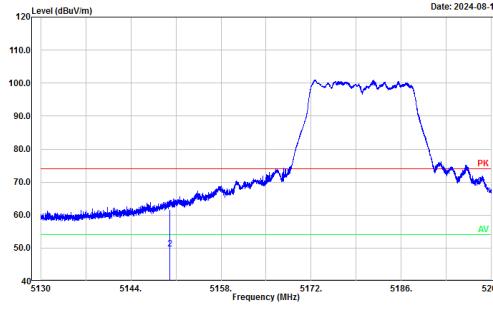
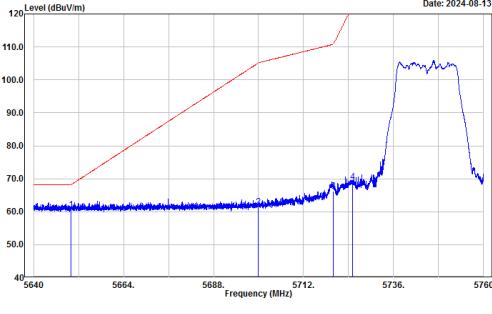
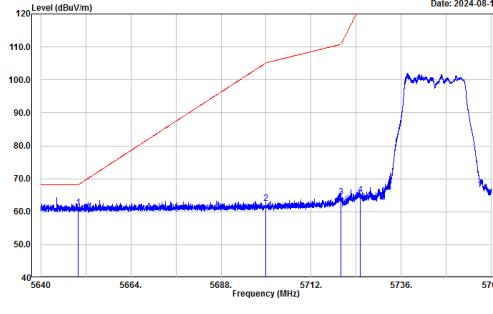

For Radiated Bandedge test: Extrapolation Factor=6.0 dB


For other emission test: Extrapolation Factor=0 dB

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:


Margin = Limit -Extrapolation result


Worst Channel Test plots:
5150-5250MHz:

5725-5850MHz:

802.11a, 5180MHz, Bandedge, Horizontal		802.11a, 5180MHz, Bandedge, Vertical																																																																																	
<p>Project No.: 2402V88141E-RF Polarization: Horizontal Test Mode: Transmitting Note: 802.11a_U-NII-1 low channel 5180MHz</p> <p>Serial No.: 2P77-2 Tester: Nat Zhou</p> <p>Date: 2024-08-13</p>		<p>Project No.: 2402V88141E-RF Polarization: Vertical Test Mode: Transmitting Note: 802.11a_U-NII-1 low channel 5180MHz</p> <p>Serial No.: 2P77-2 Tester: Nat Zhou</p> <p>Date: 2024-08-13</p>																																																																																	
<table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5150.00</td><td>34.68</td><td>28.76</td><td>63.44</td><td>74.00</td><td>10.56</td><td>Peak</td></tr> <tr> <td>2</td><td>5150.01</td><td>21.77</td><td>28.76</td><td>58.53</td><td>54.00</td><td>3.47</td><td>Average</td></tr> </tbody> </table>		No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5150.00	34.68	28.76	63.44	74.00	10.56	Peak	2	5150.01	21.77	28.76	58.53	54.00	3.47	Average	<table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5150.00</td><td>32.86</td><td>28.76</td><td>61.62</td><td>74.00</td><td>12.38</td><td>Peak</td></tr> <tr> <td>2</td><td>5150.01</td><td>20.93</td><td>28.76</td><td>49.69</td><td>54.00</td><td>4.31</td><td>Average</td></tr> </tbody> </table>		No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5150.00	32.86	28.76	61.62	74.00	12.38	Peak	2	5150.01	20.93	28.76	49.69	54.00	4.31	Average																																
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																																																												
1	5150.00	34.68	28.76	63.44	74.00	10.56	Peak																																																																												
2	5150.01	21.77	28.76	58.53	54.00	3.47	Average																																																																												
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																																																												
1	5150.00	32.86	28.76	61.62	74.00	12.38	Peak																																																																												
2	5150.01	20.93	28.76	49.69	54.00	4.31	Average																																																																												
802.11a, 5745MHz, Bandedge, Horizontal		802.11a, 5745MHz, Bandedge, Vertical																																																																																	
<p>Project No.: 2402V88141E-RF Polarization: Horizontal Test Mode: Transmitting Note: 802.11a_U-NII-3 low channel 5745MHz</p> <p>Serial No.: 2P77-2 Tester: Nat Zhou</p> <p>Date: 2024-08-13</p>		<p>Project No.: 2402V88141E-RF Polarization: Vertical Test Mode: Transmitting Note: 802.11a_U-NII-3 low channel 5745MHz</p> <p>Serial No.: 2P77-2 Tester: Nat Zhou</p> <p>Date: 2024-08-13</p>																																																																																	
<table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5650.00</td><td>30.95</td><td>29.69</td><td>60.64</td><td>68.20</td><td>7.56</td><td>Peak</td></tr> <tr> <td>2</td><td>5700.00</td><td>31.79</td><td>29.77</td><td>61.56</td><td>105.20</td><td>43.64</td><td>Peak</td></tr> <tr> <td>3</td><td>5720.00</td><td>36.39</td><td>29.80</td><td>66.19</td><td>110.80</td><td>44.61</td><td>Peak</td></tr> <tr> <td>4</td><td>5725.00</td><td>39.34</td><td>29.81</td><td>69.15</td><td>122.20</td><td>53.05</td><td>Peak</td></tr> </tbody> </table>		No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5650.00	30.95	29.69	60.64	68.20	7.56	Peak	2	5700.00	31.79	29.77	61.56	105.20	43.64	Peak	3	5720.00	36.39	29.80	66.19	110.80	44.61	Peak	4	5725.00	39.34	29.81	69.15	122.20	53.05	Peak	<table border="1"> <thead> <tr> <th>No.</th><th>Frequency (MHz)</th><th>Reading (dBμV)</th><th>Factor (dB/m)</th><th>Result (dBμV/m)</th><th>Limit (dBμV/m)</th><th>Margin (dB)</th><th>Detector</th></tr> </thead> <tbody> <tr> <td>1</td><td>5650.00</td><td>31.55</td><td>29.69</td><td>61.24</td><td>68.20</td><td>6.96</td><td>Peak</td></tr> <tr> <td>2</td><td>5700.00</td><td>32.70</td><td>29.77</td><td>62.47</td><td>105.20</td><td>42.73</td><td>Peak</td></tr> <tr> <td>3</td><td>5720.00</td><td>34.63</td><td>29.80</td><td>64.43</td><td>110.80</td><td>46.37</td><td>Peak</td></tr> <tr> <td>4</td><td>5725.00</td><td>35.28</td><td>29.81</td><td>65.09</td><td>122.20</td><td>57.11</td><td>Peak</td></tr> </tbody> </table>		No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	1	5650.00	31.55	29.69	61.24	68.20	6.96	Peak	2	5700.00	32.70	29.77	62.47	105.20	42.73	Peak	3	5720.00	34.63	29.80	64.43	110.80	46.37	Peak	4	5725.00	35.28	29.81	65.09	122.20	57.11	Peak
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																																																												
1	5650.00	30.95	29.69	60.64	68.20	7.56	Peak																																																																												
2	5700.00	31.79	29.77	61.56	105.20	43.64	Peak																																																																												
3	5720.00	36.39	29.80	66.19	110.80	44.61	Peak																																																																												
4	5725.00	39.34	29.81	69.15	122.20	53.05	Peak																																																																												
No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Result (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector																																																																												
1	5650.00	31.55	29.69	61.24	68.20	6.96	Peak																																																																												
2	5700.00	32.70	29.77	62.47	105.20	42.73	Peak																																																																												
3	5720.00	34.63	29.80	64.43	110.80	46.37	Peak																																																																												
4	5725.00	35.28	29.81	65.09	122.20	57.11	Peak																																																																												

Note:

For Radiated Bandedge test:

Factor = Antenna Factor + Cable Loss- Amplifier Gain- Extrapolation Factor

Extrapolation Factor=6.0 dB

Result=Reading+ Factor

The “**Margin**” column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit –Result

5.3 Emission Bandwidth

Serial No.:	2P77-1	Test Date:	2024/08/12~2024/09/26
Test Site:	RF	Test Mode:	Transmitting
Tester:	Roy Xiao	Test Result:	Pass

Environmental Conditions:

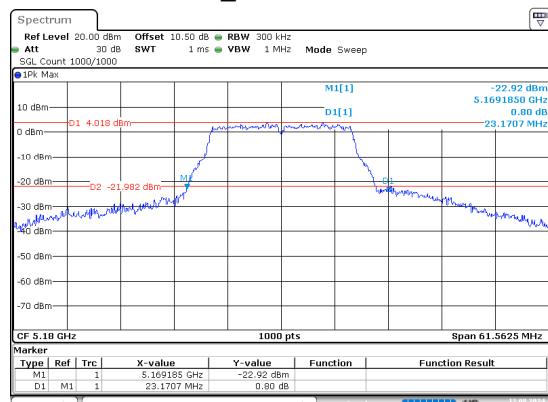
Temperature: (°C):	25.8-26.2	Relative Humidity: (%)	47-66	ATM Pressure: (kPa)	99.4-100.6
------------------------------	-----------	----------------------------------	-------	-------------------------------	------------

Test Equipment List and Details:

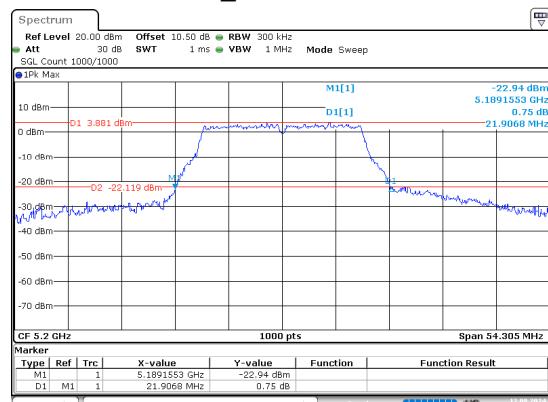
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101589	2023/10/18	2024/10/17
Eastsheep	Coaxial Attenuator	5W-N-JK-6G-10dB	F-08-EM503	2024/06/07	2025/06/07

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

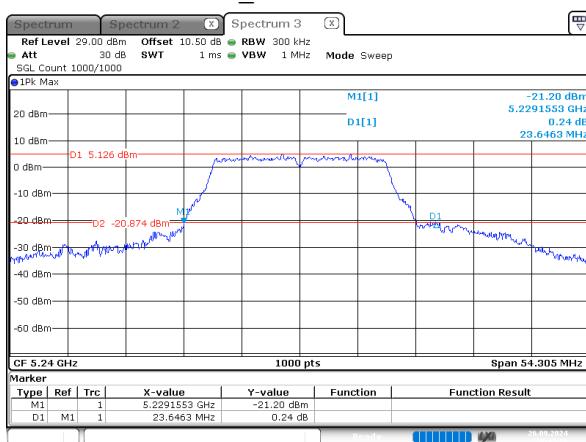
26dB Emission Bandwidth:
5.2G

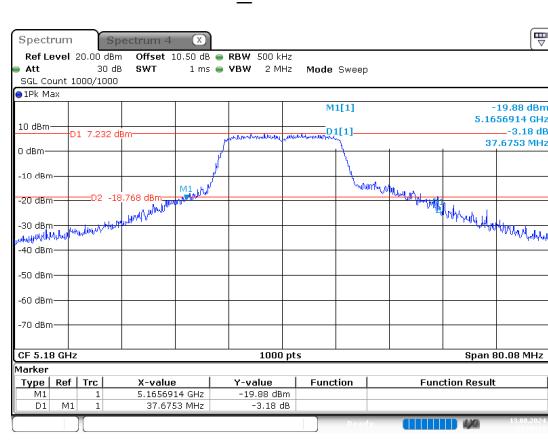

Mode	Value (MHz)
a_5180MHz	23.171
a_5200MHz	21.907
a_5240MHz	23.646
n20_5180MHz	37.675
n20_5200MHz	28.413
n20_5240MHz	29.509
n40_5190MHz	49.650
n40_5230MHz	58.697
ac80_5210MHz	126.920

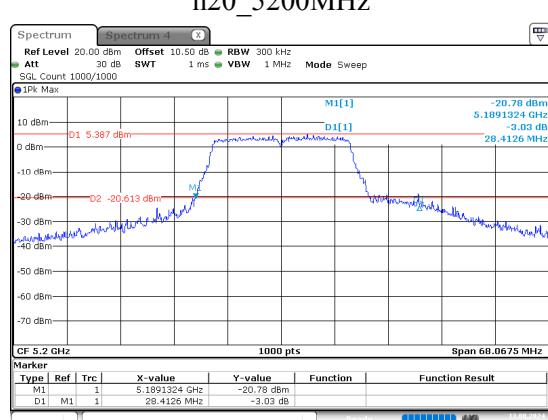
6dB Emission Bandwidth:
5.8G

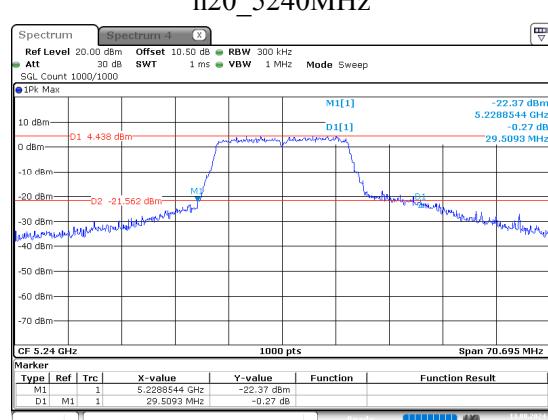

Mode	Value (MHz)	Limit (MHz)	Result
a_5745MHz	16.467	0.5	Pass
a_5785MHz	16.467	0.5	Pass
a_5825MHz	16.467	0.5	Pass
n20_5745MHz	17.718	0.5	Pass
n20_5785MHz	17.718	0.5	Pass
n20_5825MHz	17.668	0.5	Pass
n40_5755MHz	36.537	0.5	Pass
n40_5795MHz	36.537	0.5	Pass
ac80_5775MHz	76.476	0.5	Pass

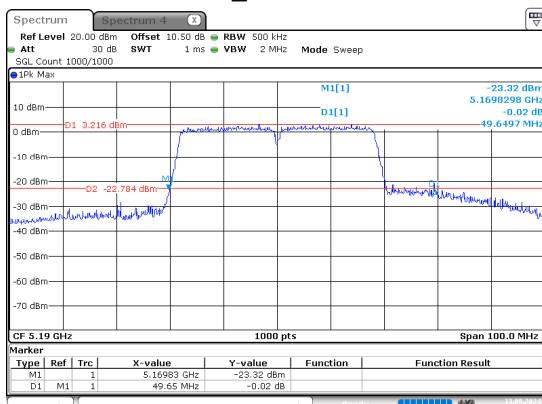
5.2G

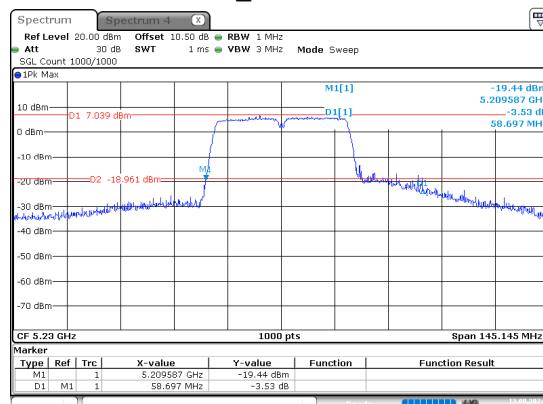

a_5180MHz

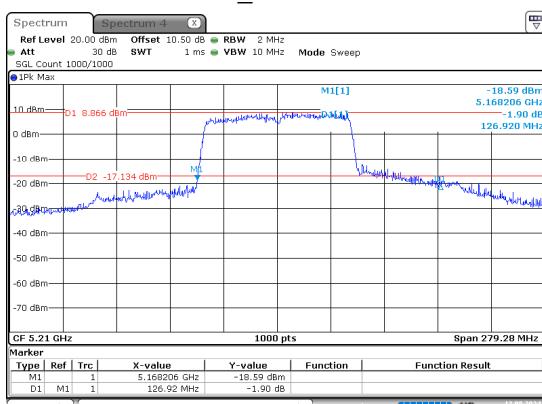

a_5200MHz

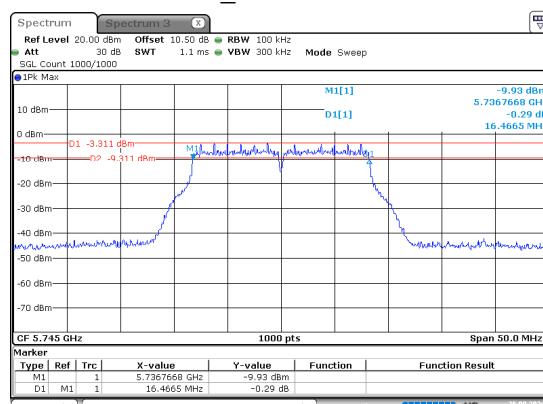

a_5240MHz

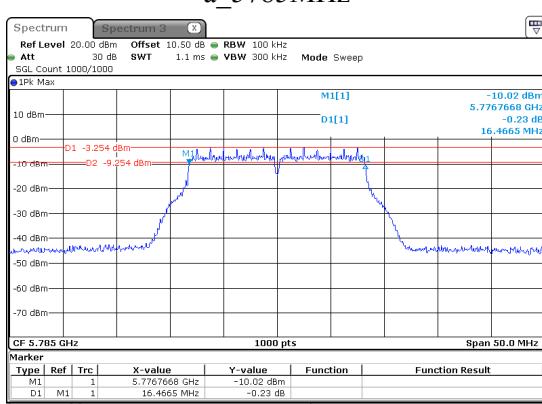

n20_5180MHz

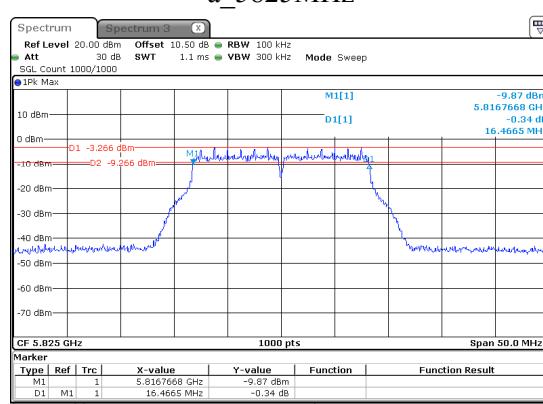

n20_5200MHz

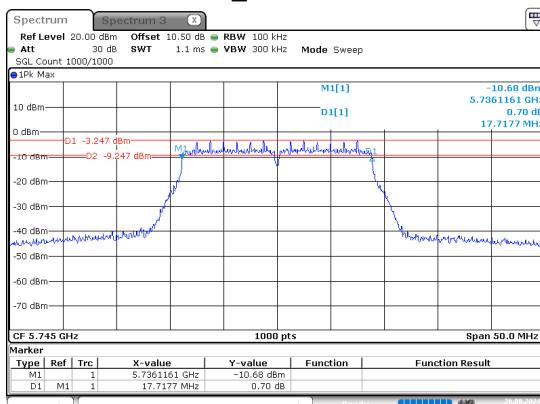

n20_5240MHz


n40_5190MHz

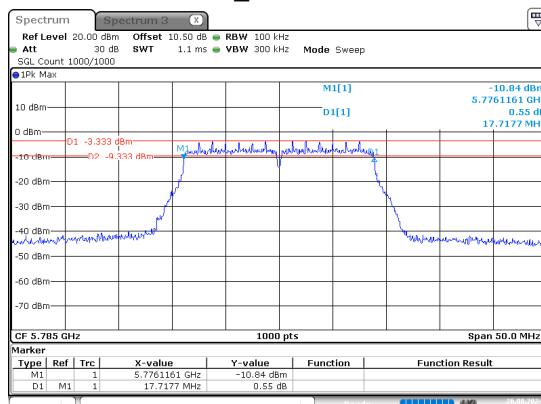

n40_5230MHz


ac80_5210MHz

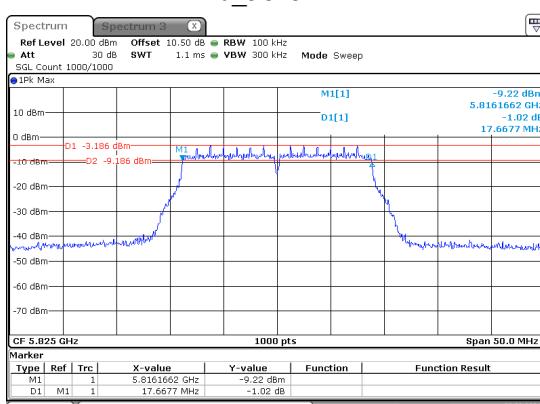

a_5745MHz


a_5785MHz

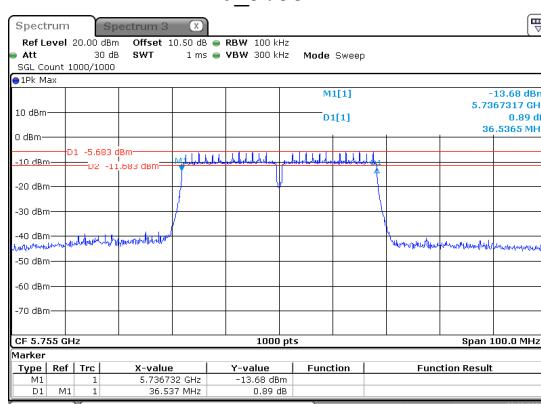
a_5825MHz



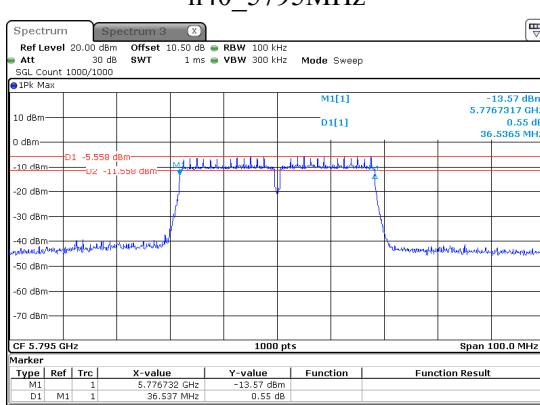
n20_5745MHz


ProjectNo.:2402V88141E-RF Tester:Roy Xiao
Date: 26.AUG.2024 10:56:10

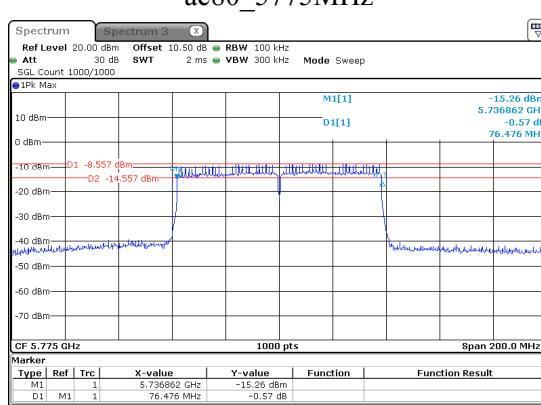
n20_5785MHz


ProjectNo.:2402V88141E-RF Tester:Roy Xiao
Date: 26.AUG.2024 10:57:40

n20_5825MHz


ProjectNo.:2402V88141E-RF Tester:Roy Xiao
Date: 26.AUG.2024 10:59:02

n40_5755MHz


ProjectNo.:2402V88141E-RF Tester:Roy Xiao
Date: 26.AUG.2024 11:00:31

n40_5795MHz

ProjectNo.:2402V88141E-RF Tester:Roy Xiao
Date: 26.AUG.2024 11:01:39

ac80_5775MHz

ProjectNo.:2402V88141E-RF Tester:Roy Xiao
Date: 26.AUG.2024 11:02:38

5.4 99% Occupied Bandwidth

Serial No.:	2P77-1	Test Date:	2024/08/12~2024/09/25
Test Site:	RF	Test Mode:	Transmitting
Tester:	Roy Xiao	Test Result:	/

Environmental Conditions:

Temperature: (°C):	25.1-25.8	Relative Humidity: (%)	41-47	ATM Pressure: (kPa)	99.4-100.5
------------------------------	-----------	----------------------------------	-------	-------------------------------	------------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101589	2023/10/18	2024/10/17
Eastsheep	Coaxial Attenuator	5W-N-JK-6G-10dB	F-08-EM503	2024/06/07	2025/06/07

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

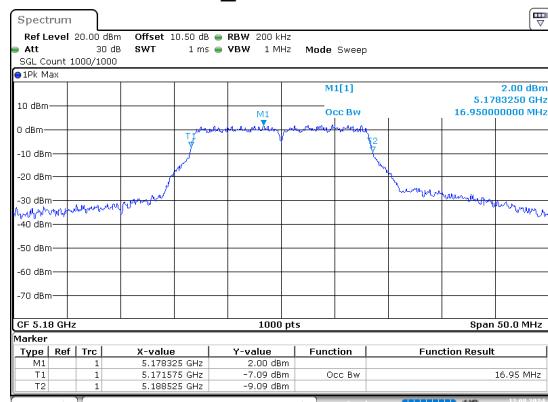
5.2G

Mode	99% OBW (MHz)
a_5180MHz	16.950
a_5200MHz	16.900
a_5240MHz	16.950
n20_5180MHz	18.500
n20_5200MHz	18.100
n20_5240MHz	18.250
n40_5190MHz	36.600
n40_5230MHz	36.600
ac80_5210MHz	76.400

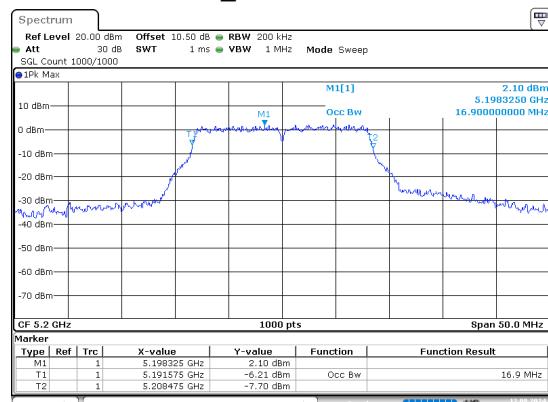
Note:

The 99% Occupied Bandwidth have not fall into the band 5250-5350MHz, please refer to the test plots of 99% Occupied Bandwidth.

5.8G

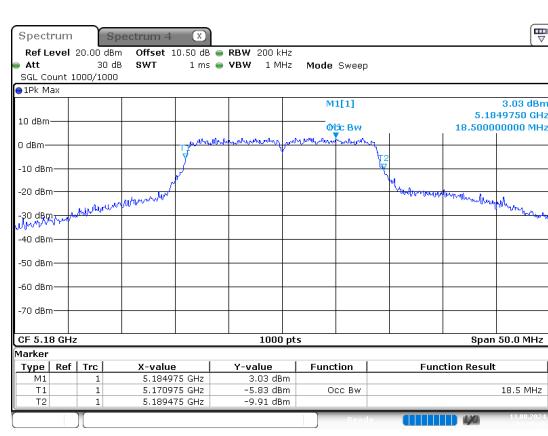

Mode	99% OBW (MHz)
a_5745MHz	16.800
a_5785MHz	16.800
a_5825MHz	16.800
n20_5745MHz	18
n20_5785MHz	18
n20_5825MHz	17.950
n40_5755MHz	36.600
n40_5795MHz	36.600
ac80_5775MHz	76

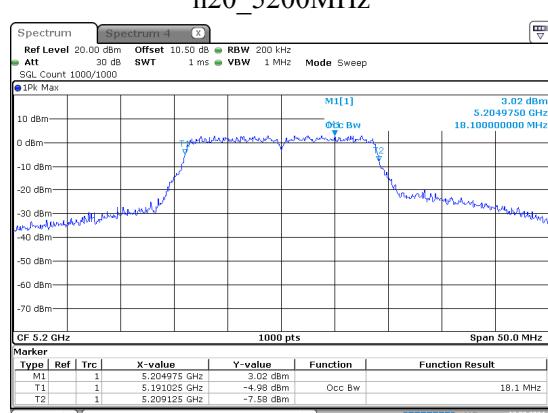
Note:

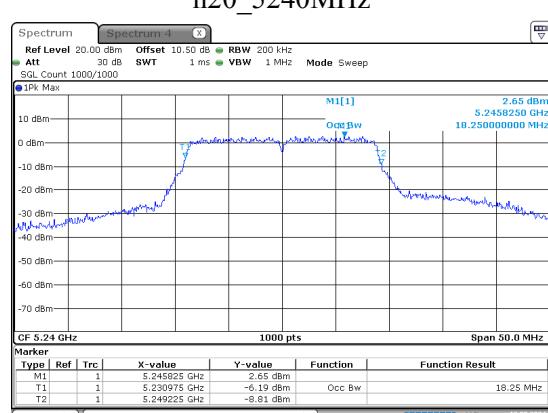

The 99% Occupied Bandwidth have not fall into the band 5470-5725MHz, please refer to the test plots of 99% Occupied Bandwidth.

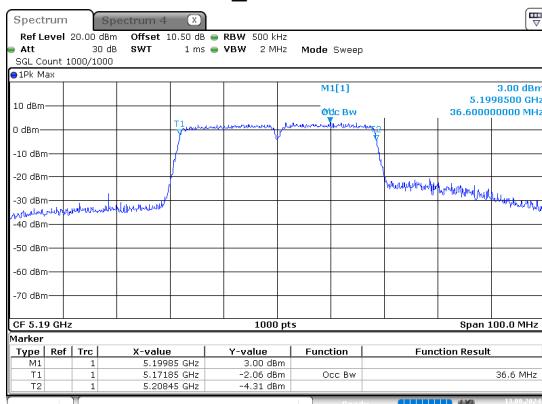
5.2G

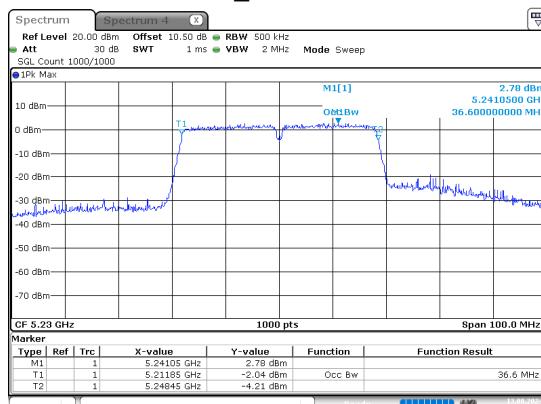
a_5180MHz

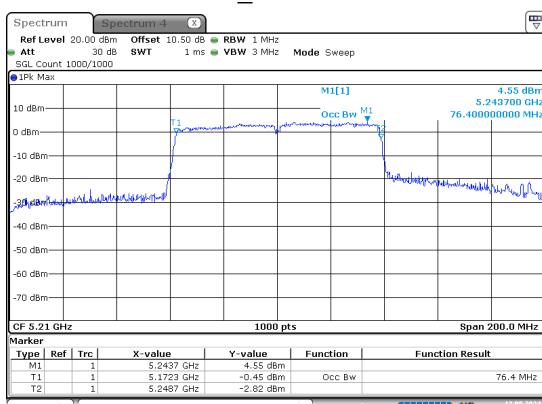

a_5200MHz

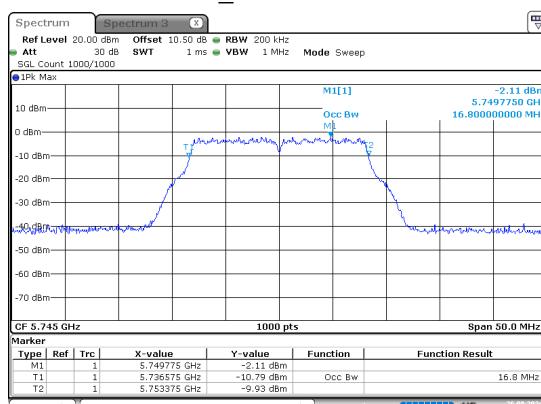

a_5240MHz

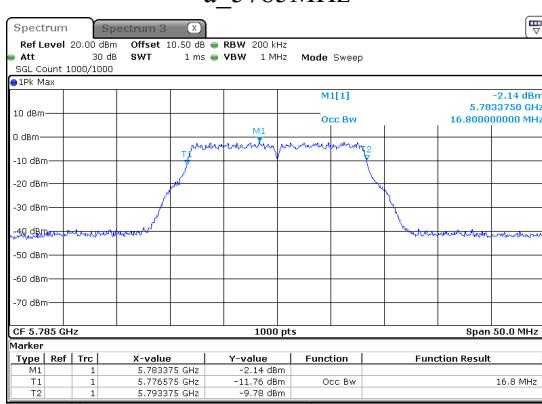

n20_5180MHz

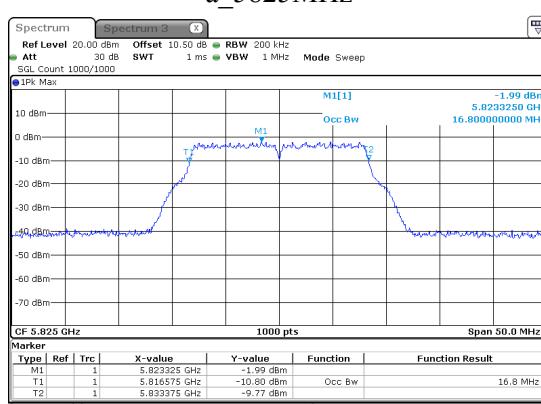

n20_5200MHz


n20_5240MHz

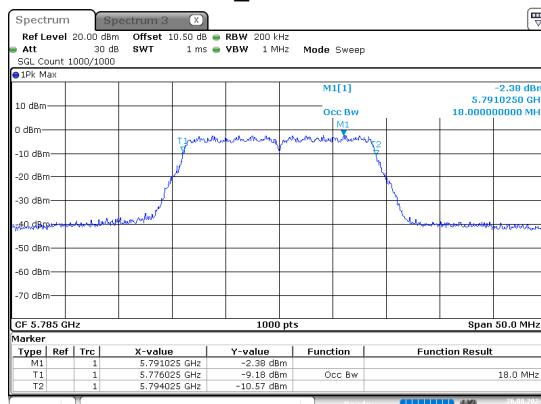

n40_5190MHz

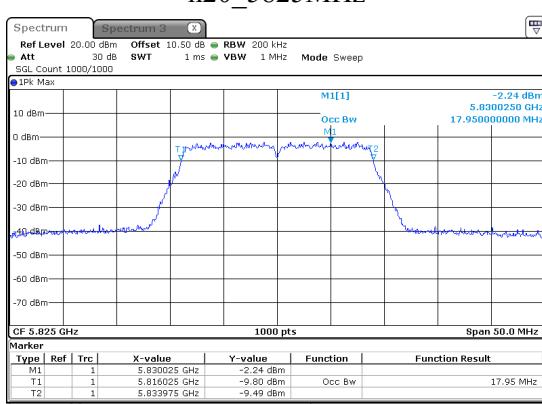

n40_5230MHz

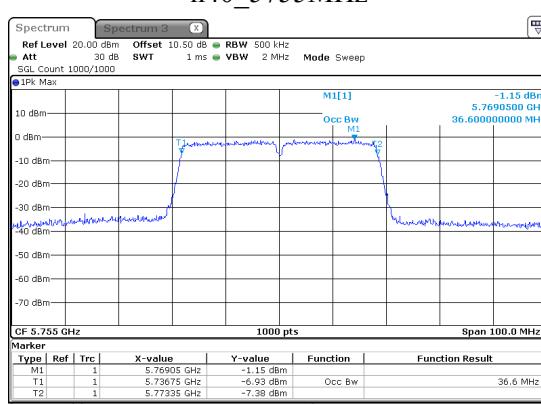

ac80_5210MHz

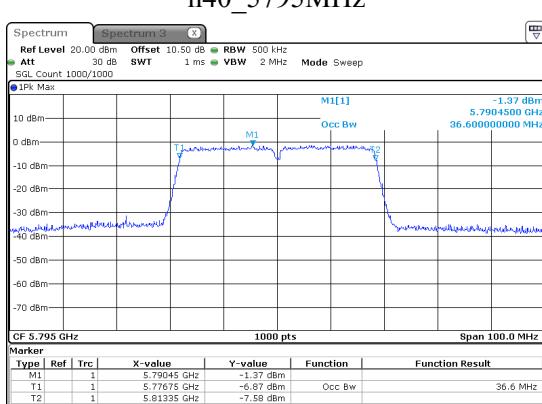

a_5745MHz

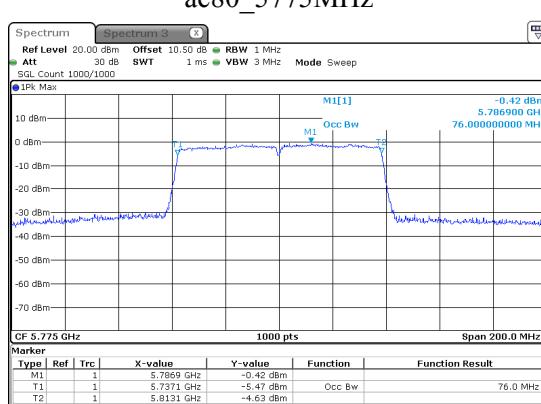
a_5785MHz


a_5825MHz


n20_5745MHz


n20_5785MHz


n20_5825MHz


n40_5755MHz

n40_5795MHz

ac80_5775MHz

5.5 Maximum Conducted Output Power

Serial No.:	2P77-1	Test Date:	2024/08/12~2024/08/26
Test Site:	RF	Test Mode:	Transmitting
Tester:	Roy Xiao	Test Result:	Pass

Environmental Conditions:

Temperature: (°C):	26.7-27.2	Relative Humidity: (%)	43-52	ATM Pressure: (kPa)	99.5-100.7
------------------------------	-----------	----------------------------------	-------	-------------------------------	------------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Anritsu	Microwave Peak Power Sensor	MA24418A	12618	2023/09/04	2024/09/03
Eastsheep	Coaxial Attenuator	5W-N-JK-6G-10dB	F-08-EM504	2024/06/07	2025/06/07

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

5.2G

Mode	Average Output Power (dBm)	Limit (dBm)	Result
a_5180MHz	12.43	24	Pass
a_5200MHz	12.61	24	Pass
a_5240MHz	13.65	24	Pass
n20_5180MHz	13.7	24	Pass
n20_5200MHz	13.62	24	Pass
n20_5240MHz	13.3	24	Pass
n40_5190MHz	12.53	24	Pass
n40_5230MHz	12.34	24	Pass
ac80_5210MHz	12.84	24	Pass

Note: The device is a Client device.

5.8G

Mode	Average Output Power (dBm)	Limit (dBm)	Result
a_5745MHz	8.42	30	Pass
a_5785MHz	8.37	30	Pass
a_5825MHz	8.43	30	Pass
n20_5745MHz	8.38	30	Pass
n20_5785MHz	8.46	30	Pass
n20_5825MHz	8.31	30	Pass
n40_5755MHz	8.45	30	Pass
n40_5795MHz	8.59	30	Pass
ac80_5775MHz	8.39	30	Pass

5.6 Power Spectral Density

Serial No.:	2P77-1	Test Date:	2024/08/12~2024/09/25
Test Site:	RF	Test Mode:	Transmitting
Tester:	Roy Xiao	Test Result:	Pass

Environmental Conditions:

Temperature: (°C):	25.1-25.8	Relative Humidity: (%)	41-47	ATM Pressure: (kPa)	99.4-100.5
------------------------------	-----------	----------------------------------	-------	-------------------------------	------------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101589	2023/10/18	2024/10/17
Eastsheep	Coaxial Attenuator	5W-N-JK-6G-10dB	F-08-EM503	2024/06/07	2025/06/07

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

5.2G

Mode	Value (dBm/MHz)	Duty Cycle Factor(dB)	PSD (dBm/MHz)	Limit (dBm/MHz)	Result
a_5180MHz	1.30	0.13	1.43	11	Pass
a_5200MHz	1.51	0.13	1.64	11	Pass
a_5240MHz	3.03	0.13	3.16	11	Pass
n20_5180MHz	2.37	0.14	2.51	11	Pass
n20_5200MHz	2.15	0.14	2.29	11	Pass
n20_5240MHz	1.74	0.14	1.88	11	Pass
n40_5190MHz	-2.23	0.29	-1.94	11	Pass
n40_5230MHz	-1.90	0.29	-1.61	11	Pass
ac80_5210MHz	-4.97	0.54	-4.43	11	Pass

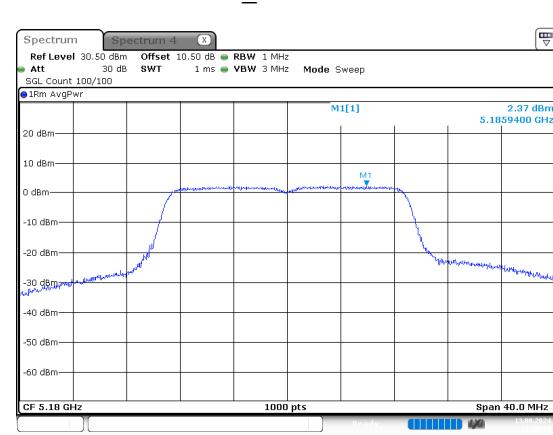

Note: The device is a Client device.

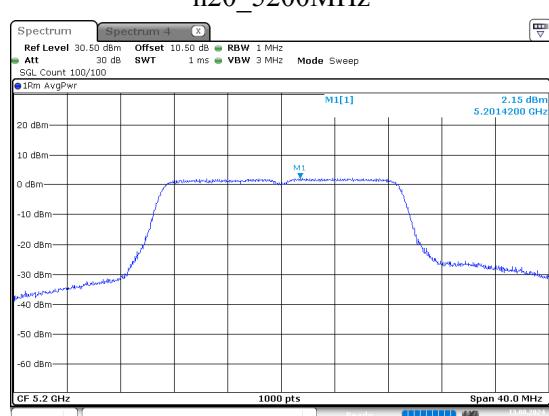
5.8G

Mode	Value (dBm/500kHz)	Duty Cycle Factor(dB)	PSD (dBm/500kHz)	Limit (dBm/500kHz)	Result
a_5745MHz	-5.74	0.13	-5.61	30	Pass
a_5785MHz	-5.69	0.13	-5.56	30	Pass
a_5825MHz	-5.68	0.13	-5.55	30	Pass
n20_5745MHz	-6.08	0.14	-5.94	30	Pass
n20_5785MHz	-6.29	0.14	-6.15	30	Pass
n20_5825MHz	-6.13	0.14	-5.99	30	Pass
n40_5755MHz	-9.26	0.29	-8.97	30	Pass
n40_5795MHz	-8.89	0.29	-8.60	30	Pass
ac80_5775MHz	-12.42	0.54	-11.88	30	Pass

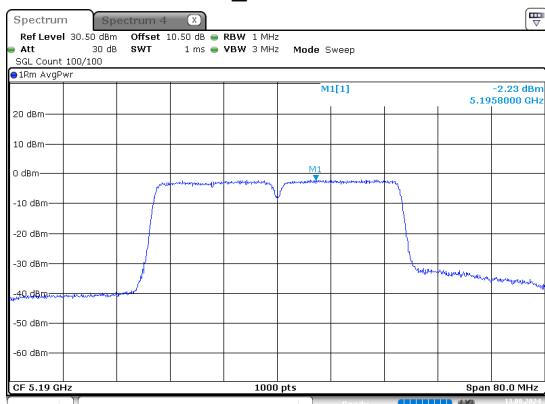
5.2G

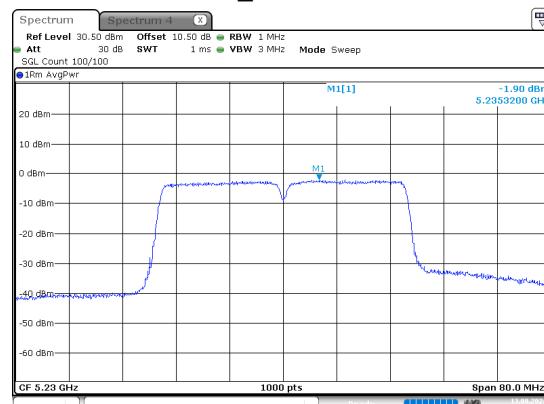
a_5180MHz


a_5200MHz

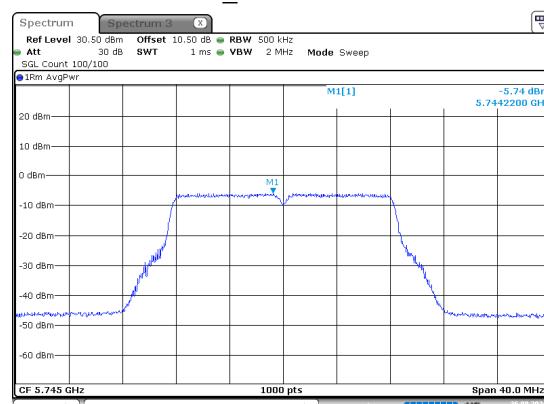

a_5240MHz

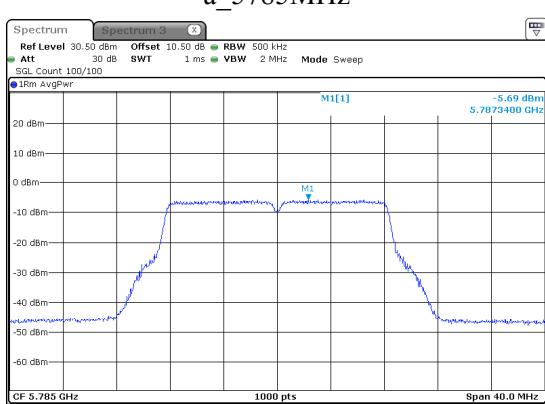
n20_5180MHz

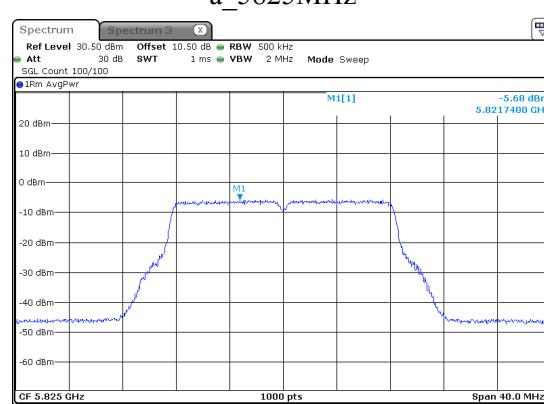

n20_5200MHz


n20_5240MHz


n40_5190MHz


n40_5230MHz

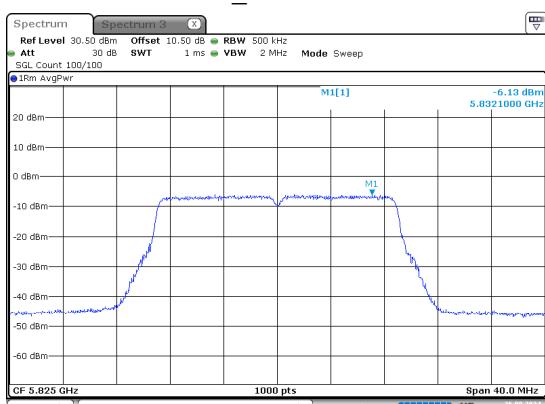

ac80_5210MHz


a_5745MHz

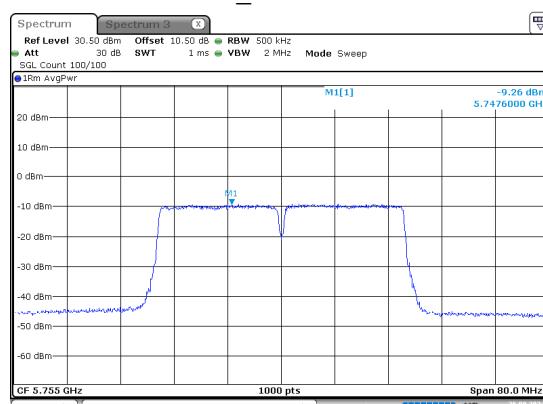

a_5785MHz

a_5825MHz

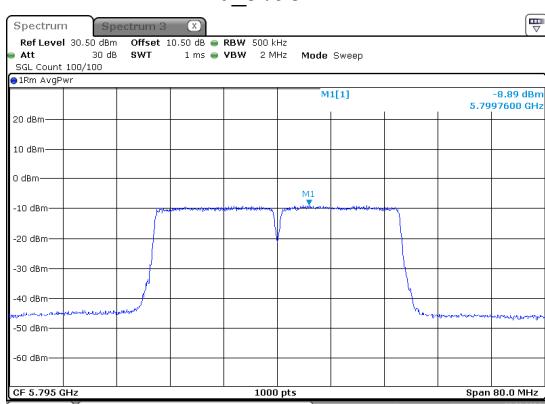
n20_5745MHz


ProjectNo.:2402V88141E-RF Tester:Roy Xiao
Date: 26.AUG.2024 10:56:21

n20_5785MHz


ProjectNo.:2402V88141E-RF Tester:Roy Xiao
Date: 26.AUG.2024 10:57:51

n20_5825MHz


ProjectNo.:2402V88141E-RF Tester:Roy Xiao
Date: 26.AUG.2024 10:59:14

n40_5755MHz

ProjectNo.:2402V88141E-RF Tester:Roy Xiao
Date: 26.AUG.2024 11:00:43

n40_5795MHz

ProjectNo.:2402V88141E-RF Tester:Roy Xiao
Date: 26.AUG.2024 11:01:50

ac80_5775MHz

ProjectNo.:2402V88141E-RF Tester:Roy Xiao
Date: 26.AUG.2024 11:02:50

5.7 Duty Cycle

Serial No.:	2P77-1	Test Date:	2024/08/12
Test Site:	RF	Test Mode:	Transmitting
Tester:	Roy Xiao	Test Result:	/

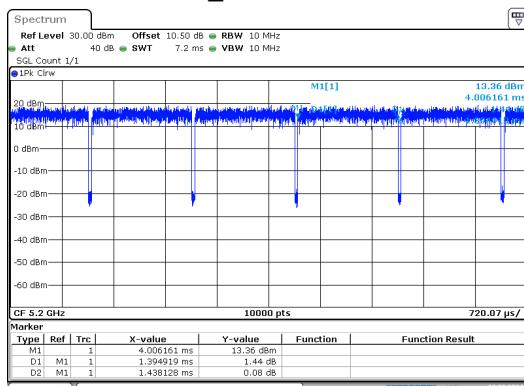
Environmental Conditions:

Temperature: (°C):	26.7	Relative Humidity: (%)	43	ATM Pressure: (kPa)	99.5
------------------------------	------	----------------------------------	----	-------------------------------	------

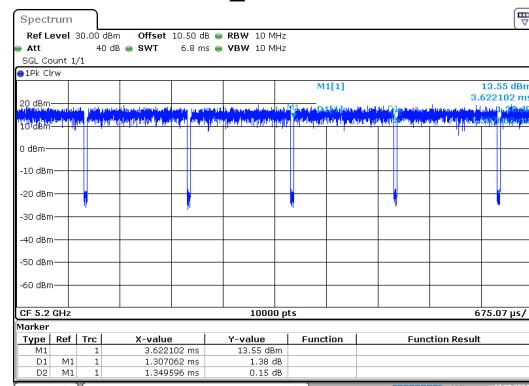
Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101589	2023/10/18	2024/10/17
Eastsheep	Coaxial Attenuator	5W-N-JK-6G-10dB	F-08-EM503	2024/06/07	2025/06/07

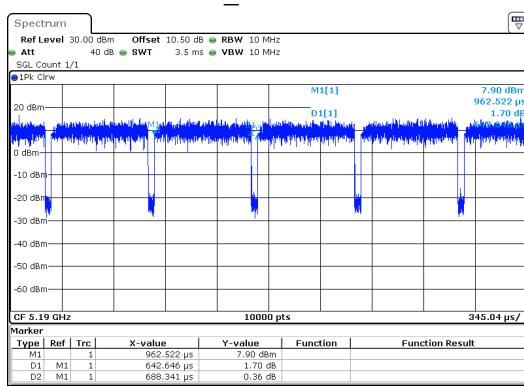
* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

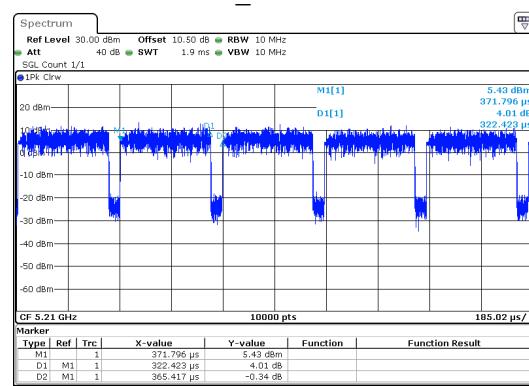

5.2G

Mode	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)	Duty Cycle Factor(dB)	1/Ton (Hz)	VBW Setting (kHz)
a_5200MHz	1.395	1.438	97.01	0.13	717	1
n20_5200MHz	1.307	1.350	96.81	0.14	765	1
n40_5190MHz	0.643	0.688	93.46	0.29	1555	2
ac80_5210MHz	0.322	0.365	88.22	0.54	3106	5


Duty Cycle = Ton/(Ton+Toff)*100%

5.2G


a_5200MHz


n20_5200MHz

n40_5190MHz

ac80_5210MHz

EXHIBIT A - EUT PHOTOGRAPHS

Please refer to the attachment 2402V88141E-RF-EXP EUT EXTERNAL PHOTOGRAPHS and 2402V88141E-RF-INP EUT INTERNAL PHOTOGRAPHS.

EXHIBIT B - TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2402V88141E-RF-00D-TSP TEST SETUP PHOTOGRAPHS.

******* END OF REPORT *******