

TEST REPORT

Product : KamiCare, Kami Fall Detect Camera

Trade mark : kami

Model/Type reference : YRS.0409, YRS.1409

Serial Number : N/A

 Report Number
 : EED32Q81469702

 FCC ID
 : 2BD5Y-YRS0409

Date of Issue : Nov. 15, 2024

Test Standards : 47 CFR Part 15 Subpart E

Test result : PASS

Prepared for:

kami vision inc.

2033 Gateway Place Suite 400, San Jose, CA 95110, USA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Approved by:

Report Seal

Zhenxia Wen

Aaron Ma

Reviewed by:

frazer. Li Frazer Li

Zhenxia Wen

Javon Ma

Date:

Nov. 15, 2024

Check No.: 3756200924

Report No.: EED32Q81469702

V Page 2 of 43

Content

1 CONTENT	2
2 VERSION	3
3 TEST SUMMARY	
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	5
4.2 GENERAL DESCRIPTION OF EUT	5
4.3 TEST CONFIGURATION	
4.4 TEST ENVIRONMENT	
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 TEST LOCATION	
4.7 DEVIATION FROM STANDARDS	
4.8 ABNORMALITIES FROM STANDARD CONDITIONS	8
4.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
5 EQUIPMENT LIST	9
6 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
6.1 Antenna Requirement	
6.2 AC POWER LINE CONDUCTED EMISSIONS	
6.3 MAXIMUM CONDUCTED OUTPUT POWER	
6.4 6dB Emisson Bandwidth	
6.5 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
6.6 MAXIMUM POWER SPECTRAL DENSITY	
6.7 FREQUENCY STABILITY	
6.8 RADIATED EMISSION	
6.9 RADIATED EMISSION WHICH FALL IN THE RESTRICTED BANDS	
7 APPENDIX 5G WI-FI	39
PHOTOGRAPHS OF TEST SETUP	40
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	43

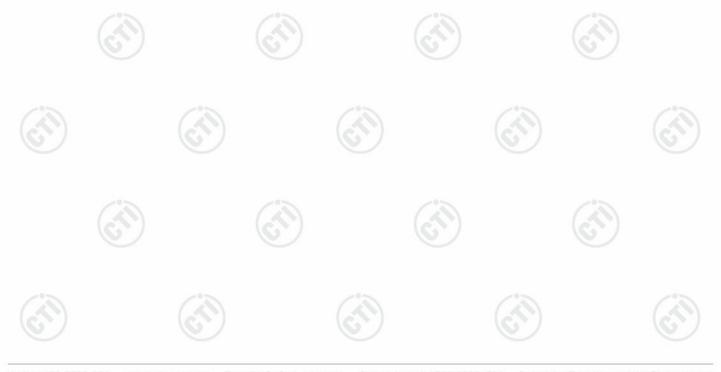
Report No.: EED32Q81469702

2 Version

Version No.	Date	Description	
00	Nov. 15, 2024	Original	_00
	(2)		

Report No. : EED32Q81469702 V Page 4 of 43

3 Test Summary


o root oanniary		
Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
99% Occupied bandwidth	(6)	PASS
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
7 7 7 7 7		/ // 363

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: YRS.0409, YRS.1409

Only the model YRS.0409 was tested. The add model and original model, The electrical circuit design, layout, components used and internal wiring are identical, only model name, appearance color is different.

V Page 5 of 43 Report No.: EED32Q81469702

General Information

4.1 Client Information

Applicant:	kami vision inc.
Address of Applicant:	2033 Gateway Place Suite 400, San Jose, CA 95110, USA
Manufacturer:	kami vision inc.
Address of Manufacturer:	2033 Gateway Place Suite 400, San Jose, CA 95110, USA
Factory :	Shenzhen Joining Free Technology Co., Ltd
Address of Factory :	101, 201, 301, Building A, No.6, Tianyang 7th Road, Dongfang Community, Songgang Street, Baoan District, Shenzhen China

4.2 General Description of EUT

Product Name:	KamiCare,Ka	KamiCare,Kami Fall Detect Camera		
Model No.:	YRS.0409, Y	RS.1409		
Test Model No.:	YRS.0409			
Trade mark:	kami			
Product Type:	☐ Mobile	☐ Portable ☐ Fixed Location		
Type of Modulation:	IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11n(HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM)			
Operating Frequency	U-NII-1: 5150-5250MHz			
Antenna Type:	Internal Antenna			
Antenna Gain:	3.31dBi			
Power Supply:	Adapter:	Model: TPA-418G050200UU01 Input: 100~240V, 50/60Hz Output: 5:0V2.0A		
Test voltage:	DC 5V	(C_{ℓ}) (C_{ℓ}) (C_{ℓ})		
Sample Received Date:	Sep. 25, 2024			
Sample tested Date:	Sep. 25, 2024 to Oct. 28, 2024			

Report No.: EED32Q81469702

V Page 6 of 43

Operation Frequency each of channel

802.11a/802.11n (20MHz) Frequency/Channel Operations:

U-NII-1		
Frequency(MHz)		
5180		
5200		
5220		
5240		
(6,)		

802.11n (40MHz) Frequency/Channel Operations:

U-NII-1		
Channel	Frequency(MHz)	
38	5190	
46	5230	

802.11ac/802.11ax (80MHz) Frequency/Channel Operations:

	U-NII-1
Channel	Frequency(MHz)
42	5210

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

4.3 Test Configuration

EUT Test Software	Settings:		
Software:	/°>	MobaXterm_Personal_22.1	100
EUT Power Grade:	(35)	Default	(3)
Use test software to transmitting of the E		est frequency, the middle frequency and the highest frequency keep	
Test Mode:			
		on and function in typical operation. All the test modes were carried or on, which was shown in this test report and defined as follows:	ut with
Per-scan all kind of	f data rate	in lowest channel, and found the follow list which it	
was worst case.			
	Mode	Data rate	
21	802.11a	6 Mbps	
8	02.11n(HT2	20) MCS0	
8	02.11n(HT4	40) MCS0	(6.2)

4.4 Test Environment

Operating Environment:					
Radiated Spurious Emission	s:				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar				(3)
Conducted Emissions:					
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar	/3		/3	
RF Conducted:					
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar				
	NT (Normal Temperature)		22~25.0 °C		-05
Temperature:	LT (Low Temperature)		-10 °C		
	HT (High Temperature)		50 °C		(0)
	NV (Normal Voltage)		5V		
Working Voltage of the EUT:	LV (Low Voltage)	Protei	4.5V		
	HV (High Voltage)	(3)	5.5V	(3)	

Report No. : EED32Q81469702 V Page 8 of 43

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	HP	HP ZHAN 66 Pro	FCC&CE	СТІ
		14 G4 Notebook		
/05		PC	05	

4.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Conditions

None.

4.9 Other Information Requested by the Customer

None.

4.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
3 Radiated Spurious emission test	Dadiated Spurious emission test	4.5dB (30MHz-1GHz)
	Radiated Spurious emission test	4.8dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
2/		3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32Q81469702 V Page 9 of 43

5 Equipment List

		RF te	st system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Communication test set	R&S	CMW500	107929	06-26-2024	06-25-2025
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-02-2024	09-01-2025
Spectrum Analyzer	R&S	FSV40	101200	07-18-2024	07-17-2025
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-25-2024	06-24-2025
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-12-2023	12-10-2024
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	V2.0.0.0	(cit)	(3)
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025

Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025	
Temperature/ Humidity Indicator	Defu	TH128	1	04-25-2024	04-24-2025	
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025	
Barometer	changchun	DYM3	1188		<u> </u>	
Test software	Fara	EZ-EMC	EMC-CON 3A1.1			
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025	

V Page 10 of 43 Report No.: EED32Q81469702

\(\frac{1}{2}\)	100			/	
ISN	TESEQ	ISN T800	30297	12-14-2023	12-13-2024
10.0	10.2	1/4/	1.3		3 1

			Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
BM Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938- 003	09/07/2024	09/06/2025
Spectrum Analyzer	R&S	FSV40	101200	07/25/2023 07/18/2024	07/24/2024 07/17/2025
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/14/2023	12/13/2024
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/16/2024	04/15/2025
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/2025
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre	(<u> </u>
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A	City	(3
Cable line	Fulai(3M)	SF106	5216/6A	(C)	
Cable line	Fulai(3M)	SF106	5217/6A		

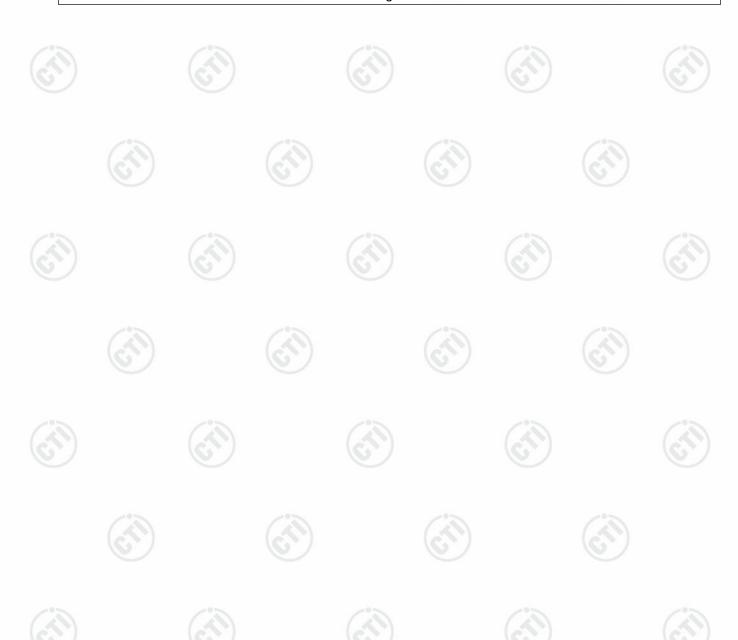
Report No. : EED32Q81469702 V Page 11 of 43

1		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-29-2024	01-28-2025
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-23-2024	01-22-2025
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025
Preamplifier	Tonscend	EMC051845SE	980380	12-14-2023	12-13-2024
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0		
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(3)	
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	(11)	((3)
Cable line	Times	EMC104-NMNM-1000	SN160710		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	(3)
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001		

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No.: EED32Q81469702 V Page 12 of 43

6 Radio Technical Requirements Specification


6.1 Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna: Please see Internal photos

The antenna is internal antenna. The best case gain of the antenna is 3.31dBi.

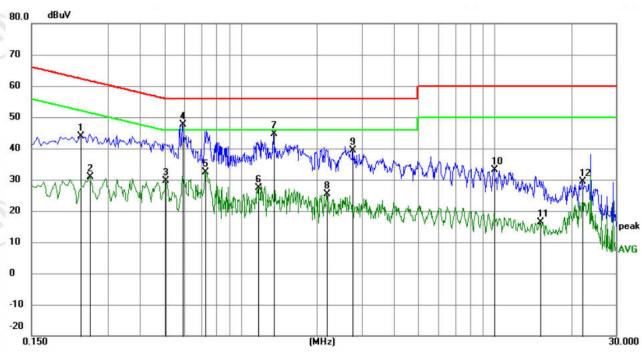
Report No. : EED32Q81469702 V Page 13 of 43

6.2 AC Power Line Conducted Emissions

6.2	AC Power Line C	Conducted Emission	S	(25)
	Test Requirement:	47 CFR Part 15C Section 15.	207	
	Test Method:	ANSI C63.10: 2013		
60	Test Frequency Range:	150kHz to 30MHz	-22	
<u> </u>	Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto	
9	Limit:	Frequency range (MHz)	Limit (c	lBuV)
		Trequency range (wiriz)	Quasi-peak	Average
		0.15-0.5	66 to 56*	56 to 46*
		0.5-5	56	46
		5-30	60	50
		* Decreases with the logarith	m of the frequency.	
	Test Setup:	12		
0.4		Chiatties Bases		
4		Shielding Room		
9				Test Receiver
		EUT		
			AE W	
		#/ f		
			80cm	
		AC Mains LISN1	LISN2 → AC Mai	ins
			1	
0.1			Ground Reference Plane	
4		1 2 3 1	1881	
2	Test Procedure:	The mains terminal distur room.	bance voltage test was	conducted in a shielded
		2) The EUT was connected	I to AC power source	through a LISN 1 (Line
		Impedance Stabilization N	Network) which provides	s a $50\Omega/50\mu\text{H} + 5\Omega$ linear
				units of the EUT were
				ed to the ground reference unit being measured. A
				nultiple power cables to a
		single LISN provided the	•	
		3) The tabletop EUT was pl		llic table 0.8m above the rrangement, the EUT was
		placed on the horizontal g		irangement, the LOT was
4		4) The test was performed w		erence plane. The rear of
				ind reference plane. The
		_	•	to the horizontal ground from the boundary of the
				erence plane for LISNs
		mounted on top of the gro	ound reference plane. T	his distance was between
		•		All other units of the EUT
		and associated equipmen 5) In order to find the maxim		
0		and all of the interface ca		
		ANSI C63.10: 2013 on condu	/ // //	

Report No. : EED32Q81469702 V Page 14 of 43

Test Mode:	All modes were tested, only the worst case was recorded in the report.
Test Results:	Pass

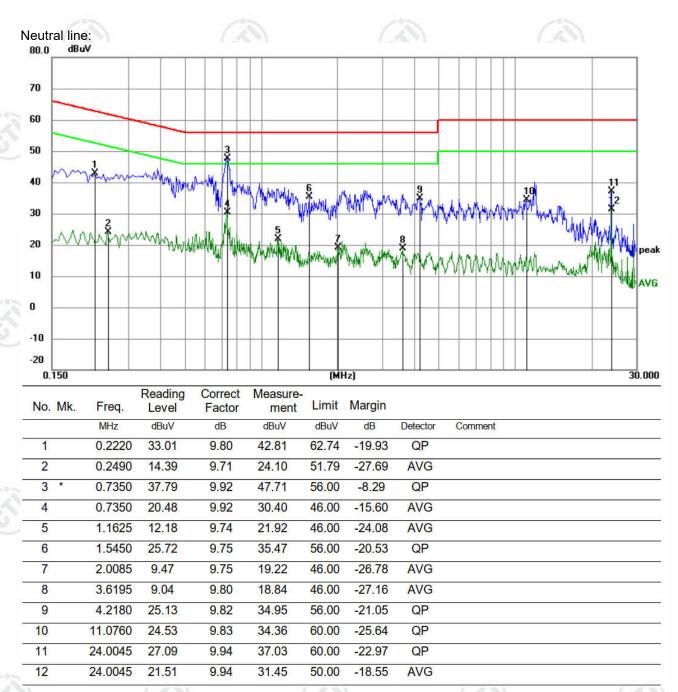


Report No.: EED32Q81469702 V Page 15 of 43

Measurement Data

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2341	34.05	9.76	43.81	62.30	-18.49	QP	
2		0.2535	21.20	9.69	30.89	51.64	-20.75	AVG	
3		0.5055	19.86	9.77	29.63	46.00	-16.37	AVG	
4	*	0.5910	38.04	9.61	47.65	56.00	-8.35	QP	
5		0.7260	22.55	9.94	32.49	46.00	-13.51	AVG	
6		1.1670	17.55	9.74	27.29	46.00	-18.71	AVG	
7		1.3470	34.78	9.74	44.52	56.00	-11.48	QP	
8		2.1840	15.55	9.76	25.31	46.00	-20.69	AVG	
9		2.7600	29.64	9.77	39.41	56.00	-16.59	QP	
10		9.9645	23.26	9.83	33.09	60.00	-26.91	QP	
11		15.1305	6.55	9.85	16.40	50.00	-33.60	AVG	
12		22.1145	19.37	9.99	29.36	60.00	-30.64	QP	


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

6.3 Maximum Conducted Output Power

	100				
Test Requirement:	47 CFR Part 15C S	Section 15.407 (a)			
Test Method:	KDB789033 D02 G	General UNII Tes	t Procedures New Rules	s v02r01 Section	
Test Setup:	6	50)		CIN	
	Control Computer Power Supply Temperature Cab	Attenuator	RF test - System Instrument		
	(6)		ent Procedure of KDB78	(C,j.)	
	2. The RF output of attenuator. The parameters measurement.3. Set to the maxin continuously.	f EUT was conne th loss was comp num power setting	Rules v02r01 Section E, cted to the power meter ensated to the results for g and enable the EUT transver and record the resu	by RF cable and r each ansmit	
Limit:					
	Frequency band (MHz)	Limit		6.	
	5150-5250	≤1W(30dBm) fo	or master device		
		≤250mW(24dBi	m) for client device		
	5250-5350	≤250mW(24dBi	m) for client device or 11	dBm+10logB*	
	5470-5725	≤250mW(24dBi	≤250mW(24dBm) for client device or 11dBm+10logB*		
	5725-5850	≤1W(30dBm)	3m)		
	Remark:	The maximum of measured over using instrumer	e 26dB emission bandwi conducted output power any interval of continuou ntation calibrated in term	must be us transmission	
		equivalent volta	ige.	s of an rms-	
Test Mode:	Transmitting mode	-	ige.	s of an rms-	

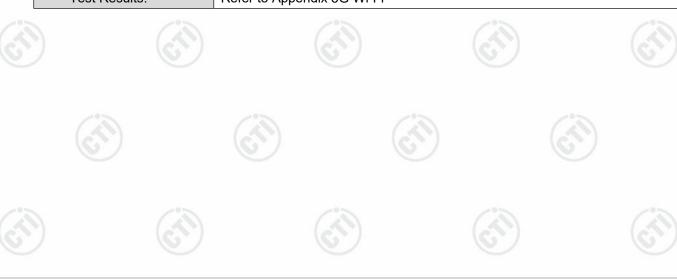
6.4 6dB Emisson Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (e)
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Test Setup:	Control Computer Power Supply Power Supply Power Table RF test System System Instrument Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Limit:	≥ 500 kHz
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix 5G Wi-Fi



6.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

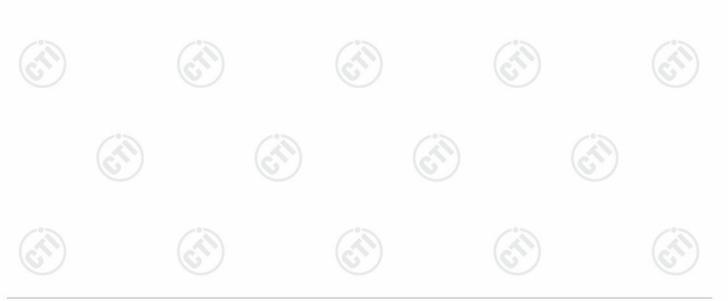
Test Requirement:	47 CFR Part 15C Section 15.407 (a)						
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D						
Test Setup:							
	Control Control Control Adening Power Supply Power Supply Table RF test System Instrument Instrument						
	Remark: Offset=Cable loss+ attenuation factor.						
Test Procedure:	1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. 4. Measure and record the results in the test report.						
Limit:	No restriction limits						
Test Mode:	Transmitting mode with modulation						
Test Results:	Refer to Appendix 5G Wi-Fi						





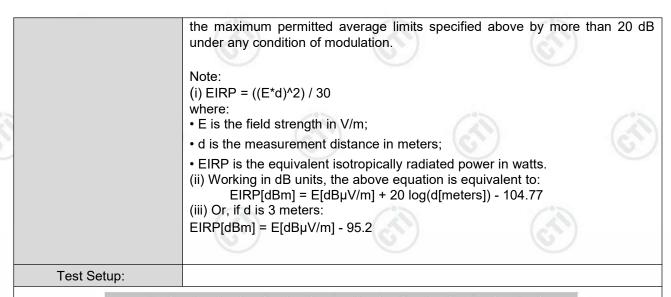
6.6 Maximum Power Spectral Density

			1,70,7	/	
	Test Requirement:	47 CFR Part 15C S	Section 15.407 (a)	
	Test Method:	KDB789033 D02 G	eneral UNII Test	Procedures New	Rules v02r01 Section F
1000	Test Setup:	~	•>	/°>	(cti)
		Control Computer Power Supply TEMPERATURE CAB	Attenuator	RF test - System Instrument	
3		Remark: Offset=Ca	ible loss+ attenua	ation factor	
	Test Procedure:	bandwidth. 1. Set F Auto, Detector = RI 2. Allow the sweep	RBW = 510 kHz/1 MS. s to continue unti	MHz, VBW ≥ 3*R I the trace stabilize	•
	Limit:			1	(27)
		Frequency band (MHz)	Limit		
		5150-5250	≤17dBm in 1Ml	Iz for master devi	ce
			≤11dBm in 1Ml	Iz for client device	
V		5250-5350	≤11dBm in 1Ml	Hz for client device	e (C)
1		5470-5725	≤11dBm in 1Ml	Iz for client device	
		5725-5850	≤30dBm in 500	kHz	
		Remark:	a conducted en	nission by direct c	nsity is measured as connection of a equipment under test.
	Test Mode:	Transmitting mode	with modulation		
	Test Results:	Refer to Appendix	5G Wi-Fi		
_					



6.7 Frequency Stability

(0)	
Test Requirement:	47 CFR Part 15C Section 15.407 (g)
Test Method:	ANSI C63.10: 2013
Test Setup:	
	Control Computer Power Supply Attenuator Instrument Table RF test System Rystem Instrument
	B1-0"1-0-11
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 1.The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. 2. Turn the EUT on and couple its output to a spectrum analyzer. 3. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. 4. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. 5. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix 5G Wi-Fi


Report No. : EED32Q81469702 V Page 22 of 43

6.8 Radiated Emission

	T D	47.0ED D . 1.4EO O 1		5.000 1.4	F 407 (L)		100	/
	Test Requirement:	47 CFR Part 15C Sect	ion 1	5.209 and 1	5.407 (b)			
	Test Method:	ANSI C63.10 2013		- (C: A	- l : - Ol :		\	
	Test Site:	Measurement Distance	e: 3m	· · · · · · · · · · · · · · · · · · ·	- / /		'	- (3)
	Receiver Setup:	Frequency		Detector	19.0	-/-	VBW	Remark
		0.009MHz-0.090MH		Peak	10kH		30kHz	Peak
		0.009MHz-0.090MH		Average			30kHz	Average
		0.090MHz-0.110MH		Quasi-pea			30kHz	Quasi-peak
		0.110MHz-0.490MH	łz	Peak	10kH		30kHz	Peak
		0.110MHz-0.490MH	Ηz	Average	10kH	Ηz	30kHz	Average
		0.490MHz -30MHz	<u>z</u>	Quasi-pea	k 10kH	Ηz	30kHz	Quasi-peak
		30MHz-1GHz		Quasi-pea	k 100 k	Hz	300kHz	Quasi-peak
		Above 1GHz		Peak	1MF	lz	3MHz	Peak
		Above IGHZ	7	Peak	1MF	lz	10kHz	Average
	Limit:							
		Frequency	l	ld strength	Limit	F	Remark	Measurement
		0.0000411-0.4000411-	•	rovolt/meter)	(ubuv/III)		(2)	distance (m)
		0.009MHz-0.490MHz		00/F(kHz)	-		- (G)	300
		0.490MHz-1.705MHz	240	000/F(kHz)	-		-	30
		1.705MHz-30MHz		30	-	_		30
		30MHz-88MHz		100	40.0		asi-peak	3
3		88MHz-216MHz	2)	150	43.5	-	asi-peak	3
-		216MHz-960MHz	/	200	46.0		asi-peak	3
		960MHz-1GHz		500	54.0	Qu	asi-peak	3
		Above 1GHz		500	54.0	Α	verage	3
		*(1) For transmitters outside of the 5.15-5 dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz because of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall be above or below the because of the band edge, and folioearly to a level of 27 Remark: The emission measurements employed frequency bands 9-9 emission limits in the san average detector, to	5.35 eratii band ppera 5.725 eratii coe lin eratio eratii fooe lin erati oon li tom on	GHz band ng in the 5.2 shall not excepting in the 5.7 nited to a level of 15 5 MHz above a level of 15 5 MHz above a CISPR z, 110-490k ree bands a	shall not 5-5.35 GH seed an e. 5.47-5.72 shall no 25-5.85 G seed of -27 ing linearly om 25 Ml seed or belo band edg in the quasi-pearly and a re based	z baz	and: All em of -27 dB GHz band: aceed an oand: n/MHz at 7 10 dBm/N above or b at 5 MHz a ne band e ve table detector e ve 1000 N measureme	e.i.r.p. of -27 hissions outside Bm/MHz. All emissions e.i.r.p. of -27 5 MHz or more MHz at 25 MHz below the band above or below dge increasing are based on except for the MHz. Radiated ents employing

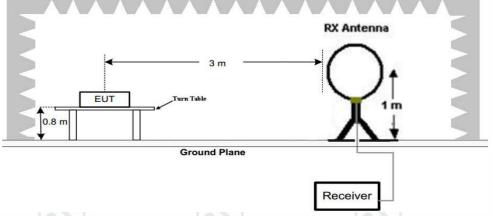
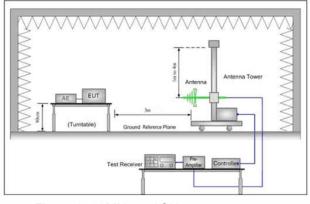



Figure 1. Below 30MHz

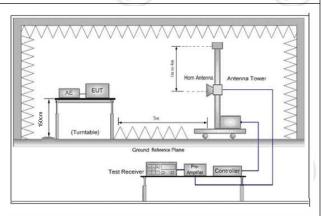


Figure 2. 30MHz to 1GHz

Test Procedure:

Figure 3. Above 1 GHz

a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the
and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case
antenna, which was mounted on the top of a variable-height antenna tower.c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both
maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving
determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the sour of emissions at each frequency of significant emissions, with polarizat oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern the emission and staying aimed at the emission source for receiving maximum signal. The final measurement antenna elevation shall be to



Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 6Mbps for 802.11 a was recorded in the report.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	!	84.0068	25.67	10.17	35.84	40.00	-4.16	QP	100	360	
2	!	95.9975	26.63	12.57	39.20	43.50	-4.30	QP	100	7	
3	ļ _}	192.0141	27.61	12.03	39.64	43.50	-3.86	QP	100	60	
4	ļ.	240.0294	27.63	13.89	41.52	46.00	-4.48	QP	100	28	
5	*	348.0274	25.36	17.06	42.42	46.00	-3.58	QP	100	313	
6	Į.	852.0804	15.95	25.24	41.19	46.00	-4.81	QP	100	7	

Report No.: EED32Q81469702

V Page 26 of 43

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	48.0024	22.76	13.04	35.80	40.00	-4.20	QP	100	193	
2	1	96.0144	27.21	11.54	38.75	43.50	-4.75	QP	100	129	
3		120.0028	26.61	10.50	37.11	43.50	-6.39	QP	100	183	
4	1	168.0302	29.51	9.64	39.15	43.50	-4.35	QP	100	108	
5		216.0240	27.07	11.43	38.50	46.00	-7.50	QP	100	87	
6	3	492.0370	18.04	17.28	35.32	46.00	-10.68	QP	100	321	

Report No.: EED32Q81469702 V Page 27 of 43

Transmitter Emission above 1GHz

Remark: Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 a mode was the worst case; for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case; only the worst case was recorded in the report.

100		100				/ 53		1.00		
Mode	Mode:)2.11 a Tran	smitting		Chann	el:	5180MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1317.3817	7.45	36.69	44.14	68.20	24.06	PASS	Horizontal	PK	
2	2402.6403	12.36	35.83	48.19	68.20	20.01	PASS	Horizontal	PK	
3	4102.8603	18.24	33.86	52.10	68.20	16.10	PASS	Horizontal	PK	
4	7770.2385	-2.46	49.49	47.03	68.20	21.17	PASS	Horizontal	PK	
5	11944.3722	5.17	45.12	50.29	68.20	17.91	PASS	Horizontal	PK	
6	16445.6973	9.11	43.83	52.94	68.20	15.26	PASS	Horizontal	PK	
7	1373.4873	8.14	37.09	45.23	68.20	22.97	PASS	Vertical	PK	
8	2069.3069	10.66	36.81	47.47	68.20	20.73	PASS	Vertical	PK	
9	3449.3949	15.63	34.74	50.37	68.20	17.83	PASS	Vertical	PK	
10	7770.2385	-2.46	50.34	47.88	68.20	20.32	PASS	Vertical	PK	
11	10051.3776	4.34	44.25	48.59	68.20	19.61	PASS	Vertical	PK	
12	16599.805	11.38	41.94	53.32	68.20	14.88	PASS	Vertical	PK	

Mod	de:		802.11 a Tran	smitting		Channe	el:	5200MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1254.6755	6.33	36.82	43.15	68.20	25.05	PASS	Horizontal	PK
2	2173.8174	10.40	36.38	46.78	68.20	21.42	PASS	Horizontal	PK
3	3686.4686	15.67	33.46	49.13	68.20	19.07	PASS	Horizontal	PK
4	6908.8454	-4.50	48.17	43.67	68.20	24.53	PASS	Horizontal	PK
5	9828.8414	3.83	45.25	49.08	68.20	19.12	PASS	Horizontal	PK
6	15502.6501	9.85	42.37	52.22	68.20	15.98	PASS	Horizontal	PK
7	1224.4224	6.23	36.78	43.01	68.20	25.19	PASS	Vertical	PK
8	2065.4565	10.67	36.01	46.68	68.20	21.52	PASS	Vertical	PK
9	3701.8702	15.95	33.52	49.47	68.20	18.73	PASS	Vertical	PK
10	6886.4193	-4.52	48.23	43.71	68.20	24.49	PASS	Vertical	PK
11	11970.8235	5.72	45.14	50.86	68.20	17.34	PASS	Vertical	PK
12	16844.1922	11.59	39.92	51.51	68.20	16.69	PASS	Vertical	PK

Report No.: EED32Q81469702

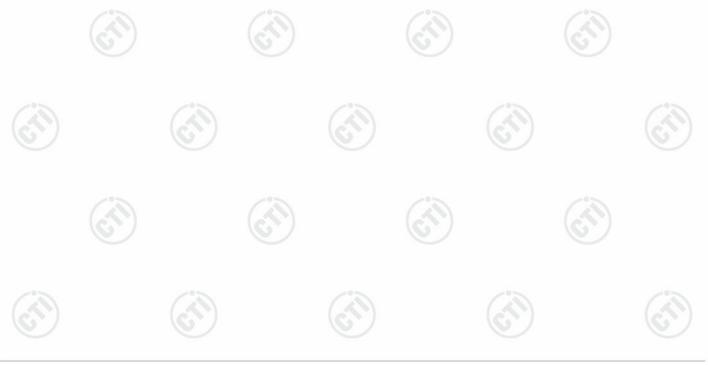
V Page 28 of 43

		1 1 2		1 100		1 1	16.7	186	201		
	Mode:			02.11 a Tran	smitting		Channe	el:	5240MHz		
	NO	Freq. [MHz]	· I IUDI I		Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
0	1	1374.0374	8.14	36.18	44.32	68.20	23.88	PASS	Horizontal	PK	
3	2	1937.8438	12.16	36.00	48.16	68.20	20.04	PASS	Horizontal	PK	
	3	3314.0814	14.49	35.61	50.10	68.20	18.10	PASS	Horizontal	PK	
	4	6904.2452	-4.37	49.08	44.71	68.20	23.49	PASS	Horizontal	PK	
	5	9821.9411	3.95	45.41	49.36	68.20	18.84	PASS	Horizontal	PK	
	6	13448.6474	10.54	41.35	51.89	68.20	16.31	PASS	Horizontal	PK	
	7	1282.1782	6.87	36.98	43.85	68.20	24.35	PASS	Vertical	PK	
	8	1922.4422	11.80	37.21	49.01	68.20	19.19	PASS	Vertical	PK	
	9	3085.2585	13.82	35.80	49.62	68.20	18.58	PASS	Vertical	PK	
	10	7357.9429	-3.74	48.36	44.62	68.20	23.58	PASS	Vertical	PK	
	11	10580.979	5.39	45.25	50.64	68.20	17.56	PASS	Vertical	PK	
Þ	12	13335.9418	8.72	42.89	51.61	68.20	16.59	PASS	Vertical	PK	

Mode	е:	80	02.11 n(HT4	0) Transmitti	ng	Channe	el:	5190MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1316.8317	7.44	37.70	45.14	68.20	23.06	PASS	Horizontal	PK
2	2036.8537	10.38	36.62	47.00	68.20	21.20	PASS	Horizontal	PK
3	3394.9395	14.91	36.31	51.22	68.20	16.98	PASS	Horizontal	PK
4	6903.0952	-4.34	48.30	43.96	68.20	24.24	PASS	Horizontal	PK
5	9606.8803	2.97	45.20	48.17	68.20	20.03	PASS	Horizontal	PK
6	15005.2503	10.89	42.57	53.46	68.20	14.74	PASS	Horizontal	PK
7	1431.7932	8.30	36.92	45.22	68.20	22.98	PASS	Vertical	PK
8	2189.2189	10.21	37.30	47.51	68.20	20.69	PASS	Vertical	PK
9	3559.956	14.99	34.60	49.59	68.20	18.61	PASS	Vertical	PK
10	7361.3931	-3.78	47.51	43.73	68.20	24.47	PASS	Vertical	PK
11	10606.8553	5.97	44.94	50.91	68.20	17.29	PASS	Vertical	PK
12	15131.7566	11.57	41.28	52.85	68.20	15.35	PASS	Vertical	PK

Report No.: EED32Q81469702 V Page 29 of 43

Mode):	80)2.11 n(HT4	0) Transmitti	ng	Channe	el:	5230MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1163.9164	7.26	37.55	44.81	68.20	23.39	PASS	Horizontal	PK
2	1857.5358	11.15	35.75	46.90	68.20	21.30	PASS	Horizontal	PK
3	3341.0341	14.63	35.27	49.90	68.20	18.30	PASS	Horizontal	PK
4	7784.6142	-2.54	49.49	46.95	68.20	21.25	PASS	Horizontal	PK
5	10488.9744	4.93	44.81	49.74	68.20	18.46	PASS	Horizontal	PK
6	15000.65	11.51	40.47	51.98	68.20	16.22	PASS	Horizontal	PK
7	1402.6403	8.42	36.18	44.60	68.20	23.60	PASS	Vertical	PK
8	2178.7679	10.35	36.40	46.75	68.20	21.45	PASS	Vertical	PK
9	3701.3201	15.96	33.07	49.03	68.20	19.17	PASS	Vertical	PK
10	7784.6142	-2.54	49.89	47.35	68.20	20.85	PASS	Vertical	PK
11	10129.0065	2.54	46.27	48.81	68.20	19.39	PASS	Vertical	PK
12	11969.0985	5.69	45.03	50.72	68.20	17.48	PASS	Vertical	PK

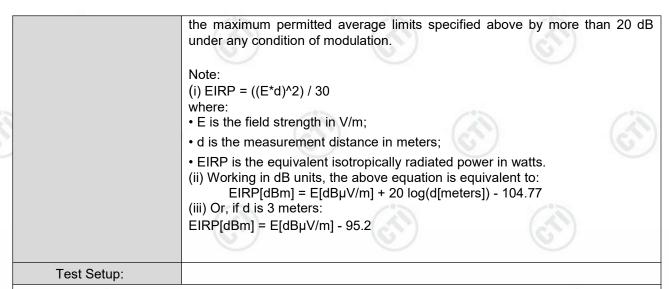

Note:

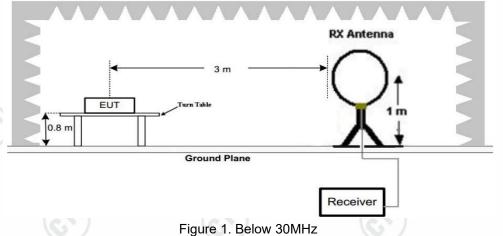
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

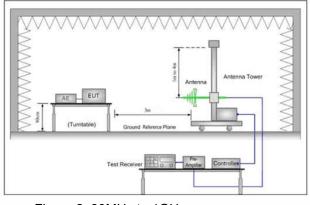
Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


Report No. : EED32Q81469702 V Page 30 of 43


6.9 Radiated Emission which fall in the restricted bands


Test Requirement:	47 CFR Part 15C Sect	ion 1	15.209 and 1	5.407 (b)			
Test Method:	ANSI C63.10 2013						
Test Site:	Measurement Distance	e: 3n	n (Semi-Aned	choic Char	nbe	r)	/3
Receiver Setup:	Frequency	(2)	Detector	RBV	N	VBW	Remark
	0.009MHz-0.090MH	Ιz	Peak	10kH	Ηz	30kHz	Peak
	0.009MHz-0.090MH	Ηz	Average	10kH	Ηz	30kHz	Average
	0.090MHz-0.110MH	Ηz	Quasi-pea	k 10kH	Ηz	30kHz	Quasi-peak
	0.110MHz-0.490MH	Ηz	Peak	10kH	Ηz	30kHz	Peak
	0.110MHz-0.490MH	Ηz	Average	10kH	Ηz	30kHz	Average
	0.490MHz -30MHz		Quasi-pea	k 10kH		30kHz	Quasi-peak
	30MHz-1GHz		Quasi-pea			300kHz	Quasi-peak
	(2	0	Peak	1MF		3MHz	Peak
	Above 1GHz		Peak	1MH	-	10kHz	Average
Limit:						1 3 1 1 1	9-
	Frequency		ld strength rovolt/meter)	Limit (dBuV/m)	F	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	-	100/F(kHz)	_		- (~	300
	0.490MHz-1.705MHz		000/F(kHz)	_		- 60	30
	1.705MHz-30MHz		30	_		_	30
	30MHz-88MHz		100	40.0	Qu	asi-peak	3
	88MHz-216MHz	10	150	43.5		asi-peak	3
	216MHz-960MHz	7	200	46.0	-	asi-peak	3
	960MHz-1GHz		500	54.0		asi-peak	3
	Above 1GHz		500	54.0		verage	3
	*(1) For transmitters outside of the 5.15-5 dBm/MHz. (2) For transmitters open of the 5.15-5.35 GHz because of the 5.47-5 dBm/MHz. (4) For transmitters open (i) All emissions shall be above or below the because or below the because of the band edge, and folionearly to a level of 27 Remark: The emission of the band edge, and folionearly to a level of 27 Remark: The emission of the band edge, and folionearly to a level of 27 Remark: The emission of the band edge, and folionearly to a level of 27 Remark: The emission of the band edge, and folionearly to a level of 27 Remark: The emission of the band edge, and folionearly to a level of 27 Remark: The emission of the band edge, and folionearly to a level of 27 Remark: The emission of the band edge, and folionearly to a level of 27 Remark: The emission of the band edge, and folionearly to a level of 27 Remark: The emission of the band edge.	erationand operations on the seration of the seration of the seration of the seration on the seration of the s	GHz band ng in the 5.22 shall not excepting in the 5.72 mited to a level of 15 be deepen and from the 15 be deepen and fr	shall not 5-5.35 GH seed an e.i 5.47-5.72 shall no 25-5.85 Gi rel of -27 ding linearl om 25 Mi 5.6 dBm/Mi re or belo band edg in the	z bai.r.p.: i.r.p.: 5 G t ex Hz k dBm Hz a lHz a lHz a e.	and: All em of -27 dE GHz band: acceed an oand: n/MHz at 7 10 dBm/M above or b at 5 MHz ane band e	e.i.r.p. of -27 hissions outside Bm/MHz. All emissions e.i.r.p. of -27 HZ MHz or more MHz at 25 MHz below the band above or below edge increasing
	measurements emplored frequency bands 9-9 emission limits in these an average detector, to	0kHz se th	z, 110-490kl ree bands a	Hz and a	abov on r	re 1000 l neasurem	MHz. Radiated ents employing

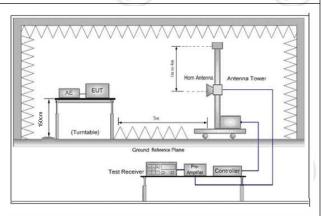
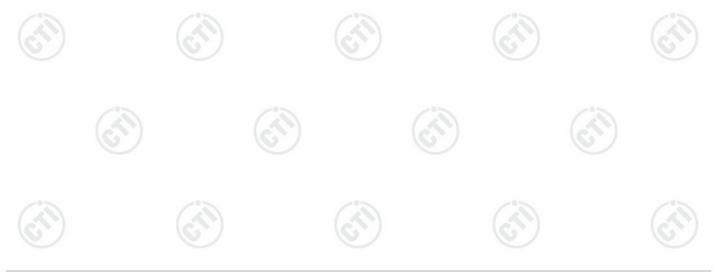


Figure 2. 30MHz to 1GHz

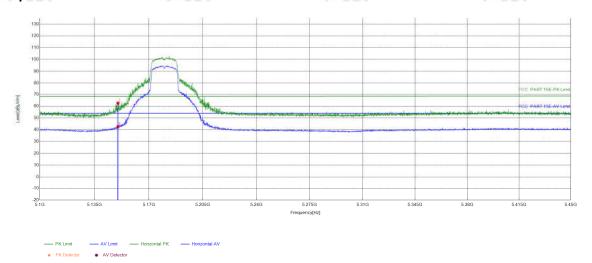
Figure 3. Above 1 GHz

Test Procedure:	j. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz:



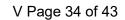
V Page 32 of 43 Report No.: EED32Q81469702

	Place the measurement antenna away from each area of the EUT
	determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
	k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	I. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	 p. Test the EUT in the lowest channel, the Highest channel q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	r. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass

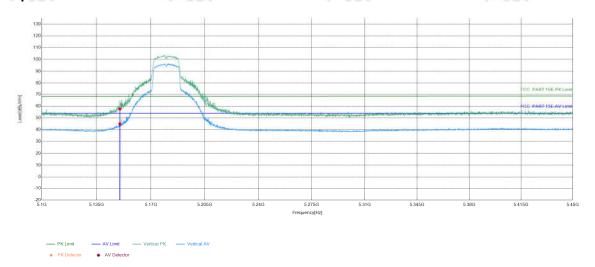


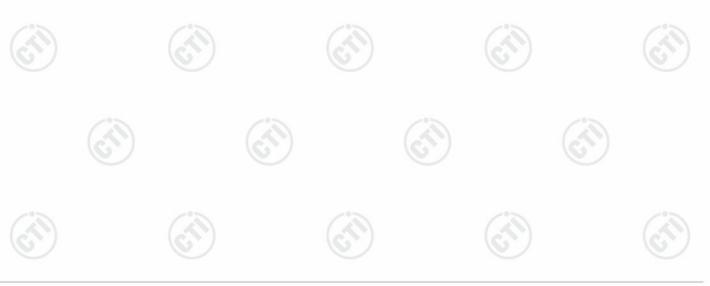
Test Data:

Test_Mode	802.11 a Transmitting	Test_Frequency	5180MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\10\15
Remark	1		

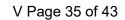


Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5150	20.05	42.55	62.60	68.24	5.64	PASS	Horizontal	PK
	2	5150	20.05	22.42	42.47	54.00	11.53	PASS	Horizontal	AV

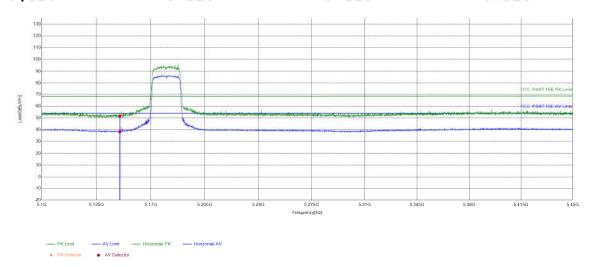


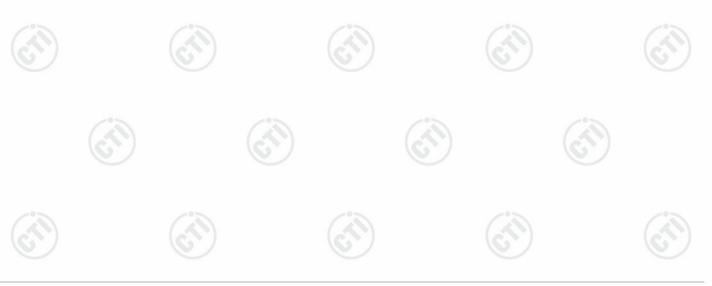


Test_Mode	802.11 a Transmitting	Test_Frequency	5180MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\10\15
Remark	1		

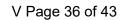


S	uspecte	d List								7 7 7 7	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	5150	20.05	37.70	57.75	68.24	10.49	PASS	Vertical	PK	
	2	5150	20.05	24.86	44.91	54.00	9.09	PASS	Vertical	AV	

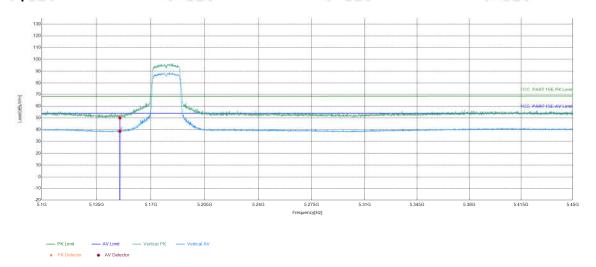


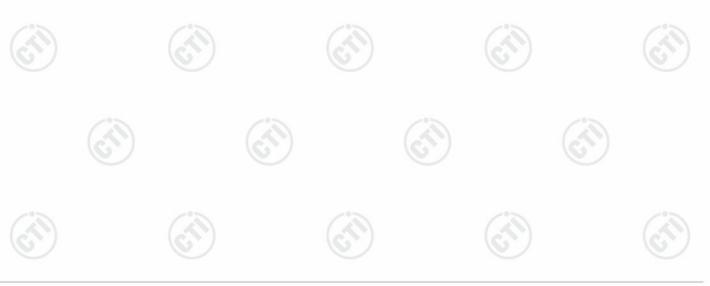


Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5180MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\10\15
Remark	1		

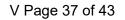


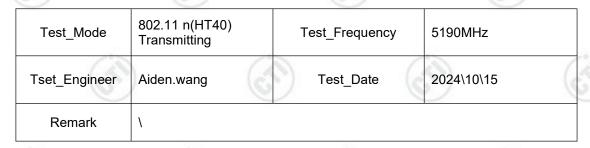
S	uspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5150	20.05	31.47	51.52	68.24	16.72	PASS	Horizontal	PK
	2	5150	20.05	18.21	38.26	54.00	15.74	PASS	Horizontal	AV

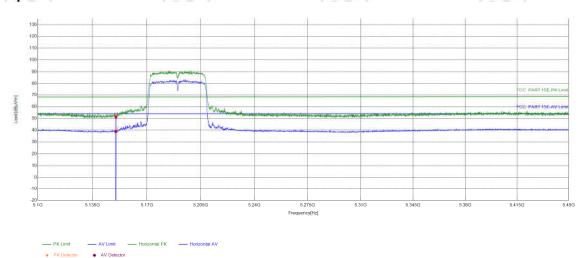


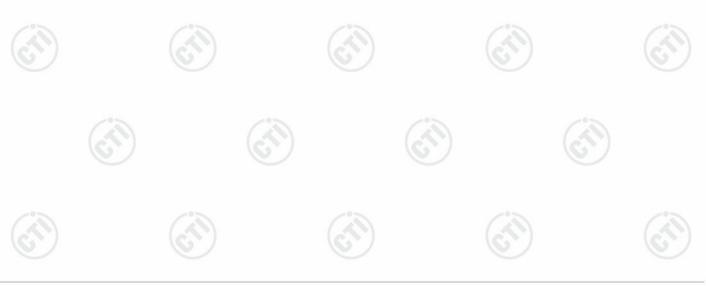


Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5180MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\10\15
Remark	1		

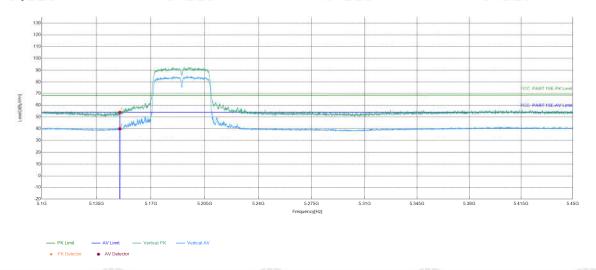



Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	20.05	30.04	50.09	68.24	18.15	PASS	Vertical	PK
2	5150	20.05	18.69	38.74	54.00	15.26	PASS	Vertical	AV





Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	5150	20.05	31.34	51.39	68.24	16.85	PASS	Horizontal	PK
	2	5150	20.05	18.94	38.99	54.00	15.01	PASS	Horizontal	AV



Report No.: EED32Q81469702 V Page 38 of 43

Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5190MHz
Tset_Engineer	Aiden.wang	Test_Date	2024\10\15
Remark	1		

Test Graph

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	20.05	33.93	53.98	68.24	14.26	PASS	Vertical	PK
2	5150	20.05	19.95	40.00	54.00	14.00	PASS	Vertical	AV

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

7 Appendix 5G Wi-Fi

Refer to Appendix: 5G Wi-Fi Band 1 of EED32Q81469702

Report No. : EED32Q81469702 V Page 43 of 43

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32Q81469701 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

