

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

CTA TESTING

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No. CTA25052302701 FCC ID. : 2BDLE-CT-10B

Compiled by

(position+printed name+signature) .: File administrators Zoey Cao

Supervised by

(position+printed name+signature) .: Project Engineer Ace Chai

Approved by

(position+printed name+signature) .: RF Manager Eric Wang

Date of issue Sep. 03, 2025

Testing Laboratory Name...... Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name Shenzhen HOTRC Technology Co., Ltd

2nd Floor, Building 3, Yibaolai Industrial City, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Test specification....:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description 2.4G radio remote control

Trade Mark.....: N/A

Manufacturer Shenzhen HOTRC Technology Co., Ltd

Model/Type reference CT-10B

Listed Models F-10A

Modulation: GFSK

Frequency From 2402MHz to 2480MHz

Ratings: Input: 5V === 1.0A

Battery: 3.7V, 1500mAh, 5.55Wh

Result PASS

Page 2 of 30 Report No.: CTA25052302701

TEST REPORT

Equipment under Test 2.4G radio remote control

Model /Type CT-10B

Listed Models F-10A

The PCB board, circuit, structure and internal of these models are the Model difference

same, Only model number and colour is different for these model.

Applicant Shenzhen HOTRC Technology Co., Ltd

2nd Floor, Building 3, Yibaolai Industrial City, Qiaotou Community, Address

Fuhai Street, Bao'an District, Shenzhen, China

Manufacturer Shenzhen HOTRC Technology Co., Ltd

Address 2nd Floor, Building 3, Yibaolai Industrial City, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Test Result: PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATESTIN'

Report No.: CTA25052302701

Contents

1 TEST STANDARDS		4
2 SUMMARY		5
2.1 General Remarks		
2.2 Product Description		
2.3 Equipment Under Test		
2.4 Short description of the Equipment under Test (EUT)		
2.5 EUT configuration		
2.6 EUT operation mode		6
2.7 Block Diagram of Test Setup		6
2.8 Related Submittal(s) / Grant (s)		
2.9 Modifications		
3 TEST ENVIRONMENT		
3.1 Address of the test laboratory		
3.2 Test Facility		
3.3 Environmental conditions		7
3.4 Summary of measurement results		
3.5 Statement of the measurement uncertainty		
3.6 Equipments Used during the Test		
4 TEST CONDITIONS AND RESULTS		
4.1 AC Power Conducted Emission		
4.2 Radiated Emission		
4.3 Maximum Peak Output Power	The state of the s	21
4.4 20dB Bandwidth		
4.5 Frequency Separation		
4.6 Number of hopping frequency		
4.7 Time of Occupancy (Dwell Time)		
4.8 Out-of-band Emissions		
4.9 Pseudorandom Frequency Hopping Sequence		
4.10 Antenna Requirement		
4.11 On Time and Duty Cycle		
5 Test Setup Photos of the EUT	.s.G	30
6 External and Internal Diates of the EUT		
o External and internal i notes of the Eo i		
6 External and Internal Photos of the EOT		
		Carlo C.

Page 4 of 30 Report No.: CTA25052302701

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2020+Cor.1-2023: American National Standard for Testing Unlicensed Wireless Devices

Page 5 of 30 Report No.: CTA25052302701

SUMMARY

2.1 General Remarks

2.1 General Remarks			
Date of receipt of test sample	:	Aug. 23, 2025	161
	111	C/L	TING
Testing commenced on		Aug. 23, 2025	TES
	A STATE OF THE STA		CTA.
Testing concluded on	:	Sep. 03, 2025	VIA.

2.2 Product Description

Product description:	2.4G radio remote control
Model/Type reference:	CT-10B NG
Power supply:	Input: 5V === 1.0A Battery: 3.7V, 1500mAh, 5.55Wh
Hardware version:	V1.0
Software version:	V1.0
Testing sample ID:	CTA250523027-1# (Engineer sample) CTA250523027-2# (Normal sample)
2.4G :	
Modulation:	GFSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	Internal antenna
Antenna gain:	0.78 dBi

2.3 Equipment Under Test

Power supply system utilised

Refer to section 2.2

Short description of the Equipment under Test (EUT)

This is a 2.4G radio remote control.

is is a 2.4G radio remote or more details, refer to the		EUT. CTATES		
Test Software Version Tools software(ADB command)				
Frequency	2402 MHz	2441MHz	2480 MHz	
GFSK	16	16	16	

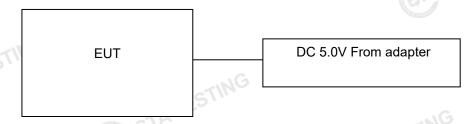
2.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

O - supplied by the manufacturer

supplied by the lab

•	Adapter information	Model: EP-TA20CBC
	(Auxiliary test supplied by test Lab)	Input: AC 100-240V 50/60Hz
		Output: DC 5V 2A


Page 6 of 30 Report No.: CTA25052302701

2.6 EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

selected to test.	
Selected to test. Operation Frequency:	CTATESTING
Channel	Frequency (MHz)
00	2402
01	2403
TING	
38	2440
39	2441
40	2442
	STIN
77	2479
78	2480
2.7 Block Diagram of Test Setup	CTA CTA

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.9 **Modifications**

No modifications were implemented to meet testing criteria.

Page 7 of 30 Report No.: CTA25052302701

TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

ISED#: 27890 CAB identifier: CN0127

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 **Environmental conditions**

CTA TESTING During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:		24 ° C
	The same with	
Humidity:		45 %
Atmospheric pressure:		950-1050mbar

AC Power Conducted Emission:

o i ottor oomaaotoa Emiloolom	
Temperature:	25 ° C
TIN	3
Humidity:	46 %
CTA	
Atmospheric pressure:	950-1050mbar

Conducted testing:

Conducted testing.	
Temperature:	25 ° C
	To water
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
CTATESTING	CTATESTING

Report No.: CTA25052302701 Page 8 of 30

Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
§15.247(a)(1)	Carrier Frequency separation	GFSK	☑ Lowest☑ Middle☑ Highest	GFSK	⊠ Middle	Compliant
§15.247(a)(1)	Number of Hopping channels	GFSK	⊠ Full	GFSK	⊠ Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK	 Lowest Middle Highest	GFSK	⊠ Middle	Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK	☑ Lowest☑ Middle☑ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(b)(1)	Maximum output peak power	GFSK	☑ Lowest☑ Middle☑ Highest	GFSK	 Lowest Middle Highest	Compliant
§15.247(d)	Band edgecompliance conducted	GFSK		GFSK	☑ Lowest☑ Highest	Compliant
§15.205	Band edgecompliance radiated	GFSK		GFSK		Compliant
§15.247(d)	TX spuriousemissions conducted	GFSK	 Lowest Middle Highest	GFSK	 Lowest Middle Highest	Compliant
§15.247(d)	TX spuriousemissions radiated	GFSK	✓ Lowest✓ Middle✓ Highest	GFSK	 Lowest Middle Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK	∠ Lowest∠ Middle∠ Highest	GFSK	⊠ Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK	☑ Lowest☑ Middle☑ Highest	GFSK	⊠ Middle	Compliant

Remark:

- The measurement uncertainty is not included in the test result.
- We tested all test mode and recorded worst case in report
- RF Conducted test Offset= cable loss, For conducted spurious emission test, cable loss is the maximum CTA TESTING value in the range of test.

Page 9 of 30 Report No.: CTA25052302701

Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional CTATE deviation. The manufacturer has the sole responsibility of continued compliance of the device.

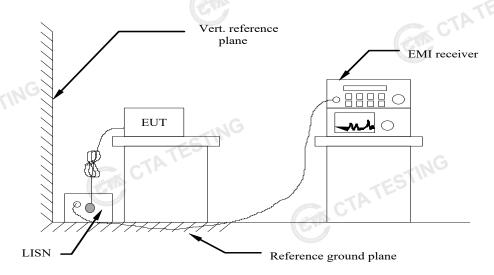
Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.: CTATESTING

Test	Range	Measurement Uncertainty	Notes	G. MA
Radiated Emission	9KHz~30MHz	3.02 dB	(1)	
Radiated Emission	30~1000MHz	4.06 dB	(1)	
Radiated Emission	1~18GHz	5.14 dB	(1)	
Radiated Emission	18-40GHz	5.38 dB	(1)	
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)	
Output Peak power	30MHz~18GHz	0.55 dB	(1)	
Power spectral density		0.57 dB	(1)	TING
Spectrum bandwidth	1	1.1%	(1)	LES!
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)	
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)	
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)	
Time		±2%	(1)	

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% CTATESTING confidence level using a coverage factor of k=2.

Page 10 of 30 Report No.: CTA25052302701

3.6 Equipments Used during the Test


	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2025/08/04	2026/08/03
	LISN	R&S	ENV216	CTA-314	2025/07/30	2026/07/29
	EMI Test Receiver	R&S	ESPI	CTA-307	2025/07/30	2026/07/29
	EMI Test Receiver	R&S	ESCI	CTA-306	2025/07/30	2026/07/29
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2025/07/30	2026/07/29
	Vector Signal generator	Agilent	N5182A	CTA-305	2025/07/30	2026/07/29
	Analog Signal Generator	R&S	E4421B	CTA-304	2025/07/30	2026/07/29
CTATE	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2025/07/30	2026/07/29
1	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2025/07/31	2026/07/30
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
	Horn Antenna	Schwarzbeck	BBHA 9170	CTA-346	2025/05/18	2028/05/17
	Amplifier	Schwarzbeck	BBV9745	CTA-312	2025/07/30	2026/07/29
	Amplifier	Tonscend	TAP-011840	CTA-313	2025/07/30	2026/07/29
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2025/07/30	2026/07/29
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2025/07/30	2026/07/29
	Automatic control unit	Tonscend	JS0806-2	CTA-404	2025/07/30	2026/07/29
	Power Sensor	Agilent	U2021XA	CTA-405	2025/07/30	2026/07/29
	Amplifier	SKET	LNPA 1840G-50	CTA-345	2025/05/17	2026/05/16
	Spectrum analyzer	R&S	FSV40-N	CTA-344	2025/05/17	2026/05/16
	Power Meter	R&S	NRVS	CTA-354	2025/07/30	2026/07/29
	Attenuator	XINQY	10dB	N/A	N/A	N/A
	Programmable Constant Temperature And Humidity Test Chamber	DONGGUAN JINGYU	HT-H-408	CTA-053	2025/07/30	2026/07/29
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
			C. C.		CT CT	ATESTIN

Page 11 of 30 Report No.: CTA25052302701

TEST CONDITIONS AND RESULTS

AC Power Conducted Emission

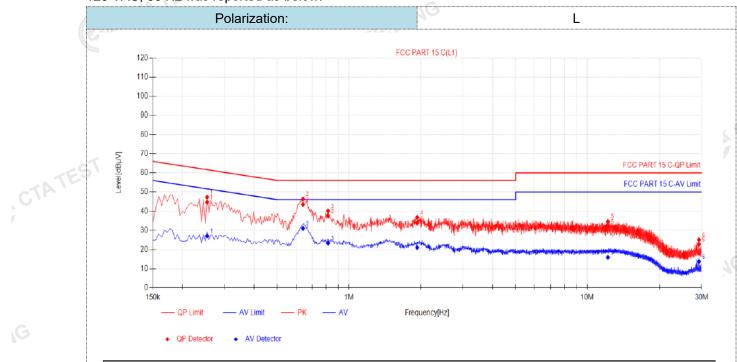
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2020.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2020
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2020
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

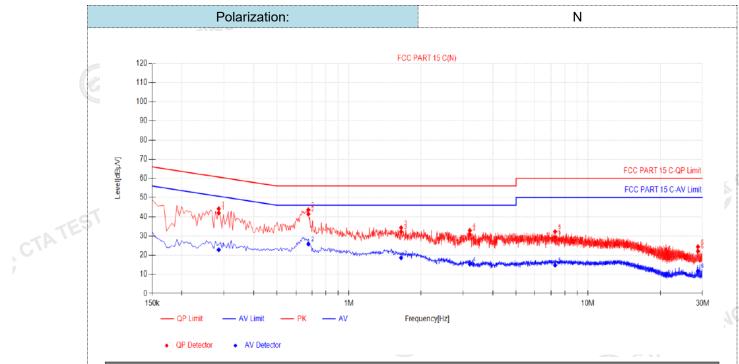
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:


Frequency range (MHz)	Limit	(dBuV)
Frequency range (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the freque	ency.	
EST RESULTS	TESTING	
CT.		A TESTING

TEST RESULTS

Page 12 of 30 Report No.: CTA25052302701

Remark:

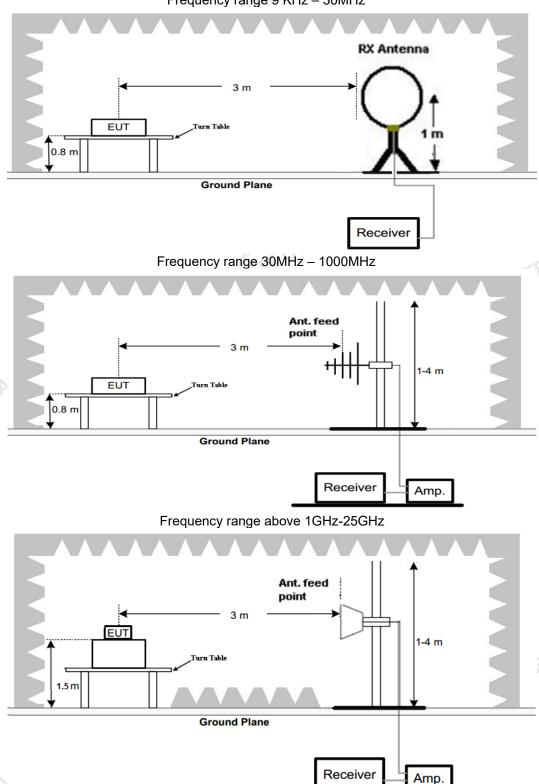

1. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict	
1	0.2535	9.93	34.76	44.69	61.64	16.95	17.10	27.03	51.64	24.61	PASS	
2	0.6405	9.99	33.46	43.45	56.00	12.55	20.98	30.97	46.00	15.03	PASS	
3	0.816	9.98	27.54	37.52	56.00	18.48	13.32	23.30	46.00	22.70	PASS	
4	1.932	9.92	23.90	33.82	56.00	22.18	11.15	21.07	46.00	24.93	PASS	
5	12.1335	10.28	21.62	31.90	60.00	28.10	5.72	16.00	50.00	34.00	PASS	
6	29.238	10.60	12.11	22.71	60.00	37.29	3.20	13.80	50.00	36.20	PASS	
	.QP Value							13.80	50.00	36.20	PASS	

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTA TESTING

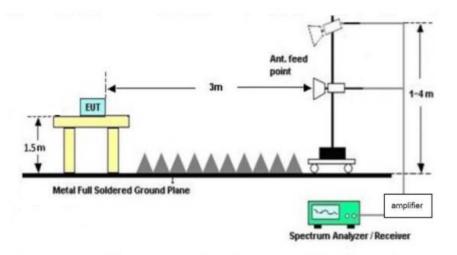
Report No.: CTA25052302701 Page 13 of 30

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	ΑV Reading [dBμV]	ΑV Value [dBμV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict		
1	0.285	9.91	32.04	41.95	60.67	18.72	12.85	22.76	50.67	27.91	PASS		
2	0.6765	10.08	31.32	41.40	56.00	14.60	15.71	25.79	46.00	20.21	PASS		
3	1.653	10.15	21.97	32.12	56.00	23.88	8.45	18.60	46.00	27.40	PASS		
4	3.2055	10.22	20.53	30.75	56.00	25.25	5.11	15.33	46.00	30.67	PASS		
5	7.2915	10.42	18.82	29.24	60.00	30.76	4.31	14.73	50.00	35.27	PASS		
6	28.689	10.81	11.24	22.05	60.00	37.95	0.81	11.62	50.00	38.38	PASS		
. Fact	ote:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB) Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) OPMargin(dB) = OP Limit (dB μ V) - OP Value (dB μ V)												


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV)

Report No.: CTA25052302701 Page 14 of 30

Radiated Emission


TEST CONFIGURATION

Frequency range 9 KHz - 30MHz

CTATESTING

Page 15 of 30 Report No.: CTA25052302701

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	TATE
18GHz-25GHz	Horn Anternna	1	C/I

Setting test receiver/spectrum as following table states:

Test Frequency	Test Receiver/Spectrum Setting	Detector
range		
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	reak
	Sweep time=Auto	TES.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	TATL

Transd=AF +CL-AG

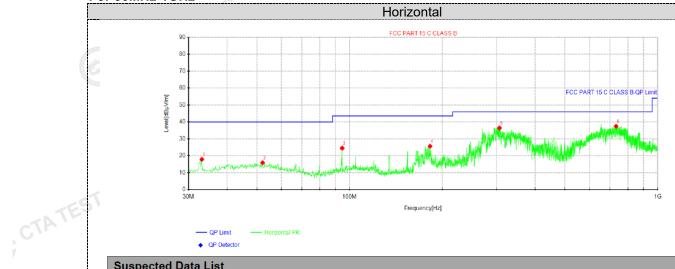
Page 16 of 30 Report No.: CTA25052302701

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

	Frequency (MHz)	Distance (Meters)	Radiated (dBμV/m)	Radiated (µV/m)
- 0	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
TE	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
CITIA.	1.705-30	3	20log(30)+ 40log(30/3)	30
2	30-88	3	40.0	100
,	88-216	3	43.5	150
	216-960	3	46.0	200
	Above 960	3	54.0	500


TEST RESULTS

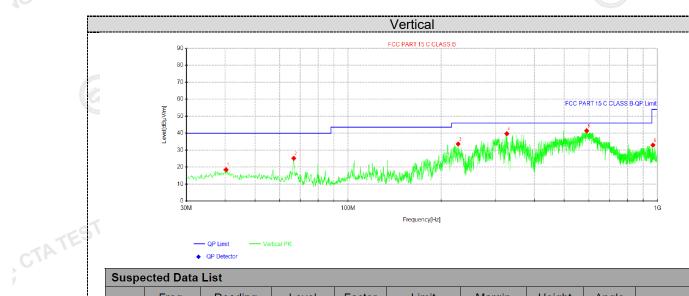
Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. GFSK were tested at Low, Middle, and High channel and recorded worst mode at the High channel.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

Report No.: CTA25052302701 Page 17 of 30

For 30MHz-1GHz

CTATE


Suspe	ected Data	List							
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolovity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	33.1525	31.75	17.87	-13.88	40.00	22.13	100	157	Horizontal
2	52.1888	27.23	15.91	-11.32	40.00	24.09	200	248	Horizontal
3	94.6262	38.45	24.51	-13.94	43.50	18.99	100	211	Horizontal
4	182.411	40.00	25.60	-14.40	43.50	17.90	100	300	Horizontal
5	306.328	47.30	36.42	-10.88	46.00	9.58	200	283	Horizontal
6	732.401	42.30	37.42	-4.88	46.00	8.58	100	56	Horizontal

CTA TESTIN

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA25052302701 Page 18 of 30

Suspe	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	40.3062	30.39	18.47	-11.92	40.00	21.53	100	5	Vertical
2	66.7388	39.40	25.18	-14.22	40.00	14.82	200	340	Vertical
3	226.788	46.10	33.65	-12.45	46.00	12.35	100	209	Vertical
4	325.971	50.62	39.73	-10.89	46.00	6.27	100	340	Vertical
5	590.538	47.76	41.42	-6.34	46.00	4.58	200	2	Vertical
6	967.141	34.95	32.99	-1.96	54.00	21.01	100	244	Vertical

CTA TESTING

CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 19 of 30 Report No.: CTA25052302701

For 1GHz to 25GHz

GFSK (above 1GHz)

Freque	ncy(MHz)	:	2402		Polarity:		HORIZONTAL		
Frequency (MHz)			Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	61.87	PK	74	12.13	66.14	32.33	5.12	41.72	-4.27
4804.00	44.76	AV	54	9.24	49.03	32.33	5.12	41.72	-4.27
7206.00	53.97	PK	74	20.03	54.49	36.6	6.49	43.61	-0.52
7206.00	43.30	AV	54	10.70	43.82	36.6	6.49	43.61	-0.52

Freque	ncy(MHz)	:	2402		Polarity:		VERTICAL			
Frequency (MHz)			Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	59.99	PK	74	14.01	64.26	32.33	5.12	41.72	-4.27	
4804.00	43.02	AV	54	10.98	47.29	32.33	5.12	41.72	-4.27	
7206.00	52.18	PK	74	21.82	52.70	36.6	6.49	43.61	-0.52	
7206.00	41.49	AV	54	12.51	42.01	36.6	6.49	43.61	-0.52	
							TES			

_										
	Frequency(MHz):			2441		Polarity:		HORIZONTAL		
	Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre-	Correction
	(MHz)	Le	vel			Value	Factor	Factor	amplifier	Factor
	(IVI⊓Z)	(dBuV/m)		(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
	4882.00	61.32	PK	74	12.68	65.20	32.6	5.34	41.82	-3.88
	4882.00	44.07	AV	54	9.93	47.95	32.6	5.34	41.82	-3.88
	7323.00	53.35	PK	74	20.65	53.46	36.8	6.81	43.72	-0.11
	7323.00	42.60	AV	54	11.40	42.71	36.8	6.81	43.72	-0.11

Freque	ncy(MHz)	:	24	41	Pola	arity:	VERTICAL		
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	59.69	PK	74	14.31	63.57	32.6	5.34	41.82	-3.88
4882.00	42.01	ΑV	54	11.99	45.89	32.6	5.34	41.82	-3.88
7323.00	51.62	PK	74	22.38	51.73	36.8	6.81	43.72	-0.11
7323.00	40.97	AV	54	13.03	41.08	36.8	6.81	43.72	-0.11

Freque	ncy(MHz)	:	2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.80	PK	74	13.20	63.88	32.73	5.66	41.47	-3.08
4960.00	43.45	AV	54	10.55	46.53	32.73	5.66	41.47	-3.08
7440.00	52.61	PK	74	21.39	52.16	37.04	7.25	43.84	0.45
7440.00	41.89	AV	54	12.11	41.44	37.04	7.25	43.84	0.45

Freque	ncy(MHz)	:	2480		Polarity:		VERTICAL		
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	59.01	PK	74	14.99	62.09	32.73	5.66	3 41.47	-3.08
4960.00	41.79	AV	54	12.21	44.87	32.73	5.66	41.47	-3.08
7440.00	50.85	PK	74	23.15	50.40	37.04	7.25	43.84	0.45
7440.00	40.17	AV	54	13.83	39.72	37.04	7.25	43.84	0.45

Page 20 of 30 Report No.: CTA25052302701

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
- 4. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

GFSK

Emis Lev (dBu) 61.83 43.19	vel V/m)	Limit (dBuV/m)	Margin	Raw	Antenna	Cable	Pre-	Correction	
-		(42417111)	(dB)	Value (dBuV)	Factor (dB/m)	Factor (dB)	amplifier (dB)	Factor (dB/m)	
12 10	PK	74	12.17	72.25	27.42	4.31	42.15	-10.42	
43.19	AV	54	10.81	53.61	27.42	4.31	42.15	-10.42	
Frequency(MHz):			02	Polarity:		VERTICAL			
Frequency (MHz) Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
60.17	PK	74	13.83	70.59	27.42	4.31	42.15	-10.42	
41.06	AV	54	12.94	51.48	27.42	4.31	42.15	-10.42	
ncy(MHz)	:	24	80	Polarity:		HORIZONTAL			
Lev	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
61.11	PK	74	12.89	71.22	27.7	4.47	42.28	-10.11	
42.53	AV	54	11.47	52.64	27.7	4.47	42.28	-10.11	
Frequency(MHz):			80	Pola	arity:	VERTICAL			
Lev	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
59.31	PK	74	14.69	69.42	27.7	4.47	42.28	-10.11	
40.54	AV	54	13.46	50.65	27.7	4.47	42.28	-10.11	
n level (dB on Factor (alue = Lim	(dB/m) = . nit value-	Antenna Fact Emission leve	or (dB/m)+Ca el.	ible Factor (plifier		CTP CTP	
	Emis Le (dBu 60.17 41.06 ncy(MHz) Emis Le (dBu 61.11 42.53 ncy(MHz) Emis Le (dBu 59.31 40.54 Emis I level (dBu con Factor exalue = Line	Emission	Emission Level (dBuV/m) 60.17 PK 74 41.06 AV 54 ncy(MHz): 24 Emission Level (dBuV/m) 61.11 PK 74 42.53 AV 54 ncy(MHz): 24 Emission Level (dBuV/m) 61.11 PK 74 42.53 AV 54 ncy(MHz): 24 Emission Level (dBuV/m) 59.31 PK 74 40.54 AV 54 in level (dBuV/m) = Raw Value (dE on Factor (dB/m) = Antenna Factor (alue = Limit value- Emission lever	Emission Level (dBuV/m) 60.17 PK 74 13.83 41.06 AV 54 12.94 ncy(MHz): Emission Level (dBuV/m) 61.11 PK 74 12.89 42.53 AV 54 11.47 ncy(MHz): Emission Level (dBuV/m) 61.11 PK 74 12.89 42.53 AV 54 11.47 ncy(MHz): Emission Level (dBuV/m) 61.11 PK 74 12.89 42.53 AV 54 11.47 ncy(MHz): Emission Level (dBuV/m) 6BuV/m) 59.31 PK 74 14.69 40.54 AV 54 13.46 Emission Level (dBuV/m) 59.31 PK 74 14.69 AU 54 13.46 Emission Level (dBuV/m) 59.31 PK 74 14.69 AU 54 13.46 Emission Level (dBuV/m) 59.31 PK 74 14.69 AU 54 13.46 Emission Level (dBuV/m) = Antenna Factor (dB/m)+Caralue = Limit value- Emission level.	Emission Limit (dBuV/m) (dB) Raw Value (dBuV)	Emission Limit (dBuV/m) (dB) (dBuV) (dBuV)	Emission Level (dBuV/m) (dB) Margin (dB) Value Factor (dB/m) (dB) (dB/m) (dB/m) (dB)	Emission Level (dBuV/m) Limit (dBuV/m) (dB) Value Factor (dBuV) (dB) (

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- ப்பட்டு (dB/m)+Cable value = Limit value- Emission level.
 4. The other emission levels were very low against the limit. 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

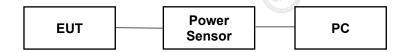
 - CTATESTING

Report No.: CTA25052302701 Page 21 of 30

4.3 Maximum Peak Output Power

Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 nonoverlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.


<u>Test Procedure</u>

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the powersensor.

Method PM is Measurement using an RF Peak power sensor. The procedure for this method is as follows:

- 1. The testing follows the ANSI C63.10 Section 7.8.5
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power sensor.
- 3. The power sensor shall have a video bandwidth that is greater than or equal to the 20db bandwidth and shall use a fast-responding diode detector.

Test Configuration

Test Results

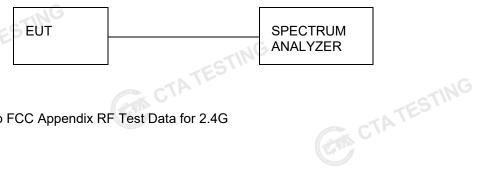
Please refer to FCC Appendix RF Test Data for 2.4G

Note: 1. The test results including the cable loss.

Page 22 of 30 Report No.: CTA25052302701

20dB Bandwidth

Limit


For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW was 1% to 5% of the OBW and VBW shall be at least three times RBW.

- a) Span: shall be between two times and five times the OBW.
- b) RBW: 1% to 5% of the OBW.
- c) Video bandwidth (VBW) ≥ 3RBW
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max-hold.
- g) Allow the trace to stabilize

Test Configuration

Test Results

Please refer to FCC Appendix RF Test Data for 2.4G

Page 23 of 30 Report No.: CTA25052302701

Frequency Separation

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) ≥ RBW
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max-hold.
- g) Allow the trace to stabilize

TEST CONFIGURATION

TEST RESULTS

Please refer to FCC Appendix RF Test Data for 2.4G

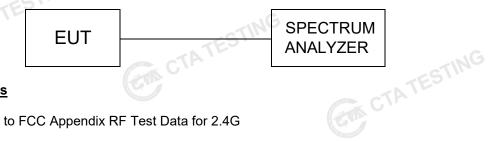
We have tested all mode at high, middle and low channel, and recorded worst case at middle

Page 24 of 30 Report No.: CTA25052302701

Number of hopping frequency

Limit

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.


Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator.

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: The frequency band of operation. Depending on the number of channels the device supports, it could be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. CTATESTING
- c) VBW ≥ RBW.
- d) Sweep: Auto time.
- e) Detector function: Peak.
- f) Trace: Max-hold.
- g) Allow the trace to stabilize

Test Configuration

Test Results

Please refer to FCC Appendix RF Test Data for 2.4G

Page 25 of 30 Report No.: CTA25052302701

Time of Occupancy (Dwell Time)

Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration

Test Results

Please refer to FCC Appendix RF Test Data for 2.4G

Note: We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Page 26 of 30 Report No.: CTA25052302701

4.8 Out-of-band Emissions

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

The testing follows the ANSI C63.10 Section 6.10.4 and 7.8.7:

Reference level measurement

Span = Wide enough to capture the peak level of the emission operating on the channel closest to the band CTA TESTING edge, as well as any modulation products which fall outside of the authorized band of operation.

RBW = 100kHz

VBW = 300kHz

Detector = Peak

Sweep time = Auto couple

Trace mode = Max hold

Allow the trace to stabilize. Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission.

Emission level measurement

Span = Wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100kHz

VBW = 300kHz

Detector = Peak

Sweep time = Auto couple

Trace mode = Max hold

Trace was allowed to stabilize

Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this section.

Test Configuration

Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

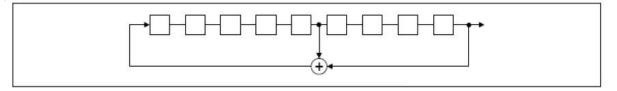
We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Please refer to FCC Appendix RF Test Data for 2.4G

Page 27 of 30 Report No.: CTA25052302701

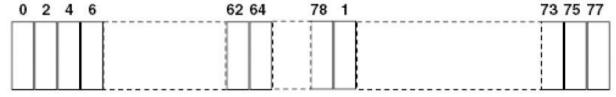
4.9 Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Page 28 of 30 Report No.: CTA25052302701

4.10 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain CTATE greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

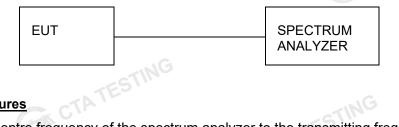
Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The Internal antenna maximum gain of antenna was 0.78 dBi

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTA TESTING


Page 29 of 30 Report No.: CTA25052302701

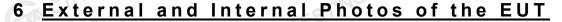
4.11 On Time and Duty Cycle

Standard Applicable

None; for reporting purpose only.

TEST CONFIGURATION

CTATESTING **Test Procedures**


- CTATESTING 1). Set the Centre frequency of the spectrum analyzer to the transmitting frequency;
- 2). Set the span=0MHz, RBW=8MHz, VBW=8MHz, Sweep time=Auto;
- 3). Detector = peak;
- 4). Trace mode = Single hold.

Please refer to FCC Appendix RF Test Data for 2.4G

Page 30 of 30 Report No.: CTA25052302701

Test Setup Photos of the EUT

Please refer to separated files for Test Setup Photos of the EUT.

Please refer to separated files for External Photos & Internal Photos of the EUT.End of Report..