Antenna Information

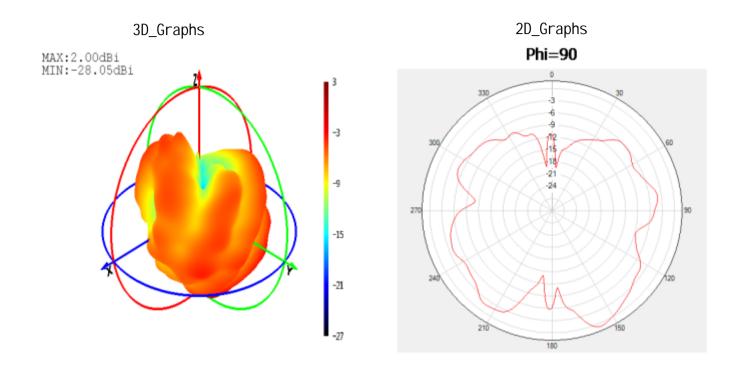
1. Manufacturer's name: Calterah Semiconductor Technology (Shanghai) Co., Ltd.

PRODUCT TECHNICAL SPECIFICATION

Model Name	V1
Frequency Range (MHz)	57000-66000MHz
Peak Gain(dBi)	2dBi

RADIATION CHARACTERISTICS

Table 4.1: AiP Radiation Characteristics


Description	TYP	Unit	
TX0 to TX1/2/3 Azimuth Separation	9.8	mm	
TX1/2/3 Elevation Separation	2.5	mm	
RX Antenna Azimuth Separation	2.5	mm	
RX Antenna Elevation Separation	0	mm	
RX Antenna Gain	2	dBi	
Single TX Mode			
Effective Isotropic Radiated Power (EIRP) at $T_A = 25$ °C	12	dBm	
6dB Azimuth Field of View (FoV) ¹	±40	degree	
6dB Elevation FoV	±30	degree	
12dB Azimuth FoV	±50	degree	
12dB Elevation FoV	±40	degree	
TX1-2-3 Combination Mode ²			
EIRP at $T_A = 25^{\circ}C$	21	dBm	
6dB Azimuth FoV	±40	degree	
6dB Elevation FoV	±20	degree	
12dB Azimuth FoV	±50	degree	
12dB Elevation FoV	±30	degree	
Elevation Beamforming Scan Angle	±30	degree	

All performances are tested with an evaluation board of 6 cm \times 6 cm, whose top layer is fully covered with the ground plane. For details about the device layout, see *Rhine AiP/CAL60S244-IB RDP Reference Design*.

Note: AiP radiation performances are sensitive to the surrounding structure, so the PCB must be carefully designed. For a guide to hardware design, refer to *Rhine CAL60S244-IB Hardware Design Guide*.

 $^{^{1}\ \}mathrm{Field}\ \mathrm{of}\ \mathrm{View}\ (\mathrm{FoV})$ is measured with both transmitting and receiving antennas.

² To achieve broadside radiation under TX1-2-3 Combination Mode, the recommended phase setting is as follows: CH1: 0 deg; CH2: 0 deg; and CH3: 0 deg.

Unit: mm

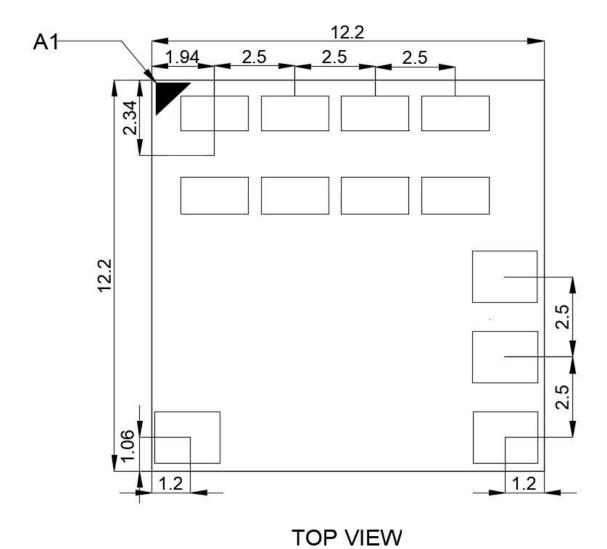


Fig. 7.3: Package Outline Drawing (POD) 3