

FCC Part 15C

Measurement and Test Report

For

Xiamen Runqun Intelligent Technology Co., Ltd

FCC ID: 2BDFR-RQBK6

TABLE OF CONTENTS

1. GENERAL INFORMATION.....	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	3
1.2 TEST STANDARDS.....	4
1.3 TEST METHODOLOGY	4
1.4 TEST FACILITY	4
1.5 EUT SETUP AND TEST MODE.....	4
1.5 EUT SETUP AND TEST MODE.....	5
1.6 MEASUREMENT UNCERTAINTY	5
1.7 TEST EQUIPMENT LIST AND DETAILS.....	6
2. SUMMARY OF TEST RESULTS	7
3. ANTENNA REQUIREMENT.....	8
3.1 STANDARD APPLICABLE.....	8
3.2 TEST RESULT.....	8
4. CONDUCTED EMISSIONS	9
4.1 TEST PROCEDURE.....	9
4.2 BASIC TEST SETUP BLOCK DIAGRAM.....	9
4.3 ENVIRONMENTAL CONDITIONS	9
4.4 TEST RECEIVER SETUP	9
4.6 CONDUCTED EMISSIONS TEST DATA.....	10
5. RADIATED EMISSIONS.....	11
5.1 STANDARD APPLICABLE.....	11
5.2 TEST PROCEDURE.....	12
5.3 CORRECTED AMPLITUDE & MARGIN CALCULATION.....	14
5.4 ENVIRONMENTAL CONDITIONS	14
5.5 SUMMARY OF TEST RESULTS/PLOTS	14
6. 20DB BANDWIDTH	16
6.1 STANDARD APPLICABLE.....	16
6.1 TEST PROCEDURE.....	16
6.2 ENVIRONMENTAL CONDITIONS	16
6.3 SUMMARY OF TEST RESULTS/PLOTS	16
7. TRANSMISSION TIME.....	18
7.1 STANDARD APPLICABLE.....	18
7.2 TEST PROCEDURE.....	18
7.3 ENVIRONMENTAL CONDITIONS	18
7.4 SUMMARY OF TEST RESULTS/PLOTS	18
8. DUTY CYCLE	19
8.1 STANDARD APPLICABLE.....	19
8.2 TEST PROCEDURE.....	19
8.3 ENVIRONMENTAL CONDITIONS	19
8.4 SUMMARY OF TEST RESULTS	19

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: Xiamen Runqun Intelligent Technology Co., Ltd
Address of applicant: Room 702, No. 1819-2, Lvling Road, Siming District, Xiamen,Fujian,China
Manufacturer: Xiamen Runqun Intelligent Technology Co., Ltd
Address of manufacturer: Room 702, No. 1819-2, Lvling Road, Siming District, Xiamen,Fujian,China

General Description of EUT	
Product Name:	300M Garage Door remote
Trade Name:	/
Model No.:	RQBK6
Adding Model(s):	RQBK6-A, RQBK6-B, RQBK6-M, RQBK10, RQBK10-A, RQBK10-B
Rated Voltage:	3.0V by battery
Power Adapter Model:	N/A

Technical Characteristics of EUT	
Frequency Range:	300 MHz
Max. Field Strength:	84.09dBuV/m(@3m, PK, Vertical)
Data Rate:	N/A
Modulation:	ASK
Antenna Type:	PCB antenna

1.2 Test Standards

The following report is prepared on behalf of the Xiamen Runqun Intelligent Technology Co., Ltd in accordance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission/immunity, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices, and ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

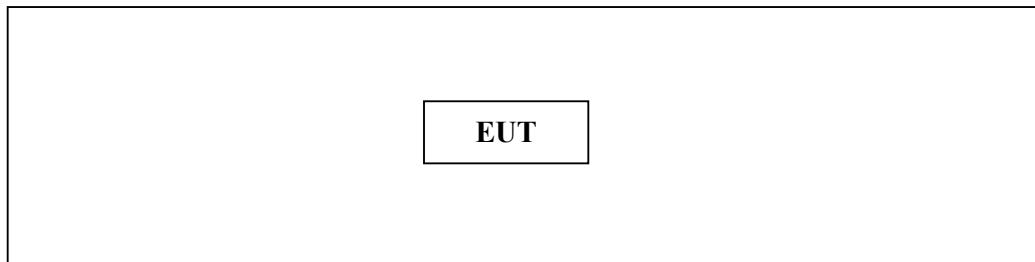
1.4 Test Facility

BSL Testing Co.,LTD.

1/F, Building B, Xinshidai GR Park, Shiyan Street, Bao'an District, Shenzhen, ShiyanStreet, Bao'an District, Shenzhen,Guangdong,518052,People's Republic of China

FCC Test Firm Registration Number: 562200

Designation Number: CN1338


Tel: 400-882-9628

Fax: 86-755-26508703

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

TX Mode

1.5 EUT Setup and Test Mode

The EUT was operated at continuous transmitting mode that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List		
Test Mode	Description	Remark
TM1	Transmitting	Modulation
TM2		
TM3		

Special Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
/	/	/	/

Auxiliary Equipment List and Details			
Description	Manufacturer	Model	Serial Number
/	/	/	/

1.6 Measurement Uncertainty

Measurement uncertainty		
Parameter	Conditions	Uncertainty
Occupied Bandwidth	Conducted	± 1.5%
Conducted Spurious Emission	Conducted	± 2.17dB
Transmission Time	Conducted	± 5%
Conducted Emissions	Conducted	± 2.88dB
Transmitter Spurious Emissions	Radiated	± 5.1dB

1.7 Test Equipment List and Details

Description	Manufacturer	Model	Serial No.	Cal Date	Due. Date
Communication Tester	Rohde & Schwarz	CMW500	100358	2023-10-27	2024-10-26
Spectrum Analyzer	R&S	FSP40	100550	2023-10-27	2024-10-26
Test Receiver	R&S	ESCI7	US47140102	2023-10-27	2024-10-26
Signal Generator	HP	83630B	3844A01028	2023-10-27	2024-10-26
Test Receiver	R&S	ESPI-3	100180	2023-10-27	2024-10-26
Amplifier	Agilent	8449B	4035A00116	2023-10-27	2024-10-26
Amplifier	HP	8447E	2945A02770	2023-10-27	2024-10-26
Signal Generator	IFR	2023A	202307/242	2023-10-27	2024-10-26
Broadband Antenna	SCHAFFNER	2774	2774	2023-10-27	2024-10-26
Biconical and log periodic antennas	ELECTRO-METRICS	EM-6917B-1	171	2023-10-27	2024-10-26
Horn Antenna	R&S	HF906	100253	2023-10-27	2024-10-26
Horn Antenna	EM	EM-6961	60.8762	2023-10-27	2024-10-26
LISN	R&S	ESH3-Z5	100196	2023-10-27	2024-10-26
LISN	COM-POWER	LI-115	02027	2023-10-27	2024-10-26
3m Semi-Anechoic Chamber	Chengyu Electron	9 (L)*6 (W)*6 (H)	BSL086	2023-10-27	2024-10-26
Horn Antenna	A-INFOMW	LB-180400KF	BSL088	2023-10-27	2024-10-26
20dB Attenuator	ICPROBING	IATS1	BSL1003	2023-10-27	2024-10-26
POWER DIVIDER	Mini-circuits	PD-2SF-0010	N/A	2023-10-27	2024-10-26
POWER DIVIDER	Mini-circuits	PD-2SF-0010	N/A	2023-10-27	2024-10-26
Loop Antenna	Schwarz beck	FMZB 1516	9773	2023-10-27	2024-10-26

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§ 15.203	Antenna Requirement	Compliant
§ 15.207(e)	Conducted Emission	N/A
§15.231(a)	Release Time	Compliant
	Radiation Emission	Compliant
	20 dB Bandwidth	Compliant
	Duty Cycle	Compliant

Note: PASS: applicable, N/A: not applicable.

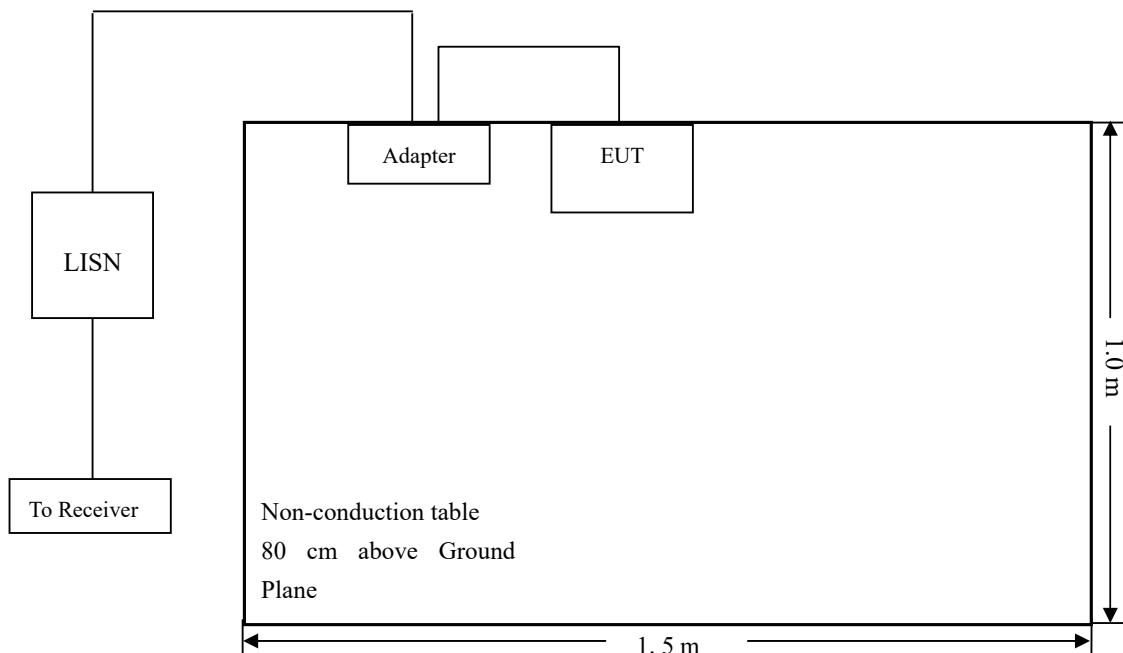
3. Antenna Requirement

3.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has a PCB antenna, fulfill the requirement of this section.


4. Conducted Emissions

4.1 Test Procedure

The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

4.2 Basic Test Setup Block Diagram

4.3 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

4.4 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency 150 kHz
Stop Frequency 30 MHz
Sweep Speed Auto
IF Bandwidth 10 kHz
Quasi-Peak Adapter Bandwidth 9 kHz

Quasi-Peak Adapter Mode Normal

4.6 Conducted Emissions Test Data

The test not applicable.

5. Radiated Emissions

5.1 Standard Applicable

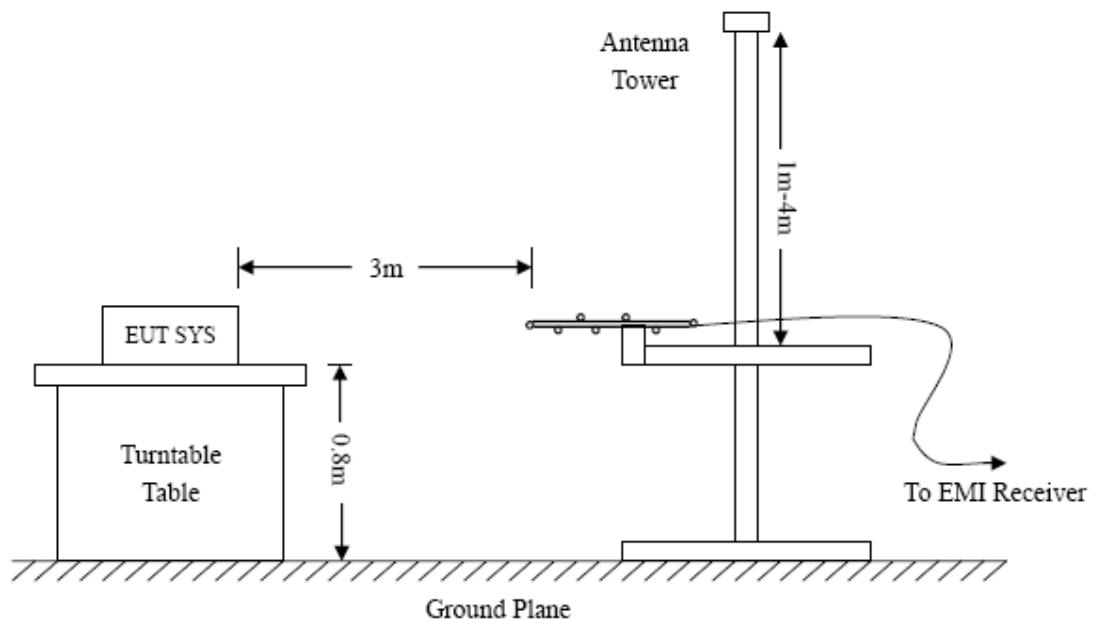
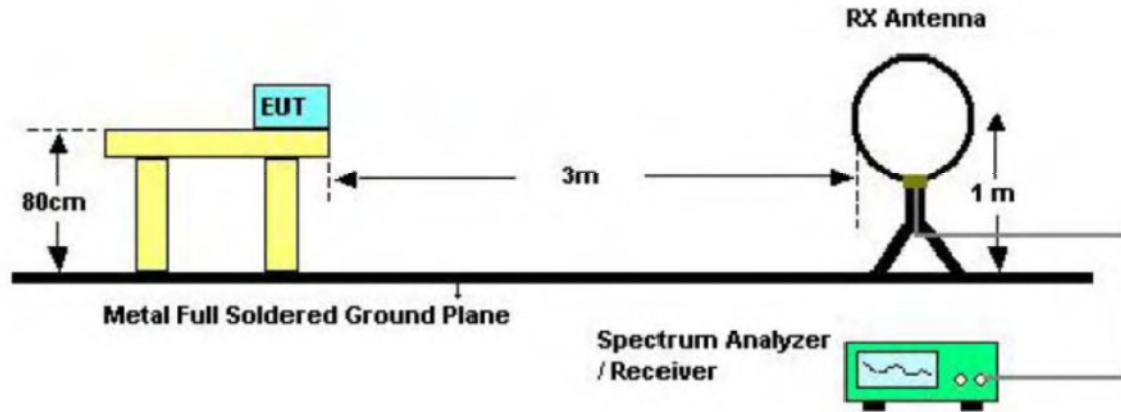
According to §15.231(e), In addition to the provisions of § 15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

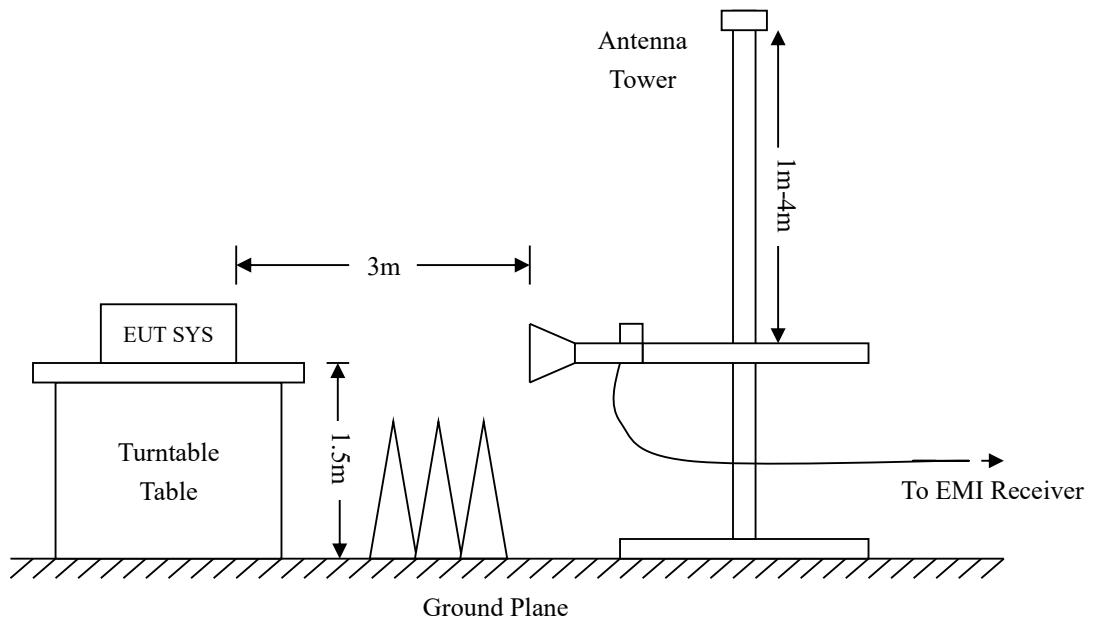
Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66–40.70	2,250	225
70–130	1,250	125
130–174	¹ 1,250 to 3,750	¹ 125 to 375
174–260	3,750	375
260–470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

(1) Linear interpolations.

(2) Emission level (dB) μ V = 20 log Emission level μ V/m

(3) The smaller limit shall apply at the cross point between two frequency bands.



The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.


The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

Compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

5.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.231(e) and FCC Part 15.209 Limit.

5.3 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

$$\text{Corr. Ampl.} = \text{Indicated Reading} + \text{Ant.Loss} + \text{Cab. Loss} - \text{Ampl.Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -6dB μ V means the emission is 6dB μ V below the maximum limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Corr. Ampl.} - \text{FCC Part 15C Limit}$$

5.4 Environmental Conditions

Temperature:	21° C
Relative Humidity:	50%
ATM Pressure:	1011 mbar

5.5 Summary of Test Results/Plots

According to the data below, the FCC Part 15.205, 15.209 and 15.231 standards, and had the worst margin of:

-11.85 dB at 300 MHz in the *Vertical* polarization, **Ave Detector, 9 kHz to 5 GHz, 3 Meters**

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Horizontal

Below 1GHz									
Frequency	Reading	Corr.	Duty cycle	Result	Limit	Margin	Deg.	Height	Remark
MHz	dBuV/ m	Factor(dB)	Factor	dBuV/ m	dBuV/ m	(dB)	(°)	(cm)	
			(dB)						
299.9982	82.05	-2.19	N/A	79.86	94.67	-14.81	105	100	peak
299.9982	/	/	-15.07	64.79	74.67	-9.88	105	100	Ave
599.9964	47.20	4.63	N/A	51.83	74.67	-22.84	329	150	peak
599.9964	/	/	-15.07	36.76	54.67	-17.91	329	150	Ave
899.9946	55.34	7.12	N/A	62.46	74.67	-12.21	159	150	peak
899.9946	/	/	-15.07	47.39	54.67	-7.28	159	150	Ave
Above 1GHz									
1199.9928	56.05	-12.91	N/A	43.14	74.00	-30.86	110	150	Peak
1199.9928	/	/	-15.07	28.07	54.00	-25.93	110	150	Ave
1499.9910	52.01	-9.20	N/A	42.81	74.00	-31.19	196	150	Peak
1499.9910	/	/	-15.07	27.74	54.00	-26.26	196	150	Ave

Vertical

Below 1GHz									
Frequency	Reading	Corr.	Duty cycle	Result	Limit	Margin	Deg.	Height	Remark
MHz	dBuV/ m	Factor(dB)	Factor	dBuV/ m	dBuV/ m	(dB)	(°)	(cm)	
			(dB)						
299.9982	86.28	-2.19	N/A	84.09	94.67	-10.58	39	150	peak
299.9982	/	/	-15.07	69.02	74.67	-5.65	39	150	Ave
599.9964	52.35	4.63	N/A	56.98	74.67	-17.69	117	150	peak
599.9964	/	/	-15.07	41.91	54.67	-12.76	117	150	Ave
899.9946	50.17	7.12	N/A	57.29	74.67	-17.38	247	150	peak
899.9946	/	/	-15.07	42.22	54.67	-12.45	247	150	Ave
Above 1GHz									
1199.9928	61.42	-12.91	N/A	48.51	74.00	-25.49	24	150	Peak
1199.9928	/	/	-15.07	33.44	54.00	-20.56	24	150	Ave
1499.9910	50.31	-9.20	N/A	41.11	74.00	-32.89	178	150	Peak
1499.9910	/	/	-15.07	26.04	54.00	-27.96	178	150	Ave

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, which above 5th Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

The measurements greater than 20dB below the limit from 9kHz to 30MHz..

The fundamental frequency is 300MHz, so the fundamental and spurious emissions radiated limit base on the the operating frequency 300MHz.

6. 20dB Bandwidth

6.1 Standard Applicable

According to FCC Part 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

6.1 Test Procedure

With the EUT's antenna attached, the EUT's 20dBc Bandwidth power was received by the test antenna, which was connected to the spectrum analyzer with the START, and STOP frequencies set to the EUT's operation band.

6.2 Environmental Conditions

Temperature:	21° C
Relative Humidity:	52%
ATM Pressure:	1011 mbar

6.3 Summary of Test Results/Plots

Test Frequency MHz	20dBc Bandwidth kHz	Limit kHz	Result
300	108.56	750	Pass

Limit = Fundamental Frequency X 0.25% = 300 MHz X 0.25% = 750 kHz

Please refer to the attached plots.

20dBc Bandwidth Test Plot

7. Transmission Time

7.1 Standard Applicable

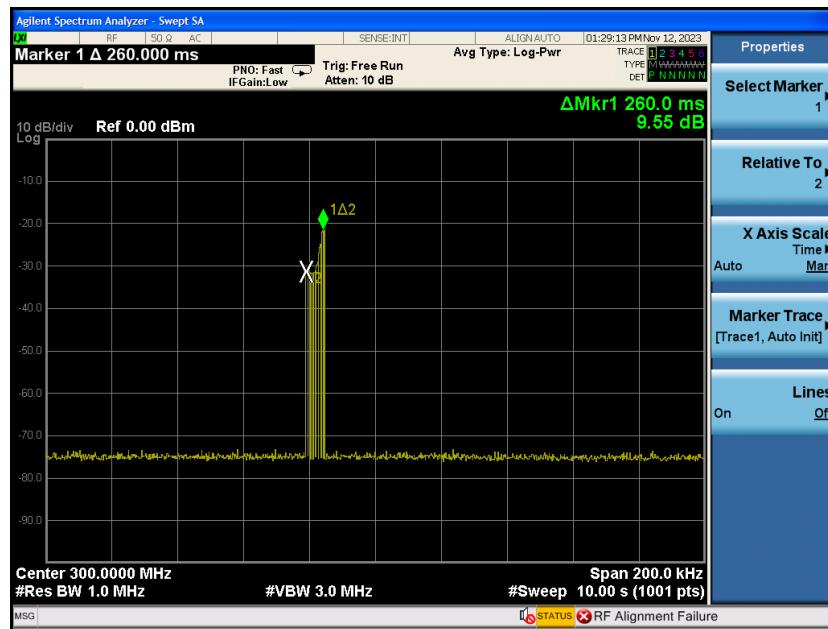
According to FCC Part 15.231 (e), the transmitter shall be complied the following requirements:

- 1) According to FCC Part 15.231 (e), the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

7.2 Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 300MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

7.3 Environmental Conditions


Temperature:	20° C
Relative Humidity:	52%
ATM Pressure:	1011 mbar

7.4 Summary of Test Results/Plots

Dwell Time(seconds)	Limit(s)	Result
260ms	5s	PASS

Please refer to the attached plots.

Transmission Time:

8. Duty Cycle

8.1 Standard Applicable

According to FCC Part 15.231 (b)(2) and 15.35 (c), For pulse operation transmitter, the averaging pulsed emissions are calculated by peak value of measured emission plus duty cycle factor.

8.2 Test Procedure

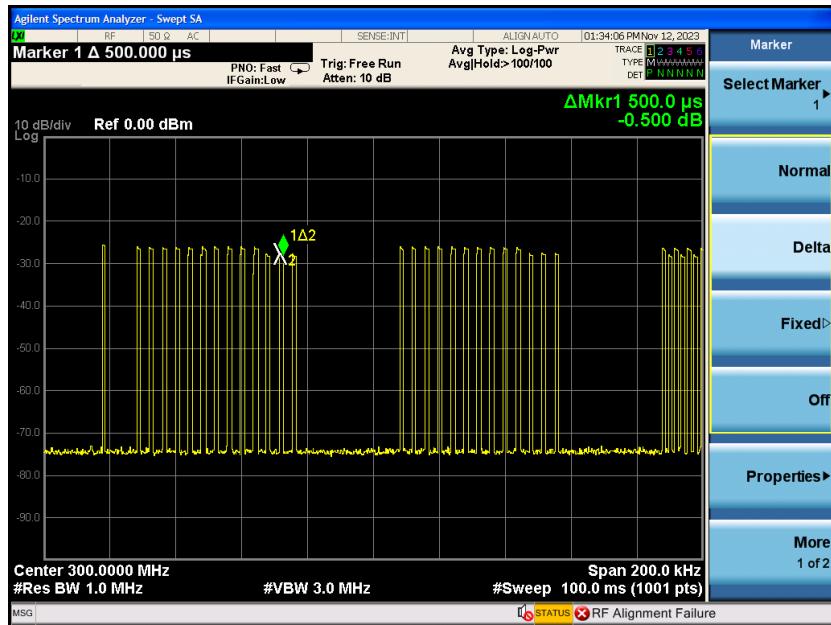
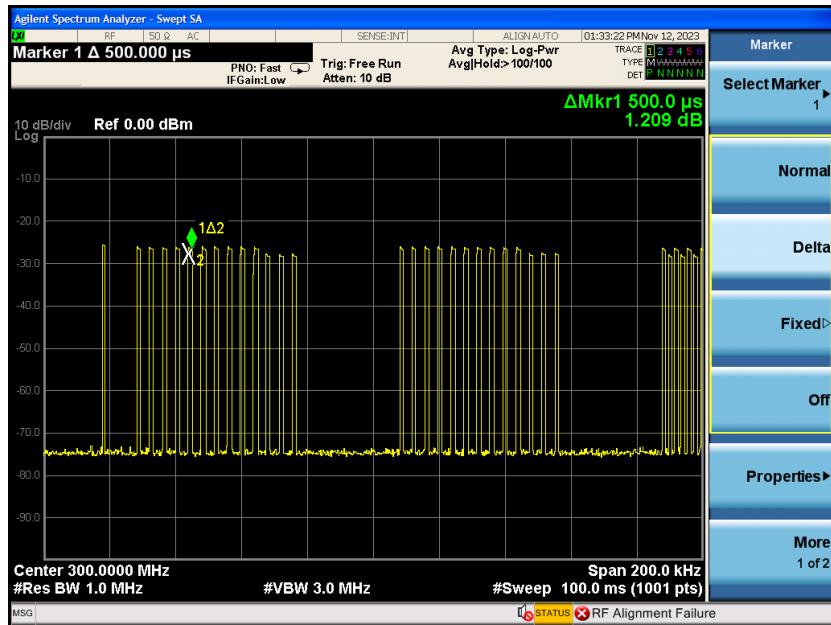
With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 300MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

8.3 Environmental Conditions

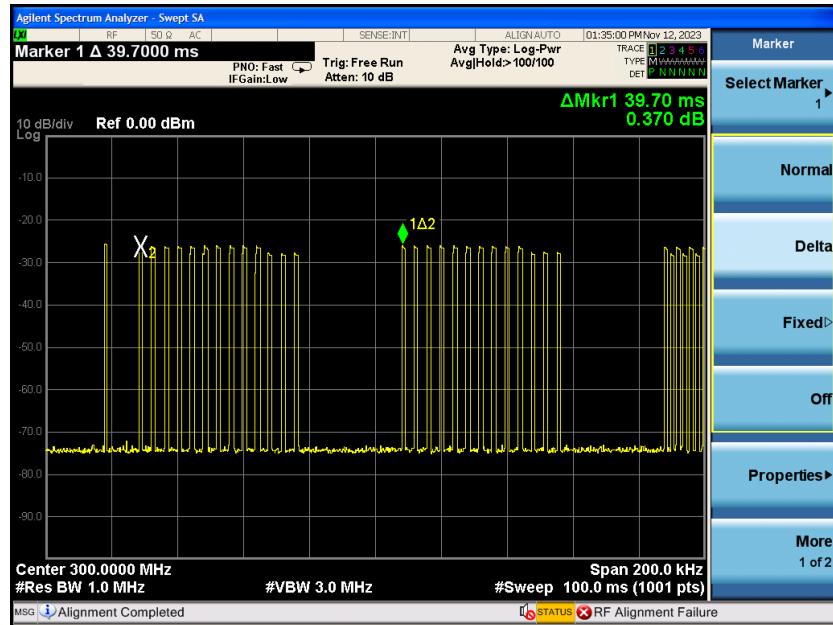
Temperature:	20° C
Relative Humidity:	52%
ATM Pressure:	1011 mbar

8.4 Summary of Test Results

The duty cycle is simply the on-time divided the duration of one cycle



$$\text{Duty Cycle} = (0.5\text{ms} * 14) / 39.7 = 17.63\%$$

Test Period (T_p) ms	Total Time (T_{on}) ms	Duty Cycle %	Duty Cycle Factor dB
39.7	7	17.63	-15.07


$$\text{Duty Cycle Factor} = 20 \log(\text{Duty Cycle}) = -15.07$$

Please refer to the attached test plots

Pulse:

Test Period:

****END REPORT****