

FCC ID: 2BDIH-SLIM41

RF EXPOSURE EVALUATION

According to FCC 1.1310 and KDB 447498 D01 V06, The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in §1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposure				
0.3-3.0	614	1.63	*100	6
3.0-30	1842/f	4.89/f	*900/f ²	6
30-300	61.4	0.163	1.0	6
300-1,500			f/300	6
1,500-100,000			5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3-1.34	614	1.63	*100	30
1.34-30	824/f	2.19/f	*180/f ²	30
30-300	27.5	0.073	0.2	30
300-1,500			f/1500	30
1,500-100,000			1.0	30

f = frequency in MHz * = Plane-wave equivalent power density

MPE Calculation Method

$$E \text{ (V/m)} = \frac{\sqrt{30 * P * G}}{d}$$

$$\text{Power Density: } Pd \text{ (W/m}^2\text{)} = \frac{E^2}{377}$$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 * P * G}{377 * D^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Measurement Result

BT:

Operation Frequency: 2402-2480MHz,

Power density limited: 1mW/ cm²

Power density limited: 1mW/cm

Antenna Type: PCB Antenna

Antenna :2.54 dBi

R=20cm

mW=10^(dBm/10)

Mode	Channel Freq. (MHz)	modulation	conducted power	Tune-up power (dBm)	Max		Antenna		Evaluation result	
			(dBm)		tune-up power		Gain			
			(dBm)		(mW)	(dBi)	Numeric			
BLE	2402	GFSK	1.65	2±1	3	1.995	2.54	1.79	0.0007	
	2440		2.2	2±1	3	1.995	2.54	1.79	0.0007	
	2480		1.84	2±1	3	1.995	2.54	1.79	0.0007	
BLE 2M	2402	GFSK	1.63	1±1	2	1.585	2.54	1.79	0.0006	
	2440		1.86	1±1	2	1.585	2.54	1.79	0.0006	
	2480		1.54	1±1	2	1.585	2.54	1.79	0.0006	

2.4G WIFI:

Operation Frequency: WIFI 802.11b/g/n HT20: 2412-2462MHz,

Power density limited: 1mW/ cm²

Power density limited: 1mW/cm

Antenna Type: PCB Antenna

2.4G WIFI Antenna :2.54dBi;

R=20cm

mW=10^(dBm/10)

WLAN2.4G SISO Max power MODE

Antenna	Channel Freq. (MHz)	modulation	conducted power	Tune-up power (dBm)	Max		Antenna		Evaluation result (mW/cm ²)	
			(dBm)		tune-up power		Gain			
			(dBm)		(mW)	(dBi)	Numeric			
Ant 1	2412	802.11b	14.89	15±1	16	39.811	2.54	1.79	0.0142	
Ant 1	2437		15.29	15±1	16	39.811	2.54	1.79	0.0142	
Ant 1	2462		15.38	15±1	16	39.811	2.54	1.79	0.0142	
Ant 1	2412	802.11g	14.35	15±1	16	39.811	2.54	1.79	0.0142	
Ant 1	2437		14.84	15±1	16	39.811	2.54	1.79	0.0142	
Ant 1	2462		15.44	15±1	16	39.811	2.54	1.79	0.0142	
Ant 1	2412	802.11n20	12.52	12±1	13	19.953	2.54	1.79	0.0071	
Ant 1	2437		12.42	12±1	13	19.953	2.54	1.79	0.0071	
Ant 1	2462		12.89	12±1	13	19.953	2.54	1.79	0.0071	

SIMULTANEOUS TRANSMISSIONS

When a number of sources at different frequencies, and/or broadband sources, contribute to the total exposure, it becomes necessary to weigh each contribution relative to the MPE. To comply with the MPE, the fraction of the MPE in terms of E², H² (or power density) incurred within each frequency interval should be determined and the sum of all such fractions should not exceed unity. In order to ensure compliance with the MPE for a controlled environment, the sum of the ratios of the power density to the corresponding MPE should not exceed unity. That is

$$\sum_{i=1}^n \frac{S_i}{MPE_i} \leq 1$$

Max. SIMULTANEOUS TRANSMISSIONS for BLE + Wi-Fi

Band	ANT	EIRP (dBm)	EIRP (mW)	Standalone	Standalone	Simultaneous		Verdict	
				Evaluation result	Power density limits	Evaluation result	raio		
				(mW/cm ²)	(mW/cm ²)				
BLE + Wi-Fi	Wi-Fi	18.54	184.5	0.0142	1	0.0149	1	PASS	
	BLE	5.54	3.58	0.0007	1				

Conclusion:

For the max result : $0.0149 \leq 1.0$, SAR is not required.

Signature:

Date: 2025-08-21

NAME AND TITLE (Please print or type): Alex Li/Manager

COMPANY (Please print or type): Shenzhen NTEK Testing Technology Co., Ltd./ No. 24 Xinfu East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, People's Republic of China