RF TEST REPORT

For

Shenzhen Xinyifang International Trade Co., LTD Product Name: Wireless K-song Bluetooth speaker Test Model(s).: BG-K13, AB4063, AB4051, AB4057

Report Reference No. : POCE231023005EC001

FCC ID : 2BDPJ-BG-K13

Applicant's Name : Shenzhen Xinyifang International Trade Co., LTD

Address

Unit 701A, Building 7, Building 7, Dafapu Community, Dafapu Community,

Bantian Street, Longgang District, Shenzhen

Testing Laboratory : Shenzhen POCE Technology Co., Ltd.

Address : 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology

Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

Test Specification Standard : 47 CFR Part 15.247

ANSI C63.10-2013 & KDB 558074 D01 Meas Guidance v05r02

Date of Receipt : October 23, 2023

Date of Test : October 23, 2023 to November 25, 2023

Data of Issue : November 25, 2023

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen POCE Technology Co., Ltd. This document may be altered or revised by Shenzhen POCE Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	POCE231023005EC001	November 25, 2023

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:	Supervised by:	Approved by:
Stone yin	Ben Tang	Tomchen
Stone Yin / File administrators	Ben Tang/ Technique principal	Tom Chen / Manager

CONTENTS

1	TEST	SUMMARY	
	1.1	TEST STANDARDS	
	1.2	SUMMARY OF TEST RESULT	
2	GENI	ERAL INFORMATION	
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	CLIENT INFORMATION	. 6 . 6 . 7 . 7 . 8
3		.UATION RESULTS (EVALUATION)	
•	3.1	ANTENNA REQUIREMENT	
	0.1	3.1.1 Conclusion:	
4	RADI	O SPECTRUM MATTER TEST RESULTS (RF)	11
a C	4.1	CONDUCTED EMISSION AT AC POWER LINE	11
		4.1.1 E.U.T. Operation: 4.1.2 Test Setup Diagram: 4.1.3 Test Data:	11 11 12
	4.2	OCCUPIED BANDWIDTH	
		4.2.1 E.U.T. Operation: 4.2.2 Test Setup Diagram: 4.2.3 Test Data:	15
	4.3	MAXIMUM CONDUCTED OUTPUT POWER	
		4.3.1 E.U.T. Operation: 4.3.2 Test Setup Diagram: 4.3.3 Test Data:	16
	4.4	CHANNEL SEPARATION	
		4.4.1 E.U.T. Operation: 4.4.2 Test Setup Diagram: 4.4.3 Test Data:	17
	4.5	NUMBER OF HOPPING FREQUENCIES	18
		4.5.1 E.U.T. Operation: 4.5.2 Test Setup Diagram: 4.5.3 Test Data:	18 18
	4.6	DWELL TIME	
		4.6.1 E.U.T. Operation: 4.6.2 Test Setup Diagram: 4.6.3 Test Data:	19
	4.7	EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
		4.7.1 E.U.T. Operation: 4.7.2 Test Setup Diagram: 4.7.3 Test Data:	21
	4.8	BAND EDGE EMISSIONS (RADIATED)	
		4.8.1 E.U.T. Operation: 4.8.2 Test Setup Diagram: 4.8.3 Test Data:	22
	4.9	EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz)	28

		4.9.1 E.U.T. Operation:	29
		4.9.2 Test Setup Diagram: 2	29
		4.9.3 Test Data:	29
	4.10	EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz)	31
		4.10.1 E.U.T. Operation:	32
		4.10.2 Test Setup Diagram: 3	
		4.10.3 Test Data:	
5	TEST	SETUP PHOTOS4	10
6	PHOT	OS OF THE EUT4	10
APPE		ANT1	
			N
	1.	-20DB BANDWIDTH	
	2.	99% OCCUPIED BANDWIDTH	
	3.	PEAK OUTPUT POWER4	
	4.	Spurious Emissions	
	5.	BANDEDGE	
	6.	CARRIER FREQUENCIES SEPARATION (HOPPING)	j 4
	7.	NUMBER OF HOPPING CHANNEL (HOPPING)	7ز
	8.	DWELL TIME (HOPPING)6	8
APPE	NDIX-	ANT2	' 4
		-20DB BANDWIDTH	
		-20DB BANDWIDTH	4
	2.	99% OCCUPIED BANDWIDTH	
	3.	PEAK OUTPUT POWER	
	4.	Spurious Emissions	
	5.	BANDEDGE8	
	6.	CARRIER FREQUENCIES SEPARATION (HOPPING)	7
	7.	NUMBER OF HOPPING CHANNEL (HOPPING)	10
	8.	DWELL TIME (HOPPING)	

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.7	47 CFR 15.215(c)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.5	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.2	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.3	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.4	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 7.8.8	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4	47 CFR 15.247(d), 15.209, 15.205	Pass

Note: 1.N/A -this device(EUT) is not applicable to this testing item

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 5 of 106

^{2.} RF-conducted test results including cable loss.

GENERAL INFORMATION 2

2.1 **Client Information**

Applicant's Name Shenzhen Xinyifang International Trade Co., LTD

Address Unit 701A, Building 7, Building 7, Dafapu Community, Dafapu Community,

Bantian Street, Longgang District, Shenzhen

Shenzhen Boguangweiye Investment Development Co., Ltd Manufacturer

Address 401, Building 2, Longxin Factory, No. 6, Lingnan Road, Opposite Longxi

Community, Longgang Street, Longgang District, Shenzhen

Description of Device (EUT)

•		
Product Name:	Wireless K-song Bluetooth speaker	OCK.
sample number:	231021011-1	00
Model/Type reference:	BG-K13	
Series model:	AB4063, AB4051, AB4057	
Trade Mark:	蓝小叠,迪亚戈,绿箭侠	a.E
Product Description:	Bluetooth speaker	
Power Supply:	DC3.7V from battery	70
Operation Frequency:	2402-2480MHz	
Number of Channels:	79	
Modulation Type:	GFSK, π/4 DQPSK	<u> </u>
Antenna Type:	PCB ANT	-00-
Antenna Gain:	ANT1:-0.58dBi ANT2:-0.58dBi	PO
Hardware Version:	V1.0	
Software Version:	V1.0.2.2	
Description of Tes	st Modes	POC

2.3 **Description of Test Modes**

No	Title	Description
TM1	ANT1-TX-GFSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.
TM2	ANT1TX-Pi/4DQPSK (Non-Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with Pi/4DQPSK modulation.
TM3	ANT1-TX-GFSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.
TM4	ANT1-TX-Pi/4DQPSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with Pi/4DQPSK modulation.
TM5	ANT2-TX-GFSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.
TM6	ANT2-TX-Pi/4DQPSK (Non-Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with Pi/4DQPSK modulation.
TM7	ANT2-TX-GFSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.
TM8	ANT2-TX-Pi/4DQPSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with Pi/4DQPSK modulation.
Doscri	ntion	

The product has two identical Bluetooth transmission chips, with the same design for the Bluetooth part and the same transmission antenna, which cannot be sent simultaneously.

Special software is used.

☐Through engineering command into the en	gineering mode.
engineering command: *#*#3646633#*#*	
Other method:	
Special software:	200
FCC Assist 1.0.2.2	
基助 (土)	
串口设置	
串 口 COM1 (通信端口) ▼	
波特率	
数据位 8 ▼ 校验位 None ▼	POCE
停止位 1 →	
流 控 NoFlow ▼	
打开	
BR/EDR BLE	
MODE IX	POCE
Channel 0	
Transmit_Power 0	
Facket_Type 1-DR1 Thomas DFF Thomas DFF	
Data_Types Fn9 T	
Send configuration	
Sam court on arrow	
	POCE
清除日志	

2.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Description	Manufacturer	Model No.	Remark	Certification
1	ADAPTER	PHOTON	ATXC-069AC65B	Provide by lab	SDOC
2	PO				

2.5 Equipments Used During The Test

Conducted Emission at AC power line								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal. Due Date			
Shielding room	CY	8*4*3	20160102	2023/1/26	2025/1/25			
Pulse Limiter	Schwarzbeck	VTSD 9561	561-G071	2023/2/27	2024/2/26			
Cable	Schwarzbeck	1	1	2023/2/27	2024/2/26			
Test Receiver	Rohde & Schwarz	ESPI	1164.6607K03- 102109-MH	2023/6/13	2024/6/12			
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2022/12/29	2023/12/28			
L.I.S.N	Schwarzbeck	NSLK 8126	NSLK 8126	2023/8/8	2024/8/7			
50ΩCoaxial Switch	Anritsu	MP59B	M20531		1			
EMI Testsoftware	Farad	EZ -EMC	V1.1.42	1	/			

Emissions in restricted frequency bands and RF						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 7 of 106

Test Receiver	R&S	ESCI	102109	2023/6/13	2024/6/12
Spectrum Analyzer	R&S	FSP30	1321.3008K40- 101729-jR	2023/6/14	2024/6/13
966 Chamber	CY	9*6*6	20160101	2023/1/26	2025/1/25
Bore-sighting Antenna rack	PBB	1308503	16033	1	1
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021/7/5	2024/7/4
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023/5-21	2025/5-20
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023/5/13	2025/5/12
Horn antenna	COM-POWER	AH-1840(40G)	10100008	2023/4/5	2025/4/4
Power APM(LF)	Schwarzbeck	BBV9743	9743-151	2023/6/13	2024/6/12
Power APM(HF)	Schwarzbeck	BBV9718	9718-282	2023/6/13	2024/6/12
Cable(LF)#2	Schwarzbeck	1	1	2023/2/27	2024/2/26
Cable(LF)#1	Schwarzbeck	1	1	2023/2/27	2024/2/26
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2023/2/28	2024/2/27
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2023/2/27	2024/2/26
Power divider	MIDEWEST	PWD-2533	SMA-79	2023/5/11	2026/5/10
signal generator	Keysight	N5181A	MY48180415	2022/12/10	2023/12/9
signal generator	Keysight	N5182A	MY50143455	2022/12/29	2023/12/28
Spectrum Analyzer	Keysight	N9020A	MY53420323	2022/12/29	2023/12/28
RF Sensor Unit	TACHOY	TR1029-2	000001	/	1
RF Control Unit	TACHOY	TR1029-1	000001	1	
Position Controller	MF	MF-7802	/	1	1
EMI Testsoftware	Farad	EZ -EMC	V1.1.42	1	/
RF TestSoftware	TACHOY	RTS-01	V2.0.0.0	1	/

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty			
Conducted Disturbance (0.15~30MHz)	±3.41dB			
Occupied Bandwidth	±3.63%			
RF conducted power	±0.733dB	P		
Duty cycle	±3.1%			
Conducted Spurious emissions	±1.98dB			
Radiated Emission (Above 1GHz)	±5.46dB			
Radiated Emission (Below 1GHz)	±5.79dB			
N. C. (4) T. C.				

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Authorizations

Company Name:	Shenzhen POCE Technology Co., Ltd.	PO
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Tangtou, Shiyan, Bao'an District, Shenzhen, Gu	
Phone Number:	+86-13267178997	
Fax Number:	86-755-29113252	-06-

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 8 of 106

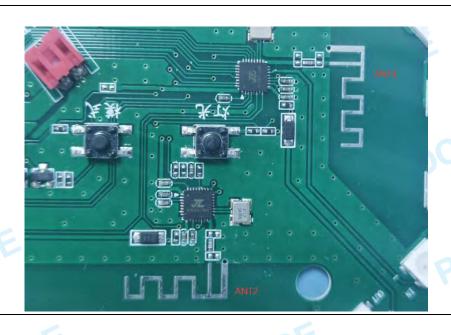
Identification of the Responsible Testing Location

	<u> </u>
Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration No.:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) We hereby declare that the laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant. the laboratory is not responsible for the accuracy of the information provided by the client. When the information provided by the customer may affect the effectiveness of the results, the responsibility lies with the customer, and the laboratory does not assume any responsibility.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 9 of 106


3 Evaluation Results (Evaluation)

3.1 Antenna requirement

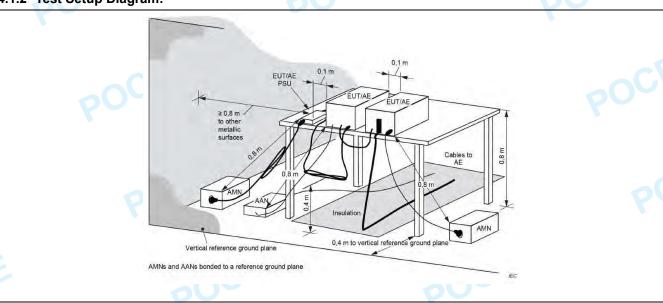
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 10 of 106

4 Radio Spectrum Matter Test Results (RF)


4.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except a section, for an intentional radiator th utility (AC) power line, the radio freq AC power line on any frequency or f MHz, shall not exceed the limits in the pH/50 ohms line impedance stabilized	at is designed to be conne- uency voltage that is condi- requencies, within the band ne following table, as meas	cted to the public ucted back onto the d 150 kHz to 30			
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)				
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of the frequency.					
Test Method:	ANSI C63.10-2013 section 6.2					
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					

4.1.1 E.U.T. Operation:

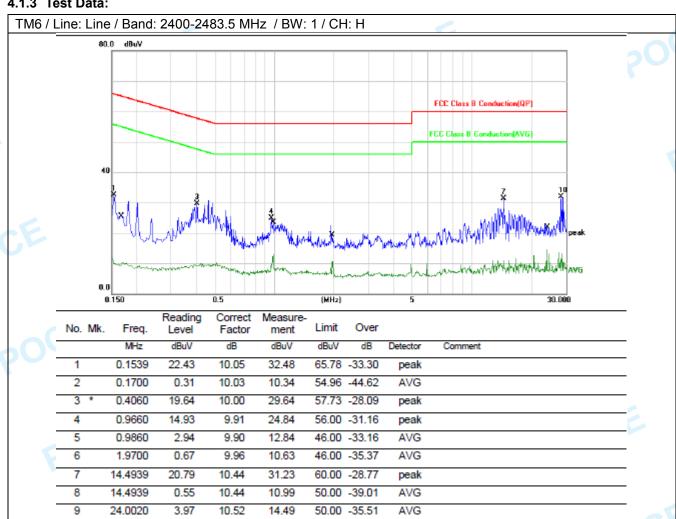
Operating Environment:								
Temperature:	22.4 °C		Humidity:	48.2 %		Atmospheric Pressure:	102 kPa	
Pre test mode:		TM1,	TM2, TM5,	TM6				
Final test mode: TM6			worse case)		~{			

4.1.2 Test Setup Diagram:

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 11 of 106

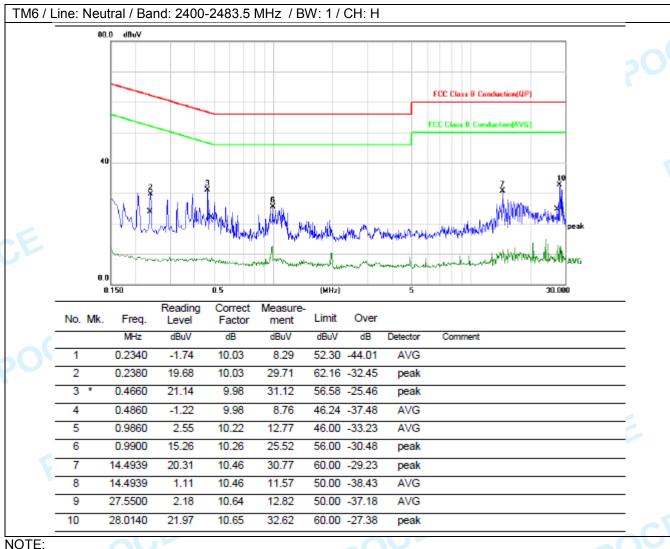
28.2620

10


21.25

10.58

31.83


4.1.3 Test Data:

60.00 -28.17

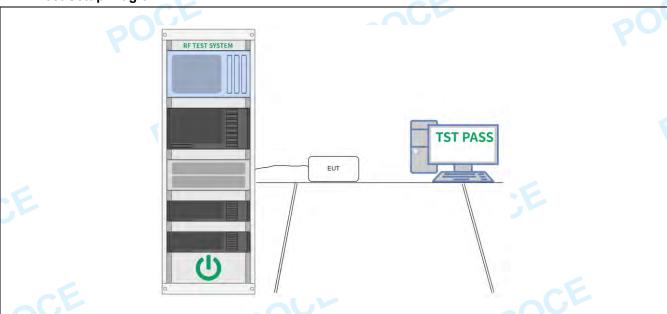
peak

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor, Over=Limit- Mesurement
- 4. The test results only show the worst mode or worst channel.

101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 13 of 106

4.2 Occupied Bandwidth

Test Requirement:	47 CFR 15.215(c)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandwidth measurements, use the procedure in 6.9.2.
Procedure:	 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the
OCE	reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value.
POCE	f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).
POCI	h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).
P	j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two
	markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth. k) The occupied bandwidth shall be reported by providing plot(s) of the measuring
CE	instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).


4.2.1 E.U.T. Operation:

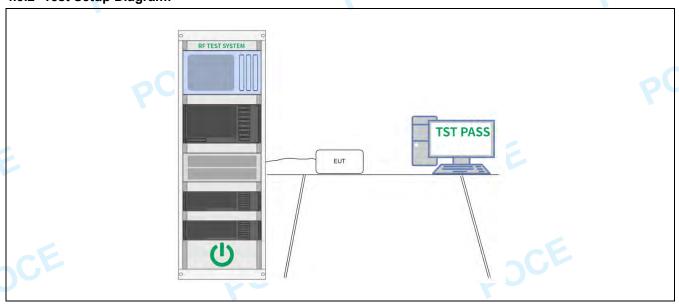
Operating Enviro	onment:					
Temperature:	22.4 °C		Humidity:	48.2 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1,	TM2, TM5, 7	ГМ6		

Final test mode: TM1, TM2, TM5, TM6

4.2.2 Test Setup Diagram:

4.2.3 Test Data:

Please Refer to Appendix for Details.


4.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5
Procedure:	This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and
CE	sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

4.3.1 E.U.T. Operation:

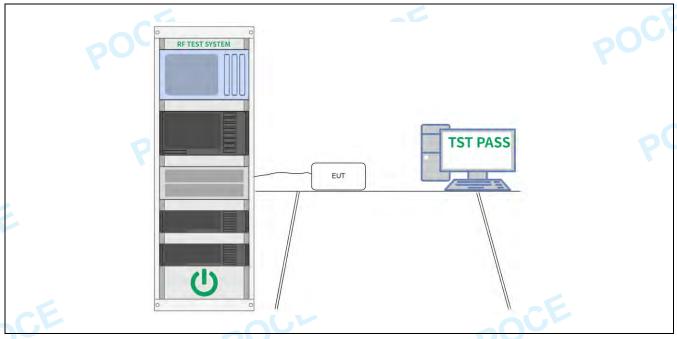
Operating Envir	onment:						
Temperature:	22.4 °C		Humidity:	48.2 %	Atmospheric Pressu	re: 102 kPa	
Pre test mode:		TM1,	TM2, TM5,	ГМ6			
Final test mode:		TM1,	TM2, TM5,	ГМ6			

4.3.2 Test Setup Diagram:

4.3.3 Test Data:

Please Refer to Appendix for Details.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 16 of 106


4.4 Channel Separation

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold.
OCE	g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

4.4.1 E.U.T. Operation:

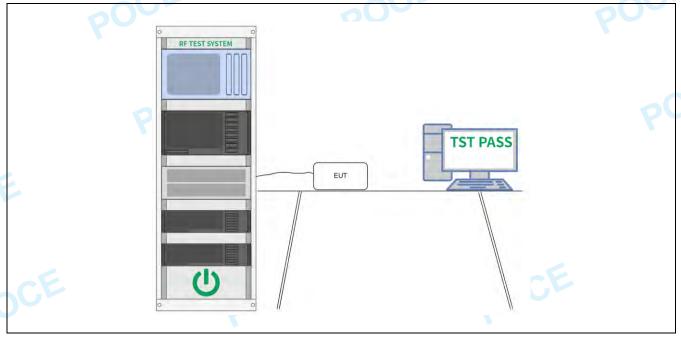
Operating Environment:								
Temperature:	22.4 °C		Humidity:	48.2 %	GA	Atmospheric Pressure:	102 kPa	
Pre test mode:		TM3,	TM4, TM7,	ГМ8			DO.	
Final test mode:		TM3,	TM4, TM7,	ГМ8				

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

Please Refer to Appendix for Details.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 17 of 106


4.5 Number of Hopping Frequencies

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold.
OCE	g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

4.5.1 E.U.T. Operation:

Operating Enviro	onment:			a 0	U'		200
Temperature:	ture: 22.4 °C Humidity: 48.2 °C			48.2 %		Atmospheric Pressure:	102 kPa
Pre test mode: TM3, TM4, TM7, TM8							
Final test mode: TM3, TM4, TM7, TM8							

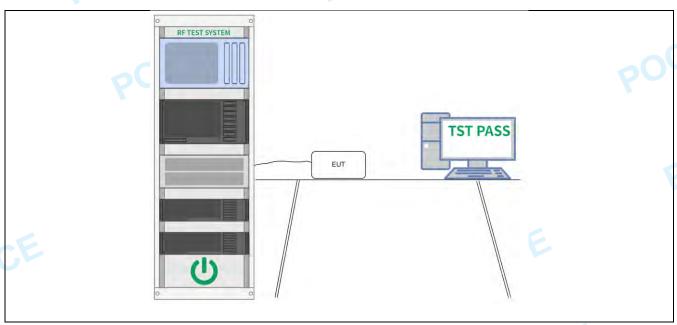
4.5.2 Test Setup Diagram:

4.5.3 Test Data:

Please Refer to Appendix for Details.

4.6 Dwell Time

4.6 Dwell Time	
Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.4
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
CE	c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold.
POCE	Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the
POCT	total number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation. The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.


4.6.1 E.U.T. Operation:

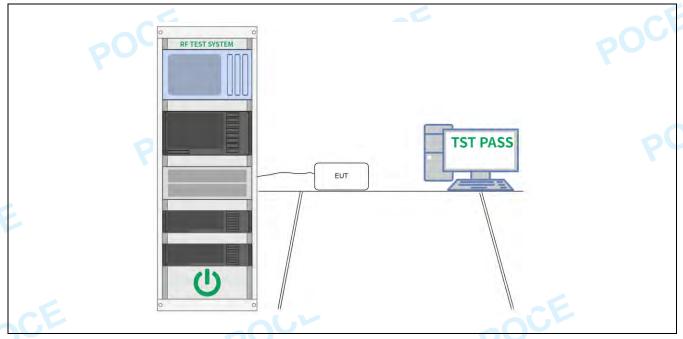
Operating Environment:								
Temperature: 22.4 °C Humidity: 48.2 % Atmospheric Pressure: 102 kPa						102 kPa		
Pre test mode: TM3, TM4, TM7, TM8				PO				
Final test mode: TM3			TM4, TM7, 1	ГМ8				

4.6.2 Test Setup Diagram:

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 19 of 106

4.6.3 Test Data:

Please Refer to Appendix for Details.


4.7 Emissions in non-restricted frequency bands

To at Danishana anti	47 OFD 45 047(4), 45 000 45 005
Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

4.7.1 E.U.T. Operation:

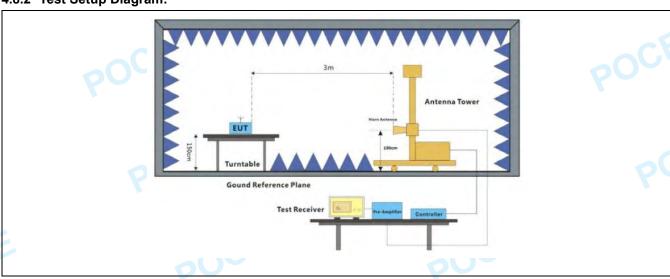
Operating Environment:								
Temperature:	22.4 °C		Humidity:	48.2 %		Atmospheric Pressure:	102 kPa	
Pre test mode:		TM1,	TM2, TM5,	ГМ6			00	
Final test mode: TM1, TM2, TM5, TM6								

4.7.2 Test Setup Diagram:

4.7.3 Test Data:

Please Refer to Appendix for Details.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 21 of 106


4.8 Band edge emissions (Radiated)

	· · · · · · · · · · · · · · · · · · ·							
Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`							
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
CE	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.							
Test Method:	ANSI C63.10-2013 section	on 6.10						
Procedure:								
r rocedure.	ANSI C63.10-2013 section	on 6.10.5.2						

4.8.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.4 °C		Humidity:	48.2 %		Atmospheric Pressure:	102 kPa	
Pre test mode:	e: TM1, TM2, TM5, TM6							
Final test mode:		TM2,	TM6(worse	case)			00	

4.8.2 Test Setup Diagram:

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 22 of 106

P

P

P

3

4

5

2390.000

2390.000

2400.000

42.39

32.18

64.19

-7.91

-7.91

-7.87

34.48

24.27

56.32

74.00

54.00

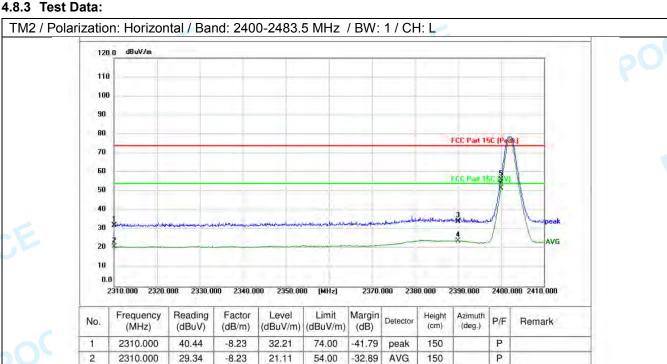
74.00

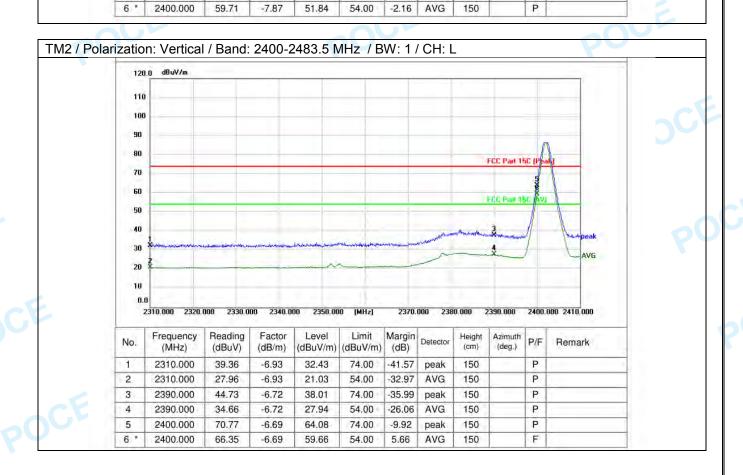
-39.52

-29.73

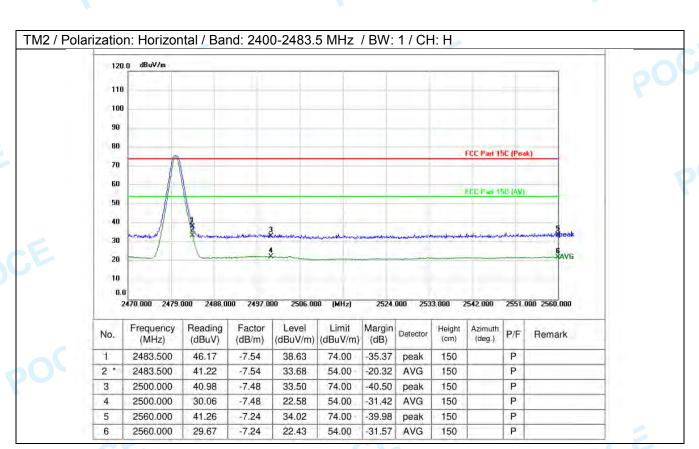
17.68

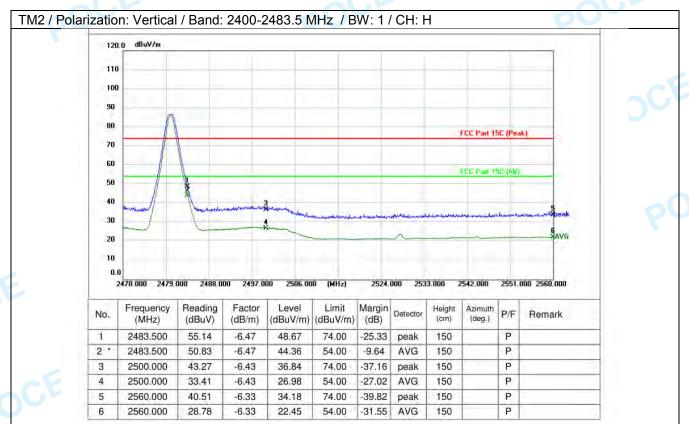
peak

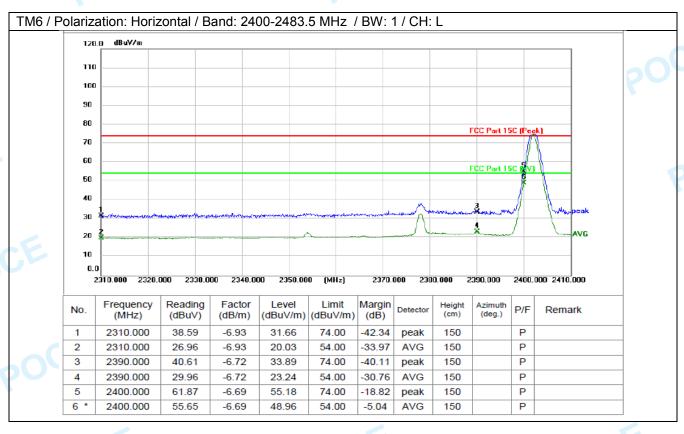

AVG

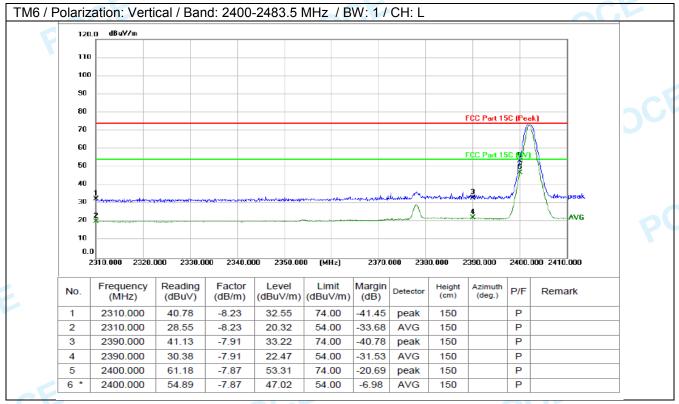

peak

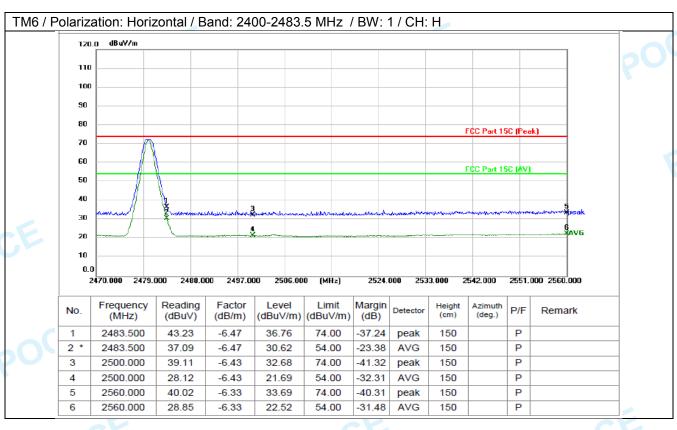
150

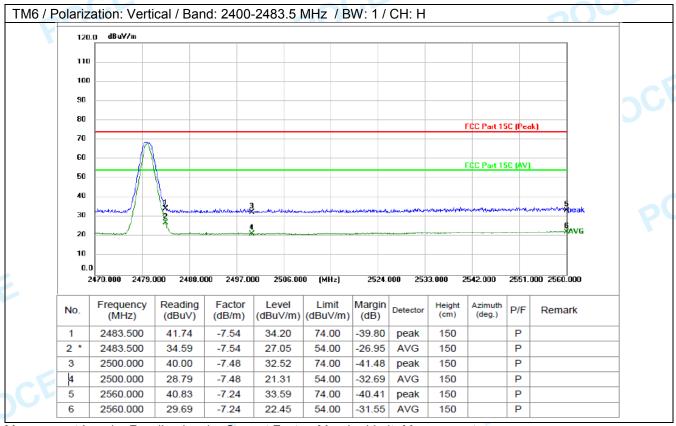

150


150









Mesurement Level = Reading level + Correct Factor, Margin=Limit- Mesurement

Note:

Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,..., Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm.

Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used.

For correlated unequal antenna gain

Directional gain = 10*log[(10G1/20 + 10G2/20 + ... + 10GN/20)2 / NANT] dBi

For completely uncorrelated unequal antenna gain

Directional gain = 10*log[(10G1/10 + 10G2/10 + ... + 10GN/10)/NANT] dBi

Sample Multiple antennas Calculation: Core 0 + Core 1 +...Core i. = MIMO/CDD

(i is the number of antennas)

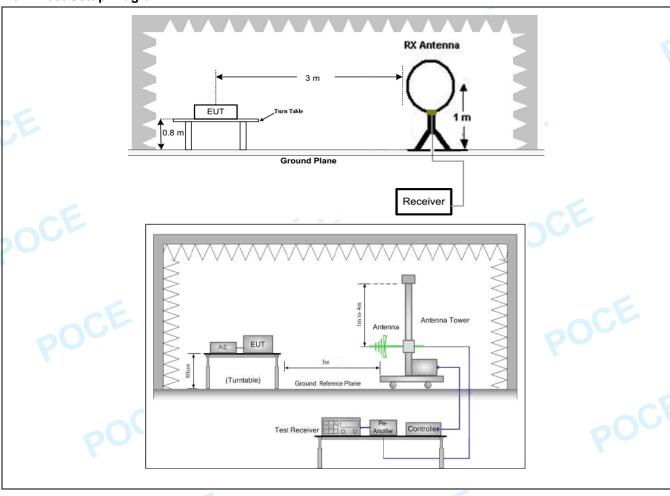
(#VALUE! mW + mW) = #VALUE! mW = dBm

Sample e.i.r.p. Calculation:

e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

4.9 Emissions in frequency bands (below 1GHz)

Test Requirement:	Refer to 47 CFR 15.247(d), restricted bands, as defined							
	emission limits specified in § 15.209(a)(see § 15.205(c)).							
Test Limit:	Frequency (MHz)	Field strength	Measurement					
rest Limit.	Trequericy (WIT12)	(microvolts/meter)	distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
		` '	30					
	0.490-1.705	24000/F(kHz)						
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
E	** Except as provided in para radiators operating under thi 54-72 MHz, 76-88 MHz, 174 these frequency bands is pe §§ 15.231 and 15.241.	s section shall not be locat -216 MHz or 470-806 MHz	ed in the frequency bands . However, operation within					
Test Method:	ANSI C63.10-2013 section 6	664						
Procedure:								
Procedure.	360 degrees to determine th b. For above 1GHz, the EUT above the ground at a 3 met degrees to determine the po c. The EUT was set 3 or 10 met. The antenna height is varied determine the maximum valuation polarizations of the antenna e. For each suspected emiss the antenna was tuned to he below 30MHz, the antenna was turned from 0 degrees to f. The test-receiver system was and below 30MHz.	O meter semi-anechoic chare position of the highest rate was placed on the top of a per fully-anechoic chamber, sition of the highest radiation of the highest radiation of a variable-height anto ited from one meter to four use of the field strength. Both are set to make the measures on, the EUT was arranged was tuned to heights 1 meters as to Peak Detect Funded Mode.	amber. The table was rotated diation. a rotating table 1.5 meters The table was rotated 360 on. ference-receiving antenna, enna tower. meters above the ground to the horizontal and vertical arement. d to its worst case and then others (for the test frequency of er) and the rotatable table maximum reading. ction and Specified					
	g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be							
	reported. Otherwise the emissions that did not have 10dB margin would be re-							
			nethod as specified and then					
	reported in a data sheet.	, 1,222 promote 21 31 31 39 3	22 22 22 24 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25					
	h. Test the EUT in the lowest channel, the middle channel, the Highest channel. i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete.							
	Remark: 1) For emission below 1GHz channel. Only the worst case 2) The field strength is calcu Preamplifier. The basic equa	e is recorded in the report. lated by adding the Antenn	a Factor, Cable Factor &					
CE	Final Test Level =Receiver R Preamplifier Factor 3) Scan from 9kHz to 25GHz was very low. The points ma found when testing, so only a spurious emissions from the the limit need not be reported	z, the disturbance above 12 rked on above plots are the above points had been dispradiator which are attenuald. Fundamental frequency	+ Cable Factor "C 2.75GHz and below 30MHz e highest emissions could be played. The amplitude of ted more than 20dB below					
CE	spurious emissions from the	radiator which are attenua d. Fundamental frequency	ited more than 20dB					


101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 28 of 106

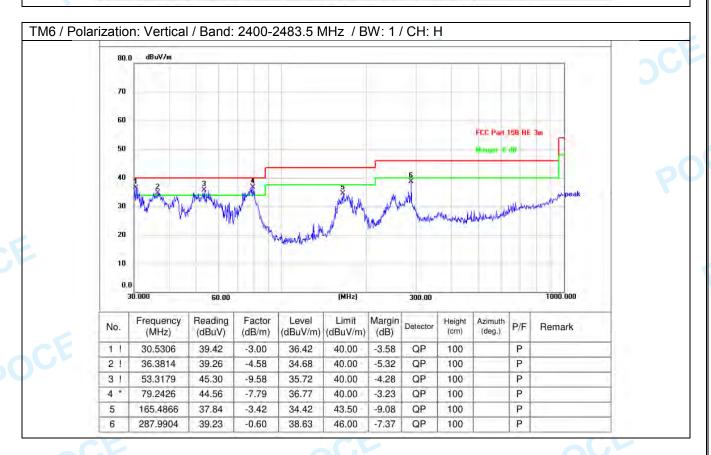
4.9.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.4 °C		Humidity:	48.2 %	Atmospheric Pressure:	102 kPa		
Pre test mode: TM1, TM2, TM5, TM6					DU		PO	
Final test mode:		TM6(worse case)					

4.9.2 Test Setup Diagram:

4.9.3 Test Data:


Between 9KHz - 30MHz


The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

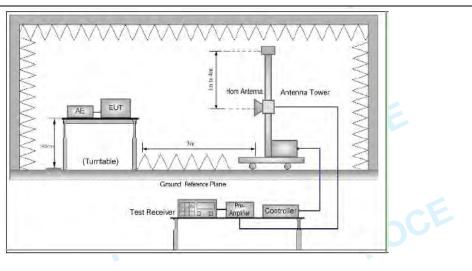
101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 29 of 106

NOTE: The test results only show the worst mode or worst channel.

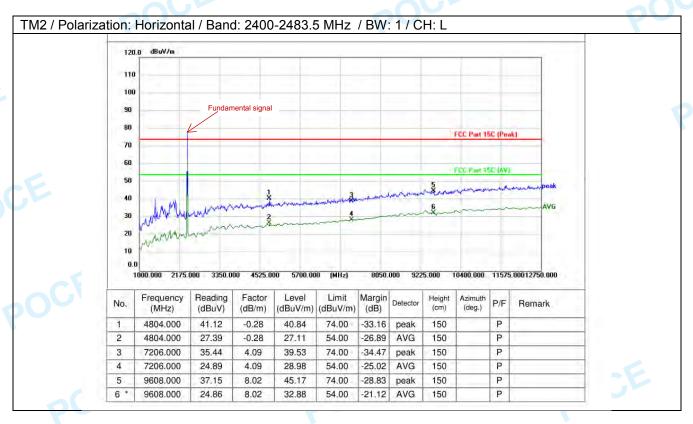
Between 30MHz - 1000MHz

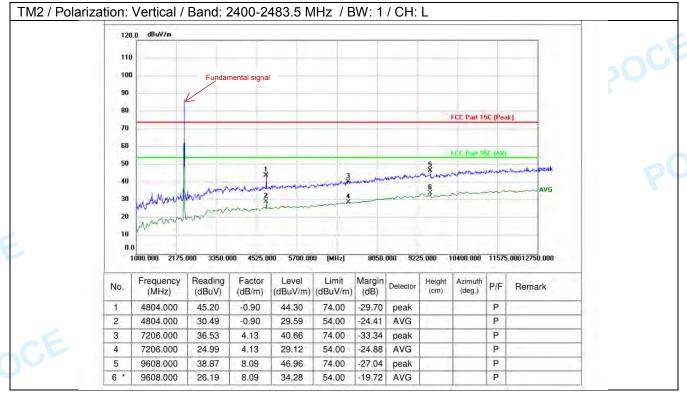
4.10 Emissions in frequency bands (above 1GHz)

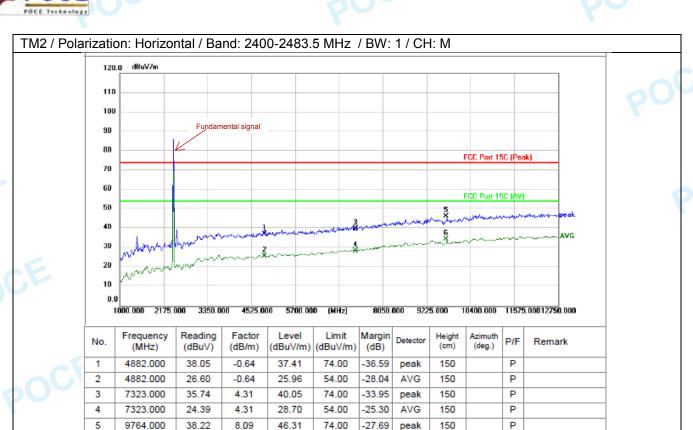
Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`						
Total Coult	. , , , , , , , , , , , , , , , , , , ,						
Test Limit:	Frequency (MHz)	Field strength	Measurement distance				
		(microvolts/meter)	(meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	** Except as provided in para radiators operating under this 54-72 MHz, 76-88 MHz, 174 these frequency bands is per §§ 15.231 and 15.241.	s section shall not be loca -216 MHz or 470-806 MH	ated in the frequency bands Hz. However, operation within				
							
Test Method:	ANSI C63.10-2013 section 6	.0.4					
Procedure:	a. For below 1GHz, the EUT	was placed on the top of	f a rotating table 0.8 meters				
	above the ground at a 3 or 10 360 degrees to determine the b. For above 1GHz, the EUT above the ground at a 3 meter degrees to determine the post. The EUT was set 3 or 10 meters which was mounted on the tot. The antenna height is varied that the antenna was turned to he below 30MHz, the antenna was turned from 0 degrees to f. The test-receiver system we bend with the emission level of the	O meter semi-anechoic ce position of the highest of was placed on the top of the fully-anechoic chambers it on of the highest radial meters away from the integration of a variable-height and of the field strength. Becare set to make the measure of the field strength. Becare set to make the measure of the field strength are set to make the measure of the field strength. Becare set to make the measure of the field strength and the field strength of the field strength. The field strength is to be set to Peak Detect Full Mode. EUT in peak mode was	hamber. The table was rotated radiation. f a rotating table 1.5 meters er. The table was rotated 360 ation. erference-receiving antenna, atenna tower. In meters above the ground to oth horizontal and vertical surement. The do its worst case and then neters (for the test frequency of eter) and the rotatable table maximum reading. Inction and Specified				
	specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-						
	tested one by one using peak, quasi-peak or average method as specified and then						
	reported in a data sheet.	,	and and and and				
	h. Test the EUT in the lowest channel, the middle channel, the Highest channel. i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete.						
	channel. Only the worst case 2) The field strength is calcul Preamplifier. The basic equa	e is recorded in the report ated by adding the Anter tion with a sample calcul	nna Factor, Cable Factor & ation is as follows:				
	was very low. The points may found when testing, so only a spurious emissions from the	r, the disturbance above rked on above plots are t above points had been di radiator which are attent	12.75GHz and below 30MHz the highest emissions could be isplayed. The amplitude of				

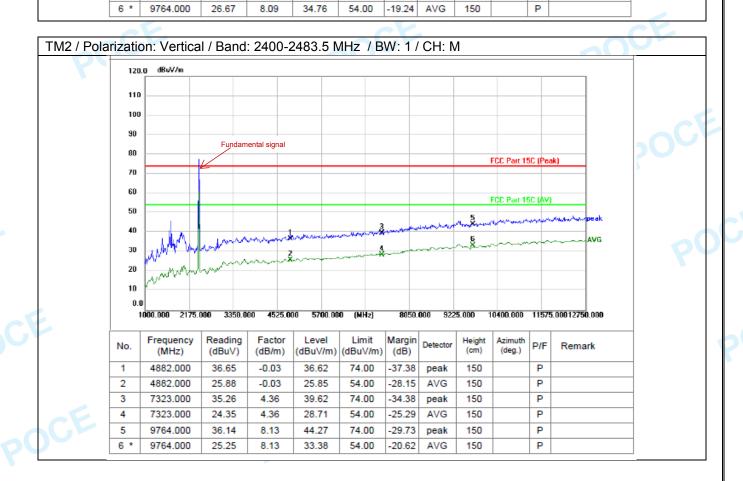

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 31 of 106

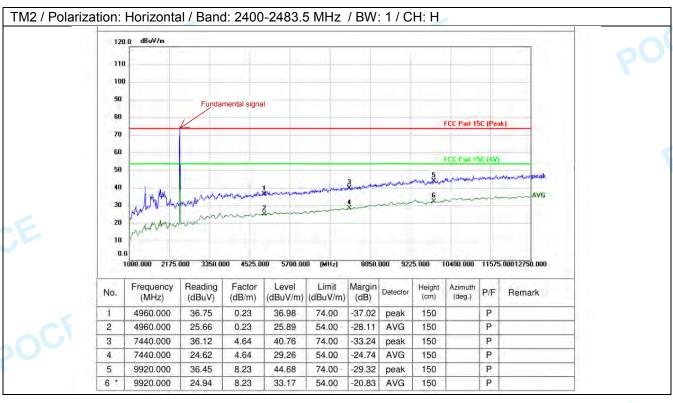
4.10.1 E.U.T. Operation:

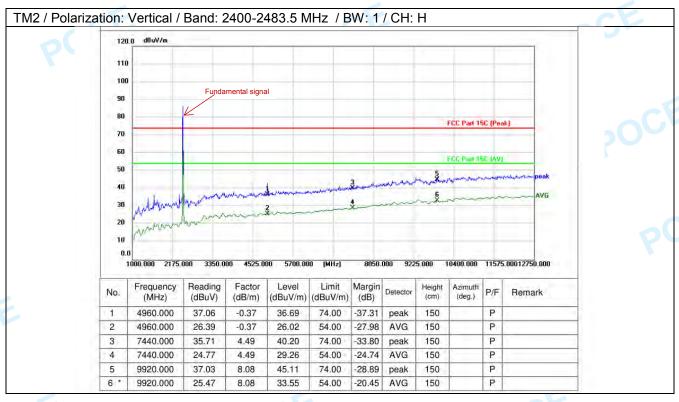

Operating Environment:								
Temperature:	22.4 °C		Humidity:	48.2 %	Atmospheric Pressure:	102 kPa		
Pre test mode: TM1, TM2, TM5, TM6				90		PO		
Final test mode:		TM2,	TM6(worse	case)				

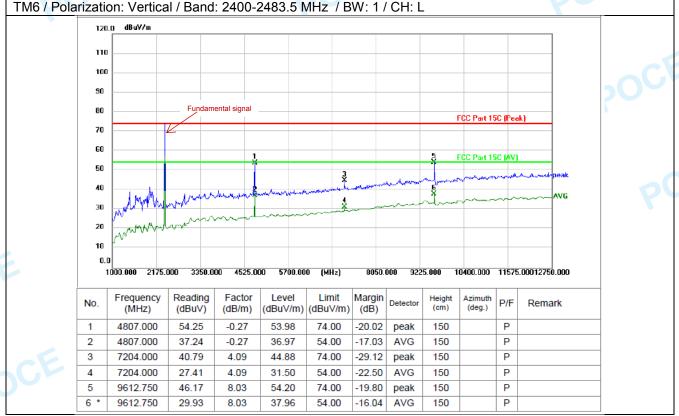

4.10.2 Test Setup Diagram:

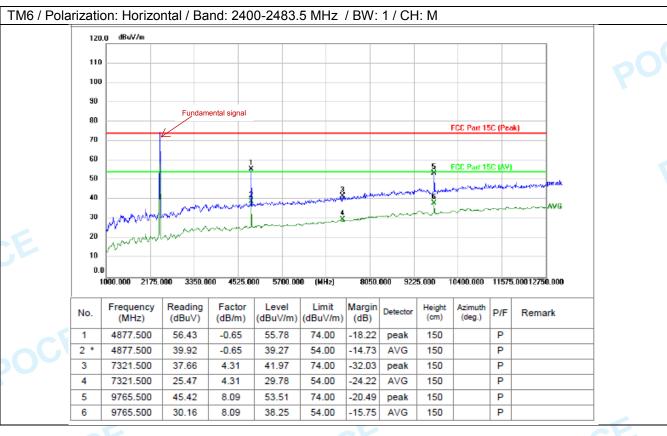

4.10.3 Test Data:

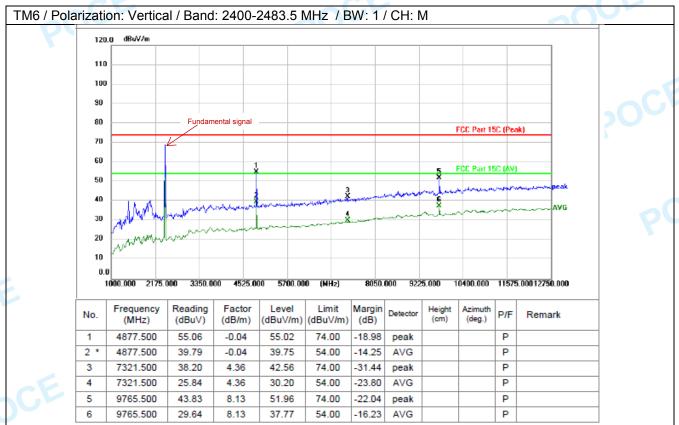

Only the worst mode and channel are recorded, The testing frequency reach up to 25GHz, but 13GHz-25GHz has no waveform except for background noise, so it was not recorded in the report.

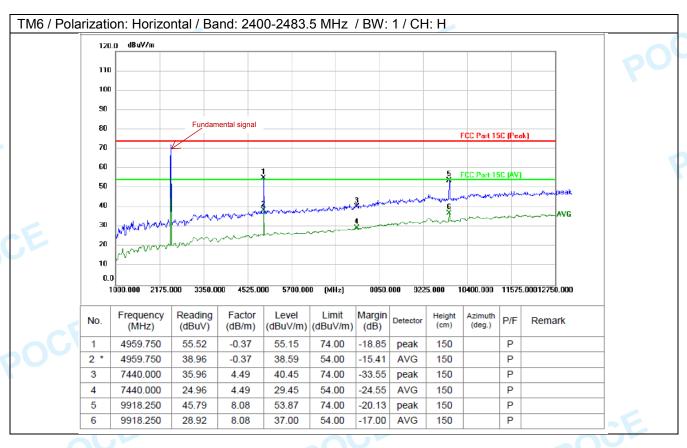


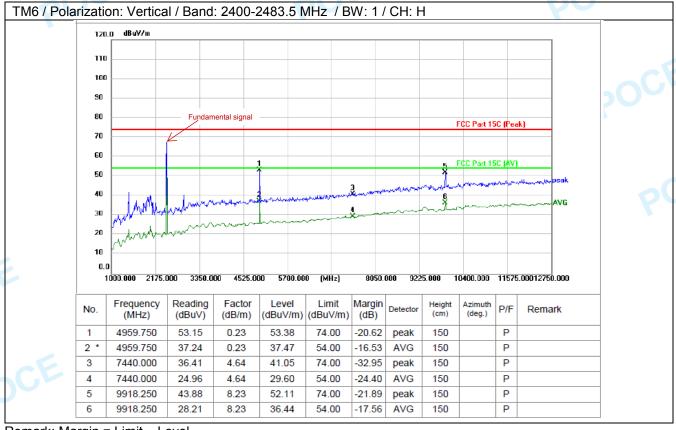

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 33 of 106











Remark: Margin = Limit – Level

Correction Factor = Antenna Factor + Cable loss – Pre-amplifier

Level=Test receiver reading + correction factor

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 38 of 106

Note:

Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,..., Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm.

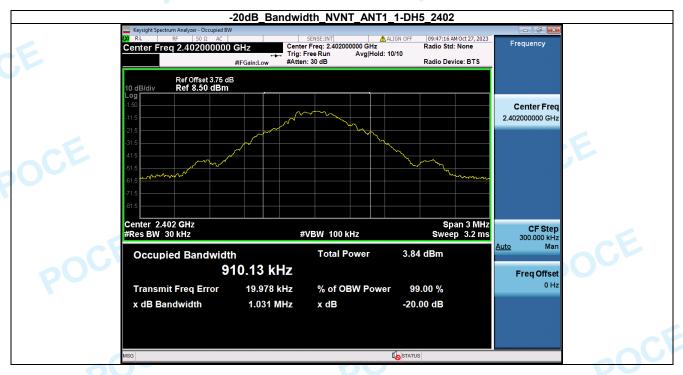
Sample Multiple antennas Calculation: Core 0 + Core 1 +...Core i. = MIMO/CDD (i is the number of antennas)

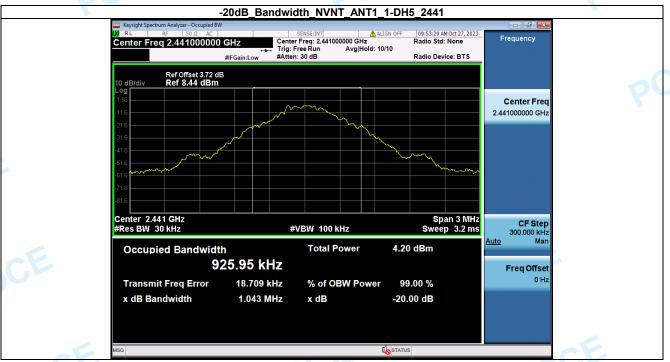
(#VALUE! mW + XX mW) = #VALUE! mW = XX dBm Sample e.i.r.p. Calculation: XX dBm= Conducted Power (dBm) + Ant gain (dBi)

5 TEST SETUP PHOTOS

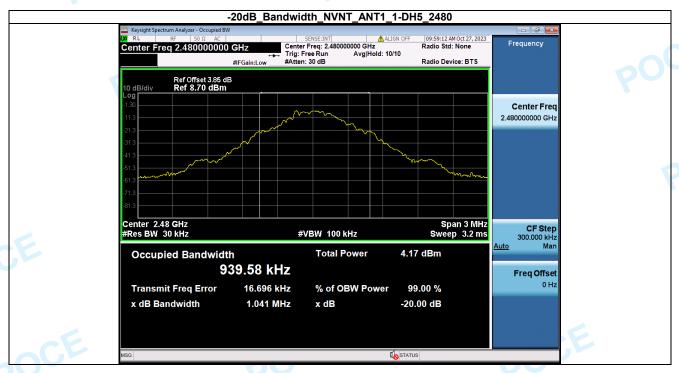
Please Refer to test setup for Details.

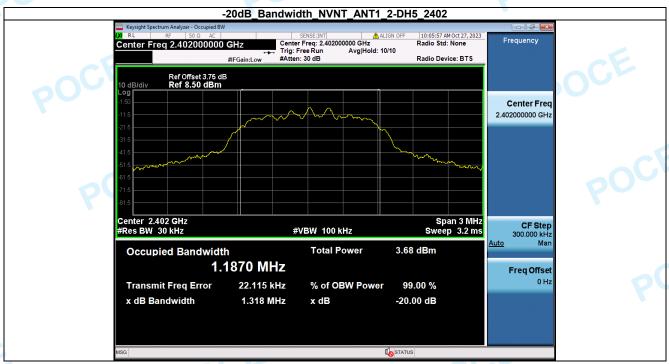
6 PHOTOS OF THE EUT

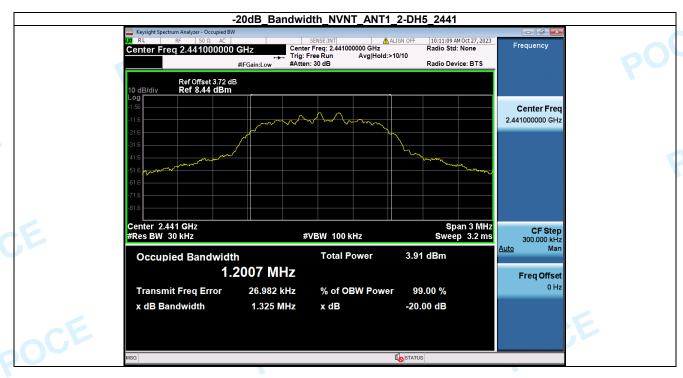

Please Refer to external photos file and internal photos file for Details.



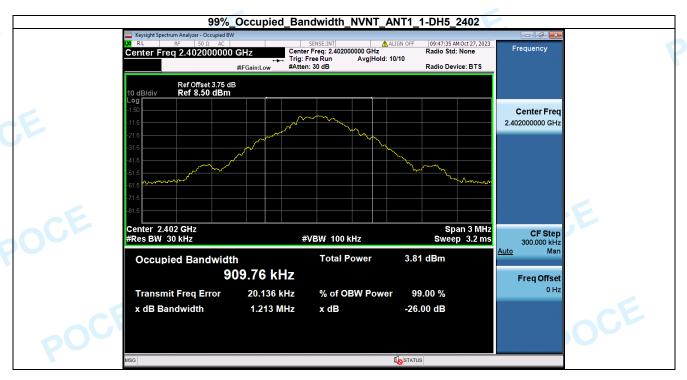
Appendix-ANT1

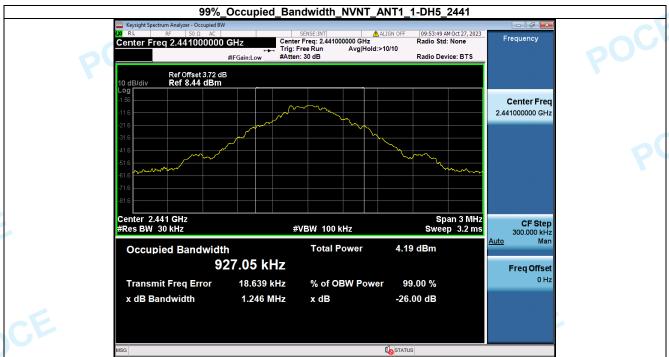

-20dB Bandwidth


Condition	Antenna	Modulation	Frequency (MHz)	-20dB BW(MHz)	if larger than CFS
NVNT	ANT1	1-DH5	2402.00	1.031	Yes
NVNT	ANT1	1-DH5	2441.00	1.043	Yes
NVNT	ANT1	1-DH5	2480.00	1.041	Yes
NVNT	ANT1	2-DH5	2402.00	1.318	Yes
NVNT	ANT1	2-DH5	2441.00	1.325	Yes
NVNT	ANT1	2-DH5	2480.00	1.332	Yes

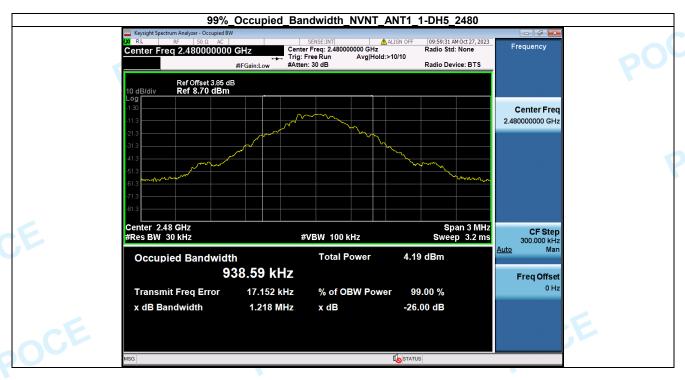


101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 41 of 106



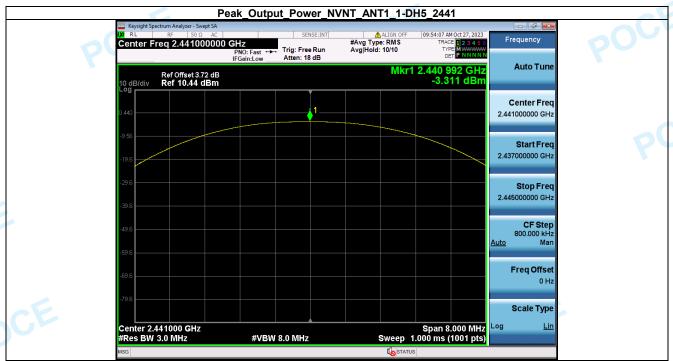


2. 99% Occupied Bandwidth

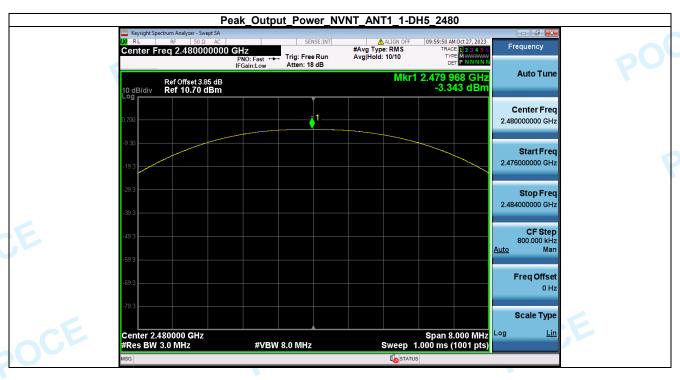

Condition	Antenna	Modulation	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1-DH5	2402.00	0.910
NVNT	ANT1	1-DH5	2441.00	0.927
NVNT	ANT1	1-DH5	2480.00	0.939
NVNT	ANT1	2-DH5	2402.00	1.190
NVNT	ANT1	2-DH5	2441.00	1.202
NVNT	ANT1	2-DH5	2480.00	1.210

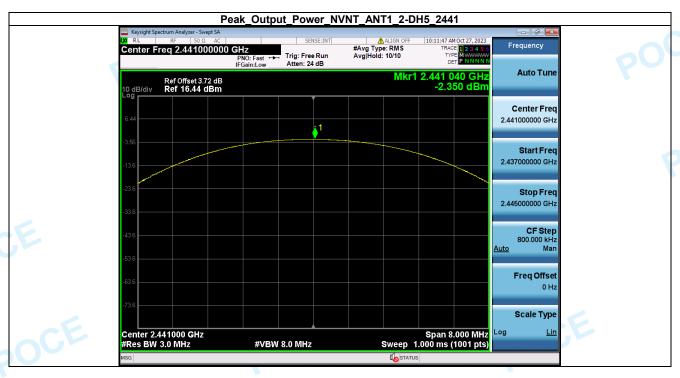
101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 44 of 106

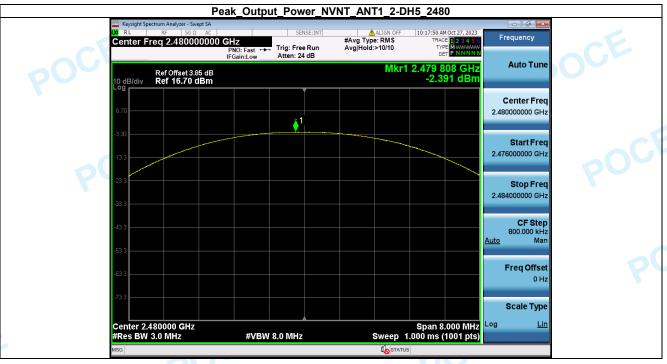


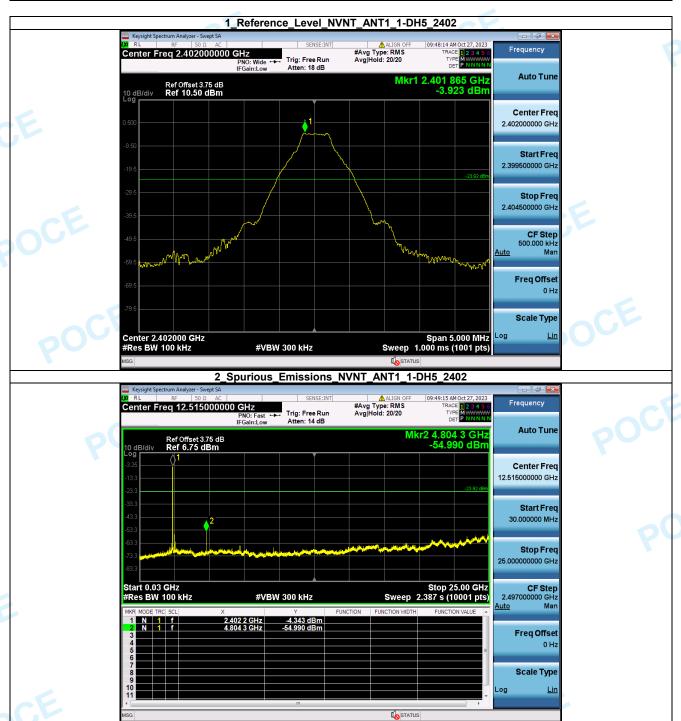


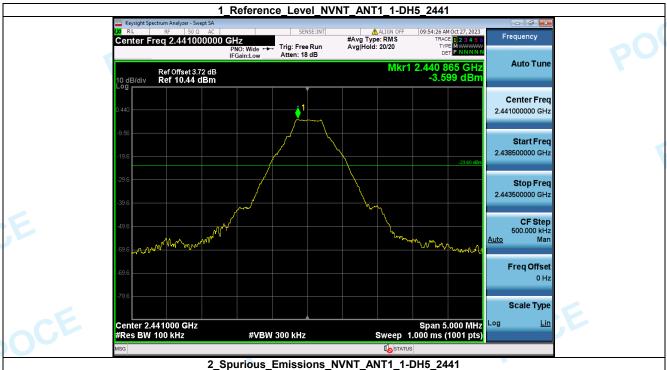
3. Peak Output Power

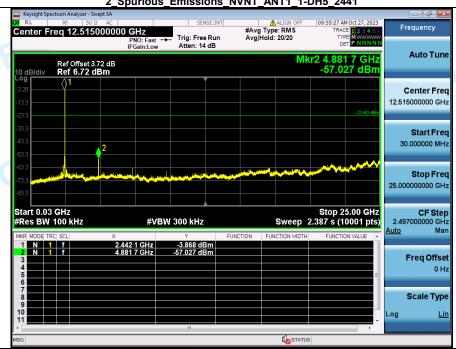

Condition	Antenna	Modulation	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1-DH5	2402.00	-3.65	0.43	125	Pass
NVNT	ANT1	1-DH5	2441.00	-3.31	0.47	125	Pass
NVNT	ANT1	1-DH5	2480.00	-3.34	0.46	125	Pass
NVNT	ANT1	2-DH5	2402.00	-2.64	0.54	125	Pass
NVNT	ANT1	2-DH5	2441.00	-2.35	0.58	125	Pass
NVNT	ANT1	2-DH5	2480.00	-2.39	0.58	125	Pass


101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 47 of 106



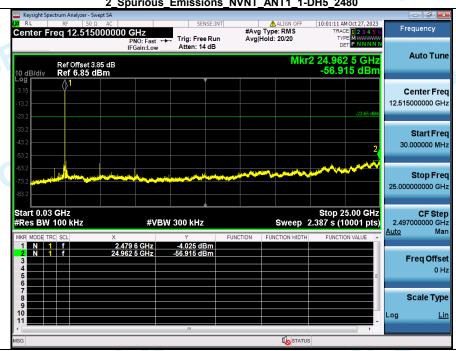


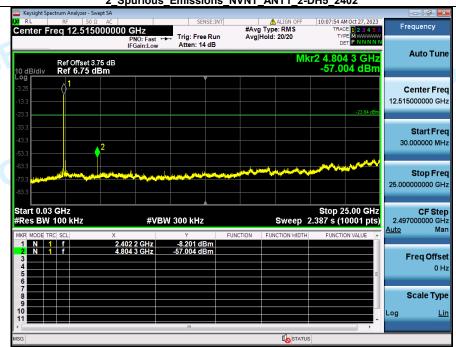


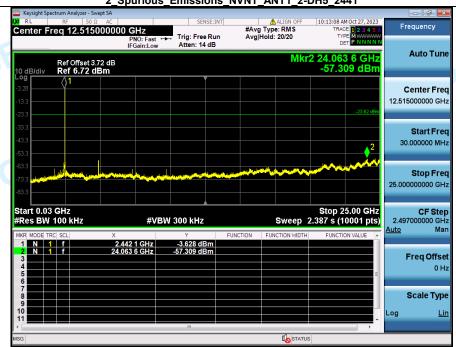

4. Spurious Emissions

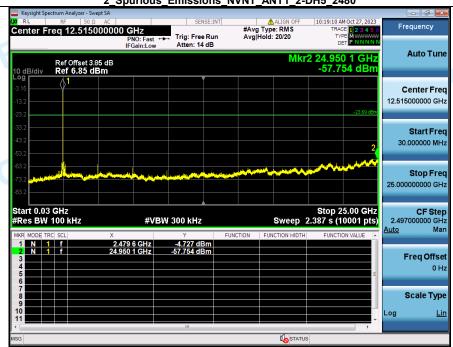
Condition	Antenna	Modulation	TX Mode	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-54.990	-23.923	Pass
NVNT	ANT1	1-DH5	2441.00	-57.027	-23.599	Pass
NVNT	ANT1	1-DH5	2480.00	-56.915	-23.647	Pass
NVNT	ANT1	2-DH5	2402.00	-57.004	-23.842	Pass
NVNT	ANT1	2-DH5	2441.00	-57.309	-23.617	Pass
NVNT	ANT1	2-DH5	2480.00	-57.754	-23.691	Pass



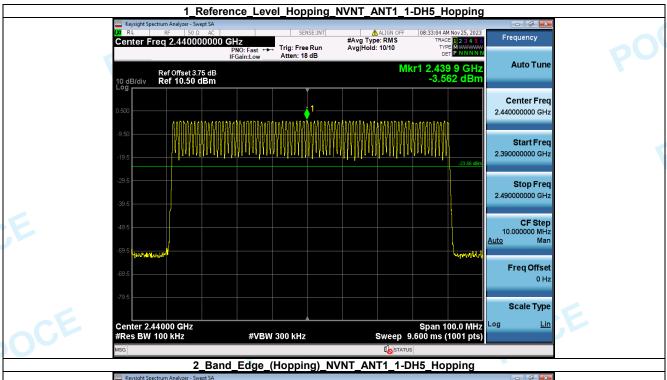


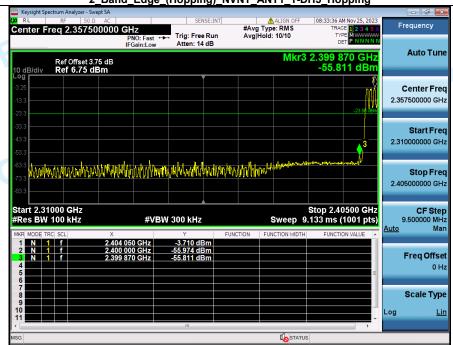




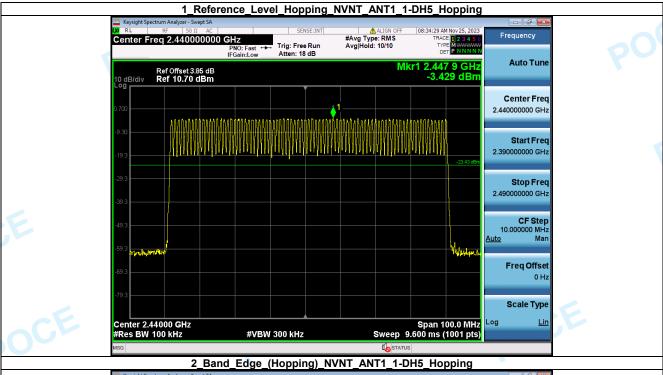


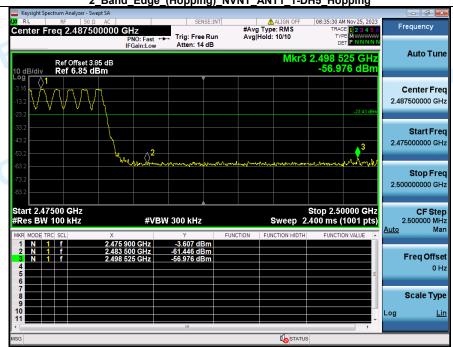




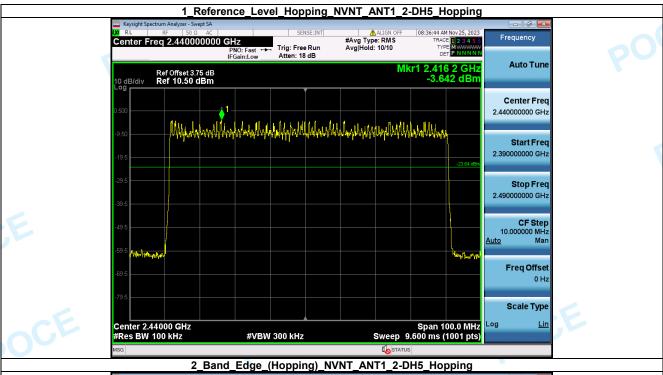

5. Bandedge

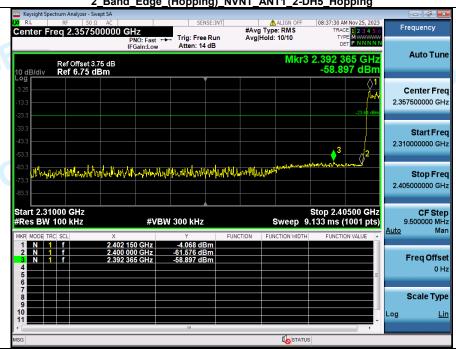
Condition	Antenna	Modulation	TX Mode	Bandedge MAX.Value	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-55.619	-23.923	Pass
NVNT	ANT1	1-DH5	Hopping_LCH	-55.811	-23.562	Pass
NVNT	ANT1	1-DH5	2480.00	-59.161	-23.647	Pass
NVNT	ANT1	1-DH5	Hopping_HCH \	-56.976	-23.429	Pass
NVNT	ANT1	2-DH5	2402.00	-54.133	-23.842	Pass
NVNT	ANT1	2-DH5	Hopping_LCH	-58.897	-23.642	Pass
NVNT	ANT1	2-DH5	2480.00	-58.516	-23.691	Pass
NVNT	ANT1	2-DH5	Hopping_HCH	-59.078	-23.489	Pass

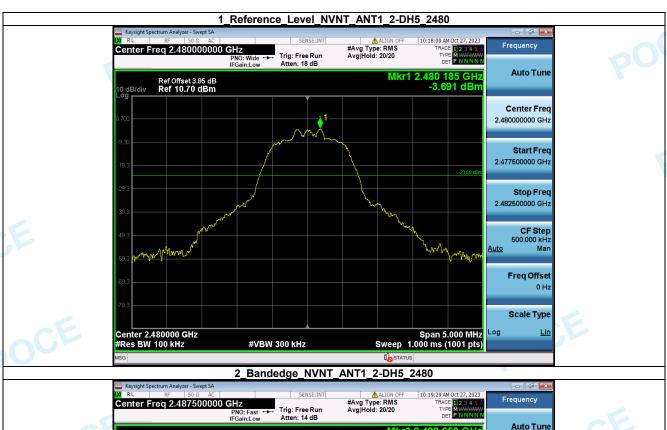

Scale Type




STATUS

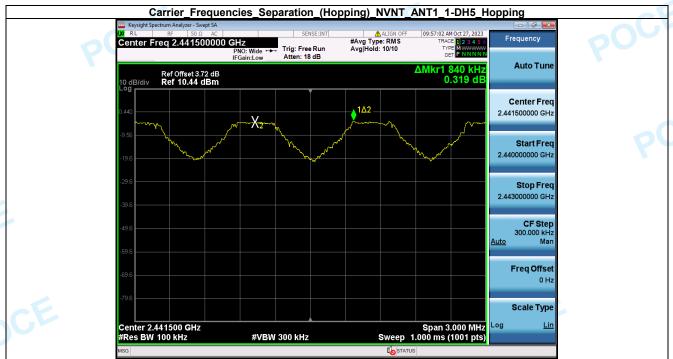






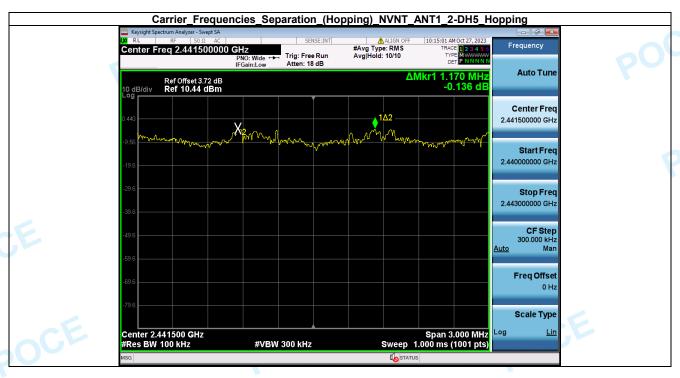
Freq Offset

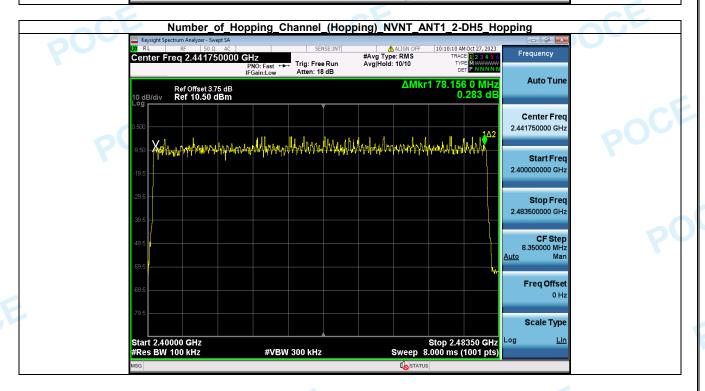
Scale Type


STATUS

6. Carrier Frequencies Separation (Hopping)

Condition	Antenna	Modulation	Frequency(MHz)	Hopping NO.0 (MHz)	Hopping NO.1 (MHz)	Carrier Frequencies Separation(MHz)	Limit(MHz)	Result
NVNT	ANT1	1-DH5	2402.00	2402.023	2402.851	0.83	0.687	Pass
NVNT	ANT1	1-DH5	2441.00	2441.029	2441.869	0.84	0.695	Pass
NVNT	ANT1	1-DH5	2480.00	2479.023	2479.860	0.84	0.694	Pass
NVNT	ANT1	2-DH5	2402.00	2402.017	2403.193	1.18	0.879	Pass
NVNT	ANT1	2-DH5	2441.00	2440.855	2442.025	1.17	0.883	Pass
NVNT	ANT1	2-DH5	2480.00	2478.873	2480.178	1.30	0.888	Pass

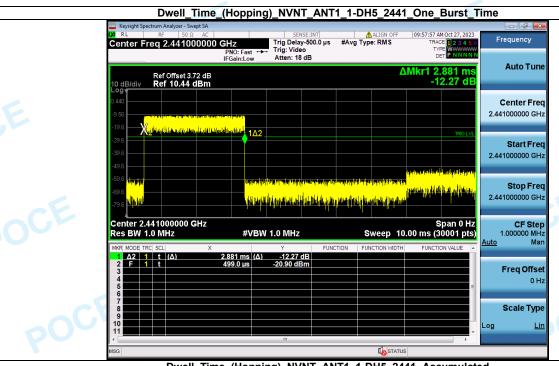

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 64 of 106

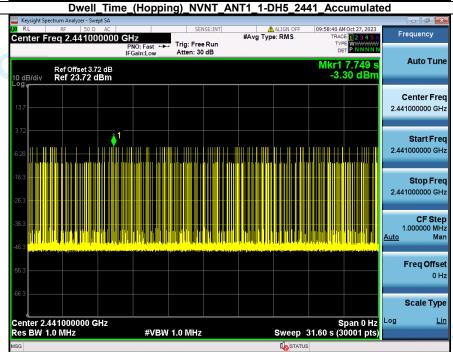


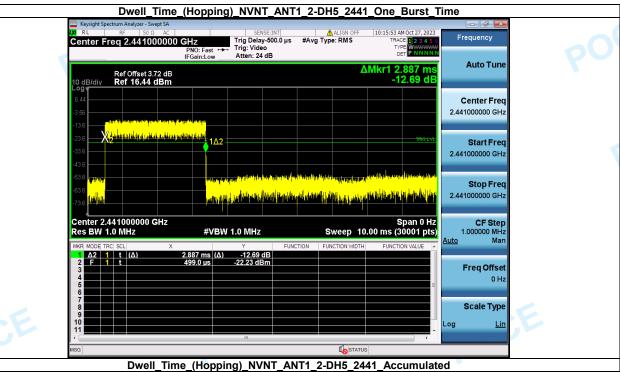
7. Number of Hopping Channel (Hopping)

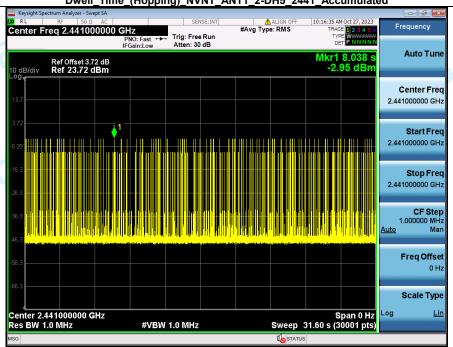
Condition	Antenna	Modulation	Hopping Num	Limit	Result
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass

Number_of_Hopping_Channel_(Hopping)_NVNT_ANT1_1-DH5_Hopping Trig: Free Run Atten: 18 dB Auto Tune ΔMkr1 78.239 0 MHz 0.418 dB Ref Offset 3.75 dB Ref 10.50 dBm 2.441750000 GHz Y RATERING TRANSPORTATION TO THE PROPERTY OF T 2.400000000 GHz Stop Freq 2.483500000 GHz CF Step 8.350000 MHz Frea Offset 0 Hz Scale Type Start 2.40000 GHz #Res BW 100 kHz Stop 2.48350 GHz Sweep 8.000 ms (1001 pts) #VBW 300 kHz




101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 67 of 106


8. Dwell Time (Hopping)


Condition	Antenna	Packet Type	Pulse Time(ms)	Hops	Dwell Time(ms)	Limit(s)	Result
NVNT	ANT1	1-DH5	2.881	117.00	337.077	0.40	Pass
NVNT	ANT1	2-DH5	2.887	112.00	323.344	0.40	Pass
NVNT	ANT1	1-DH1	0.377	320.00	120.640	0.40	Pass
NVNT	ANT1	1-DH3	1.633	157.00	256.381	0.40	Pass
NVNT	ANT1	2-DH1	0.387	320.00	123.840	0.40	Pass
NVNT	ANT1	2-DH3	1.639	150.00	245.850	0.40	Pass

