

TEST REPORT

Product Name: 433 Remote control
FCC ID: 2BDAW-OSMWF1
Trademark: N/A
Model Number: OSM-WF-1, OSM-WF-2, OSM-WF-3
Prepared For: Shenzhen OSM Technology Co.,Ltd.
Address: Room 202, Building 2, No. 1, Xiangxing Road, Buyong Community, Shajing Street, Baoan District, Shenzhen, Guangdong, China
Manufacturer: Shenzhen OSM Technology Co.,Ltd.
Address: Room 202, Building 2, No. 1, Xiangxing Road, Buyong Community, Shajing Street, Baoan District, Shenzhen, Guangdong, China
Prepared By: Shenzhen CTB Testing Technology Co., Ltd.
Address: 1&2/F., Building A, No.26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date: Oct. 08, 2023
Sample tested Date: Oct. 08, 2023 to Oct. 12, 2023
Issue Date: Oct. 12, 2023
Report No.: CTB231012005RFX
Test Standards: FCC Part15.231
ANSI C63.10:2013
Test Results: PASS
Remark: This is 433.93MHz radio test report.

Compiled by:

Zhou Kui

Zhou Kui

Reviewed by:

Arron Liu

Arron Liu

Approved by:

Bin Mei / Director

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report r
Note: If there is any objection to the inspection results in this report, please submit a written report to the
company within 15 days from the date of receiving the report. The test report is effective only with both
signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without
written approval of Shenzhen CTB Testing Technology Co., Ltd. this report can't be reproduced except in full.
The tested sample(s) and the sample information are provided by the client. “#” indicates the testing items were
fulfilled by subcontracted lab. “*” indicates the items are not in CNAS accreditation scope.

TABLE OF CONTENT

	Page
Test Report Declaration	
1. VERSION	3
2. TEST SUMMARY	4
3. MEASUREMENT UNCERTAINTY	5
4. PRODUCT INFORMATION AND TEST SETUP	6
4.1 Product Information	6
4.2 Test Setup Configuration.....	6
4.3 Support Equipment.....	6
4.4 Test Mode	7
4.5 Test Environment	7
5. TEST FACILITY AND TEST INSTRUMENT USED	8
5.1 Test Facility	8
5.2 Test Instrument Used	8
6. AC POWER LINE CONDUCTED EMISSION	10
6.1 Block Diagram Of Test Setup.....	10
6.2 Limit.....	10
6.3 Test procedure	10
6.4 Test Result.....	11
7. RADIATED EMISSION	12
7.1 Block Diagram Of Test Setup.....	12
7.2 Limit.....	12
7.3 Test procedure	13
7.4 Test Result.....	14
8. DWELL TIME	20
8.1 Block Diagram Of Test Setup.....	20
8.2 Limit.....	20
8.3 Test procedure	20
8.4 Test Result.....	21
9. OCCUPIED BANDWIDTH	22
9.1 Block Diagram Of Test Setup.....	22
9.2 Limit.....	22
9.3 Test procedure	22
9.4 Test Result.....	23
10. ANTENNA REQUIREMENT	24
11. EUT TEST SETUP PHOTOGRAPHS	25

(Note: N/A means not applicable)

1. VERSION

Report No.	Issue Date	Description	Approved
CTB231012005RFX	Oct. 12, 2023	Original	Valid

2. TEST SUMMARY

The Product has been tested according to the following specifications:

Test Item	Test Requirement	Test method	Result
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	N/A
Radiated Emission	47 CFR Part 15 Subpart C Section 15.209; 15.231(b)	ANSI C63.10-2013	PASS
Dwell Time	47 CFR Part 15 Subpart C Section 15.231 (a)	ANSI C63.10-2013	PASS
Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.231(c)	ANSI C63.10-2013	PASS
Antenna requirement	47 CFR Part 15 Subpart C Section 15.203	/	PASS

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item	Uncertainty
Occupancy bandwidth	$U=\pm 54.3\text{Hz}$
Conducted output power Above 1G	$U=\pm 1.0\text{dB}$
Conducted output power below 1G	$U=\pm 0.9\text{dB}$
Power Spectral Density , Conduction	$U=\pm 1.0\text{dB}$
Conduction spurious emissions	$U=\pm 2.8\text{dB}$
Out of band emission	$U=\pm 54\text{Hz}$
3m chamber Radiated spurious emission(30MHz-1GHz)	$U=\pm 4.3\text{dB}$
3m chamber Radiated spurious emission(1GHz-18GHz)	$U=\pm 4.5\text{dB}$
humidity uncertainty	$U=\pm 5.3\%$
Temperature uncertainty	$U=\pm 0.59^\circ\text{C}$
Supply voltages	$U=\pm 3\%$
Time	$U=\pm 5\%$

4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model(s):	OSM-WF-1, OSM-WF-2, OSM-WF-3
Model Description:	All the model are the same circuit and RF module, only for model name. Test sample model: OSM-WF-1
Hardware Version:	V1.0
Software Version:	V1.0
Operation Frequency:	433.92MHz
Type of Modulation:	ASK
Antenna installation:	Internal antenna
Antenna Gain:	1.0dBi
Ratings:	DC 3V by battery

4.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

4.3 Support Equipment

Item	Equipment	Mfr/Brand	Model/TypeNo.	SeriesNo.	Note

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode
Keep the EUT in transmitting mode with modulation.

4.5 Test Environment

Humidity(%):	54
Atmospheric Pressure(kPa):	101
Normal Voltage(DC):	3
Normal Temperature(°C)	23

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

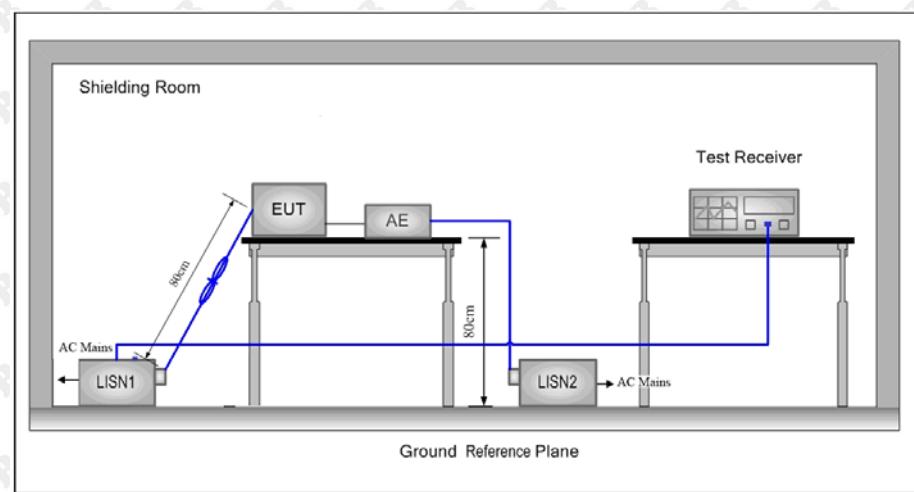
All measurement facilities used to collect the measurement data are located at 1&2F., Building A, No. 26, Xinhe Road, Xinqiao, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 Test Instrument Used

Item	Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Spectrum Analyzer	Agilent	N9020A	MY52090073	2024.07.05
2	Power Sensor	Agilent	U2021XA	MY56120032	2024.07.05
3	Power Sensor	Agilent	U2021XA	MY56120034	2024.07.05
4	Communication test set	R&S	CMW500	108058	2024.07.05
5	Spectrum Analyzer	KEYSIGHT	N9020A	MY51289897	2024.07.05
6	Signal Generator	Agilent	N5181A	MY50140365	2024.07.05
7	Vector signal generator	Agilent	N5182A	MY47420195	2024.07.05
8	Communication test set	Agilent	E5515C	MY50102567	2024.07.06
9	2.4 GHz Filter	Shenxiang	MSF2400-2483.5MS-1154	20181015001	2024.07.05
10	5 GHz Filter	Shenxiang	MSF5150-5850 MS-1155	20181015001	2024.07.06
11	Filter	Xingbo	XBLBQ-DZA120	190821-1-1	2024.07.06
12	BT&WI-FI Automatic test software	Microwave	MTS8000	Ver. 2.0.0.0	/
13	Rohde & Schwarz SFU Broadcast Test System	R&S	SFU	101017	2023.10.30
14	Temperature humidity chamber	Hongjing	TH-80CH	DG-15174	2024.07.05
15	234G Automatic test software	Microwave	MTS8200	Ver. 2.0.0.0	/
16	966 chamber	C.R.T.	966	/	2024.08.11
17	Receiver	R&S	ESPI	100362	2024.07.05
18	Amplifier	HP	8447E	2945A02747	2024.07.05
19	Amplifier	Agilent	8449B	3008A01838	2024.07.05
20	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869	2024.07.08

21	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA9120D	01911	2024.07.08
22	EMI test software	Fala	EZ-EMC	FA-03A2 RE	/
23	Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-224	2024.07.08
24	loop antenna	ZHINAN	ZN30900A	GTS534	/
25	40G Horn antenna	A/H/System	SAS-574	588	2023.10.30
26	Amplifier	AEROFLEX	Aeroflex	097	2023.10.30

Continuous disturbance


No.	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	LISN	ROHDE&SCHWARZ	ESH3-Z5	100318	2024.07.05
2	Pulse limiter	ROHDE&SCHWARZ	ESH3Z2	357881052	2024.07.05
3	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100428/003	2024.07.05
4	Coaxial cable	ZDECL	Z302S-NJ-SMA J-12M	18091905	2024.07.05
5	ISN	Schwarzbeck	NTFM8158	183	2024.07.05
6	Communication test set	Agilent	E5515C	MY50102567	2024.07.05
7	Communication test set	R&S	CMW500	108058	2024.07.05
8	EZ-EMC	Frad	EMC-con3A1.1	/	/

Radiated emission

No.	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Double Ridged Broadband Horn Antenna	Schwarzbeck	BBHA 9120 D	01911	2024.07.08
2	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	00869	2024.07.08
3	Amplifier	Agilent	8449B	3008A01838	2024.07.05
4	Amplifier	HP	8447E	2945A02747	2024.07.05
5	EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI	100428/003	2024.07.05
6	Coaxial cable	ETS	RFC-SNS-100-NMS-80 NI	/	2024.07.05
7	Coaxial cable	ETS	RFC-SNS-100-NMS-20 NI	/	2024.07.05
8	Coaxial cable	ETS	RFC-SNS-100-SMS-20 NI	/	2024.07.05
9	Coaxial cable	ETS	RFC-NNS-100-NMS-300 NI	/	2024.07.05
10	Communication test set	Agilent	E5515C	MY50102567	2024.07.05
11	Communication test set	R&S	CMW500	108058	2024.07.05
12	EZ-EMC	Frad	EMC-con3A1.1	/	/

6. AC POWER LINE CONDUCTED EMISSION

6.1 Block Diagram Of Test Setup

6.2 Limit

Frequency (MHz)	Maximum RF Line Voltage (dB μ V)			
	CLASS A		CLASS B	
	Q.P.	Ave.	Q.P.	Ave.
0.15 - 0.50	79	66	66-56*	56-46*
0.50 - 5.00	73	60	56	46
5.00 - 30.0	73	60	60	50

* Decreasing linearly with the logarithm of the frequency

6.3 Test procedure

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

6.4 Test Result

N/A

NOTE: This EUT is powered by DC power only, this test item is not applicable.

7. RADIATED EMISSION

7.1 Block Diagram Of Test Setup

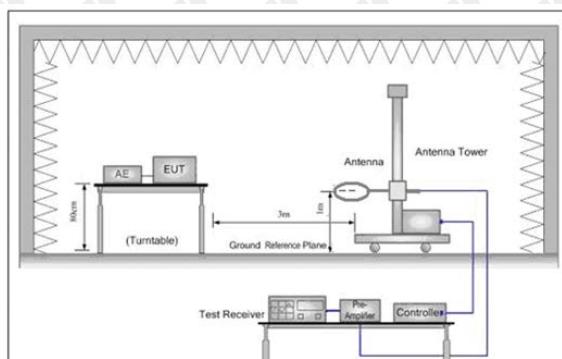


Figure 1. Below 30MHz

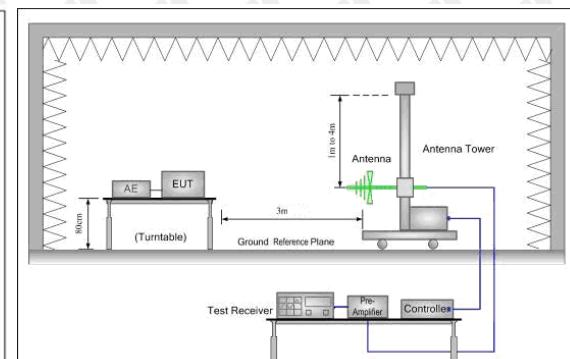


Figure 2. 30MHz to 1GHz

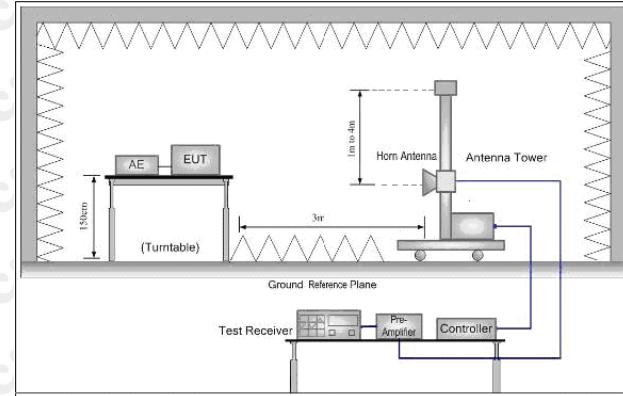


Figure 3. Above 1GHz

7.2 Limit

Spurious Emissions:

Frequency	Field strength (dB μ V/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	$20\log 2400/F$ (kHz) + 80	-	3
0.490MHz-1.705MHz	$20\log 24000/F$ (kHz) + 40	-	3
1.705MHz-30MHz	$20\log 30 + 40$	-	3
30MHz-88MHz	40.0	Quasi-peak	3
88MHz-216MHz	43.5	Quasi-peak	3
216MHz-960MHz	46.0	Quasi-peak	3
960MHz-1GHz	54.0	Quasi-peak	3
Above 1GHz	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Field Strength of Fundamental Limit:

Fundamental and harmonics emission limits Frequency(MHz)	Field strength of Fundamental((microvolts/meter)	Field strength of spurious emissions(microvolts/meter)
40.66-40.70	2280	225
70-130	1250	125
130-174	1250 to 3750**	125 to 375**
174-260	3750	375
260-470	3750 to 12500**	375 to 1250**
Above 470	12500	1250

** linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, $\mu\text{V/m}$ at 3 meters = $56.81818(F) - 6136.3636$; for the band 260-470 MHz, $\mu\text{V/m}$ at 3 meters = $41.6667(F) - 7083.3333$. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

Frequency	Limit (dB $\mu\text{V/m}$ @3m)	Remark
433MHz	80.8	Average Value
	100.8	Peak Value

7.3 Test procedure

Below 1GHz test procedure as below:

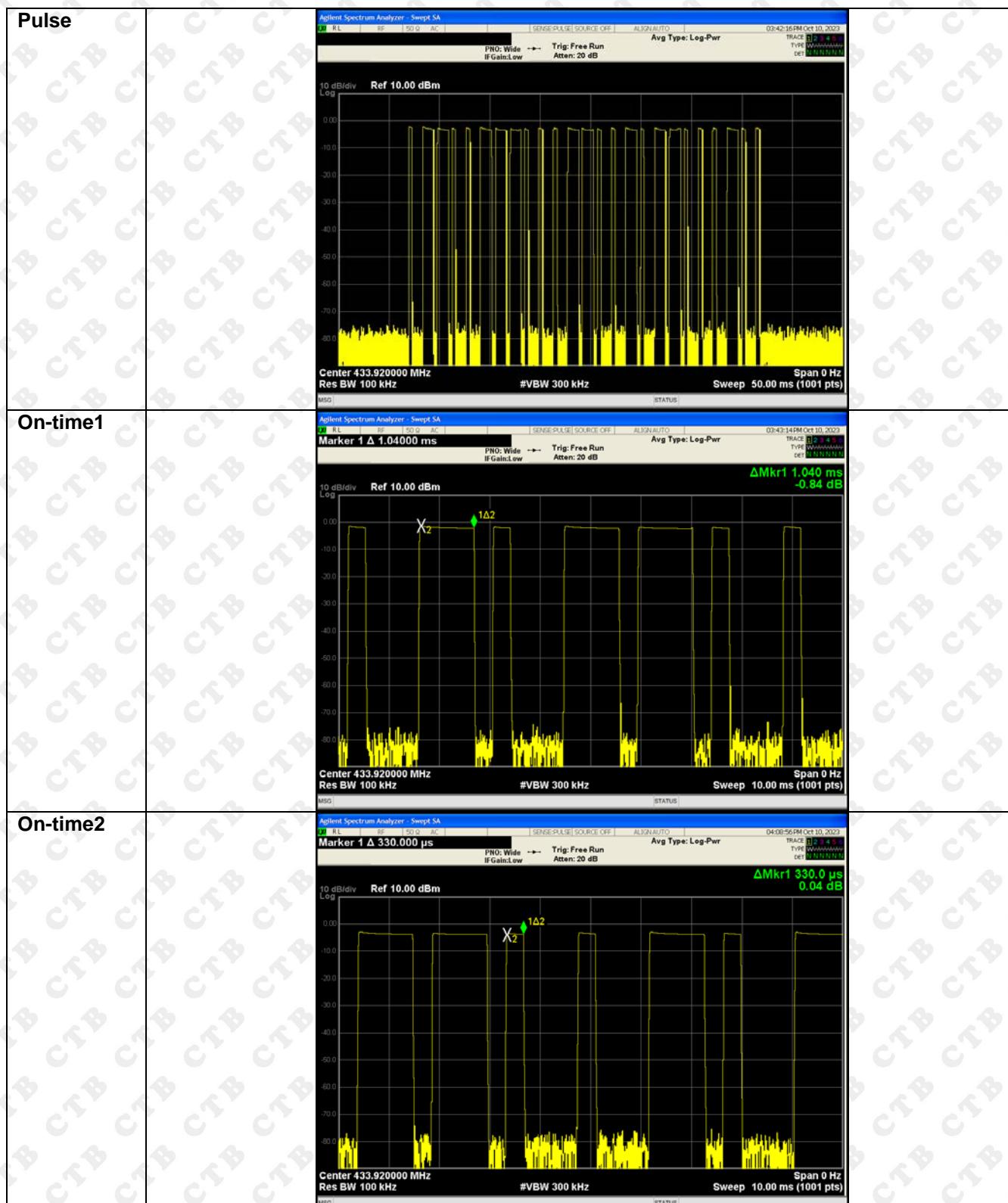
- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- Repeat above procedures until all frequencies measured was complete.

Receiver set:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30KHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30KHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30KHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30KHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30KHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	100 kHz	300KHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
	Peak	1MHz	10Hz	Average


7.4 Test Result

7.4.1 Calculation of average factor

The output field strengths of specification in accordance with the FCC rules specify measurements with an average detector. During the test, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The duty cycle is measured in 100 ms or the repetition cycle period, whichever is a shorter time frame. The duty cycle is measured by placing the spectrum analyzer to set zero span at 100kHz resolution bandwidth.

Average factor:

Calculate Formula:	Average value=Peak value + PDCF
	PDCF=20 log(Duty cycle)
	Duty cycle = $T_{\text{on time}} / T_{\text{period}}$
Calculated average factor:	$T_{\text{on time}} = 11 \times 1.040 + 14 \times 0.330 = 16.06(\text{ms})$; $T_{\text{period}} = 45.60(\text{ms})$ $PDCF = 20 \log(16.06/45.60) = -9.06\text{dB}$

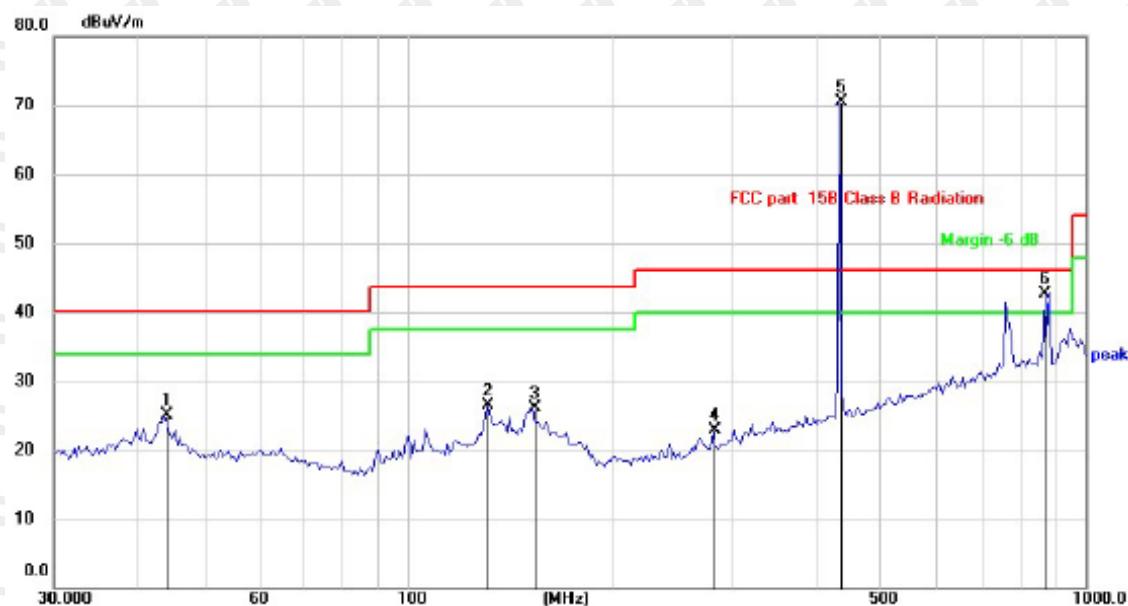
7.4.2 Radiated Spurious Emission

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dB μ V/m)	Limit@3m (dB μ V/m)
--	--	--
--	--	--
--	--	--
--	--	--

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement


About 30MHz-1GHz Test Results:

Antenna polarity: H

Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
43.7352	28.66	-5.47	23.19	40	-16.81	QP
131.9889	30.28	-4.73	25.55	43.5	-17.95	QP
282.9852	28.38	-5.48	22.90	46	-23.1	QP
434.8268	74.48	-1.39	73.09	100.8	-27.71	peak
762.0385	35.85	5.71	41.56	46	-4.44	QP
868.5760	33.53	6.73	40.26	80.8	-40.54	peak

Antenna polarity: V

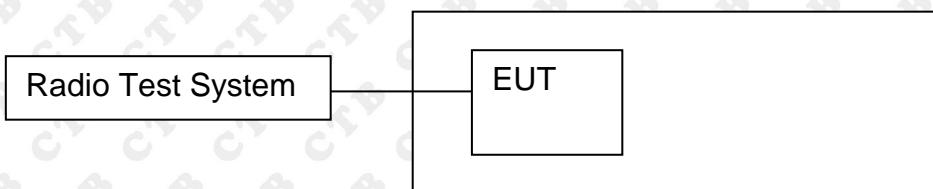
Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type
43.7352	30.66	-5.47	25.19	40	-14.81	QP
131.9889	31.28	-4.73	26.55	43.5	-16.95	QP
153.2004	29.33	-3.29	26.04	43.5	-17.46	QP
282.9852	28.38	-5.48	22.90	46	-23.1	QP
434.8268	71.98	-1.39	70.59	100.8	-30.21	peak
868.5760	36.03	6.73	42.76	80.8	-38.04	peak

Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Limit – Level

For average Emission

Frequency MHz	Peak Level dBuV/m	Duty cycle factor	AverageLev el dBuV/m	Limit AV	Margin	Polarization
434.83	73.09	-9.06	64.03	80.8	-16.77	Horizontal
868.58	40.26	-9.06	31.2	60.8	-29.6	Horizontal
434.83	70.59	-9.06	61.53	80.8	-19.27	Vertical
868.58	42.76	-9.06	33.7	60.8	-27.1	Vertical

Notes: Average emission Level = Peak Level + Duty cycle factor


Above 1GHz Test Results

Frequency MHz	Peak Level dBuV/m	Duty cycle factor	Average Level dBuV/m	Limit		Margin dB		Polarization
				PK	AV	PK	AV	
1304.49	50.68	-9.06	42.50	80.8	60.8	-30.12	-18.3	Vertical
1739.32	46.43	-9.06	38.27	80.8	60.8	-34.37	-22.53	Vertical
2174.15	42.91	-9.06	35.20	80.8	60.8	-37.89	-25.6	Vertical
2608.98	41.79	-9.06	34.94	80.8	60.8	-39.01	-25.86	Vertical
3043.81	41.17	-9.06	34.69	80.8	60.8	-39.63	-26.11	Vertical
3478.64	40.29	-9.06	33.63	80.8	60.8	-40.51	-27.17	Vertical
1304.49	49.84	-9.06	44.06	80.8	60.8	-30.96	-16.74	Horizontal
1739.32	47.14	-9.06	40.38	80.8	60.8	-33.66	-20.42	Horizontal
2174.15	42.47	-9.06	33.21	80.8	60.8	-38.33	-27.59	Horizontal
2608.98	39.82	-9.06	36.16	80.8	60.8	-40.98	-24.64	Horizontal
3043.81	41.62	-9.06	35.86	80.8	60.8	-39.18	-24.94	Horizontal
3478.64	40.87	-9.06	34.11	80.8	60.8	-39.93	-26.69	Horizontal

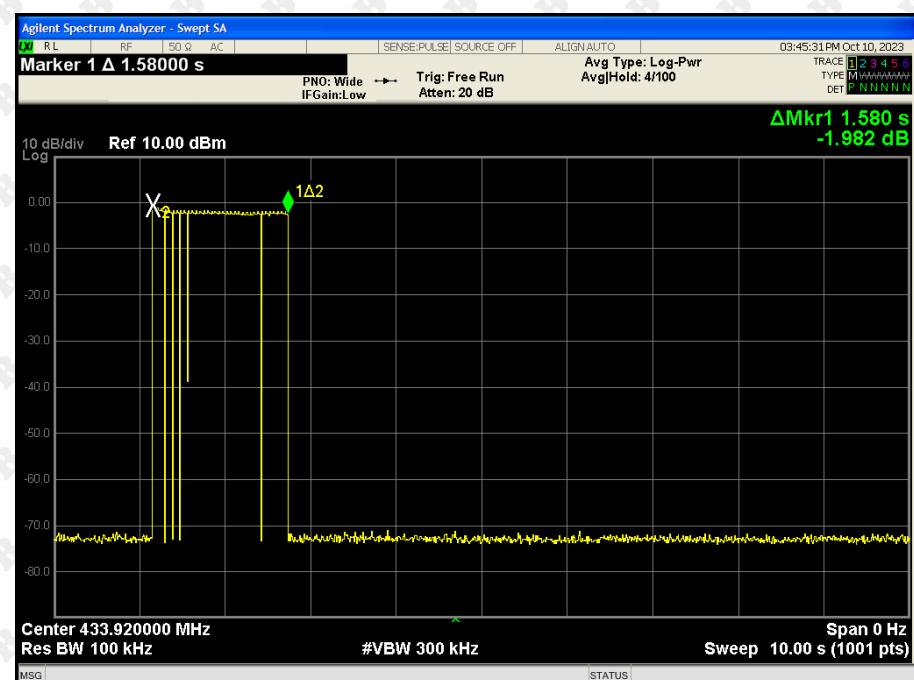
Notes: Average emission Level = Peak Level + Duty cycle factor

8. DWELL TIME

8.1 Block Diagram Of Test Setup

8.2 Limit

According to FCC 15.231(a) requirement:


A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

8.3 Test procedure

- a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- c) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- d) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- e) Repeat above procedures until all measured frequencies were complete.


8.4 Test Result

Transmitting time(S)	Limit (S)	Results
1.580	≤5	Pass

9. OCCUPIED BANDWIDTH

9.1 Block Diagram Of Test Setup

9.2 Limit

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier. B.W (20dBc) Limit = $0.25\% * f(\text{MHz}) = 0.25\% * 433.92\text{MHz} = 1.0848\text{MHz}$

9.3 Test procedure

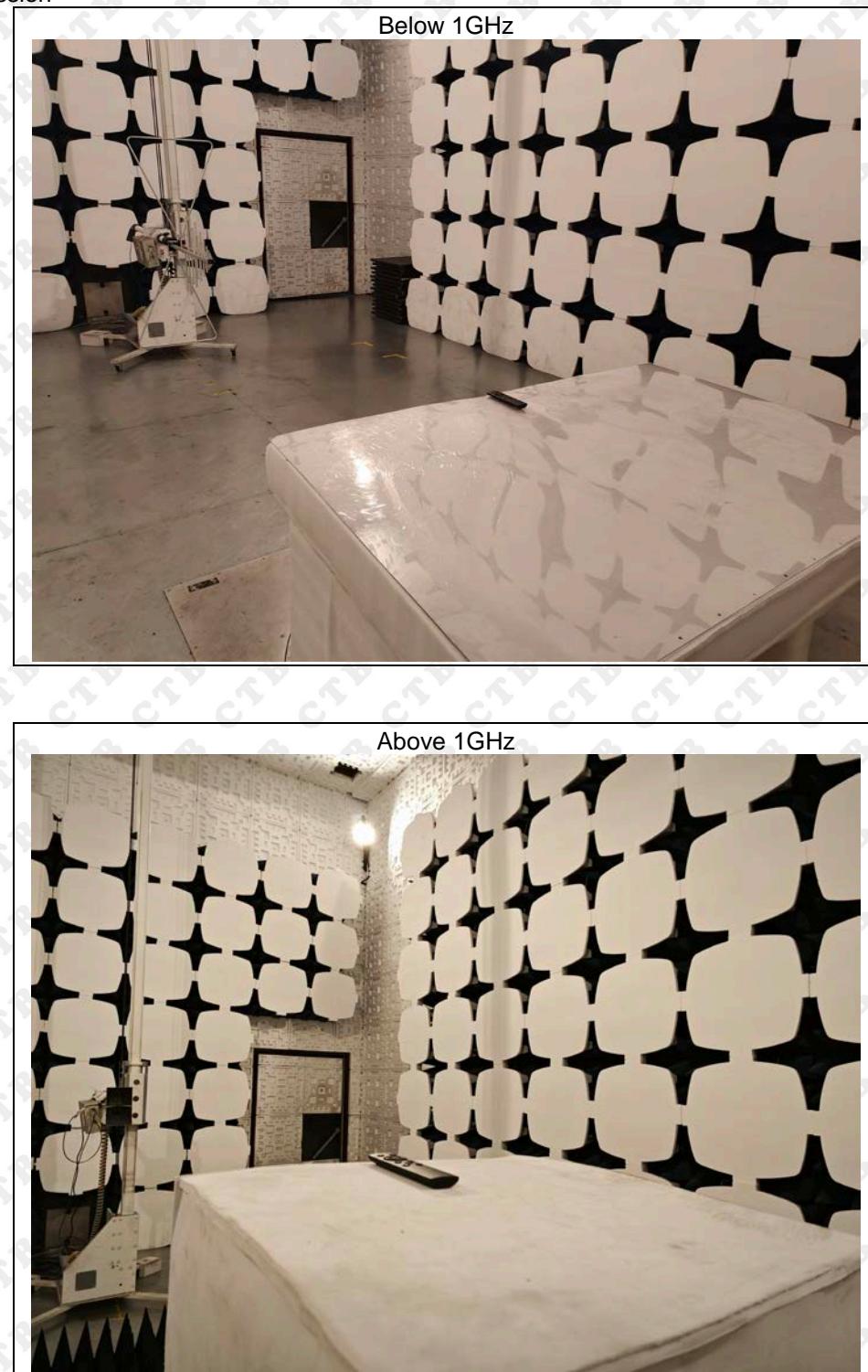
1. Set RBW = 10 kHz.
2. Set the video bandwidth (VBW) \geq RBW.
3. Detector = Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

9.4 Test Result

20dB bandwidth (kHz)	Limit (MHz)	Results
10.50	1.0848	Pass

10. ANTENNA REQUIREMENT

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is Internal antenna and no consideration of replacement. The best case gain of the antenna is 1.0dBi.

11. EUT TEST SETUP PHOTOGRAPHS

Radiated Emission

******* END OF REPORT *******