

# FCC RF Test Report

## (BLE)

**Report No.:** JYTSZ-R12-2401259

**Applicant:** Eudora Mobile Inc

**Address of Applicant:** 2610 Columbia ST A, Torrance, CA 90503, California, United States

### Equipment Under Test (EUT)

**Product Name:** Mobile Phone

**Model No.:** Eudora E55 Plus

**Trade Mark:** EUDORA

**FCC ID:** 2BD9H-E55PLUS

**Applicable Standards:** FCC CFR Title 47 Part 15C (§15.247)

**Date of Sample Receipt:** 21 Oct., 2024

**Date of Test:** 22 Oct., to 18 Nov., 2024

**Date of Report Issued:** 19 Nov., 2024

**Test Result:** PASS

**Project by:** Lucy Jia

**Date:** 19 Nov., 2024

**Reviewed by:** Ursula Price

**Date:** 19 Nov., 2024

**Approved by:** James Wei

**Date:** 19 Nov., 2024

**Manager**

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

## 1 Version

| Version No. | Date          | Description     |
|-------------|---------------|-----------------|
| 00          | 19 Nov., 2024 | <i>Original</i> |
|             |               |                 |
|             |               |                 |
|             |               |                 |
|             |               |                 |

## 2 Contents

|                                                                  | Page      |
|------------------------------------------------------------------|-----------|
| <b>Cover Page .....</b>                                          | <b>1</b>  |
| <b>1 Version.....</b>                                            | <b>2</b>  |
| <b>2 Contents.....</b>                                           | <b>3</b>  |
| <b>3 General Information .....</b>                               | <b>4</b>  |
| 3.1 Client Information .....                                     | 4         |
| 3.2 General Description of E.U.T. ....                           | 4         |
| 3.3 Test Mode and Test Environment.....                          | 5         |
| 3.4 Description of Test Auxiliary Equipment .....                | 5         |
| 3.5 Measurement Uncertainty .....                                | 5         |
| 3.6 Additions to, Deviations, or Exclusions from the Method..... | 5         |
| 3.7 Laboratory Facility .....                                    | 6         |
| 3.8 Laboratory Location.....                                     | 6         |
| 3.9 Test Instruments List .....                                  | 6         |
| <b>4 Measurement Setup and Procedure .....</b>                   | <b>8</b>  |
| 4.1 Test Channel.....                                            | 8         |
| 4.2 Test Setup .....                                             | 8         |
| 4.3 Test Procedure.....                                          | 10        |
| <b>5 Test Results.....</b>                                       | <b>11</b> |
| 5.1 Summary .....                                                | 11        |
| 5.1.1 Clause and Data Summary.....                               | 11        |
| 5.1.2 Test Limit.....                                            | 12        |
| 5.2 Antenna requirement.....                                     | 13        |
| 5.3 AC Power Line Conducted Emission .....                       | 14        |
| 5.4 Emissions in Restricted Frequency Bands.....                 | 16        |
| 5.5 Emissions in Non-restricted Frequency Bands .....            | 20        |

### 3 General Information

#### 3.1 Client Information

|               |                                                                   |
|---------------|-------------------------------------------------------------------|
| Applicant:    | Eudora Mobile Inc                                                 |
| Address:      | 2610 Columbia ST A, Torrance, CA 90503, California, United States |
| Manufacturer: | Eudora Mobile Inc                                                 |
| Address:      | 2610 Columbia ST A, Torrance, CA 90503, California, United States |

#### 3.2 General Description of E.U.T.

|                        |                                                                                 |
|------------------------|---------------------------------------------------------------------------------|
| Product Name:          | Mobile Phone                                                                    |
| Model No.:             | Eudora E55 Plus                                                                 |
| Operation Frequency:   | 2402 MHz - 2480 MHz                                                             |
| Channel Numbers:       | 40                                                                              |
| Channel Separation:    | 2MHz                                                                            |
| Modulation Technology: | GFSK                                                                            |
| Data Speed:            | 1 Mbps (LE 1M PHY)                                                              |
| Antenna Type:          | Internal Antenna                                                                |
| Antenna Gain:          | 0.31dBi (declare by applicant)                                                  |
| Antenna transmit mode: | SISO (1TX, 1RX)                                                                 |
| Power Supply:          | Rechargeable Li-ion Battery DC3.8V, 2000mAh                                     |
| AC Adapter:            | Model: YD1.0AN-007<br>Input: AC100-240V, 50/60Hz, 0.3A<br>Output: DC 5.0V, 1.0A |
| Test Sample Condition: | The test samples were provided in good working order with no visible defects.   |

### 3.3 Test Mode and Test Environment

| Test Mode:             |                                                                                                                                                                                                                                                                                                              |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transmitting mode      | Keep the EUT in continuous transmitting with modulation                                                                                                                                                                                                                                                      |
| Remark:                |                                                                                                                                                                                                                                                                                                              |
| 1.                     | For AC power line conducted emission and radiated spurious emission (below 1GHz), pre-scan all data speed, found 1 Mbps (LE 1M PHY) was worse case mode. The report only reflects the test data of worst mode.                                                                                               |
| 2.                     | Channel Low, Mid and High for each type band with rated data rate were chosen for full testing. The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for these modes. Just the worst case position (H mode) shown in report. |
| Operating Environment: |                                                                                                                                                                                                                                                                                                              |
| Temperature:           | 15°C ~ 35°C                                                                                                                                                                                                                                                                                                  |
| Humidity:              | 20 % ~ 75 % RH                                                                                                                                                                                                                                                                                               |
| Atmospheric Pressure:  | 1008 mbar                                                                                                                                                                                                                                                                                                    |
| Voltage:               | Nominal: 3.80Vdc, Extreme: Low 3.50Vdc, High 4.40Vdc                                                                                                                                                                                                                                                         |
| Test Engineer:         | Logan Li (Conducted measurement)<br>Real Chen (Radiated measurement)                                                                                                                                                                                                                                         |

### 3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

### 3.5 Measurement Uncertainty

| Parameter                                     | Expanded Uncertainty<br>(Confidence of 95%(U = 2Uc(y))) |
|-----------------------------------------------|---------------------------------------------------------|
| Conducted Emission for LISN (9kHz ~ 150kHz)   | 3.57 dB                                                 |
| Conducted Emission for LISN (150kHz ~ 30MHz)  | 3.14 dB                                                 |
| Radiated Emission (30MHz ~ 200MHz) (3m SAC)   | 4.6 dB                                                  |
| Radiated Emission (200MHz ~ 1000MHz) (3m SAC) | 5.8 dB                                                  |
| Radiated Emission (30MHz ~ 1GHz) (3m FAR)     | 3.43 dB                                                 |
| Radiated Emission (1GHz ~ 6GHz) (3m FAR)      | 4.95 dB                                                 |
| Radiated Emission (6GHz ~ 18GHz) (3m FAR)     | 5.23 dB                                                 |
| Radiated Emission (18GHz ~ 40GHz) (3m FAR)    | 5.32 dB                                                 |

**Note:** All the measurement uncertainty value were shown with a coverage  $k=2$  to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

### 3.6 Additions to, Deviations, or Exclusions from the Method

No

### 3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● **FCC - Designation No.: CN1211**

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● **ISED – CAB identifier.: CN0021**

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● **CNAS - Registration No.: CNAS L15527**

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

● **A2LA - Registration No.: 4346.01**

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <https://portal.a2la.org/scopepdf/4346-01.pdf>

### 3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: <http://jyt.lets.com>

### 3.9 Test Instruments List

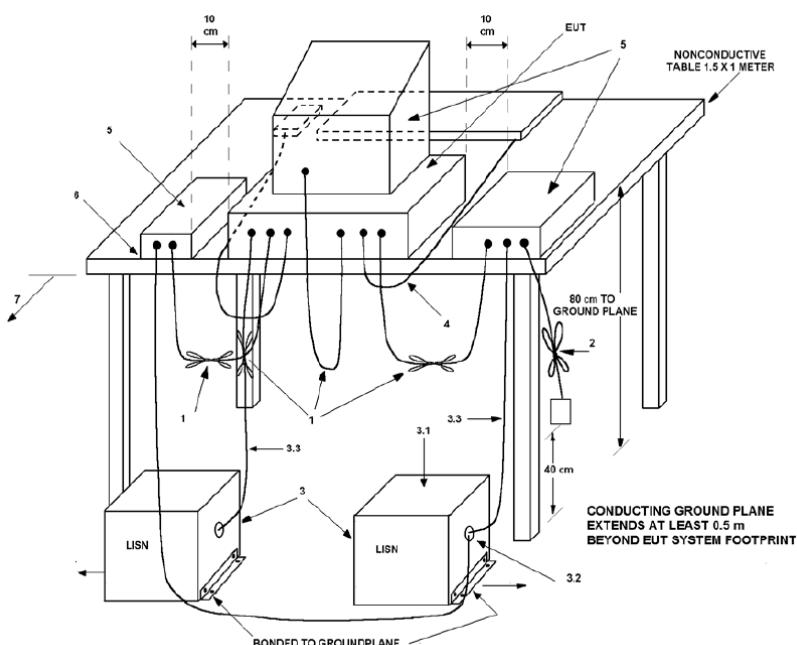
| Radiated Emission(3m SAC):    |                 |                 |                  |                      |                          |
|-------------------------------|-----------------|-----------------|------------------|----------------------|--------------------------|
| Test Equipment                | Manufacturer    | Model No.       | Manage No.       | Cal. Date (mm-dd-yy) | Cal. Due date (mm-dd-yy) |
| 3m SAC                        | ETS             | 9m*6m*6m        | WXJ001-1         | 04-14-2021           | 04-13-2026               |
| Loop Antenna                  | Schwarzbeck     | FMZB 1519 B     | WXJ002-4         | 01-05-2024           | 01-04-2025               |
| BiConiLog Antenna             | Schwarzbeck     | VULB9163        | WXJ002           | 01-09-2024           | 01-08-2025               |
| Horn Antenna                  | Schwarzbeck     | BBHA9120D       | WXJ002-2         | 01-05-2024           | 01-04-2025               |
| Horn Antenna                  | Schwarzbeck     | BBHA9170        | WXJ002-5         | 12-28-2023           | 12-27-2024               |
| Pre-amplifier (30MHz ~ 1GHz)  | Schwarzbeck     | BBV9743B        | WXJ001-2         | 12-27-2023           | 12-26-2024               |
| Pre-amplifier (1GHz ~ 18GHz)  | SKET            | LNPA_0118G-50   | WXJ001-3         | 12-27-2023           | 12-26-2024               |
| Pre-amplifier (18GHz ~ 40GHz) | RF System       | TRLA-180400G45B | WXJ002-7         | 12-28-2023           | 12-27-2024               |
| EMI Test Receiver             | Rohde & Schwarz | ESRP7           | WXJ003-1         | 12-27-2023           | 12-26-2024               |
| Spectrum Analyzer             | Rohde & Schwarz | FSP 30          | WXJ004           | 12-27-2023           | 12-26-2024               |
| Spectrum Analyzer             | KEYSIGHT        | N9010B          | WXJ004-2         | 09-09-2024           | 09-08-2025               |
| Coaxial Cable (30MHz ~ 1GHz)  | JYTSZ           | JYT3M-1G-NN-8M  | WXG001-4         | 01-17-2024           | 01-16-2025               |
| Coaxial Cable (1GHz ~ 18GHz)  | JYTSZ           | JYT3M-18G-NN-8M | WXG001-5         | 01-17-2024           | 01-16-2025               |
| Coaxial Cable (18GHz ~ 40GHz) | JYTSZ           | JYT3M-40G-SS-8M | WXG001-7         | 01-17-2024           | 01-16-2025               |
| Band Reject Filter Group      | Tonscend        | JS0806-F        | WXJ089           | N/A                  |                          |
| Test Software                 | Tonscend        | TS+             | Version: 3.0.0.1 |                      |                          |

| Radiated Emission(3m FAR):    |                 |                 |                |                      |                          |
|-------------------------------|-----------------|-----------------|----------------|----------------------|--------------------------|
| Test Equipment                | Manufacturer    | Model No.       | Manage No.     | Cal. Date (mm-dd-yy) | Cal. Due date (mm-dd-yy) |
| 3m FAR                        | YUNYI           | 9m*6m*6m        | WXJ097         | 06-15-2023           | 06-14-2028               |
| BiConiLog Antenna             | Schwarzbeck     | VULB9163        | WXJ097-2       | 07-01-2024           | 06-30-2025               |
| Biconical Antenna             | Schwarzbeck     | VUBA9117        | WXJ002-1       | 07-01-2024           | 06-30-2027               |
| Horn Antenna                  | Schwarzbeck     | BBHA9120D       | WXJ097-3       | 06-16-2024           | 06-15-2025               |
| Horn Antenna                  | Schwarzbeck     | BBHA9120D       | WXJ002-3       | 12-28-2023           | 12-27-2024               |
| Horn Antenna                  | Schwarzbeck     | BBHA9170        | WXJ002-5       | 12-28-2023           | 12-27-2024               |
| Horn Antenna                  | Schwarzbeck     | BBHA9170        | WXJ002-6       | 12-28-2023           | 12-27-2024               |
| Pre-amplifier (30MHz ~ 1GHz)  | YUNYI           | PAM-310N        | WXJ097-5       | 04-24-2024           | 04-23-2025               |
| Pre-amplifier (1GHz ~ 18GHz)  | YUNYI           | PAM-118N        | WXJ097-6       | 04-24-2024           | 04-23-2025               |
| Pre-amplifier (18GHz ~ 40GHz) | RF System       | TRLA-180400G45B | WXJ002-7       | 12-28-2023           | 12-27-2024               |
| EMI Test Receiver             | Rohde & Schwarz | ESCI3           | WXJ003         | 12-27-2023           | 12-26-2024               |
| Spectrum Analyzer             | Rohde & Schwarz | FSP 30          | WXJ004         | 12-27-2023           | 12-26-2024               |
| Spectrum Analyzer             | KEYSIGHT        | N9020B          | WXJ081-1       | 06-11-2024           | 06-10-2025               |
| Coaxial Cable (30MHz ~ 1GHz)  | JYTSZ           | JYT3M-1G-NN-13M | WXG097-1       | 07-30-2024           | 07-29-2025               |
| Coaxial Cable (1GHz ~ 18GHz)  | JYTSZ           | JYT3M-18G-NN-8M | WXG097-2       | 07-30-2024           | 07-29-2025               |
| Coaxial Cable (18GHz ~ 40GHz) | JYTSZ           | JYT3M-40G-SS-8M | WXG097-3       | 07-30-2024           | 07-29-2025               |
| High Band Reject Filter Group | Tonscend        | JS0806-F        | WXJ089         | N/A                  |                          |
| Low Band Reject Filter Group  | Tonscend        | JS0806-F        | WXJ097-4       | N/A                  |                          |
| Test Software                 | Tonscend        | TS+             | Version: 5.0.0 |                      |                          |

| Conducted Emission:               |                 |                |                    |                      |                          |
|-----------------------------------|-----------------|----------------|--------------------|----------------------|--------------------------|
| Test Equipment                    | Manufacturer    | Model No.      | Manage No.         | Cal. Date (mm-dd-yy) | Cal. Due date (mm-dd-yy) |
| EMI Test Receiver                 | Rohde & Schwarz | ESR3           | WXJ003-2           | 06-11-2024           | 06-10-2025               |
| LISN                              | Schwarzbeck     | NSLK 8127      | QCJ001-13          | 12-27-2023           | 12-26-2024               |
| LISN                              | Rohde & Schwarz | ESH3-Z5        | WXJ005-1           | 12-27-2023           | 12-26-2024               |
| LISN Coaxial Cable (9kHz ~ 30MHz) | JYTSZ           | JYTCE-1G-NN-2M | WXG003-1           | 01-17-2024           | 01-16-2025               |
| RF Switch                         | TOP PRECISION   | RSU0301        | WXG003             | N/A                  |                          |
| Test Software                     | AUDIX           | E3             | Version: 6.110919b |                      |                          |

| Conducted Method:            |              |            |                  |                      |                          |
|------------------------------|--------------|------------|------------------|----------------------|--------------------------|
| Test Equipment               | Manufacturer | Model No.  | Manage No.       | Cal. Date (mm-dd-yy) | Cal. Due date (mm-dd-yy) |
| Spectrum Analyzer            | Keysight     | N9010B     | WXJ004-3         | 09-10-2024           | 09-09-2025               |
| Temperature Humidity Chamber | ZHONG ZHI    | CZ-A-80D   | WXJ032-3         | 01-09-2023           | 01-08-2025               |
| Power Detector Box           | MWRFTEST     | MW100-PSB  | WXJ007-4         | 09-10-2024           | 09-09-2025               |
| DC Power Supply              | Keysight     | E3642A     | WXJ025-2         | N/A                  |                          |
| RF Control Unit              | MWRFTEST     | MW100-RFCB | WXG006           | N/A                  |                          |
| Test Software                | MWRFTEST     | MTS 8310   | Version: 2.0.0.0 |                      |                          |

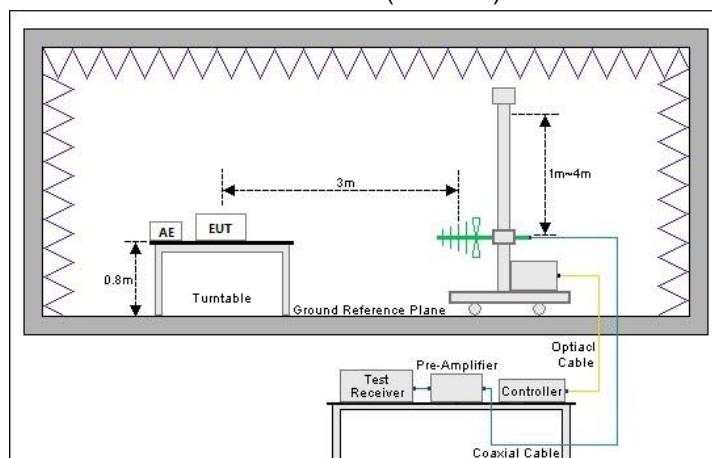
## 4 Measurement Setup and Procedure

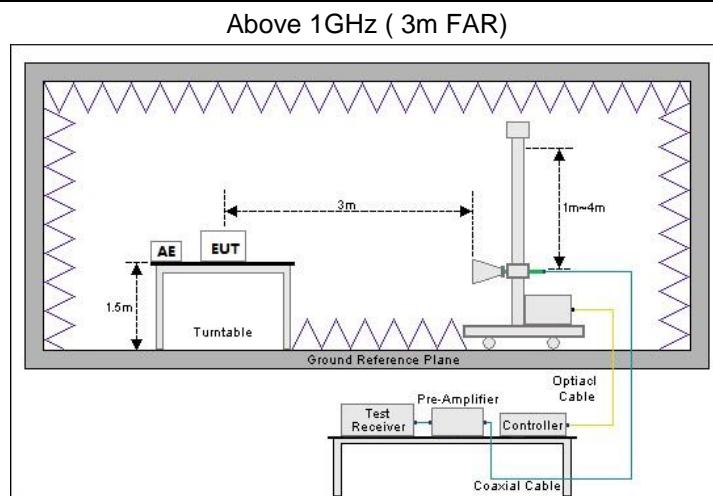

### 4.1 Test Channel

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

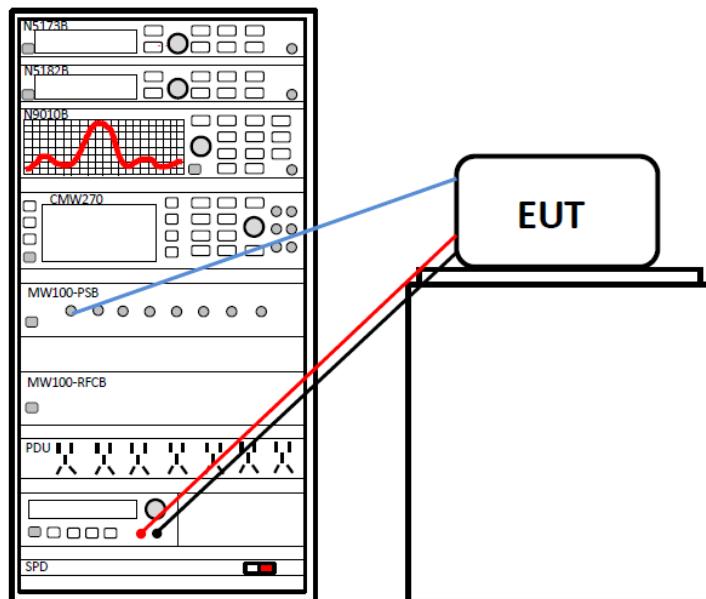
| Lowest channel |                 | Middle channel |                 | Highest channel |                 |
|----------------|-----------------|----------------|-----------------|-----------------|-----------------|
| Channel No.    | Frequency (MHz) | Channel No.    | Frequency (MHz) | Channel No.     | Frequency (MHz) |
| 0              | 2402            | 20             | 2442            | 39              | 2480            |

### 4.2 Test Setup


#### 1) Conducted emission measurement:




**Note:** The detailed descriptions please refer to Figure 8 of ANSI C63.4:2014.


#### 2) Radiated emission measurement:

Below 1GHz (3m SAC)





### 3) Conducted test method



### 4.3 Test Procedure

| Test method           | Test step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conducted emission    | <ol style="list-style-type: none"> <li>1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Radiated emission     | <p><b>For below 1GHz:</b></p> <ol style="list-style-type: none"> <li>1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m .</li> <li>2. EUT works in each mode of operation that needs to be tested , and having the EUT continuously working, respectively on 3 axis (X, Y &amp; Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.</li> <li>3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.</li> </ol> <p><b>For above 1GHz:</b></p> <ol style="list-style-type: none"> <li>1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m .</li> <li>2. EUT works in each mode of operation that needs to be tested , and having the EUT continuously working, respectively on 3 axis (X, Y &amp; Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.</li> <li>3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.</li> </ol> |
| Conducted test method | <ol style="list-style-type: none"> <li>1. The BLE antenna port of EUT was connected to the test port of the test system through an RF cable.</li> <li>2. The EUT is keeping in continuous transmission mode and tested in all modulation modes.</li> <li>3. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

## 5 Test Results

### 5.1 Summary

#### 5.1.1 Clause and Data Summary

| Test items                                                                                                                                                                                                                                 | Standard clause                                                | Test data               | Result |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------|--------|
| Antenna Requirement                                                                                                                                                                                                                        | 15.203<br>15.247 (b)(4)                                        | See Section 5.2         | Pass   |
| AC Power Line Conducted Emission                                                                                                                                                                                                           | 15.207                                                         | See Section 5.3         | Pass   |
| Conducted Output Power                                                                                                                                                                                                                     | 15.247 (b)(3)                                                  | Appendix A – BLE-1M PHY | Pass   |
| 6dB Emission Bandwidth<br>99% Occupied Bandwidth                                                                                                                                                                                           | 15.247 (a)(2)                                                  | Appendix A – BLE-1M PHY | Pass   |
| Power Spectral Density                                                                                                                                                                                                                     | 15.247 (e)                                                     | Appendix A – BLE-1M PHY | Pass   |
| Band-edge Emission<br>Conduction Spurious Emission                                                                                                                                                                                         | 15.247 (d)                                                     | Appendix A – BLE-1M PHY | Pass   |
| Emissions in Restricted Frequency Bands                                                                                                                                                                                                    | 15.205<br>15.247 (d)                                           | See Section 5.4         | Pass   |
| Emissions in Non-restricted Frequency Bands                                                                                                                                                                                                | 15.209<br>15.247(d)                                            | See Section 5.5         | Pass   |
| <b>Remark:</b>                                                                                                                                                                                                                             |                                                                |                         |        |
| 1. Pass: The EUT complies with the essential requirements in the standard.<br>2. N/A: Not Applicable.<br>3. The cable insertion loss used by “RF Output Power” and other conduction measurement items is 0.5dB (provided by the customer). |                                                                |                         |        |
| <b>Test Method:</b>                                                                                                                                                                                                                        | ANSI C63.10-2013<br>KDB 558074 D01 15.247 Meas Guidance v05r02 |                         |        |

## 5.1.2 Test Limit

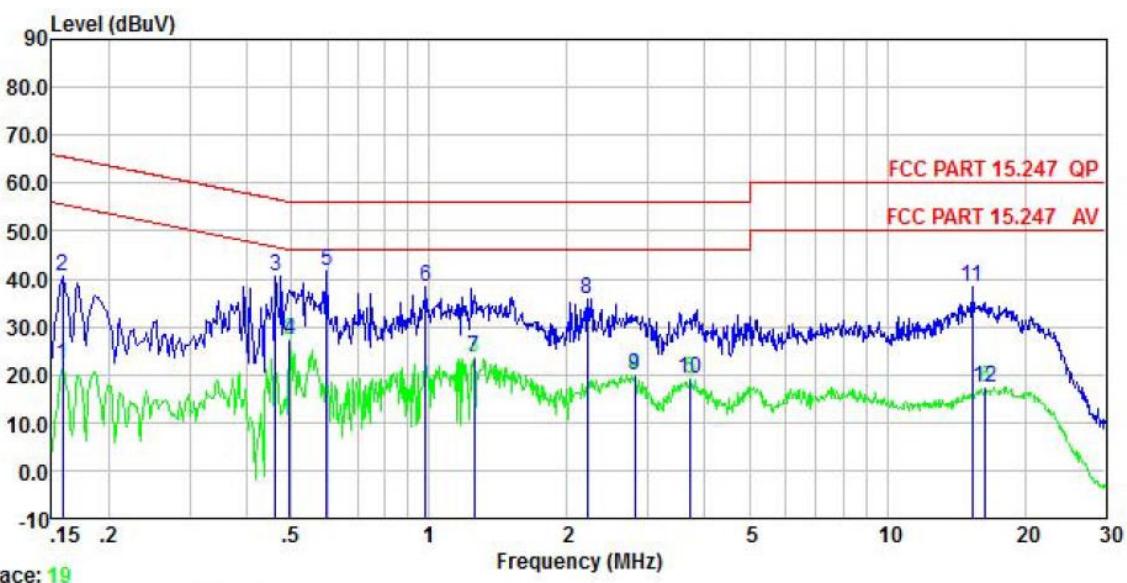
| Test items                                                                             | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                                |  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------|--|
| AC Power Line Conducted Emission                                                       | Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Limit (dB $\mu$ V)        |                                |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quasi-Peak                | Average                        |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.15 – 0.5                | 66 to 56 <small>Note 1</small> |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5 – 5                   | 56                             |  |
| Conducted Output Power                                                                 | For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                |  |
| 6dB Emission Bandwidth                                                                 | The minimum 6 dB bandwidth shall be at least 500 kHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                                |  |
| 99% Occupied Bandwidth                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                                |  |
| Power Spectral Density                                                                 | For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                                |  |
| Band-edge Emission<br>Conduction Spurious Emission                                     | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). |                           |                                |  |
| Emissions in Restricted Frequency Bands<br>Emissions in Non-restricted Frequency Bands | Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Limit (dB $\mu$ V/m)      | Detector                       |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | @ 3m                      |                                |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | @ 10m                     |                                |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 – 88                   | Quasi-peak                     |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88 – 216                  | Quasi-peak                     |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 216 – 960                 | Quasi-peak                     |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 960 – 1000                | Quasi-peak                     |  |
| <b>Note:</b> The more stringent limit applies at transition frequencies.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                                |  |
|                                                                                        | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limit (dB $\mu$ V/m) @ 3m | Detector                       |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Average                   |                                |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Above 1 GHz               | Peake                          |  |
|                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54.0                      | 74.0                           |  |
| <b>Note:</b> The measurement bandwidth shall be 1 MHz or greater.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                                |  |

## 5.2 Antenna requirement

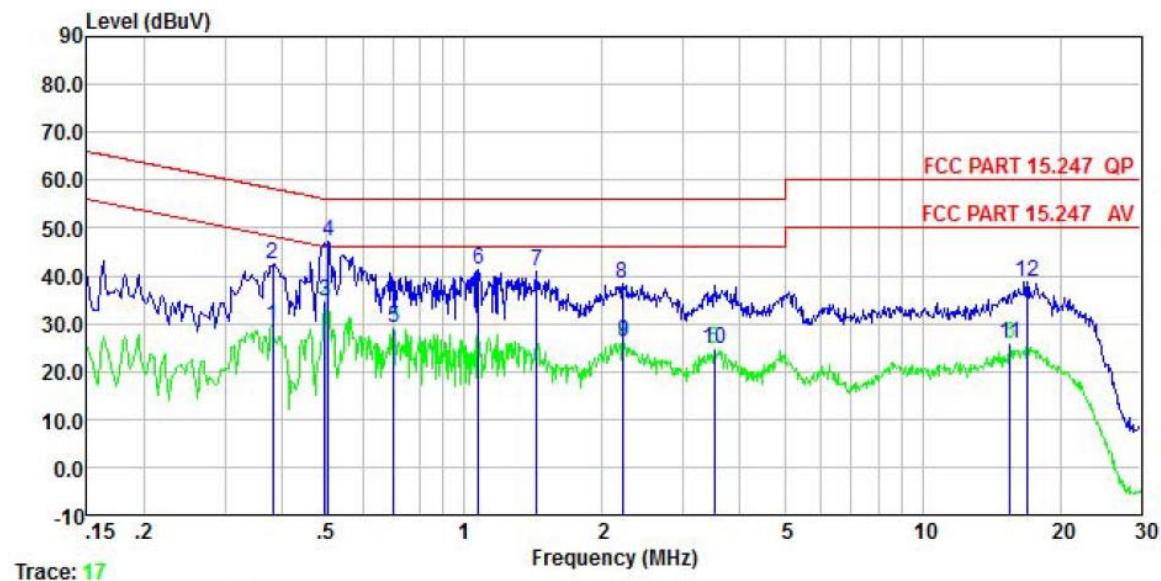
|                       |                                         |
|-----------------------|-----------------------------------------|
| Standard requirement: | FCC Part 15 C Section 15.203 /247(b)(4) |
|-----------------------|-----------------------------------------|

**15.203 requirement:**

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


**15.247(b) (4) requirement:**

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


**E.U.T Antenna:**

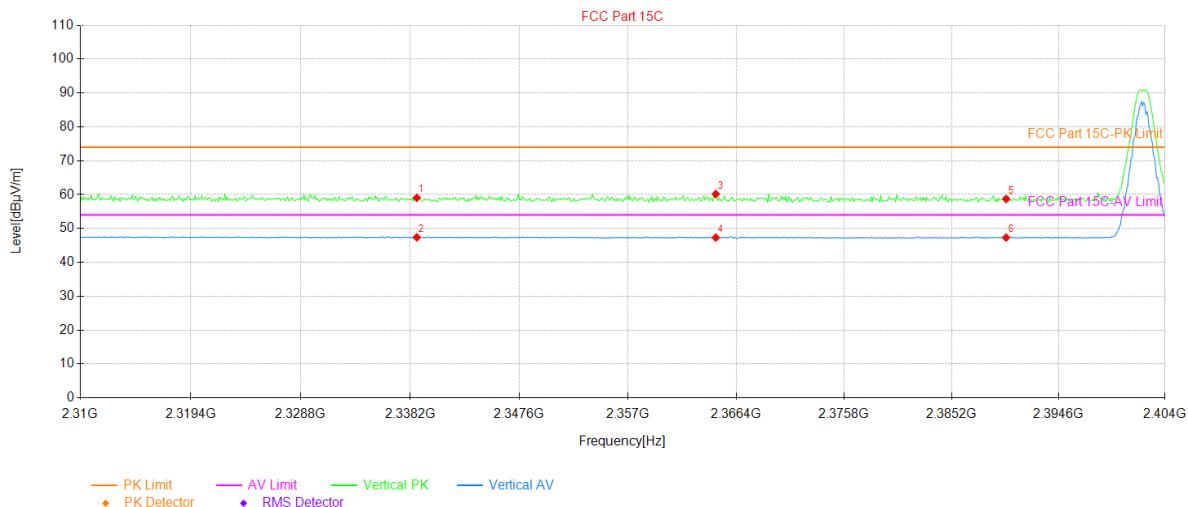
The BLE antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.31 dBi. See product internal photos for details.

### 5.3 AC Power Line Conducted Emission

| Product name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mobile Phone     |             | Product model: | Eudora E55 Plus    |            |       |            |             |                |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|----------------|--------------------|------------|-------|------------|-------------|----------------|-------------|------------|-------|------------|------------|--------|-----|------|----|----|----|----|------|------|----|--|---|-------|-------|------|------|------|------|-------|-------|----------------|---|-------|-------|------|------|------|------|-------|-------|-----------|---|-------|-------|------|------|------|------|-------|-------|-----------|---|-------|-------|------|------|------|------|-------|-------|----------------|---|-------|-------|------|------|------|------|-------|-------|-----------|---|-------|-------|------|------|------|------|-------|-------|-----------|---|-------|-------|------|------|------|------|-------|-------|----------------|---|-------|-------|------|------|------|------|-------|-------|-----------|---|-------|------|------|------|------|------|-------|-------|----------------|----|-------|------|------|------|------|------|-------|-------|----------------|----|--------|-------|------|------|------|------|-------|-------|-----------|----|--------|------|------|------|------|------|-------|-------|----------------|
| Test by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kiran Zeng       |             | Test mode:     | BLE Tx (LE 1M PHY) |            |       |            |             |                |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
| Test frequency:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150 kHz ~ 30 MHz |             | Phase:         | Line               |            |       |            |             |                |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
| Test voltage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AC 120 V/60 Hz   |             |                |                    |            |       |            |             |                |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
|  <p>Level (dBuV)</p> <p>Frequency (MHz)</p> <p>Trace: 19</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |             |                |                    |            |       |            |             |                |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
| <table border="1"> <thead> <tr> <th>Freq</th> <th>Read Level</th> <th>LISN Factor</th> <th>Aux Factor</th> <th>Aux2 Factor</th> <th>Cable Loss</th> <th>Level</th> <th>Limit Line</th> <th>Over Limit</th> <th>Remark</th> </tr> </thead> <tbody> <tr> <td>MHz</td> <td>dBuV</td> <td>dB</td> <td>dB</td> <td>dB</td> <td>dB</td> <td>dBuV</td> <td>dBuV</td> <td>dB</td> <td></td> </tr> <tr> <td>1</td> <td>0.158</td> <td>12.07</td> <td>0.20</td> <td>0.00</td> <td>9.88</td> <td>0.01</td> <td>22.16</td> <td>55.56</td> <td>-33.40 Average</td> </tr> <tr> <td>2</td> <td>0.158</td> <td>30.56</td> <td>0.20</td> <td>0.00</td> <td>9.88</td> <td>0.01</td> <td>40.65</td> <td>65.56</td> <td>-24.91 QP</td> </tr> <tr> <td>3</td> <td>0.461</td> <td>30.59</td> <td>0.20</td> <td>0.00</td> <td>9.88</td> <td>0.03</td> <td>40.70</td> <td>56.67</td> <td>-15.97 QP</td> </tr> <tr> <td>4</td> <td>0.497</td> <td>17.17</td> <td>0.20</td> <td>0.00</td> <td>9.88</td> <td>0.03</td> <td>27.28</td> <td>46.05</td> <td>-18.77 Average</td> </tr> <tr> <td>5</td> <td>0.598</td> <td>31.67</td> <td>0.20</td> <td>0.00</td> <td>9.88</td> <td>0.02</td> <td>41.77</td> <td>56.00</td> <td>-14.23 QP</td> </tr> <tr> <td>6</td> <td>0.984</td> <td>28.06</td> <td>0.20</td> <td>0.00</td> <td>9.88</td> <td>0.05</td> <td>38.19</td> <td>56.00</td> <td>-17.81 QP</td> </tr> <tr> <td>7</td> <td>1.255</td> <td>13.31</td> <td>0.20</td> <td>0.00</td> <td>9.88</td> <td>0.10</td> <td>23.49</td> <td>46.00</td> <td>-22.51 Average</td> </tr> <tr> <td>8</td> <td>2.213</td> <td>25.59</td> <td>0.20</td> <td>0.00</td> <td>9.88</td> <td>0.17</td> <td>35.84</td> <td>56.00</td> <td>-20.16 QP</td> </tr> <tr> <td>9</td> <td>2.809</td> <td>9.88</td> <td>0.20</td> <td>0.00</td> <td>9.88</td> <td>0.09</td> <td>20.05</td> <td>46.00</td> <td>-25.95 Average</td> </tr> <tr> <td>10</td> <td>3.720</td> <td>9.16</td> <td>0.20</td> <td>0.00</td> <td>9.89</td> <td>0.08</td> <td>19.33</td> <td>46.00</td> <td>-26.67 Average</td> </tr> <tr> <td>11</td> <td>15.307</td> <td>27.89</td> <td>0.31</td> <td>0.00</td> <td>9.93</td> <td>0.15</td> <td>38.28</td> <td>60.00</td> <td>-21.72 QP</td> </tr> <tr> <td>12</td> <td>16.398</td> <td>6.91</td> <td>0.33</td> <td>0.00</td> <td>9.94</td> <td>0.16</td> <td>17.34</td> <td>50.00</td> <td>-32.66 Average</td> </tr> </tbody> </table> |                  |             |                |                    |            | Freq  | Read Level | LISN Factor | Aux Factor     | Aux2 Factor | Cable Loss | Level | Limit Line | Over Limit | Remark | MHz | dBuV | dB | dB | dB | dB | dBuV | dBuV | dB |  | 1 | 0.158 | 12.07 | 0.20 | 0.00 | 9.88 | 0.01 | 22.16 | 55.56 | -33.40 Average | 2 | 0.158 | 30.56 | 0.20 | 0.00 | 9.88 | 0.01 | 40.65 | 65.56 | -24.91 QP | 3 | 0.461 | 30.59 | 0.20 | 0.00 | 9.88 | 0.03 | 40.70 | 56.67 | -15.97 QP | 4 | 0.497 | 17.17 | 0.20 | 0.00 | 9.88 | 0.03 | 27.28 | 46.05 | -18.77 Average | 5 | 0.598 | 31.67 | 0.20 | 0.00 | 9.88 | 0.02 | 41.77 | 56.00 | -14.23 QP | 6 | 0.984 | 28.06 | 0.20 | 0.00 | 9.88 | 0.05 | 38.19 | 56.00 | -17.81 QP | 7 | 1.255 | 13.31 | 0.20 | 0.00 | 9.88 | 0.10 | 23.49 | 46.00 | -22.51 Average | 8 | 2.213 | 25.59 | 0.20 | 0.00 | 9.88 | 0.17 | 35.84 | 56.00 | -20.16 QP | 9 | 2.809 | 9.88 | 0.20 | 0.00 | 9.88 | 0.09 | 20.05 | 46.00 | -25.95 Average | 10 | 3.720 | 9.16 | 0.20 | 0.00 | 9.89 | 0.08 | 19.33 | 46.00 | -26.67 Average | 11 | 15.307 | 27.89 | 0.31 | 0.00 | 9.93 | 0.15 | 38.28 | 60.00 | -21.72 QP | 12 | 16.398 | 6.91 | 0.33 | 0.00 | 9.94 | 0.16 | 17.34 | 50.00 | -32.66 Average |
| Freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Read Level       | LISN Factor | Aux Factor     | Aux2 Factor        | Cable Loss | Level | Limit Line | Over Limit  | Remark         |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
| MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dBuV             | dB          | dB             | dB                 | dB         | dBuV  | dBuV       | dB          |                |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.158            | 12.07       | 0.20           | 0.00               | 9.88       | 0.01  | 22.16      | 55.56       | -33.40 Average |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.158            | 30.56       | 0.20           | 0.00               | 9.88       | 0.01  | 40.65      | 65.56       | -24.91 QP      |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.461            | 30.59       | 0.20           | 0.00               | 9.88       | 0.03  | 40.70      | 56.67       | -15.97 QP      |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.497            | 17.17       | 0.20           | 0.00               | 9.88       | 0.03  | 27.28      | 46.05       | -18.77 Average |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.598            | 31.67       | 0.20           | 0.00               | 9.88       | 0.02  | 41.77      | 56.00       | -14.23 QP      |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.984            | 28.06       | 0.20           | 0.00               | 9.88       | 0.05  | 38.19      | 56.00       | -17.81 QP      |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.255            | 13.31       | 0.20           | 0.00               | 9.88       | 0.10  | 23.49      | 46.00       | -22.51 Average |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.213            | 25.59       | 0.20           | 0.00               | 9.88       | 0.17  | 35.84      | 56.00       | -20.16 QP      |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.809            | 9.88        | 0.20           | 0.00               | 9.88       | 0.09  | 20.05      | 46.00       | -25.95 Average |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.720            | 9.16        | 0.20           | 0.00               | 9.89       | 0.08  | 19.33      | 46.00       | -26.67 Average |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.307           | 27.89       | 0.31           | 0.00               | 9.93       | 0.15  | 38.28      | 60.00       | -21.72 QP      |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.398           | 6.91        | 0.33           | 0.00               | 9.94       | 0.16  | 17.34      | 50.00       | -32.66 Average |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |
| <p><b>Remark:</b></p> <p>1. Level = Read level + LISN Factor + Cable Loss.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |             |                |                    |            |       |            |             |                |             |            |       |            |            |        |     |      |    |    |    |    |      |      |    |  |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |           |   |       |       |      |      |      |      |       |       |                |   |       |       |      |      |      |      |       |       |           |   |       |      |      |      |      |      |       |       |                |    |       |      |      |      |      |      |       |       |                |    |        |       |      |      |      |      |       |       |           |    |        |      |      |      |      |      |       |       |                |

|                 |                  |                |                    |
|-----------------|------------------|----------------|--------------------|
| Product name:   | Mobile Phone     | Product model: | Eudora E55 Plus    |
| Test by:        | Kiran Zeng       | Test mode:     | BLE Tx (LE 1M PHY) |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Neutral            |
| Test voltage:   | AC 120 V/60 Hz   |                |                    |




| Freq<br>MHz | Read<br>Level<br>dBuV | LISN<br>Factor<br>dB | Aux<br>Factor<br>dB | Aux2<br>Factor<br>dB | Cable<br>Loss<br>dB | Level<br>dBuV | Limit<br>Line<br>dBuV | Over<br>Limit<br>dB | Remark         |
|-------------|-----------------------|----------------------|---------------------|----------------------|---------------------|---------------|-----------------------|---------------------|----------------|
|             | MHz                   | dBuV                 | dB                  | dB                   | dB                  | dBuV          | dBuV                  | dB                  |                |
| 1           | 0.381                 | 19.38                | 0.20                | 0.00                 | 9.88                | 0.03          | 29.49                 | 48.25               | -18.76 Average |
| 2           | 0.381                 | 32.26                | 0.20                | 0.00                 | 9.88                | 0.03          | 42.37                 | 58.25               | -15.88 QP      |
| 3           | 0.497                 | 24.51                | 0.20                | 0.00                 | 9.88                | 0.03          | 34.62                 | 46.05               | -11.43 Average |
| 4           | 0.505                 | 37.03                | 0.20                | 0.00                 | 9.88                | 0.03          | 47.14                 | 56.00               | -8.86 QP       |
| 5           | 0.701                 | 18.84                | 0.20                | 0.00                 | 9.88                | 0.03          | 28.95                 | 46.00               | -17.05 Average |
| 6           | 1.071                 | 31.13                | 0.21                | 0.00                 | 9.88                | 0.07          | 41.29                 | 56.00               | -14.71 QP      |
| 7           | 1.441                 | 30.69                | 0.25                | 0.00                 | 9.88                | 0.13          | 40.95                 | 56.00               | -15.05 QP      |
| 8           | 2.213                 | 27.95                | 0.30                | 0.00                 | 9.88                | 0.17          | 38.30                 | 56.00               | -17.70 QP      |
| 9           | 2.225                 | 15.80                | 0.30                | 0.00                 | 9.88                | 0.17          | 26.15                 | 46.00               | -19.85 Average |
| 10          | 3.509                 | 14.40                | 0.30                | 0.00                 | 9.89                | 0.08          | 24.67                 | 46.00               | -21.33 Average |
| 11          | 15.552                | 15.31                | 0.40                | 0.00                 | 9.93                | 0.15          | 25.79                 | 50.00               | -24.21 Average |
| 12          | 16.928                | 28.28                | 0.40                | 0.00                 | 9.94                | 0.16          | 38.78                 | 60.00               | -21.22 QP      |

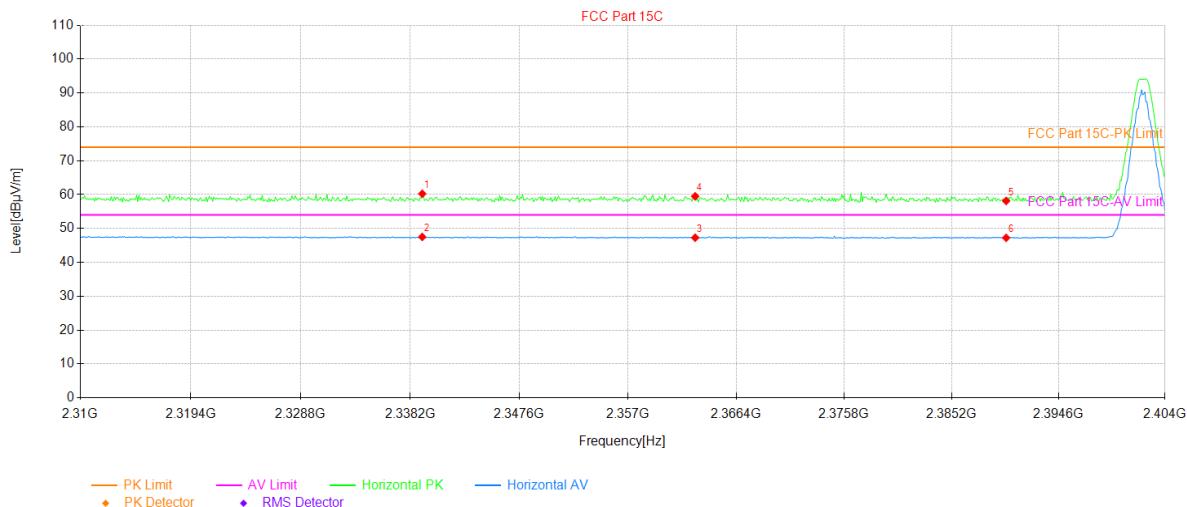
**Remark:**

1. Level = Read level + LISN Factor + Cable Loss.

## 5.4 Emissions in Restricted Frequency Bands

|               |                |                |                    |
|---------------|----------------|----------------|--------------------|
| Product Name: | Mobile Phone   | Product Model: | Eudora E55 Plus    |
| Test By:      | Real Chen      | Test mode:     | BLE Tx (LE 1M PHY) |
| Test Channel: | Lowest channel | Polarization:  | Vertical           |
| Test Voltage: | DC 3.80V       |                |                    |



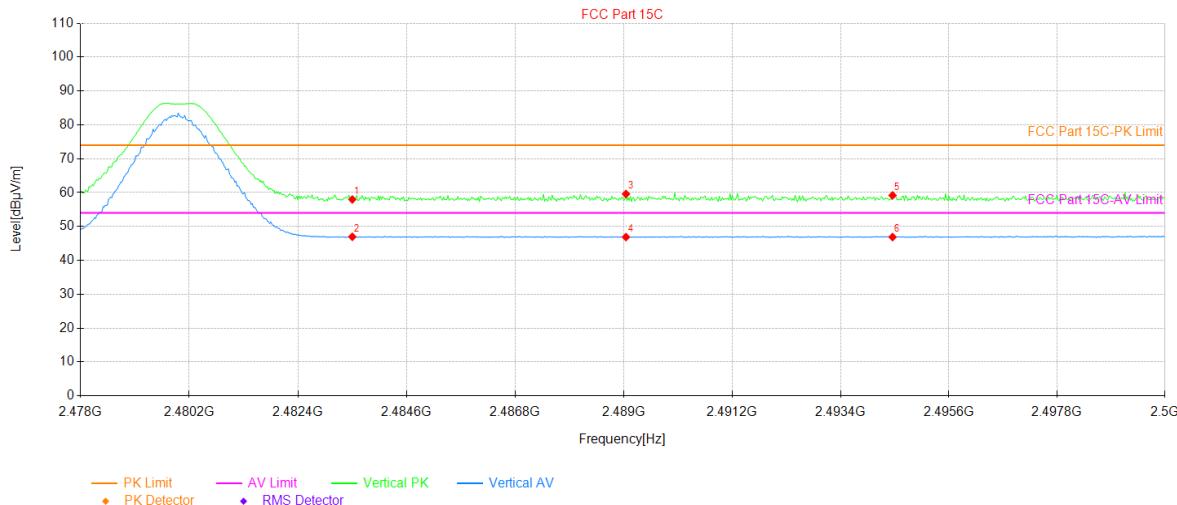

### Suspected Data List

| NO. | Freq. [MHz] | Reading [dB $\mu$ V] | Factor [dB/m] | Level [dB $\mu$ V/m] | Limit [dB $\mu$ V/m] | Margin [dB] | Angle [°] | Detector | Verdict | Polarity |
|-----|-------------|----------------------|---------------|----------------------|----------------------|-------------|-----------|----------|---------|----------|
| 1   | 2338.76     | 22.85                | 36.20         | 59.05                | 74.00                | 14.95       | 360       | PK       | PASS    | Vertical |
| 2   | 2338.76     | 11.19                | 36.20         | 47.39                | 54.00                | 6.61        | 79        | AV       | PASS    | Vertical |
| 3   | 2364.61     | 23.83                | 36.34         | 60.17                | 74.00                | 13.83       | 128       | PK       | PASS    | Vertical |
| 4   | 2364.61     | 10.99                | 36.34         | 47.33                | 54.00                | 6.67        | 326       | AV       | PASS    | Vertical |
| 5   | 2390.00     | 22.23                | 36.47         | 58.70                | 74.00                | 15.30       | 352       | PK       | PASS    | Vertical |
| 6   | 2390.00     | 10.85                | 36.47         | 47.32                | 54.00                | 6.68        | 154       | AV       | PASS    | Vertical |

### Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

|                      |                |                       |                    |
|----------------------|----------------|-----------------------|--------------------|
| <b>Product Name:</b> | Mobile Phone   | <b>Product Model:</b> | Eudora E55 Plus    |
| <b>Test By:</b>      | Real Chen      | <b>Test mode:</b>     | BLE Tx (LE 1M PHY) |
| <b>Test Channel:</b> | Lowest channel | <b>Polarization:</b>  | Horizontal         |
| <b>Test Voltage:</b> | DC 3.80V       |                       |                    |



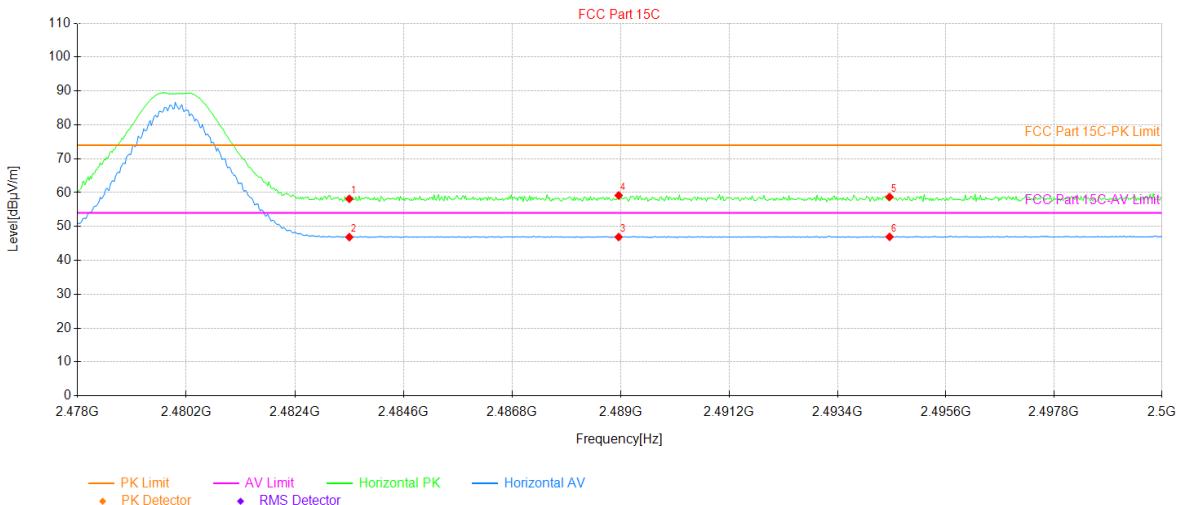

| Suspected Data List |             |                      |               |                      |                      |             |           |          |         |            |
|---------------------|-------------|----------------------|---------------|----------------------|----------------------|-------------|-----------|----------|---------|------------|
| NO.                 | Freq. [MHz] | Reading [dB $\mu$ V] | Factor [dB/m] | Level [dB $\mu$ V/m] | Limit [dB $\mu$ V/m] | Margin [dB] | Angle [°] | Detector | Verdict | Polarity   |
| 1                   | 2339.23     | 24.05                | 36.20         | 60.25                | 74.00                | 13.75       | 4         | PK       | PASS    | Horizontal |
| 2                   | 2339.23     | 11.31                | 36.20         | 47.51                | 54.00                | 6.49        | 337       | AV       | PASS    | Horizontal |
| 3                   | 2362.83     | 10.95                | 36.34         | 47.29                | 54.00                | 6.71        | 101       | AV       | PASS    | Horizontal |
| 4                   | 2362.83     | 23.15                | 36.34         | 59.49                | 74.00                | 14.51       | 15        | PK       | PASS    | Horizontal |
| 5                   | 2390.00     | 21.67                | 36.47         | 58.14                | 74.00                | 15.86       | 134       | PK       | PASS    | Horizontal |
| 6                   | 2390.00     | 10.78                | 36.47         | 47.25                | 54.00                | 6.75        | 142       | AV       | PASS    | Horizontal |

**Remark:**

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

|                      |                 |                       |                    |
|----------------------|-----------------|-----------------------|--------------------|
| <b>Product Name:</b> | Mobile Phone    | <b>Product Model:</b> | Eudora E55 Plus    |
| <b>Test By:</b>      | Real Chen       | <b>Test mode:</b>     | BLE Tx (LE 1M PHY) |
| <b>Test Channel:</b> | Highest channel | <b>Polarization:</b>  | Vertical           |
| <b>Test Voltage:</b> | DC 3.80V        |                       |                    |




#### Suspected Data List

| NO. | Freq. [MHz] | Reading [dB $\mu$ V] | Factor [dB/m] | Level [dB $\mu$ V/m] | Limit [dB $\mu$ V/m] | Margin [dB] | Angle [°] | Detector | Verdict | Polarity |
|-----|-------------|----------------------|---------------|----------------------|----------------------|-------------|-----------|----------|---------|----------|
| 1   | 2483.50     | 21.86                | 36.11         | 57.97                | 74.00                | 16.03       | 32        | PK       | PASS    | Vertical |
| 2   | 2483.50     | 10.84                | 36.11         | 46.95                | 54.00                | 7.05        | 282       | AV       | PASS    | Vertical |
| 3   | 2489.04     | 23.45                | 36.13         | 59.58                | 74.00                | 14.42       | 117       | PK       | PASS    | Vertical |
| 4   | 2489.04     | 10.75                | 36.13         | 46.88                | 54.00                | 7.12        | 174       | AV       | PASS    | Vertical |
| 5   | 2494.46     | 23.02                | 36.15         | 59.17                | 74.00                | 14.83       | 0         | PK       | PASS    | Vertical |
| 6   | 2494.46     | 10.73                | 36.15         | 46.88                | 54.00                | 7.12        | 174       | AV       | PASS    | Vertical |

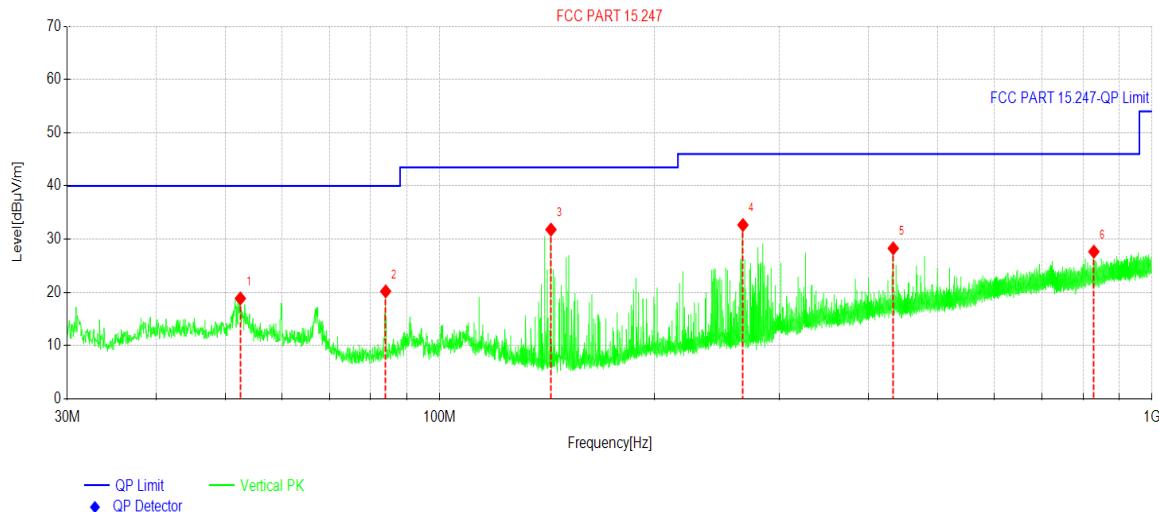
#### Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

|                      |                 |                       |                    |
|----------------------|-----------------|-----------------------|--------------------|
| <b>Product Name:</b> | Mobile Phone    | <b>Product Model:</b> | Eudora E55 Plus    |
| <b>Test By:</b>      | Real Chen       | <b>Test mode:</b>     | BLE Tx (LE 1M PHY) |
| <b>Test Channel:</b> | Highest channel | <b>Polarization:</b>  | Horizontal         |
| <b>Test Voltage:</b> | DC 3.80V        |                       |                    |



| Suspected Data List |             |                |               |                |                |             |           |          |         |            |
|---------------------|-------------|----------------|---------------|----------------|----------------|-------------|-----------|----------|---------|------------|
| NO.                 | Freq. [MHz] | Reading [dBμV] | Factor [dB/m] | Level [dBμV/m] | Limit [dBμV/m] | Margin [dB] | Angle [°] | Detector | Verdict | Polarity   |
| 1                   | 2483.50     | 22.05          | 36.11         | 58.16          | 74.00          | 15.84       | 170       | PK       | PASS    | Horizontal |
| 2                   | 2483.50     | 10.75          | 36.11         | 46.86          | 54.00          | 7.14        | 327       | AV       | PASS    | Horizontal |
| 3                   | 2488.96     | 10.76          | 36.13         | 46.89          | 54.00          | 7.11        | 30        | AV       | PASS    | Horizontal |
| 4                   | 2488.96     | 23.03          | 36.13         | 59.16          | 74.00          | 14.84       | 159       | PK       | PASS    | Horizontal |
| 5                   | 2494.46     | 22.56          | 36.15         | 58.71          | 74.00          | 15.29       | 166       | PK       | PASS    | Horizontal |
| 6                   | 2494.46     | 10.79          | 36.15         | 46.94          | 54.00          | 7.06        | 170       | AV       | PASS    | Horizontal |


**Remark:**

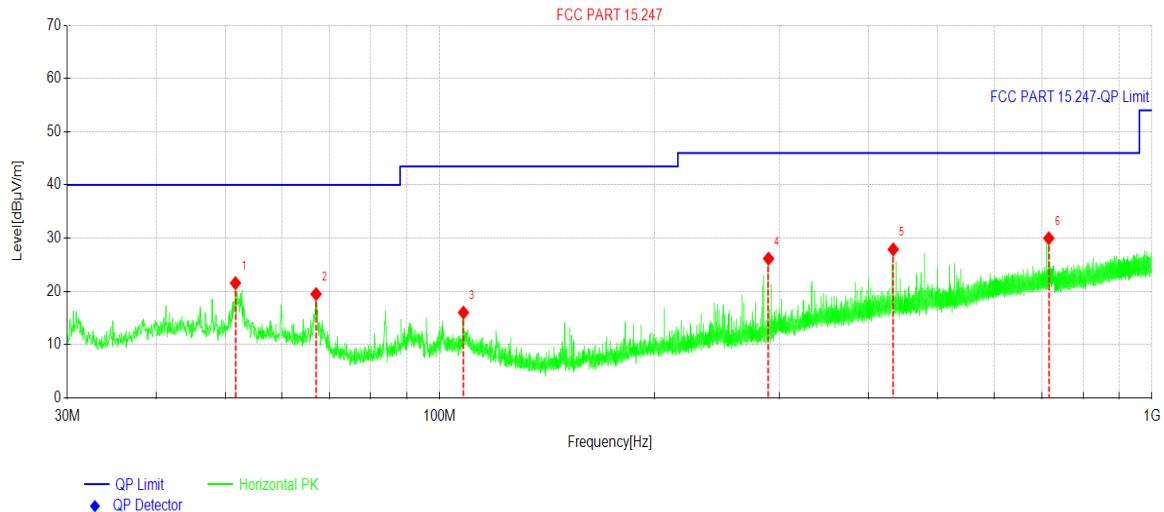
1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

## 5.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

|                        |                |                       |                    |
|------------------------|----------------|-----------------------|--------------------|
| <b>Product Name:</b>   | Mobile Phone   | <b>Product Model:</b> | Eudora E55 Plus    |
| <b>Test By:</b>        | Alan Chen      | <b>Test mode:</b>     | BLE Tx (LE 1M PHY) |
| <b>Test Frequency:</b> | 30 MHz ~ 1 GHz | <b>Polarization:</b>  | Vertical           |
| <b>Test Voltage:</b>   | DC 3.80V       |                       |                    |




### Suspected Data List

| NO. | Freq. [MHz] | Reading [dB $\mu$ V/m] | Factor [dB] | Level [dB $\mu$ V/m] | Limit [dB $\mu$ V/m] | Margin [dB] | Trace | Polarity |
|-----|-------------|------------------------|-------------|----------------------|----------------------|-------------|-------|----------|
| 1   | 52.5051     | 31.68                  | -12.81      | 18.87                | 40.00                | 21.13       | PK    | Vertical |
| 2   | 83.9832     | 38.20                  | -18.00      | 20.20                | 40.00                | 19.80       | PK    | Vertical |
| 3   | 143.301     | 50.12                  | -18.31      | 31.81                | 43.50                | 11.69       | PK    | Vertical |
| 4   | 266.546     | 46.40                  | -13.73      | 32.67                | 46.00                | 13.33       | PK    | Vertical |
| 5   | 433.249     | 38.37                  | -10.10      | 28.27                | 46.00                | 17.73       | PK    | Vertical |
| 6   | 828.737     | 31.42                  | -3.77       | 27.65                | 46.00                | 18.35       | PK    | Vertical |

### Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

|                        |                |                       |                    |
|------------------------|----------------|-----------------------|--------------------|
| <b>Product Name:</b>   | Mobile Phone   | <b>Product Model:</b> | Eudora E55 Plus    |
| <b>Test By:</b>        | Alan Chen      | <b>Test mode:</b>     | BLE Tx (LE 1M PHY) |
| <b>Test Frequency:</b> | 30 MHz ~ 1 GHz | <b>Polarization:</b>  | Horizontal         |
| <b>Test Voltage:</b>   | DC 3.80V       |                       |                    |



#### Suspected Data List

| NO. | Freq. [MHz] | Reading [dBμV/m] | Factor [dB] | Level [dBμV/m] | Limit [dBμV/m] | Margin [dB] | Trace | Polarity   |
|-----|-------------|------------------|-------------|----------------|----------------|-------------|-------|------------|
| 1   | 51.6806     | 34.35            | -12.78      | 21.57          | 40.00          | 18.43       | PK    | Horizontal |
| 2   | 67.0559     | 35.17            | -15.66      | 19.51          | 40.00          | 20.49       | PK    | Horizontal |
| 3   | 107.9919    | 30.64            | -14.62      | 16.02          | 43.50          | 27.48       | PK    | Horizontal |
| 4   | 289.5365    | 39.38            | -13.22      | 26.16          | 46.00          | 19.84       | PK    | Horizontal |
| 5   | 433.2492    | 38.00            | -10.10      | 27.90          | 46.00          | 18.10       | PK    | Horizontal |
| 6   | 716.3578    | 35.10            | -5.11       | 29.99          | 46.00          | 16.01       | PK    | Horizontal |

#### Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss – Preamplifier Factor).

## Above 1GHz:

| BLE Tx (LE 1M PHY)            |                         |             |                      |                      |             |              |
|-------------------------------|-------------------------|-------------|----------------------|----------------------|-------------|--------------|
| Test channel: Lowest channel  |                         |             |                      |                      |             |              |
| Detector: Peak Value          |                         |             |                      |                      |             |              |
| Frequency (MHz)               | Read Level (dB $\mu$ V) | Factor (dB) | Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Polarization |
| 4804.00                       | 50.65                   | -8.00       | 42.65                | 74.00                | 31.35       | Vertical     |
| 4804.00                       | 49.42                   | -8.00       | 41.42                | 74.00                | 32.58       | Horizontal   |
| Detector: Average Value       |                         |             |                      |                      |             |              |
| Frequency (MHz)               | Read Level (dB $\mu$ V) | Factor (dB) | Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Polarization |
| 4804.00                       | 39.52                   | -8.00       | 31.52                | 54.00                | 22.48       | Vertical     |
| 4804.00                       | 39.50                   | -8.00       | 31.50                | 54.00                | 22.50       | Horizontal   |
| Test channel: Middle channel  |                         |             |                      |                      |             |              |
| Detector: Peak Value          |                         |             |                      |                      |             |              |
| Frequency (MHz)               | Read Level (dB $\mu$ V) | Factor (dB) | Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Polarization |
| 4884.00                       | 51.07                   | -7.45       | 43.62                | 74.00                | 30.38       | Vertical     |
| 4884.00                       | 49.35                   | -7.45       | 41.90                | 74.00                | 32.10       | Horizontal   |
| Detector: Average Value       |                         |             |                      |                      |             |              |
| Frequency (MHz)               | Read Level (dB $\mu$ V) | Factor (dB) | Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Polarization |
| 4884.00                       | 39.75                   | -7.45       | 32.30                | 54.00                | 21.70       | Vertical     |
| 4884.00                       | 39.44                   | -7.45       | 31.99                | 54.00                | 22.01       | Horizontal   |
| Test channel: Highest channel |                         |             |                      |                      |             |              |
| Detector: Peak Value          |                         |             |                      |                      |             |              |
| Frequency (MHz)               | Read Level (dB $\mu$ V) | Factor (dB) | Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Polarization |
| 4960.00                       | 50.64                   | -7.08       | 43.56                | 74.00                | 30.44       | Vertical     |
| 4960.00                       | 49.23                   | -7.08       | 42.15                | 74.00                | 31.85       | Horizontal   |
| Detector: Average Value       |                         |             |                      |                      |             |              |
| Frequency (MHz)               | Read Level (dB $\mu$ V) | Factor (dB) | Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Polarization |
| 4960.00                       | 39.15                   | -7.08       | 32.07                | 54.00                | 21.93       | Vertical     |
| 4960.00                       | 39.75                   | -7.08       | 32.67                | 54.00                | 21.33       | Horizontal   |

**Remark:**

1. Level = Reading + Factor.
2. Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.

-----End of report-----