

# **TEST REPORT**

Report No. CISRR23122615202

Project No. CISR231226152

FCC ID 2BD95-ZSCYZS1

Applicant Zhongshan Crosses Intelligent Technology Co., Ltd

Address 5th floor, No.7 Lianbaolu, Shengfeng, Xiaolan, Zhongshan, Guangdong,

China

Manufacturer Zhongshan Crosses Intelligent Technology Co., Ltd

Address 5th floor, No.7 Lianbaolu, Shengfeng, Xiaolan, Zhongshan, Guangdong,

China

Product Name Smart Cylinder

Trade Mark ---

Model/Type reference S1

Listed Model(s) S2, S3, S5, S6, S7, S8, S9

Standard Part 15 Subpart C Section 15.225

Test date December 26, 2023 ~ January 23, 2024

Issue date January 23, 2024

Test result Complied

Kory Awang

GenryLong

**Prepared by: Rory Huang** 

Approved by: Genry Long

The test results relate only to the tested samples.

The test report should not be reproduced except in full without the written approval of Shenzhen Bangce Testing Technology Co., Ltd.



# Contents

| 1. REPORT VERSION                                       | 3   |
|---------------------------------------------------------|-----|
| 2. SUMMARY OF TEST RESULT                               | 4   |
| 3. SUMMARY                                              | 5   |
| 3.1. Product Description                                |     |
| 3.2. Radio Specification Description                    |     |
| 3.4. Testing Site                                       |     |
| 4. TEST CONFIGURATION                                   | 7   |
|                                                         | _   |
| 4.1. Test frequency list4.2. Test mode                  |     |
| 4.3. Support unit used in test configuration and system |     |
| 4.4. Test sample information                            |     |
| 4.5. Testing environmental condition                    |     |
| 4.6. Statement of the measurement uncertainty           |     |
| 4.7. Equipment Used during the Test                     | 9   |
| 5. TEST CONDITIONS AND RESULTS                          | 1 0 |
| 5.1. Antenna Requirement                                | 10  |
| 5.2. AC Conducted Emission                              |     |
| 5.3. Field Strength of Fundamental Emissions            |     |
| 5.4. 20 dB Bandwidth                                    |     |
| 5.5. Frequency Stability5.6. Radiated Spurious Emission |     |
| 5.0. Naulateu Spullous Elliissioii                      | 19  |
| 6. TEST SETUP PHOTOS                                    | 2 4 |
| 7 FYTERNAL AND INTERNAL PHOTOS                          | 26  |



# 1. REPORT VERSION

| Version No. | Issue date       | Description |
|-------------|------------------|-------------|
| 00          | January 23, 2024 | Original    |
|             |                  |             |
|             |                  |             |

Page: 3 of 26



# 2. SUMMARY OF TEST RESULT

| Report clause | Test Item                               | Standard Requirement | Result |
|---------------|-----------------------------------------|----------------------|--------|
| 5.1           | Antenna Requirement                     | 15.203               | PASS   |
| 5.2           | AC Conducted Emission                   | 15.207               | PASS   |
| 5.3           | Field Strength of Fundamental Emissions | 15.225 (a) (b) (c)   | PASS   |
| 5.4           | 20 dB Bandwidth                         | 15.215               | PASS   |
| 5.5           | Frequency Stability                     | 15.225 (e)           | PASS   |
| 5.6           | Radiated Emissions                      | 15.225 (d)/15.209    | PASS   |

#### Note:

- The measurement uncertainty is not included in the test result.
- \*1: No requirement on standard, only report these test data.
- N/A: Not Applicable.



# 3. **SUMMARY**

# 3.1. Product Description

| Main unit information: |                                   |  |
|------------------------|-----------------------------------|--|
| Product Name:          | Smart Cylinder                    |  |
| Trade Mark:            |                                   |  |
| Model No.:             | S1                                |  |
| Listed Model(s):       | S2, S3, S5, S6, S7, S8, S9        |  |
| Power supply:          | Input: DC 5V DC 3.0V from Battery |  |
| Hardware version:      | V1.0                              |  |
| Software version:      | V1.0                              |  |

## 3.2. Radio Specification Description

| Technology:          | NFC         |
|----------------------|-------------|
| Modulation:          | ASK         |
| Operation frequency: | 13.56MHz    |
| Channel number:      | 1           |
| Antenna type:        | PCB Antenna |
| Antenna gain:        | 0dBi        |



## 3.3. Modification of EUT

No modifications are made to the EUT during all test items.

# 3.4. Testing Site

| Laboratory Name         | Shenzhen Bangce Testing Technology Co., Ltd.                                                                                 |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Laboratory Location     | 101, building 10, Yunli Intelligent Park, Shutianpu community, Matian Street, Guangming District, Shenzhen, Guangdong, China |
| FCC registration number | 736346                                                                                                                       |

Report No.: CISRR23122615202

## 4. TEST CONFIGURATION

#### 4.1. Test frequency list

| Channel | Frequency (MHz) |
|---------|-----------------|
| 1       | 13.56           |

#### 4.2. Test mode

#### For RF test items:

The system was configured for testing in a continuous transmits condition and change test channels by software provided by applicant. Power setting Default.

| Test Item           | Modulation |
|---------------------|------------|
| Conducted test item | ASK        |
| Radiated test item  | ASK        |

#### Remark:

### 4.3. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

| Item | Equipment name | Trade Name | Model No. |
|------|----------------|------------|-----------|
| 1    |                |            |           |

#### 4.4. Test sample information

| Туре            | sample no.       |
|-----------------|------------------|
| Engineer sample | CISR231226152-1# |
| Normal sample   | CISR231226152-2# |

Page: 7 of 26

The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis)
data recorded in the report.



## 4.5. Testing environmental condition

| Туре               | Requirement  | Actual   |
|--------------------|--------------|----------|
| Temperature:       | 15~35°C      | 25°C     |
| Relative Humidity: | 25~75%       | 50%      |
| Air Pressure:      | 860~1060mbar | 1000mbar |

## 4.6. Statement of the measurement uncertainty

| No. | Test Items                   | Measurement Uncertainty |
|-----|------------------------------|-------------------------|
| 1   | AC Conducted Emission        | 1.63dB                  |
| 2   | Frequency Stability          | 20Hz                    |
| 3   | 20dB Bandwidth               | 0.002%                  |
| 4   | Radiated Spurious Emission   | 3.76dB for 30MHz-1GHz   |
| 7   | Tradiated Spurious Efficient | 3.80dB for above 1GHz   |

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Page: 8 of 26

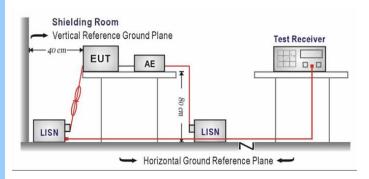


# 4.7. Equipment Used during the Test

| Equipment                                    | Manufacture               | Model No.   | Serial No.  | Last cal.                | Cal Interval   |
|----------------------------------------------|---------------------------|-------------|-------------|--------------------------|----------------|
| 9*6*6 anechoic chamber                       | SKET                      | 9.3*6.3*6   | N/A         | 2021.10.15               | 3Year          |
| Spectrum analyzer                            | Spectrum analyzer Agilent |             | MY50530263  | 2023.01.09<br>2024.01.08 | 1Year<br>1Year |
| Receiver                                     | ROHDE&SCHWARZ             | ESCI        | 100853      | 2023.01.09<br>2024.01.08 | 1Year<br>1Year |
| Spectrum analyzer                            | R&S                       | FSV-40N     | 1           | 2023.01.09<br>2024.01.08 | 1Year<br>1Year |
| Bilog Antenna                                | Schwarzbeck               | VULB 9163   | 1463        | 2023.01.09               | 2Year          |
| Horn Antenna                                 | SCHWARZBECK               | BBHA 9120 D | 2487        | 2023.01.09               | 2Year          |
| Active Loop<br>Antenna                       | SCHWARZBECK               | FMZB 1519B  | 1           | 2023.01.09               | 2Year          |
| RF Cable                                     | Tonscend                  | Cable 1     | 1           | 2023.01.09<br>2024.01.08 | 1Year<br>1Year |
| RF Cable                                     | Tonscend                  | Cable 2     | 1           | 2023.01.09<br>2024.01.08 | 1Year<br>1Year |
| RF Cable                                     | SKET                      | Cable 3     | 1           | 2023.01.09<br>2024.01.08 | 1Year<br>1Year |
| Pre-amplifier                                | Tonscend                  | TAP9K3G32   | AP21G806153 | 2023.01.09<br>2024.01.08 | 1Year<br>1Year |
| Pre-amplifier                                | Tonscend                  | TAP01018050 | AP22E806229 | 2023.01.09<br>2024.01.08 | 1Year<br>1Year |
| L.I.S.N.#1                                   | Schwarzbeck               | NSLK8127    | /           | 2023.01.09               | 1Year<br>1Year |
| L.I.S.N.#2                                   | ROHDE&SCHWARZ             | ENV216      | /           | 2023.01.09<br>2024.01.08 | 1Year<br>1Year |
| Horn Antenna                                 | SCHWARZBECK               | BBHA9170    | 1130        | 2023.01.09               | 2 Year         |
| Preamplifier                                 | Tonscend                  | TAP18040048 | AP21C806126 | 2023.01.09<br>2024.01.08 | 1Year<br>1Year |
| variable-frequency power source              | Pinhong                   | PH1110      | 1           | 2023.01.09<br>2024.01.08 | 1Year<br>1Year |
| 6dB Attenuator                               | SKET                      | DC-6G       | 1           | N/A                      | N/A            |
| Artificial power network                     | Schwarzbeck               | NSLK8127    | 8127-01096  | 2023.01.09<br>2024.01.08 | 1Year<br>1Year |
| EMI Test Receiver                            | Rohde&schwarz             | ESCI7       | 100853      | 2023.01.09<br>2024.01.08 | 1Year<br>1Year |
| 8-wire Impedance<br>Stabilization<br>Network | Schwarzbeck               | NTFM 8158   | 8158-00337  | 2023.01.09<br>2024.01.08 | 1Year<br>1Year |
| Artificial power network                     | Schwarzbeck               | ENV216      | 1           | 2023.01.09<br>2024.01.08 | 1Year<br>1Year |
| ·                                            |                           |             |             |                          |                |



## 5. TEST CONDITIONS AND RESULTS


#### 5.1. Antenna Requirement

#### Limit:

#### FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the response-ble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Test configuration:



Result:

**Description** 

**Passed** 

The antenna type is a PCB antenna, Refer to the below antenna photo.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen Bangce Testing Technology Co., Ltd. does not assume any responsibility.

Report No.: CISRR23122615202

#### 5.2. AC Conducted Emission


#### Limit:

#### FCC CFR Title 47 Part 15 Subpart C Section 15.207

| Frequency range (MHz) | Limit (dBuV) |           |  |  |
|-----------------------|--------------|-----------|--|--|
|                       | Quasi-peak   | Average   |  |  |
| 0.15-0.5              | 66 to 56*    | 56 to 46* |  |  |
| 0.5-5                 | 56           | 46        |  |  |
| 5-30                  | 60           | 50        |  |  |

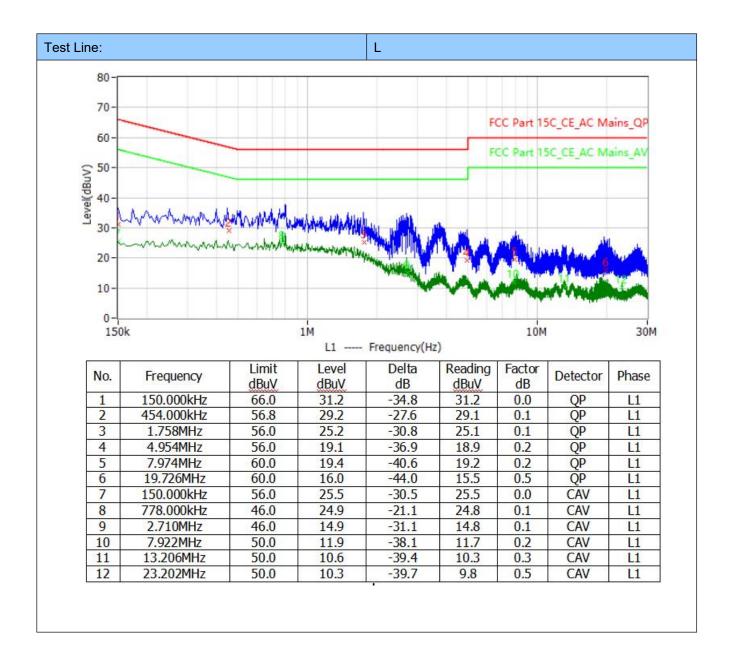
<sup>\*</sup> Decreases with the logarithm of the frequency.

#### Test configuration:

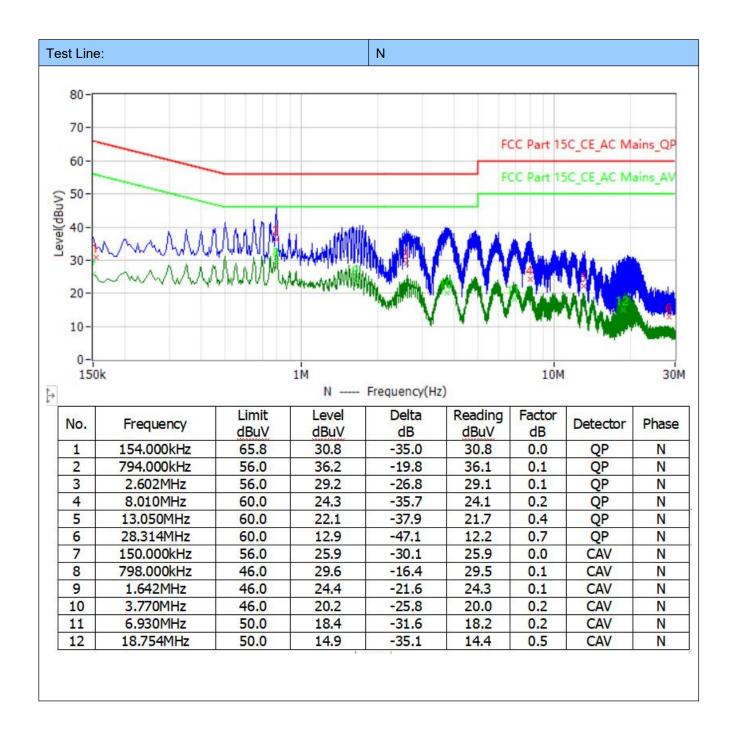


#### Test procedure:

- 1. The EUT was setup according to ANSI C63.10 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Refer to the block diagram of the test setup and photographs)
- Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.


Test mode:

Refer to the clause 4.3


Result:

**Passed** 







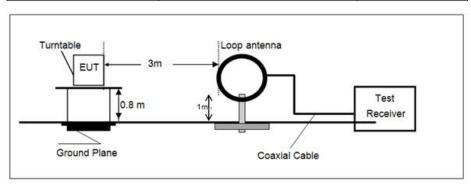


Report No.: CISRR23122615202

#### 5.3. Field Strength of Fundamental Emissions

#### Limit:

#### FCC CFR Title 47 Part 15 Subpart C Section 15.225


The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

| Frequencies (MHz)     | Field Strength (microvolts/meter) | Field Strength<br>(dBµV/m) at 10m | Field Strength<br>(dBµV/m) at 3m |
|-----------------------|-----------------------------------|-----------------------------------|----------------------------------|
| 13.553 ~<br>13.567MHz | 15848 at 30m                      | 103.08 (QP)                       | 124 (QP)                         |

#### Mask Limit:

| Frequency (MHz) | Limit (dBuV/m) | Distance (m) |
|-----------------|----------------|--------------|
| 1.705-13.110    | 69.5           | 3            |
| 13.110-13.410   | 80.5           | 3            |
| 13.410-13.553   | 90.5           | 3            |
| 13.553-13.567   | 124.0          | 3            |
| 13.567-13.710   | 90.5           | 3            |
| 13.710-14.010   | 80.5           | 3            |
| 14.010-30.000   | 69.5           | 3            |

#### Test configuration:



#### Test procedure:

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For X axis / Y axis/ Z axis were tested.

Test mode:

Refer to the clause 4.3

Test data:

Refer to the Appendix B

Result:

**Passed** 





\*Note: Factor= Antenna Factor + Cable Loss

Measured (  $dB\mu V/m$  ) = Reading + Factor+51.5, Margin= Measured - Limit

Emission level (dB $\mu$ V/m) = 20 log Emission level ( $\mu$ V/m).

All emissions emit from non-NFC function of digital unintentional emissions. All NFC $^{\prime}$  s spurious emissions are below 20dB of limits.

X axis / Y axis/ Z axis were tested, report only recorded the worst result of X axis.



#### 5.4. 20 dB Bandwidth

# Limit: Test configuration: Ground Reference Plane 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit

continuously

- 3. Use the following spectrum analyzer settings:
  - Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW

Sweep = auto, Detector function = peak, Trace = max hold


4. Measure and record the results in the test report.

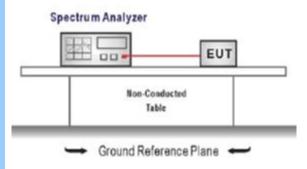
<u>Test mode:</u> Refer to the clause 4.3

Test data: Refer to the Appendix B

Result: Passed








#### 5.5. Frequency Stability

Limit:

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of - 20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a full charged battery.

Test configuration:



Test mode:

Refer to the clause 4.3

Test data:

Refer to the Appendix B

Result:

**Passed** 

Voltage vs. Frequency Stability

| Voltage(V) | Measurement<br>Frequency (MHz) | Deviation<br>(KHz) | Deviation<br>(ppm) | Limit<br>(ppm) |
|------------|--------------------------------|--------------------|--------------------|----------------|
| VL         | 13.56048                       | 0.48               | 35.40              | 100            |
| VN         | 13.56026                       | 0.26               | 19.17              | 100            |
| VH         | 13.56037                       | 0.37               | 27.29              | 100            |

Temperature vs. Frequency Stability

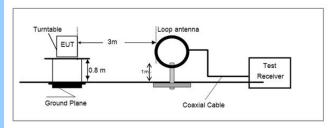
| Temperature (℃) | Measurement     | Deviation | Deviation | Limit |
|-----------------|-----------------|-----------|-----------|-------|
| remperature (C) | Frequency (MHz) | (KHz)     | (ppm)     | (ppm) |
| -20             | 13.56033        | 0.33      | 24.34     | 100   |
| -10             | 13.56032        | 0.32      | 23.60     | 100   |
| 0               | 13.56038        | 0.38      | 28.02     | 100   |
| 10              | 13.56035        | 0.35      | 25.81     | 100   |
| 20              | 13.56039        | 0.39      | 28.76     | 100   |
| 30              | 13.56033        | 0.33      | 24.34     | 100   |
| 40              | 13.56032        | 0.32      | 23.60     | 100   |
| 50              | 13.56029        | 0.29      | 21.39     | 100   |



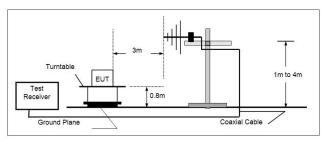
## 5.6. Radiated Spurious Emission

#### Limit:

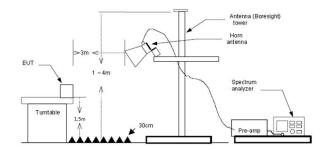
FCC CFR Title 47 Part 15 Subpart C Section 15.209


| Frequency            | Limit (dBuV/m)    | Value      |  |
|----------------------|-------------------|------------|--|
| 0.009 MHz ~0.49 MHz  | 2400/F(kHz) @300m | Quasi-peak |  |
| 0.49 MHz ~ 1.705 MHz | 24000/F(kHz) @30m | Quasi-peak |  |
| 1.705 MHz ~30 MHz    | 30 @30m           | Quasi-peak |  |

Limit dBuV/m @3m = Limit dBuV/m @300m + 40\*log(300/3 Limit dBuV/m @3m = Limit dBuV/m @30m +40\*log(30/3)


| Frequency     | Limit (dBuV/m @3m) | Value      |
|---------------|--------------------|------------|
| 30MHz~88MHz   | 40.00              | Quasi-peak |
| 88MHz~216MHz  | 43.50              | Quasi-peak |
| 216MHz~960MHz | 46.00              | Quasi-peak |
| 960MHz~1GHz   | 54.00              | Quasi-peak |
| Above 1GHz    | 54.00              | Average    |
| Above 1G112   | 74.00              | Peak       |

#### Test configuration:


9kHz~30MHz



30 MHz ~ 1 GHz



Above 1 GHz





#### Test procedure:

- 5. The EUT was setup and tested according to ANSI C63.10.
- 6. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 7. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 8. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 9. Set to the maximum power setting and enable the EUT transmit continuously.
- 10. Use the following spectrum analyzer settings
  - a) Span shall wide enough to fully capture the emission being measured:
  - b) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement: use duty cycle correction factor method (DCCF)

Averager level = Peak level + DCCF

#### Test mode:

Refer to the clause 4.3

#### Result:

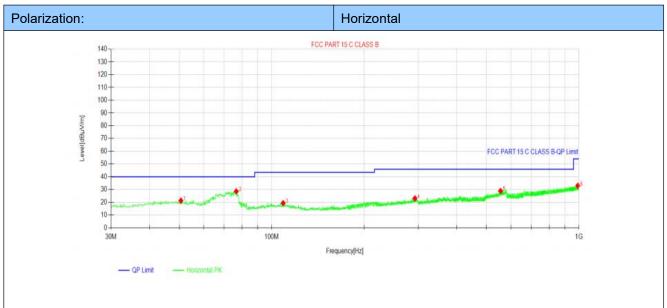
**Passed** 

#### Note:

- 1) Level= Reading + Factor/Transd; Factor/Transd =Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level- Limit
- 3) Average measurement was not performed if peak level is lower than average limit(54 dBuV/m) for above 1GHz.



#### For 9 kHz ~ 30 MHz




Note: Only recorded the worst test result.

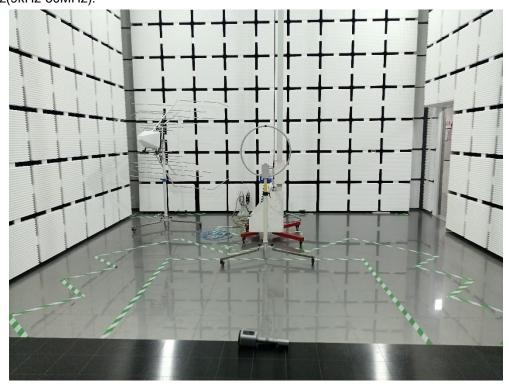


## For 30 MHz ~ 1000 MHz

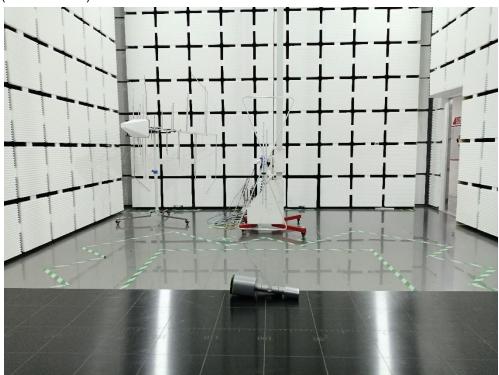
Have pre-scan all test channel, found CH00 which it was worst case, so only show the worst case's data on this report.



| Suspec | Suspected Data List |                   |                |                   |                |            |         |
|--------|---------------------|-------------------|----------------|-------------------|----------------|------------|---------|
| NO.    | Freq.<br>[MHz]      | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Polarity   | Verdict |
| 1      | 50.6125             | 21.39             | 15.42          | 40.00             | 18.61          | Horizontal | PASS    |
| 2      | 76.6812             | 28.65             | 10.33          | 40.00             | 11.35          | Horizontal | PASS    |
| 3      | 108.9338            | 19.45             | 13.62          | 43.50             | 24.05          | Horizontal | PASS    |
| 4      | 292.5062            | 23.14             | 15.44          | 46.00             | 22.86          | Horizontal | PASS    |
| 5      | 555.4975            | 28.96             | 20.78          | 46.00             | 17.04          | Horizontal | PASS    |
| 6      | 991.6338            | 33.05             | 26.35          | 54.00             | 20.95          | Horizontal | PASS    |






# 6. TEST SETUP PHOTOS

Radiated Emission Below 1GHz(9kHz-30MHz):



Below 1GHz(30MHz-1GHz):





## AC Conducted Emission





# 7. EXTERNAL AND INTERNAL PHOTOS

Please Refer to CISRR23122615201

-----End of the report-----