Report No.: BSL231103123101RF

FCC Part 15C Measurement and Test Report

For

SHENZHEN JIU SHI ELECTRONIC CO.,LTD.

FCC ID:2BDU4-JS100A

FCC Rule(s): FCC Part 15C

Product Description: Motorcycle dashcam

Tested Model: JS100A

Report No.: BSL231103123101RF

Tested Date: Nov.01~Dec.4, 2023

Issued Date: <u>Dec.04, 2023</u>

Tested By: Steven Wen/ Engineer Steven wen

Reviewed By: <u>Lisa. Ji / EMC Manager</u>

Approved & Authorized By: Mike mo / PSQ Manager

Prepared By:

BSL Testing Co.,LTD.

1/F, Building B, Xinshidai GR Park, Shiyan Street, Bao'an District, Shenzhen, ShiyanStreet, Bao'an District, Shenzhen, Guangdong, 518052, People's Republic of China

Tel: 400-882-9628 Fax: 86- 755-26508703

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 Product Description for Equipment Under Test (EUT)	3
1.2 TEST STANDARDS	
1.3 TEST METHODOLOGY	
1.4 TEST FACILITY	4
1.5 EUT SETUP AND TEST MODE	
1.7 TEST EQUIPMENT LIST AND DETAILS	
2. SUMMARY OF TEST RESULTS	
3. RF EXPOSURE	
3.1 STANDARD APPLICABLE	
4. ANTENNA REQUIREMENT	
4.1 STANDARD APPLICABLE	
4.2 EVALUATION INFORMATION	
5. POWER SPECTRAL DENSITY	10
5.1 STANDARD APPLICABLE	
5.2 TEST PROCEDURE	
5.3 ENVIRONMENTAL CONDITIONS	
5.4 SUMMARY OF TEST RESULTS/PLOTS	
6. 6DB BANDWIDTH	
6.1 STANDARD APPLICABLE	
6.2 Test Procedure	
6.3 Environmental Conditions	
7. RF OUTPUT POWER	
7.1 Standard Applicable	
7.3 ENVIRONMENTAL CONDITIONS	
7.4 Summary of Test Results/Plots	
8. FIELD STRENGTH OF SPURIOUS EMISSIONS	
8.1 STANDARD APPLICABLE	
8.2 Test Procedure	
8.3 CORRECTED AMPLITUDE & MARGIN CALCULATION	
8.4 Environmental Conditions	
8.5 SUMMARY OF TEST RESULTS/PLOTS	
9. OUT OF BAND EMISSIONS	41
9.1 STANDARD APPLICABLE	
9.2 TEST PROCEDURE	
9.3 Environmental Conditions	
10. CONDUCTED EMISSIONS	
10.1 Test Procedure	
10.2 BASIC TEST SETUP BLOCK DIAGRAM	
10.4 Test Receiver Setup.	
10.5 Summary of Test Results/Plots	
10.6 CONDUCTED EMISSIONS TEST DATA	47

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: SHENZHEN JIU SHI ELECTRONIC CO.,LTD.

Address of applicant: 401, A1 building, 228 industrial zone, Henggang

street, Longgang district, Shenzhen

Report No.: BSL231103123101RF

Manufacturer: SHENZHEN JIU SHI ELECTRONIC CO.,LTD.
Address of manufacturer: 401, A1 building, 228 industrial zone, Henggang

street, Longgang district, Shenzhen

General Description of EUT	
Product Name:	Motorcycle dashcam
Trade Name:	JSE
Madal Na .	JS100A、JS100B、JS200A、JS200A-H、
Model No.:	JS100A-H、JS100B-H
Rated Voltage:	DC 12V by Battery
Adapter information:	N/A

Technical Characteristics of E	EUT
Support Standards:	802.11b, 802.11g, 802.11n
Frequency Range:	2412-2462MHz for 802.11b/g/n(HT20)
RF Output Power:	10.04dBm (Conducted)
Type of Modulation:	CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM
Data Rate:	1-11Mbps, 6-54Mbps, up to 72.2Mbps
Quantity of Channels:	11 for 802.11b/g/n(HT20)
Channel Separation:	5MHz
Type of Antenna:	Plannar Inverted F Antenna on board
Antenna Gain:	-2.63dBi

BSL Testing Co.,LTD.

1.2 Test Standards

The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207,

Report No.: BSL231103123101RF

15.209 and 15.247 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which

result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard

for Testing Unlicensed Wireless Devices, and ANSI C63.4-2014, American National Standard for Methods of

Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9

kHz to 40 GHz. The measurement guide KDB 558074 D01 v05r02 for digital transmission systems shall be

performed also.

1.4 Test Facility

BSL Testing Co.,LTD.

1/F, Building B, Xinshidai GR Park, Shiyan Street, Bao'an District, Shenzhen, ShiyanStreet, Bao'an District,

Shenzhen, Guangdong, 518052, People's Republic of China

FCC Test Firm Registration Number: 562200

Designation Number: CN1338

Tel: 400-882-9628

Fax: 86-755-26508703

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Report No.: BSL231103123101RF

Test Mode List		
Test Mode	Description	Remark
TM1	802.11b	2412MHz, 2437MHz, 2462MHz
TM2	802.11g	2412MHz, 2437MHz, 2462MHz
TM3	802.11n-HT20	2412MHz, 2437MHz, 2462MHz

Note: All test modes (different data rate and different modulation) are performed, but only the worst case is recorded in this report.

Accessories Equipment List and Details						
Description	Manufacturer	Model No.	Serial Number			
Accessories Cable List and Details						
Cable Description	Length (m)	Shielded/Unshielded	With Core/Without Core			
USB Line	1m	Unshielded	Without Ferrite			
EUT Cable List and Details						
Cable Description	Length (m)	Shielded/Unshielded	With Core/Without Core			

Auxiliary Equipment List and Details							
Description	Manufacturer	Model	Serial Number				
Adapter	XYX	P2003	N/A				

1.6 Measurement Uncertainty

Measurement uncertainty					
Parameter	Conditions	Uncertainty			
RF Output Power	Conducted	±0.42dB			
Occupied Bandwidth	Conducted	±1.5%			
Power Spectral Density	Conducted	±1.8dB			
Conducted Spurious Emission	Conducted	±2.17dB			
Conducted Emissions	Conducted	±2.88dB			
Transmitter Spurious Emissions	Radiated	±5.1dB			

1.7 Test Equipment List and Details

Description	Manufacturer Model		Serial No.	Cal Date	Due. Date
Communication Tester	Rohde & Schwarz	CMW500	100358	2023-10-27	2024-10-26
Spectrum Analyzer	R&S	FSP40	100550	2023-10-27	2024-10-26
Test Receiver	R&S	ESCI7	US471401 02	2023-10-27	2024-10-26
Signal Generator	НР	83630B	3844A010 28	2023-10-27	2024-10-26
Test Receiver	R&S	ESPI-3	100180	2023-10-27	2024-10-26
Amplifier	Agilent	8449B	4035A001 16	2023-10-27	2024-10-26
Amplifier	HP	8447E	2945A027 70	2023-10-27	2024-10-26
Signal Generator	IFR	2023A	202307/24	2023-10-27	2024-10-26
Broadband Antenna	dband Antenna SCHAFFNER 2774 2774		2023-10-27	2024-10-26	
Biconical and log periodic antennas	ELECTRO-METR ICS	EM-6917B-1	171	2023-10-27	2024-10-26
Horn Antenna	R&S	HF906	100253	2023-10-27	2024-10-26
Horn Antenna	EM	EM-6961	6462	2023-10-27	2024-10-26
LISN	R&S	ESH3-Z5	100196	2023-10-27	2024-10-26
LISN	COM-POWER	LI-115	02027	2023-10-27	2024-10-26
3m Semi-Anechoic Chamber	Chengyu Electron	Chengyu Electron 9 (L)*6 (W)* 6 (H) BSL086		2023-10-27	2024-10-26
Horn Antenna	A-INFOMW	LB-180400KF	BSL088	2023-10-27	2024-10-26
20dB Attenuator	ICPROBING	IATS1	BSL1003	2023-10-27	2024-10-26
POWER DIVIDER	Mini-circuits	PD-2SF-0010	N/A	2023-10-27	2024-10-26
POWER DIVIDER	Mini-circuits	PD-2SF-0010	N/A	2023-10-27	2024-10-26
Loop Antenna	Schwarz beck	FMZB 1516	9773	2023-10-27	2024-10-26
MWRF Power Meter Test system	MW	MW100-RPCB	N/A	2023-10-27	2024-10-26
Power Meter	Schwarz beck	FMZB 1516	9773	2023-10-27	2024-10-26

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§ 2.1093	RF Exposure	PASS
§ 15.203; § 15.247(b)(4)(i)	Antenna Requirement	PASS
§15.205	Restricted Band of Operation	PASS
§ 15.207(a)	Conducted Emission	N/A
§ 15.247(e)	Power Spectral Density	PASS
§ 15.247(a)(2)	6 dB Bandwidth	PASS
§ 15.247(b)(3)	RF Output Power	PASS
§ 15.209(a)	Radiated Emission	PASS
§ 15.247(d)	Band Edge (Out of Band Emissions)	PASS

Note: PASS: applicable, N/A: not applicable.

Report No.: BSL231103123101RF

3. RF Exposure

3.1 Standard Applicable

According to § 1.1307(b)(1), system operating under the provisions of this section shall be operating in a manner that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure.

3.2 Test Result

This product complied with the requirement of the RF exposure, please see the RF Exposure Report.

Report No.: BSL231103123101RF

4. Antenna Requirement

4.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

4.2 Evaluation Information

This product has a PCB antenna(-2.63dBi), fulfill the requirement of this section.

5. Power Spectral Density

5.1 Standard Applicable

According to 15.247(a)(1)(iii), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Report No.: BSL231103123101RF

5.2 Test Procedure

According to the KDB 558074 D01 v05r02, such specifications require that the same method as used to determine the conducted output power shall also be used to determine the power spectral density. The test method of power spectral density as below:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set span to at least 1.5 times the OBW.
- c) Set RBW to: 3 kHz \leq RBW \leq 100 kHz. .
- d) Set VBW ≥ 3 x RBW.
- e) Detector = power averaging (RMS) or sample detector (when RMS not available).
- f) Ensure that the number of measurement points in the sweep $\geq 2 \text{ x span/RBW}$.
- g) Sweep time = auto couple.
- h) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- i) Use the peak marker function to determine the maximum amplitude level.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).

5.3 Environmental Conditions

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

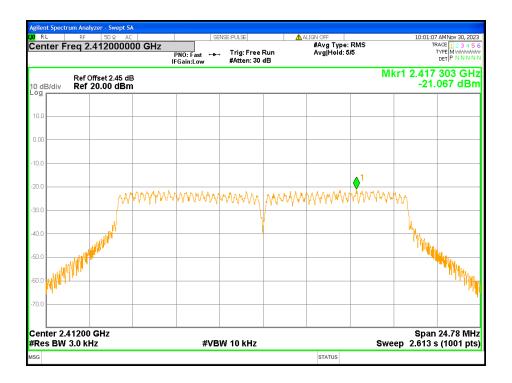
5.4 Summary of Test Results/Plots

Condition	Mode	Frequency	Antenna	Conducted	Duty	Total PSD	Limit	Verdict
		(MHz)		PSD	Factor	(dBm/3kHz)	(dBm/3kHz)	
				(dBm/3kHz)	(dB)			
NVNT	b	2412	Ant1	-23.08	0	-23.08	8	Pass
NVNT	b	2437	Antl	-23.03	0	-23.03	8	Pass
NVNT	b	2462	Ant1	-23.35	0	-23.35	8	Pass
NVNT	g	2412	Ant1	-21.07	0	-21.07	8	Pass
NVNT	g	2437	Ant1	-21.16	0	-21.16	8	Pass
NVNT	g	2462	Ant1	-21.29	0	-21.29	8	Pass
NVNT	n20	2412	Antl	-20.48	0	-20.48	8	Pass
NVNT	n20	2437	Antl	-20.61	0	-20.61	8	Pass
NVNT	n20	2462	Ant1	-20.19	0	-20.19	8	Pass

Please refer to the following test plots:

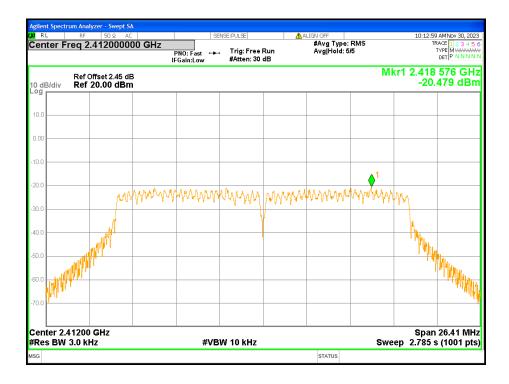
15.247

802.11b-Low Channel

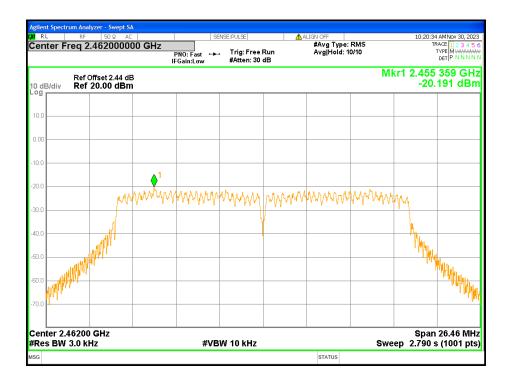

802.11b-Middle Channel

802.11b-High Channel


802.11g-Low Channel


802.11g-Middle Channel

802.11g-High Channel


802.11n-HT20-Low Channel

802.11n-HT20-Middle Channel

802.11n-HT20-High Channel

6. 6dB Bandwidth

6.1 Standard Applicable

According to 15.247(a)(2). Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: BSL231103123101RF

6.2 Test Procedure

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 \times RBW.
- c) Detector = Peak.
- d) Trace mode = \max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.3 Environmental Conditions

Temperature:	25° C
Relative Humidity:	53%
ATM Pressure:	1018 mbar

6.4 Summary of Test Results/Plots

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	ь	2412	Ant1	10.111	0.5	Pass
NVNT	b	2437	Ant1	10.102	0.5	Pass
NVNT	ь	2462	Ant1	10.105	0.5	Pass
NVNT	g	2412	Ant1	16.521	0.5	Pass
NVNT	g	2437	Ant1	16.529	0.5	Pass
NVNT	g	2462	Ant1	16.489	0.5	Pass
NVNT	n20	2412	Ant1	17.607	0.5	Pass
NVNT	n20	2437	Ant1	17.67	0.5	Pass
NVNT	n20	2462	Ant1	17.639	0.5	Pass

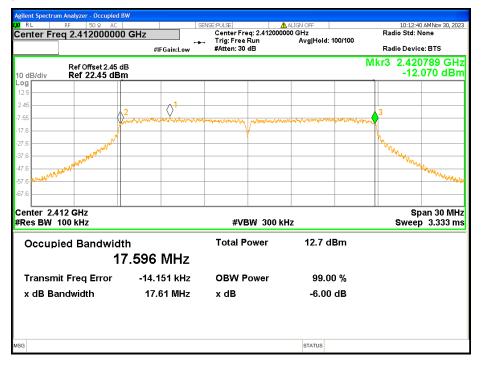
Please refer to the following test plots:

802.11b-Low Channel

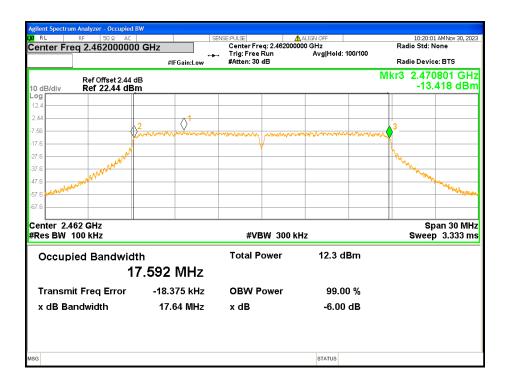
802.11b-Middle Channel


802.11b-High Channel


802.11g-Low Channel


802.11g-Middle Channel

802.11g-High Channel


802.11n-HT20-Low Channel

802.11n-HT20-Middle Channel

802.11n-HT20-High Channel

7. RF Output Power

7.1 Standard Applicable

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

Report No.: BSL231103123101RF

7.2 Test Procedure

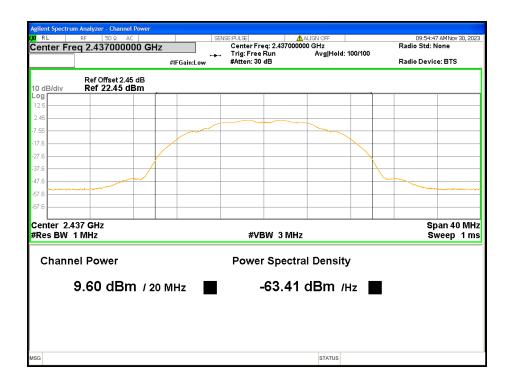
According to the KDB-558074 D01 v05r02, 9.2.2.2, when this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth

- a) Set span to at least 1.5 times the OBW.
- b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- c) Set VBW $\geq 3 \times RBW$.
- d) Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\leq \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- g) If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- h) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

7.3 Environmental Conditions

Temperature:	26° C
Relative Humidity:	57%
ATM Pressure:	1011 mbar

7.4 Summary of Test Results/Plots


Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power (dBm)	Factor	Power	(dBm)	
					(dB)	(dBm)		
NVNT	b	2412	Ant1	9.66	0	9.66	30	Pass
NVNT	ь	2437	Antl	9.6	0	9.6	30	Pass
NVNT	b	2462	Ant1	9.32	0	9.32	30	Pass
NVNT	g	2412	Ant1	9.93	0	9.93	30	Pass
NVNT	g	2437	Ant1	10.04	0	10.04	30	Pass
NVNT	g	2462	Ant1	9.96	0	9.96	30	Pass
NVNT	n20	2412	Ant1	9.97	0	9.97	30	Pass
NVNT	n20	2437	Antl	9.86	0	9.86	30	Pass
NVNT	n20	2462	Ant1	9.55	0	9.55	30	Pass

Note: the antenna gain of -2.63dBi less than 6dBi maximum permission antenna gain value based on 1 watt peak output power limit.

802.11b -Low Channel

802.11b - Middle Channel

802.11b -Hight Channel

802.11g -Low Channel

802.11g -Middle Channel

802.11g -Hight Channel

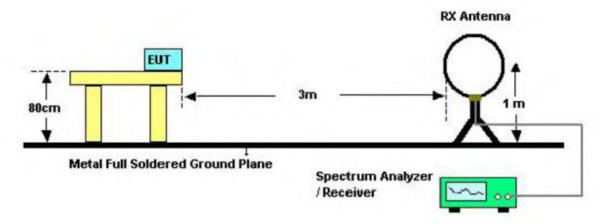
802.11n-HT20-Low Channel

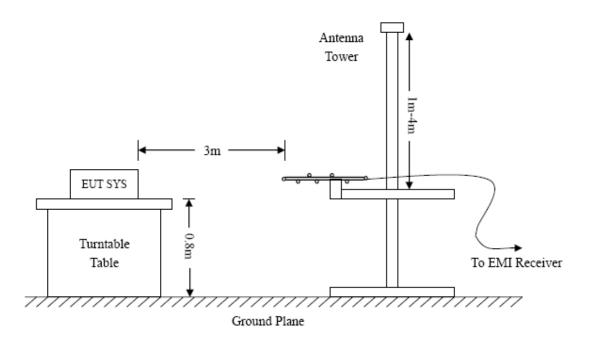
802.11n-HT20-Middle Channel

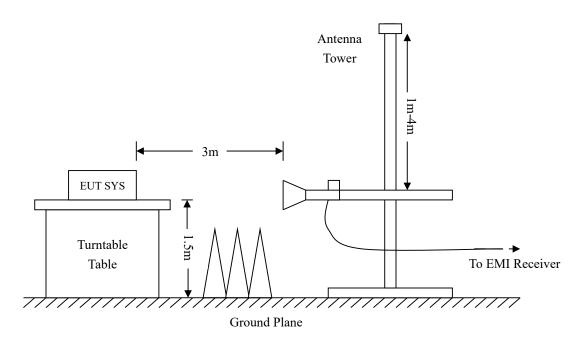
802.11n-HT20-Higt Channel

8. Field Strength of Spurious Emissions

8.1 Standard Applicable


According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).


The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


8.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.247(a) and FCC Part 15.209 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

Frequency :9kHz-30MHz Frequency :30MHz-1GHz Frequency :Above 1GHz

RBW=10KHz, RBW=1MHz,

VBW=30KHz VBW=300KHz VBW=3MHz(Peak), 10Hz(AV)
Sweep time= Auto Sweep time= Auto

Trace = max hold Trace = max hold Trace = max hold Trace = max hold

Detector function = peak, QP Detector function = peak, AV

8.3 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Report No.: BSL231103123101RF

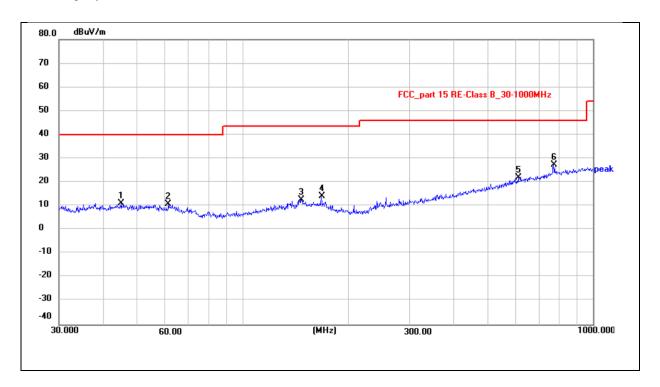
The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit. The equation for margin calculation is as follows:

8.4 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

8.5 Summary of Test Results/Plots

According to the data below, the FCC Part 15.205, 15.209 and 15.247 standards, and had the worst cases:

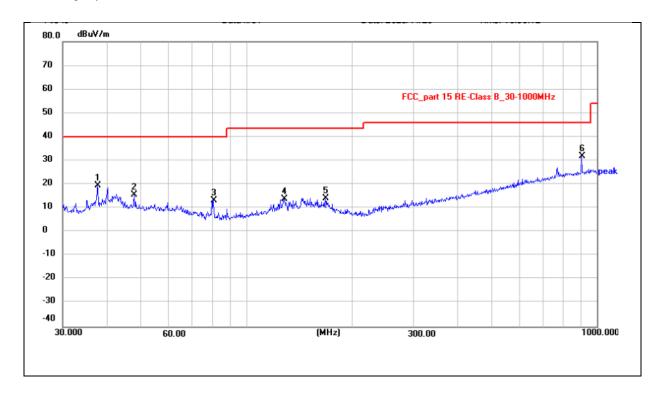

Note:

- 1. Worst-case radiated emission below 1GHz is 802.11b (CH Low) mode.
- 2. Worst-case radiated emission above 1GHz is 802.11g (CH Low, Middle, High) mode.

Plot of Radiated Emissions Test Data (30MHz to 1GHz)

Operating Condition: 802.11b Transmitting Low Channel-2412MHz

Test Specification: Horizontal



Report No.: BSL231103123101RF

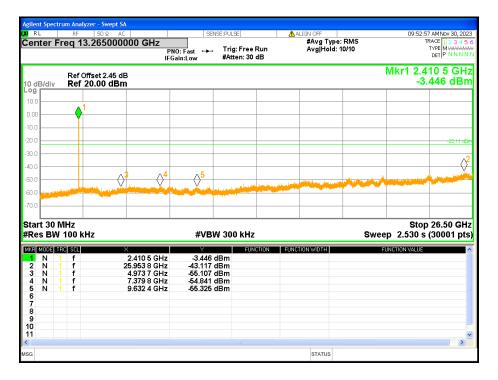
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	45.0583	27.66	-16.52	11.14	40.00	-28.86	peak	100	0	Р	
2	61.5618	28.07	-17.29	10.78	40.00	-29.22	peak	100	0	Р	
3	147.4036	28.85	-16.15	12.70	43.50	-30.80	peak	100	0	Р	
4	167.8243	30.41	-16.14	14.27	43.50	-29.23	peak	100	0	Р	
5	612.0642	29.56	-7.66	21.90	46.00	-24.10	peak	100	0	Р	
6 *	771.4486	32.34	-5.00	27.34	46.00	-18.66	peak	100	0	Р	

Test Specification:

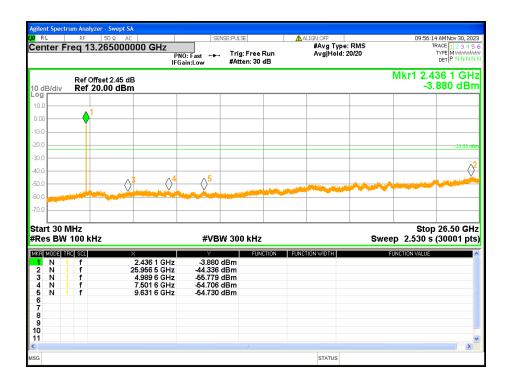
Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	37.6798	36.17	-16.64	19.53	40.00	-20.47	peak	100	360	Р	
2	47.9940	32.07	-16.44	15.63	40.00	-24.37	peak	100	360	Р	
3	80.6442	33.96	-20.65	13.31	40.00	-26.69	peak	100	360	Р	
4	128.1130	31.24	-17.34	13.90	43.50	-29.60	peak	100	360	Р	
5	167.8243	30.30	-16.14	14.16	43.50	-29.34	peak	100	360	Р	
6 *	903.3094	35.43	-3.72	31.71	46.00	-14.29	peak	100	360	Р	

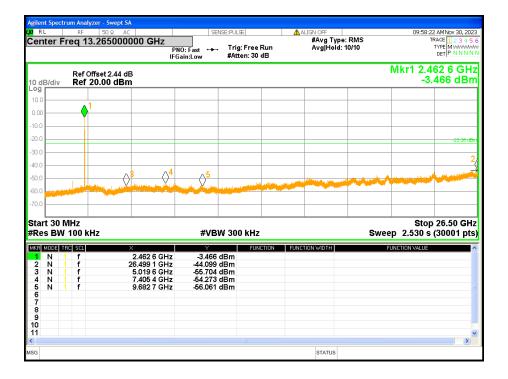
Spurious Emissions Above 1GHz


Test Mode: 802.11g

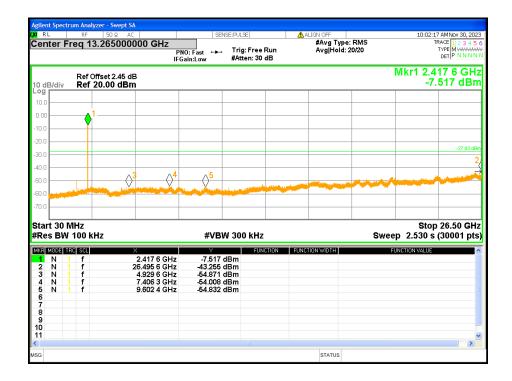
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	H/V					
Low channel-2412MHz									
4824	54.31	74.00	-19.69	Н	PK				
4824	43.51	54.00	-10.49	Н	AV				
7236	51.2	74.00	-22.8	Н	PK				
7236	44.1	54.00	-9.9	Н	AV				
4824	53.2	74.00	-20.8	V	PK				
4824	42.35	54.00	-11.65	V	AV				
7236	57.63	74.00	-16.37	V	PK				
7236	41.28	54.00	-12.72	V	AV				
	Mi	ddle channel	-2437MHz						
4874	56.89	74.00	-17.11	Н	PK				
4874	41.58	54.00	-12.42	Н	AV				
7311	52.39	74.00	-21.61	Н	PK				
7311	41.02	54.00	-12.98	Н	AV				
4874	56.38	74.00	-17.62	V	PK				
4874	42.68	54.00	-11.32	V	AV				
7311	53.27	74.00	-20.73	V	PK				
7311	42.31	54.00	-11.69	V	AV				
	Н	igh channel-2	2462MHz						
4924	56.21	74.00	-17.79	Н	PK				
4924	41.22	54.00	-12.78	Н	AV				
7386	53.41	74.00	-20.59	Н	PK				
7386	41.58	54.00	-12.42	Н	AV				
4924	54.68	74.00	-19.32	V	PK				
4924	41.57	54.00	-12.43	V	AV				
7386	53.68	74.00	-20.32	V	PK				
7386	40.52	54.00	-13.48	V	AV				


Note:

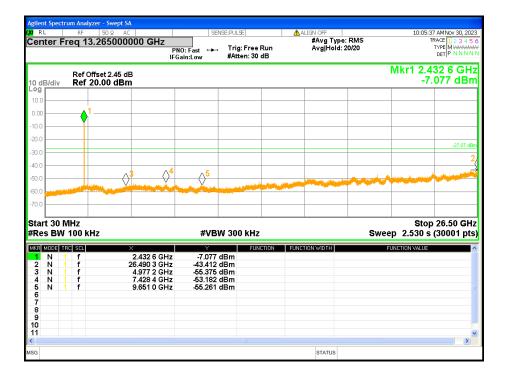
- 1. Calculation of result is: Result (dBm) = Reading (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB)=Ant. Factor + Cable Loss Ampl. Gain.
- 3. Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.


Spurious (Conducted) 802.11b Lowest

Middle

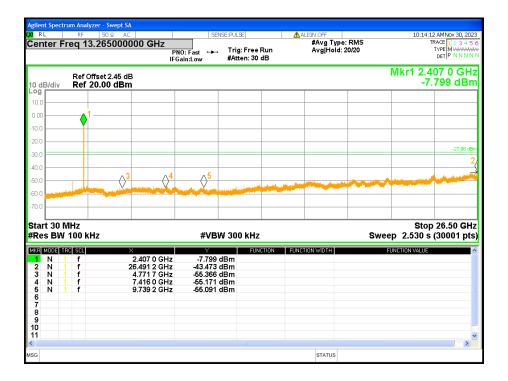


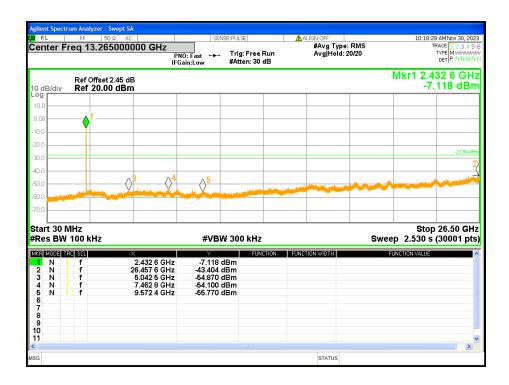
Highest

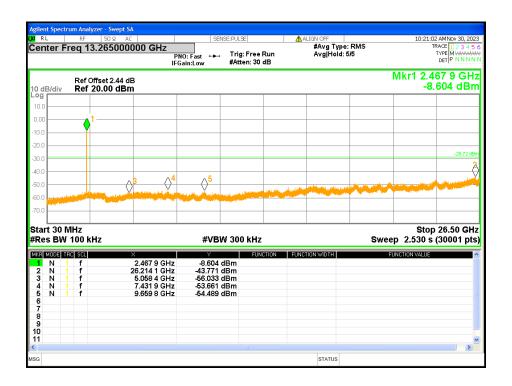


Spurious (Conducted) 802.11g

Lowest


Middle




Spurious (Conducted) 802.11n-HT20

Lowest

Middle

9. Out of Band Emissions

9.1 Standard Applicable

According to §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Report No.: BSL231103123101RF

9.2 Test Procedure

According to the KDB 558074D01 v05r02, the band-edge radiated test method as follows: for Antenna-port conducted measurement.

Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

- 1). Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2). Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to an EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3). Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=1/B for AV detector.
- 4). Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5). Repeat above procedures until all measured frequencies were complete.
- 6). Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 12.2.2, 12.2.3, and 12.2.4 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- 7). Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- 8). Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies \leq 30 MHz,
- 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).
- 9). For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (e.g., Watts, mW).
- 10). Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

BSL Testing Co.,LTD.

E = EIRP - 20log D + 104.77 = EIRP + 95.23

Where:

E = electric field strength in $dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

11). Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.

Report No.: BSL231103123101RF

- 12). Compare the resultant electric field strength level to the applicable regulatory limit.
- 13). Perform radiated spurious emission test duress until all measured frequencies were complete.

9.3 Environmental Conditions

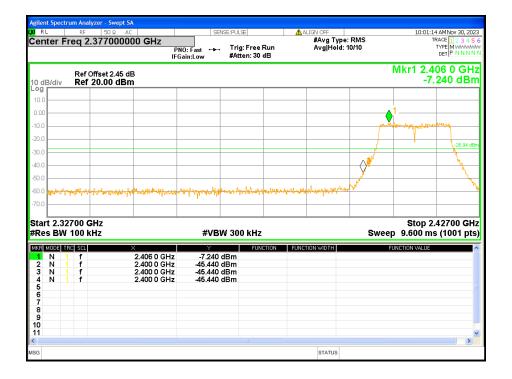
Temperature:	23°C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

9.4 Summary of Test Results/Plots

Mode	Channel	Freq.(MHz	Power(dB m)	Gain(dBi)	E(dBuV/m)	Limit(dBu V/m)	Margin(dB)	Detector
	LOW (2412MHz)	2400.00	-47.75	2.00	49.48	74.00	-24.52	Peak
802.11b	HIGH	2483.50	-58.16	2.00	39.07	74.00	-34.93	Peak
	(2462MHz)	2489.10	-56.21	2.00	41.02	74.00	-32.98	Peak
		2500.00	-60.12	2.00	37.11	74.00	-36.89	Peak
802.11g	LOW (2412MHz)	2400.00	-45.44	2.00	51.79	74.00	-22.21	Peak
	HIGH (2462MHz)	2483.50	-60.32	2.00	36.91	74.00	-37.09	Peak
		2484.90	-55.15	2.00	42.08	74.00	-31.92	Peak
	(2 10211112)	2500.00	-60.52	2.00	36.71	74.00	-37.29	Peak

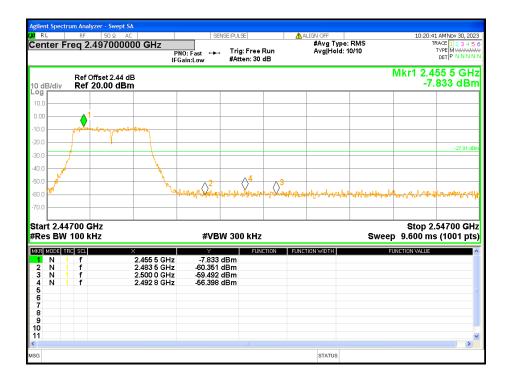
Remark: 1. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.

2. Maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater


Bandedge (Conducted) 802.11b

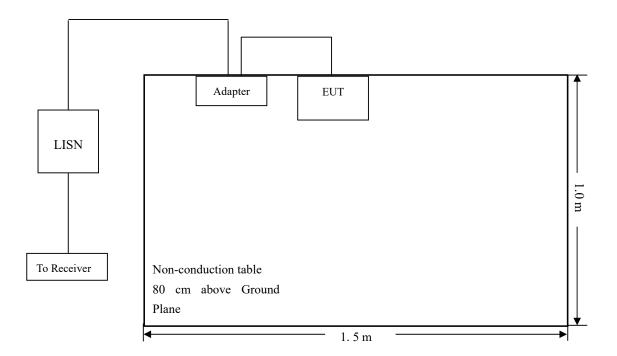
Lowest

802.11g Lowest



802.11n-HT20

Lowest


10. Conducted Emissions

10.1 Test Procedure

The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

10.2 Basic Test Setup Block Diagram

10.3 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

10.4 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	150 kHz
Stop Frequency	30 MHz
Sweep Speed	Auto
IF Bandwidth	10 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode	Normal

10.5 Summary of Test Results/Plots

According to the data in section 10.6, the EUT <u>complied with the FCC Part 15.207</u> Conducted margin for this device.

10.6 Conducted Emissions Test Data

The equipment is battery powered, so do not test this item

***** END OF REPORT *****