

Radio Test Report Basetime BV Locator One

47 CFR Part 15.255 Effective Date 1st October 2022

DXX: Part 15 Low Power Communication Device Transmitter

Test Date: 6th December 2023 to 12th December 2023

Report Number: 12-14198-8-23 Issue 01

The testing was carried out by RN Electronics Ltd, an independent test house, at their test facility located at:

R.N. Electronics Ltd.

Arnolds Court
Arnolds Farm Lane
Mountnessing
Essex
CM13 1UT
U.K.

www.kiwa.com Telephone: +44 (0) 1277 352219
Email: uk.rnenquiries@kiwa.com

This laboratory is accredited in accordance with the recognised International Standard ISO/IEC 17025. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer joint ISO-ILAC-IAF communiqué dated April 2017).

This report is not to be reproduced by any means except in full and in any case not without the written approval of R.N. Electronics Ltd.

File Name: Basetime BV.14198-8 Issue 01

QMF21J - Issue 05 - RNE Issue 03; 47 CFR Part 15C 2022

REPORT NUMBER: 12-14198-8-23 Issue 01

ALL RIGHTS RESERVED

Arnolds Court, Arnolds Farm Lane, Mountnessing, Brentwood Essex, CM13 1UT Certificate of Test 14198-8

The equipment noted below has been partially tested and, where appropriate, conforms to the relevant subpart of 47 CFR Part 15C. This is a certificate of test only and should not be confused with an equipment authorisation. Other standards may also apply.

Equipment:	Locator One
Model Number:	Not declared

Unique Serial Number: 03-FD

Applicant: Basetime BV

Houten
Netherlands
3991CP

Lichtschip 75A

Full measurement results are detailed in Report Number:

12-14198-8-23 Issue 01

Test Standards: 47 CFR Part 15.255 Effective Date 1st October 2022

DXX: Part 15 Low Power Communication Device Transmitter

NOTE:

With reference to the Rule part detailed, not all tests within the Rule part have been applied at the request of the applicant. The following tests have not been performed at the request of Basetime BV:- Frequency stability, 6dB Occupied bandwidth. Certain tests were not performed based upon applicant's declarations. Certain other requirements are subject to applicant's declaration only and have not been tested/verified. For details refer to section 3 of this report.

DEVIATIONS: No deviations were applied.

This certificate relates only to the unit tested as identified by a unique serial number and in the condition at the time it was tested. It does not relate to any other similar equipment and performance of the product before or after the test cannot be guaranteed. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of unit not meeting the intentions of the standard or the requirements of the Federal Regulations, particularly under different conditions to those during testing. Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Date of Test:	6th December 2023 to 12th December 2023	1
Test Engineer Graham Blake		
Approved By: Test Development Engineer		
Customer Representative:		UKAS TESTING

ALL RIGHTS RESERVED

1 Contents

1		tents	
2	Equ	ipment under test (EUT)	4
	2.1	Equipment specification	4
	2.2	Configurations for testing	5
	2.3	Functional description	5
	2.4	Modes of operation	5
	2.5	Emissions configuration	6
3	Sun	nmary of test results	
4	Spe	cifications	8
	4.1	Relevant standards	8
	4.2	Deviations	8
5	Tes	ts, methods and results	9
	5.1	AC power line conducted emissions	9
	5.2	Radiated emissions 9 - 150 kHz	.10
	5.3	Radiated emissions 150 kHz - 30 MHz	.11
	5.4	Radiated emissions 30 MHz -1 GHz	.12
	5.5	Radiated emissions 1 - 40 GHz	.14
	5.6	Radiated emissions 40 - 200 GHz	.16
	5.7	Peak & Average EIRP	.19
	5.8	Peak Conducted Power	
	5.9	Frequency stability	.21
	5.10	Occupied bandwidth	.21
	5.11	Duty Cycle	
6	Plot	s/Graphical results	.24
	6.1	Radiated emissions 9 – 150 kHz	.24
	6.2	Radiated emissions 150 kHz – 30 MHz	. 25
	6.3	Radiated emissions 30 MHz -1 GHz	.26
	6.4	Radiated emissions 1 – 40 GHz	.28
	6.5	Radiated emissions 40 – 200 GHz	.40
	6.6	Duty Cycle	.62
7		lanatory Notes	
	7.1	Explanation of Table of Signals Measured	.64
	7.2 I	Explanation of limit line calculations for radiated measurements	.65
8	Pho	tographs	.67
	8.1	Radiated emission diagrams	.67
9	Tes	st equipment calibration list	.68
1(0 Αι	uxiliary and peripheral equipment	.69
	10.1	Customer supplied equipment	
	10.2	R.N. Electronics Ltd supplied equipment	
11	1 Co	ndition of the equipment tested	
	11.1	Modifications before test	
	11.2	Modifications during test	.70
12	2 De	scription of test sites	
	0 AL	han detine and write	70

ALL RIGHTS RESERVED

2 Equipment under test (EUT)

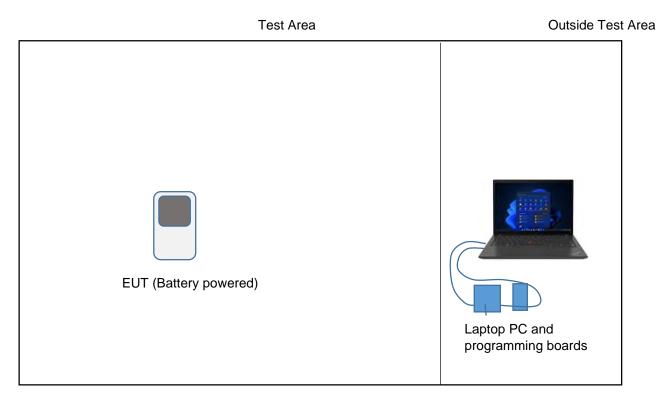
2.1 Equipment specification

Applicant	Basetime BV	
	Lichtschip 75A	
	Houten	
	Netherlands	
	3991CP	
Manufacturer of EUT	Basetime BV	
Full Name of EUT	Locator One	
Model Number of EUT	Not declared	
Serial Number of EUT	03-FD	
Date Received	1st December 2023	
Date of Test:	6th December 2023 to 12th Decem	ber 2023
Purpose of Test	To demonstrate design compliance	e to the relevant rules of Chapter 47 of the Code
ruipose or rest	of Federal Regulations.	
Date Report Issued	10th April 2024	
	This device can be mounted on an	object. It can be configured remotely and it can
Main Function	monitor horizontal and vertical movements by taking scheduled GNSS	
	measurements. The GNSS data is	sent to a cloud environment for data processing.
Information Specification	Height	200 mm
	Width	300 mm
	Depth	160 mm
	Weight	2 kg (approx)
	Voltage	4.2 VDC
	Current	Not declared

ALL RIGHTS RESERVED

2.2 Configurations for testing

General Parameters	
EUT Normal use position	Typically pala mounted
•	Typically pole mounted
Choice of model(s) for type tests	Sample
Antenna details	Internal Antenna ADFGP.50A
Antenna port	Internal
Baseband Data port (yes/no)?	No
Highest Signal generated in EUT	60.5 GHz
Lowest Signal generated in EUT	32.768 kHz
Hardware Version (HVIN)	V2.2
Software Version	Not applicable
Firmware Version (FVIN)	Not applicable
Type of Equipment	Multi-radio
Technology Type	Field disturbance sensor
Geo-location (yes/no)	Yes
TX Parameters	
Alignment range – transmitter	60.5 GHz (Single UWB frequency)
EUT Declared Modulation Parameters	UWB Radar
EUT Declared Power level	Not declared
EUT Declared Signal Bandwidths	Not declared
EUT Declared Channel Spacing's	Single frequency
EUT Declared Duty Cycle	Not declared
Unmodulated carrier available?	No
Declared frequency stability	Not declared
RX Parameters	
Alignment range – receiver	60.5 GHz (Single UWB frequency)
EUT Declared RX Signal Bandwidth	Not declared
FCC Parameters	
FCC Transmitter Class	DXX: Part 15 Low Power Communication Device Transmitter
	·


2.3 Functional description

The device can only be configured remotely and works completely autonomously. The device collects GNSS data during pre-scheduled measurements. The data is sent using an LTE-M connection. The EUT incorporates a 60 GHz pulsed RADAR radio operating on a single frequency.

2.4 Modes of operation

Mode Reference	Description	Used for testing
Mode 1	Continuously transmitting pulsed 60 GHz Radar signals at maximum power.	Yes

2.5 Emissions configuration

The unit was powered from its internal battery which was fully charged prior to test. Using the laptop PC and programming interface, the EUT was flashed with the supplied firmware "Settlement_Beacon-v93.0.6-only_radar_ct-f964a0c6.hex". Once reprogrammed the EUT was restarted. Upon reboot the EUT repeatedly transmitted 60 GHz RADAR pulses in quick succession.

2.5.1 Signal leads

Port Name	Cable Type	Connected
Programming port	12-way connector	No*

^{*}Port only used for programming

ALL RIGHTS RESERVED

3 Summary of test results

The Locator One was tested for compliance to the following standard:

47 CFR Part 15.255 Effective Date 1st October 2022 DXX: Part 15 Low Power Communication Device Transmitter

Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of equipment not meeting the intentions of the standard or the essential requirements of the directive, particularly under different conditions to those during testing. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Title	References	Results
Transmitter Tests		
AC power line conducted emissions	47 CFR Part 15C Part 15.207	NOT APPLICABLE ¹
2. Radiated emissions 9 - 150 kHz	47 CFR Part 15C Part 15.209	PASSED
3. Radiated emissions 150 kHz - 30 MHz	47 CFR Part 15C Part 15.209	PASSED
4. Radiated emissions 30 MHz -1 GHz	47 CFR Part 15C Part 15.209 and 15.255(d)(2)	PASSED
5. Radiated emissions 1 - 40 GHz	47 CFR Part 15C Part 15.209 and 15.255(d)(2)	PASSED
6. Radiated emissions 40 - 200 GHz	47 CFR Part 15C Part 15.255(d)(3)	PASSED
7. Peak & Average EIRP	47 CFR Part 15C Part 15.255(c)(3)	PASSED
8. Peak Conducted Power	47 CFR Part 15C Part 15.255(f)	NOT APPLICABLE ²
Frequency stability	47 CFR Part 15C Part 15.255(e)1	NOT TESTED ³
10. Occupied bandwidth	47 CFR Part 15C Part 15.255(c)(3)/(e)/(2)	NOT TESTED ³
11. Duty Cycle	47 CFR Part 15C Part 15.255(c)(3)	PASSED

¹ EUT does not operate from the AC power lines nor contain provisions for operation while connected to AC power lines.

² No test requirement for field disturbance sensors/radars.

³ Not tested at request of applicant.

ALL RIGHTS RESERVED

4 Specifications

The tests were performed and operated in accordance with R.N. Electronics Ltd procedures and the relevant standards listed below.

REPORT NUMBER: 12-14198-8-23 Issue 01

4.1 Relevant standards

Ref.	Standard Number	Version	Description
4.1.1	47 CFR Part 15C	2022	Federal Communications Commission PART 15 – RADIO
			FREQUENCY DEVICES
4.1.2	ANSI C63.10	2013	American National Standard of Procedures for Compliance
			Testing of Unlicensed Wireless Devices
4.1.3	ANSI C63.4	2014	American National Standard for Methods of Measurement of
			Radio-Noise Emissions from Low-Voltage Electrical and
			Electronic Equipment in the Range of 9 kHz to 40 GHz
4.1.4	KDB 842590 D01 v0 ⁻	12019	Federal Communications Commission Office of Engineering and
			Technology Laboratory Division; Basic certification requirements
			and measurement procedures for Upper Microwave Flexible Use
			Service (UMFUS) devices

4.2 **Deviations**

No deviations were applied.

ALL RIGHTS RESERVED

Tests, methods and results 5

5.1 **AC** power line conducted emissions

NOT APPLICABLE: EUT does not operate from the AC power lines nor contain provisions for operation while connected to AC power lines.

REPORT NUMBER: 12-14198-8-23 Issue 01

REPORT NUMBER: 12-14198-8-23 Issue 01

5.2 Radiated emissions 9 - 150 kHz

5.2.1 **Test methods**

ALL RIGHTS RESERVED

Test Requirements: 47 CFR Part 15C Part 15.209 [Reference 4.1.1 of this report] Test Method: ANSI C63.10 Clause 6.4 & 6.6 [Reference 4.1.2 of this report]

Limits: 47 CFR Part 15C Part 15.209/15.255(d)(2) [Reference 4.1.1 of this report]

5.2.2 **Configuration of EUT**

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was rotated in all three orthogonal planes. Radiated Emissions testing was performed with a fully charged battery. The EUT was operated in Mode 1.

5.2.3 **Test procedure**

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Measurements were made in a semi-anechoic chamber (pre-scan) with any final measurements required performed on an OATS without a ground plane. The antenna was placed 1m above the ground. The equipment was rotated 360 degrees to record the worst case emissions.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated. Tests were performed using Test Site M.

5.2.4 **Test equipment**

TMS81, ZSW1, E412, E411

See Section 9 for more details

5.2.5 **Test results**

Temperature of test environment	20°C
Humidity of test environment	50%
Pressure of test environment	101 kPa

Band	57-64 GHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	Pulsed Radar
Single channel	60.5 GHz

Plot refs	
14198-8 Rad 1 9 - 150 kHz Para	
14198-8 Rad 1 9 - 150 kHz Perp	

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: 9kHz - 30MHz ±3.9dB

REPORT NUMBER: 12-14198-8-23 Issue 01

5.3 Radiated emissions 150 kHz - 30 MHz

5.3.1

ALL RIGHTS RESERVED

Test Requirements: 47 CFR Part 15C Part 15.209 [Reference 4.1.1 of this report] Test Method: ANSI C63.10 Clause 6.4 & 6.6 [Reference 4.1.2 of this report]

Limits: 47 CFR Part 15C Part 15.209/15.255(d)(2) [Reference 4.1.1 of this report]

5.3.2 **Configuration of EUT**

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was rotated in all three orthogonal planes. Radiated Emissions testing was performed with a fully charged battery. The EUT was operated in Mode 1.

5.3.3 **Test procedure**

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Measurements were made in a semi-anechoic chamber (pre-scan) with any final measurements required performed on an OATS without a ground plane. The antenna was placed 1m above the ground. The equipment was rotated 360 degrees to record the worst case emissions.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using Test Site M.

Test equipment

TMS81, ZSW1, E412, E411

See Section 9 for more details

5.3.5 **Test results**

20°C Temperature of test environment Humidity of test environment 50% Pressure of test environment 101 kPa

Band	57-64 GHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	Pulsed Radar
Single channel	60.5 GHz

Plot refs	
14198-8 Rad 1 150k-30MHz Para	
14198-8 Rad 1 150k-30MHz Perp	

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: 9kHz - 30MHz ±3.9dB

ALL RIGHTS RESERVED

5.4 Radiated emissions 30 MHz -1 GHz

5.4.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.255(d)(2) [Reference 4.1.1 of this report]

Test Method: ANSI C63.10 Clause 6.3 & 6.5 [Reference 4.1.2 of this report]

Limits: 47 CFR Part 15C Part 15.255(d)(2) [Reference 4.1.1 of this report]

5.4.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was rotated in all three orthogonal planes. Radiated Emissions testing was performed with a fully charged battery. The EUT was operated in Mode 1.

REPORT NUMBER: 12-14198-8-23 Issue 01

5.4.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment listed below.

Measurements were made on a site listed with the FCC. The equipment was rotated 360 degrees and the antenna scanned 1-4 metres in both horizontal and vertical polarisations to record the worst case emissions.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using Test Site B and M.

5.4.4 Test equipment

LPE364, E743, NSA-M, ZSW1, E412, E411

See Section 9 for more details

5.4.5 Test results

Temperature of test environment 20°C Humidity of test environment 50% Pressure of test environment 101 kPa

Band	57-64 GHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	Pulsed Radar
Single channel	60.5 GHz

Plot refs	
14198-8 Rad 1 VHF Horiz	
14198-8 Rad 1 VHF Vert	
14198-8 Rad 1 UHF Horiz	
14198-8 Rad 1 UHF Vert	

Table of signals measured for Rad 1 Horizontal Signal List

Signal No.	Freq (MHz)	Peak Amp (dBuV/m)	QP Amp (dBuV/m)	QP -Lim (dB)
1	154.938	25.9	19.4	-24.1
2	232.281	30.8	26.4	-19.6

Table of signals measured for Rad 1 Vertical Signal List

Signal No.	Freq (MHz)	Peak Amp (dBuV/m)	QP Amp (dBuV/m)	QP -Lim (dB)
1	109.999	26.8	20.1	-23.4
2	115.200	26.3	20.4	-23.1

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:

30MHz - 1000MHz ±6.1dB

ALL RIGHTS RESERVED

5.5 Radiated emissions 1 - 40 GHz

5.5.1 **Test methods**

Test Requirements: 47 CFR Part 15C Part 15.255(d)(2) [Reference 4.1.1 of this report] Test Method: ANSI C63.10 Clause 6.3 & 6.6 & 9.8 [Reference 4.1.2 of this report] Limits: 47 CFR Part 15C Part 15.255(d)(2) [Reference 4.1.1 of this report]

5.5.2 **Configuration of EUT**

The EUT was placed on a 1.5 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at distances stated in the procedure. The EUT was rotated in all three orthogonal planes. Radiated Emissions testing was performed with a fully charged battery. The EUT was operated in Mode 1.

REPORT NUMBER: 12-14198-8-23 Issue 01

5.5.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment listed below.

Measurements were made in a semi-anechoic chamber with appropriate absorbing material for use in this range. Horn antennas were used at heights where the whole of the EUT was contained within the main beam, and emissions maximised. The EUT was rotated through 360 degrees to record the worst case emissions. A measurement distance of 3m was used between the frequency range 1 - 6GHz, 1.2m was used in the frequency range 6 - 18GHz, 0.3m was used in the frequency range 18 - 40GHz. At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using test Site B and M.

5.5.4 **Test equipment**

E136, E296-2, E330, E411, E412, E651, E902, E904, E932, F362, TMS78, TMS79, TMS82

See Section 9 for more details

5.5.5 **Test results**

20°C Temperature of test environment Humidity of test environment 60% Pressure of test environment 101kPa

Setup Table

Band	57-64 GHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	Pulsed Radar
Single channel	60.5 GHz

Spurious Frequency (MHz)	Measured Peak Level (dBµV/m)	Difference to Peak Limit (dB)	Average Level	Difference to Average Limit (dB)	EUT Polarisation	Antenna Polarisation
No emissions wit	hin 20 dB of the	limits were obse	erved			

ALL RIGHTS RESERVED

Plots
14198-8 Rad 1 1-2GHz Horiz
14198-8 Rad 1 1-2GHz Vert
14198-8 Rad 1 2-5GHz Horiz
14198-8 Rad 1 2-5GHz Vert
14198-8 Rad 1 5-6GHz Horiz
14198-8 Rad 1 5-6GHz Vert
14198-8 Rad 1 6upto10GHz Horiz
14198-8 Rad 1 6upto10GHz Vert
14198-8 Rad 1 10upto12_5GHz Horiz
14198-8 Rad 1 10upto12_5GHz Vert
TX Radiated Emissions 12.5 - 15 GHz Horiz
TX Radiated Emissions 12.5 - 15 GHz Vert
TX Radiated Emissions 15 - 18 GHz Horiz
TX Radiated Emissions 15 - 18 GHz Vert
TX Radiated Emissions 18 - 22 GHz Horiz
TX Radiated Emissions 18 - 22 GHz Vert
TX Radiated Emissions 22 - 26.5 GHz Horiz
TX Radiated Emissions 22 - 26.5 GHz Vert
TX Radiated Emissions 26.5 - 30 GHz Horiz
TX Radiated Emissions 26.5 - 30 GHz Vert
TX Radiated Emissions 30 - 35 GHz Horiz
TX Radiated Emissions 30 - 35 GHz Vert
TX Radiated Emissions 35 - 40 GHz Horiz
TX Radiated Emissions 35 - 40 GHz Vert

Peak detector "Max held" Analyser plots against the Average limit line can be found in Section 6 of this report.

LIMITS:

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:

1 – 18 GHz ±3.5dB, 18 – 26.5 GHz ±3.9dB, 26.5 – 40 GHz ±3.9dB

ALL RIGHTS RESERVED

5.6 Radiated emissions 40 - 200 GHz

5.6.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.255(d)(3) [Reference 4.1.1 of this report]

Test Method: ANSI C63.10 Clause 6.3 & 6.6 & 9.8 [Reference 4.1.2 of this report]

Limits: 47 CFR Part 15C Part 15.255(d)(3) [Reference 4.1.1 of this report]

5.6.2 Configuration of EUT

The EUT was placed on a 1.5 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at distances stated in the procedure. The EUT was rotated in all three orthogonal planes. Radiated Emissions testing was performed with a fully charged battery.

REPORT NUMBER: 12-14198-8-23 Issue 01

The EUT was operated in Mode 1.

5.6.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment listed below.

Measurements were made in a semi-anechoic chamber with appropriate absorbing material for use in this range. Horn antennas were used at heights where the EUT was contained within the main beam and emissions maximised, or where this was not possible due to the size of the EUT versus antenna beamwidth, height and lateral scanning of the EUT to maximise emissions was performed. The EUT was rotated through 360 degrees to record any worst case emissions. A measurement distance of 0.3m was used in the frequency range 40 - 75GHz, 0.1m was used in the frequency range 75-110GHz and 0.1/0.03m was used in the frequency range 110-200 GHz.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using test Site B.

5.6.4 Test equipment

E296-4, E296-5, E520, E580, E717, E718, E719, E720, E722, E755, E760, E941, H070

See Section 9 for more details

5.6.5 Test results

Temperature of test environment 20°C
Humidity of test environment 50%
Pressure of test environment 101kPa

Setup Table

Band	57-64 GHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	Pulsed Radar
Single channel	60.5 GHz

Spurious Frequency (MHz)	Measured Peak Level (dBµV/m)	Difference to Peak Limit (dB)	Measured Average Level (dBµV/m)	Difference to Average Limit (dB)	EUT Polarisation	Antenna Polarisation
No emissions wit	hin 20 dB of the	limits were obse	erved			

ALL RIGHTS RESERVED

Plots
TX Radiated Emissions 40 – 45 GHz Horiz
TX Radiated Emissions 40 – 45 GHz Vert
TX Radiated Emissions 45 – 50 GHz Horiz
TX Radiated Emissions 45 – 50 GHz Vert
TX Radiated Emissions 50 – 55 GHz Horiz
TX Radiated Emissions 50 – 55 GHz Vert
TX Radiated Emissions 55 – 60 GHz Horiz
TX Radiated Emissions 55 – 60 GHz Vert
TX Radiated Emissions 60 – 65 GHz Horiz
TX Radiated Emissions 60 – 65 GHz Vert
TX Radiated Emissions 65 – 70 GHz Horiz
TX Radiated Emissions 65 – 70 GHz Vert
TX Radiated Emissions 70 – 75 GHz Horiz
TX Radiated Emissions 70 – 75 GHz Vert
TX Radiated Emissions 75 – 80 GHz Horiz
TX Radiated Emissions 75 – 80 GHz Vert
TX Radiated Emissions 80 – 85 GHz Horiz
TX Radiated Emissions 80 – 85 GHz Vert
TX Radiated Emissions 85 – 90 GHz Horiz
TX Radiated Emissions 85 – 90 GHz Vert
TX Radiated Emissions 90 – 95 GHz Horiz
TX Radiated Emissions 90 – 95 GHz Vert
TX Radiated Emissions 95 – 100 GHz Horiz
TX Radiated Emissions 95 – 100 GHz Vert
TX Radiated Emissions 100 – 110 GHz Horiz
TX Radiated Emissions 100 – 110 GHz Vert
TX Radiated Emissions 110 – 120 GHz Horiz
TX Radiated Emissions 110 – 120 GHz Vert
TX Radiated Emissions 120 – 130 GHz Horiz
TX Radiated Emissions 120 – 130 GHz Vert
TX Radiated Emissions 130 – 140 GHz Horiz
TX Radiated Emissions 130 – 140 GHz Vert
TX Radiated Emissions 140 – 150 GHz Horiz
TX Radiated Emissions 140 – 150 GHz Vert
TX Radiated Emissions 150 – 160 GHz Horiz
TX Radiated Emissions 150 – 160 GHz Vert
TX Radiated Emissions 160 – 170 GHz Horiz
TX Radiated Emissions 160 – 170 GHz Vert
TX Radiated Emissions 170 – 170 GHz Vert TX Radiated Emissions 170 – 180 GHz Horiz
TX Radiated Emissions 170 – 180 GHz Vert
TX Radiated Emissions 180 – 190 GHz Horiz
TX Radiated Emissions 180 – 190 GHz Floriz TX Radiated Emissions 180 – 190 GHz Vert
TX Radiated Emissions 190 – 190 GHz Vert TX Radiated Emissions 190 – 200 GHz Horiz
TX Radiated Emissions 190 – 200 GHz Horiz TX Radiated Emissions 190 – 200 GHz Vert
I A Naulateu Ellissions 190 – 200 GHZ Vett

Peak detector "Max held" Analyser plots against the Average limit line can be found in Section 6 of this report.

ALL RIGHTS RESERVED

LIMITS:

15.255 (d)(3) between 40 GHz and 200 GHz the level of the emissions shall not exceed 90pW/cm² at a distance of 3m (85.3 dBuV/m @3m).

REPORT NUMBER: 12-14198-8-23 Issue 01

The limits are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: $26.5 - 60 \text{ GHz} \pm 3.9 \text{dB}, 60 - 110 \text{ GHz} \pm 4.4 \text{dB}, 110 - 200 \text{ GHz} \pm 5.9 \text{dB}$

ALL RIGHTS RESERVED

5.7 Peak & Average EIRP

5.7.1 **Test methods**

Test Requirements: 47 CFR Part 15C Part 15.255©(3) [Reference 4.1.1 of this report] Test Method: ANSI C63.10 Clause 9.10 & 9.11 [Reference 4.1.2 of this report] Limits: 47 CFR Part 15C Part 15.255©(3) [Reference 4.1.1 of this report]

5.7.2 **Configuration of EUT**

The EUT was placed on a 1.5 metres high turntable. The EUT antenna was positioned and aligned with the measuring antenna. The EUT was measured at a distance of 1 metre. EIRP testing was performed whilst powered from a fully charged battery.

REPORT NUMBER: 12-14198-8-23 Issue 01

The EUT was operated in Mode 1.

5.7.3 **Test procedure**

Tests were made in accordance with FCC Part 15 using the measuring equipment listed below.

Measurements were made in a semi-anechoic chamber with appropriate absorbing material for use in this range. A Horn antenna was used to align with and measure the radiated power from the EUT. A wideband RF detector was used with a digital oscilloscope to measure the Peak and Average power. Voltage measured from the detector was recorded and then substitution performed to determine actual EUT power level in dBm. A measurement distance of 1m was used.

Tests were performed using test Site A.

5.7.4 **Test equipment**

E433, E503, E602, E627, E658, E768, E839, F045, F139, F305, F379, F024, F042, H078

See Section 9 for more details

5.7.5 **Test results**

Temperature of test environment 20°C Humidity of test environment 60% Pressure of test environment 101kPa

Band	57-64 GHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	Pulsed Radar
Single channel	60.5 GHz

Chan Freq (GHz)	Meas distance (m)	
60.5	1	
Mod scheme/rate	Pk EIRP result (dBm)	RMS EIRP result (dBm)
Pulsed RADAR	23.5	10.4

Duty cycle correction (for average EIRP)

Maximum pulse length measured 3.64ns Maximum number of pulses in a 0.3 µs time window 4 Calculated duty cycle in a 0.3 µs time window 4.9% Duty cycle correction factor -13.1 dB

Refer to section 6 for duty cycle plots

ALL RIGHTS RESERVED

LIMITS:

15.255 (c(3) For pulsed field disturbance sensors/radars operating in the 57–64 GHz band that have a maximum pulse duration of 6 ns, the average EIRP shall not exceed 13 dBm and the transmit duty cycle shall not exceed 10% during any 0.3 µs time window. In addition, the average integrated EIRP within the frequency band 61.5–64.0 GHz shall not exceed 5 dBm in any 0.3 µs time window. Peak emissions shall not exceed 20 dB above the maximum permitted average emission limit applicable to the equipment under test. The radar bandwidth is the frequency band bounded by the points that are 10 dB below the highest radiated emission, as based on the complete transmission system including the antenna.

REPORT NUMBER: 12-14198-8-23 Issue 01

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: $<\pm$ 4.6 dB

Duty cycle uncertainty Duty ±0.026%

ALL RIGHTS RESERVED

5.8 Peak Conducted Power

NOT APPLICABLE: No test requirement for field disturbance sensors/radars

REPORT NUMBER: 12-14198-8-23 Issue 01

5.9 Frequency stability

NOT TESTED: Not tested at request of applicant.

5.10 Occupied bandwidth

NOT TESTED: Not tested at request of applicant.

ALL RIGHTS RESERVED

5.11 Duty Cycle

5.11.1 Test methods

Test Requirements: 47 CFR Part 15.255©(3) [Reference 4.1.1 of this report]
Test Method: ANSI C63.10 Clause 9.10 & 9.11 [Reference 4.1.2 of this report]
Limits: 47 CFR Part 15.255©(3) [Reference 4.1.1 of this report]

5.11.2 Configuration of EUT

The EUT was placed on a 1.5 metres high turntable. The EUT antenna was positioned and aligned with the measuring antenna. The EUT was measured at a distance of 1 metre.

REPORT NUMBER: 12-14198-8-23 Issue 01

The EUT was operated in Mode 1.

5.11.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment listed below.

Measurements were made in a semi-anechoic chamber with appropriate absorbing material for use in this range. A Horn antenna was used to align with and measure the radiated power from the EUT. A wideband RF detector was used with a digital oscilloscope to measure the Duty Cycle.

Tests were performed using test Site A.

5.11.4 Test equipment

E433, E503, E602, E627, E658, E768, E839, F045, F139, F305, F379, F024, F042, H078

See Section 9 for more details

5.11.5 Test results

Temperature of test environment 20°C
Humidity of test environment 60%
Pressure of test environment 101kPa

Band	57-64 GHz
Power Level	Maximum
Channel Spacing	Single Channel
Mod Scheme	Pulsed Radar
Single channel	60.5 GHz

Maximum pulse length measured	3.64ns
Maximum number of pulses in a 0.3 µs time window	4
Calculated duty cycle in a 0.3 µs time window	4.9%

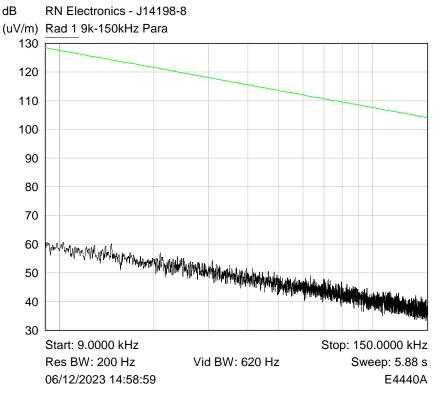
Refer to section 6 for duty cycle plots

ALL RIGHTS RESERVED

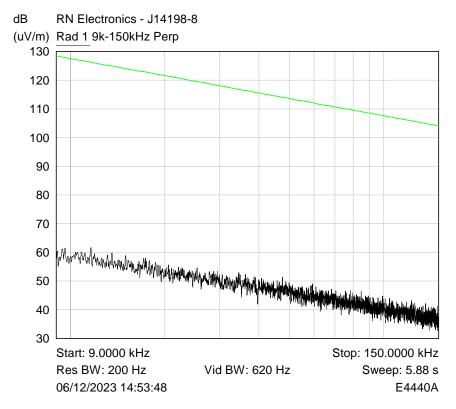
LIMITS:

15.255 (c(3) For pulsed field disturbance sensors/radars operating in the 57–64 GHz band that have a maximum pulse duration of 6 ns, the average EIRP shall not exceed 13 dBm and the transmit duty cycle shall not exceed 10% during any $0.3~\mu s$ time window.

REPORT NUMBER: 12-14198-8-23 Issue 01

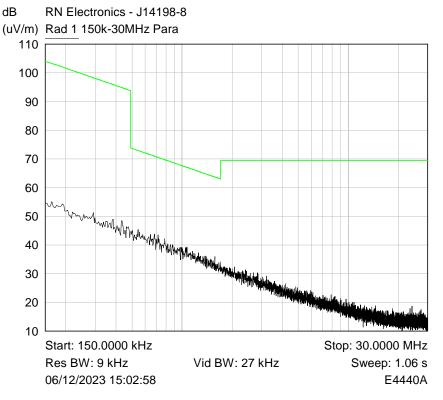

These results show that the EUT has PASSED this test.

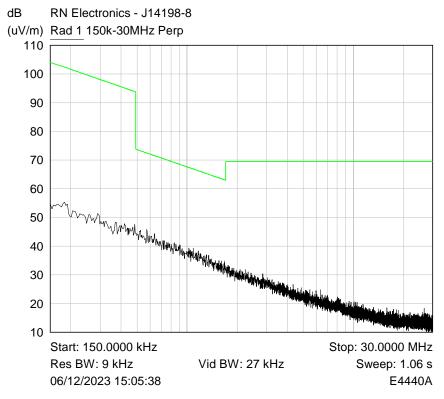
The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows: Duty cycle uncertainty Duty $\pm 0.026\%$


6 Plots/Graphical results

6.1 Radiated emissions 9 – 150 kHz

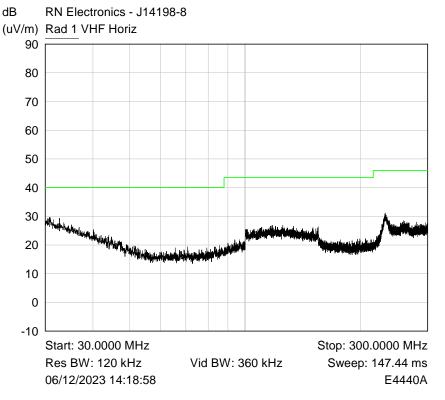
RF Parameters: Band 57-64 GHz, Power Maximum, Channel Spacing Single Channel, Modulation Pulsed Radar, Channel 60.5 GHz

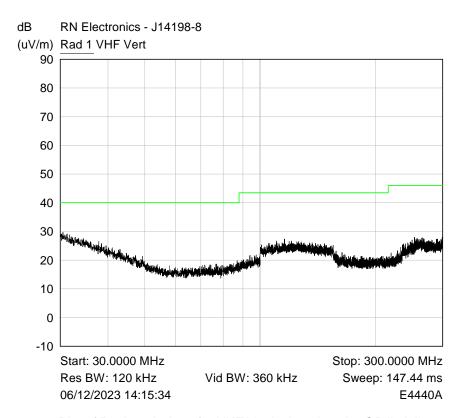

Plot of 9 – 150 kHz Parallel


Plot of 9 - 150 kHz Perpendicular

6.2 Radiated emissions 150 kHz – 30 MHz

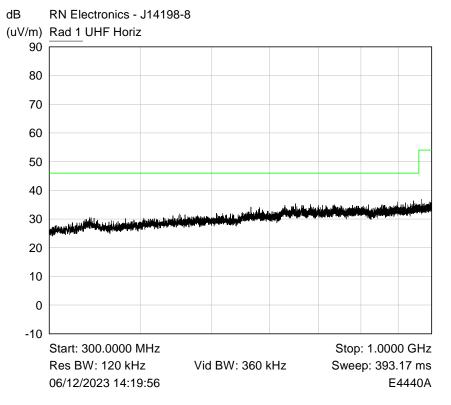
RF Parameters: Band 57-64 GHz, Power Maximum, Channel Spacing Single Channel, Modulation Pulsed Radar, Channel 60.5 GHz


Plot of 150kHz - 30MHz Parallel

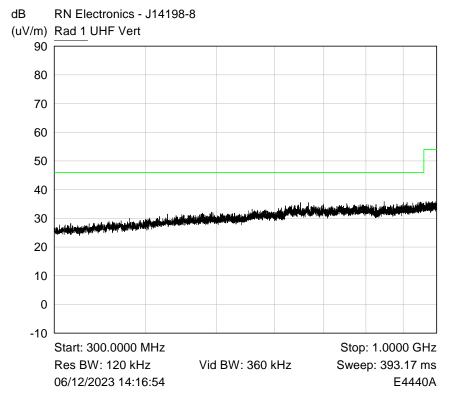

Plot of 150kHz - 30MHz Perpendicular

6.3 Radiated emissions 30 MHz -1 GHz

RF Parameters: Band 57-64 GHz, Power Maximum, Channel Spacing Single Channel, Modulation Pulsed Radar, Channel 60.5 GHz

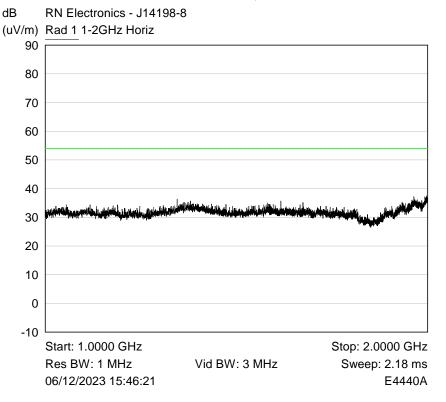


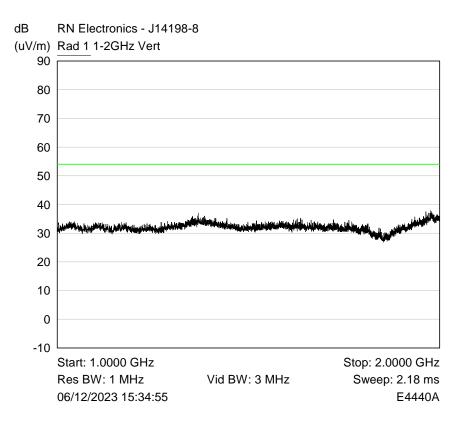
Plot of Peak emissions for VHF Horizontal against the QP limit line.



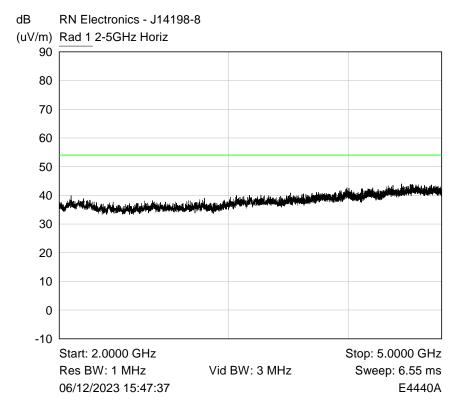
Plot of Peak emissions for VHF Vertical against the QP limit line.

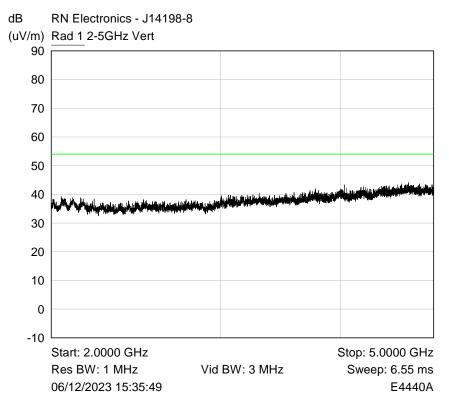
ALL RIGHTS RESERVED

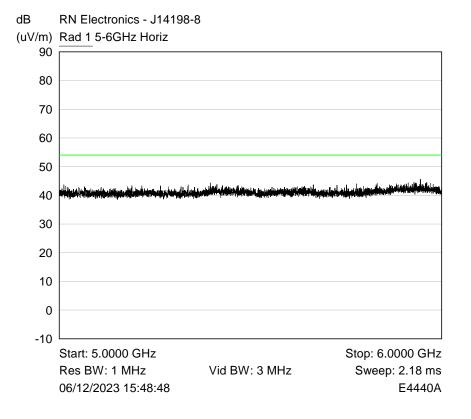

Plot of Peak emissions for UHF Horizontal against the QP limit line.

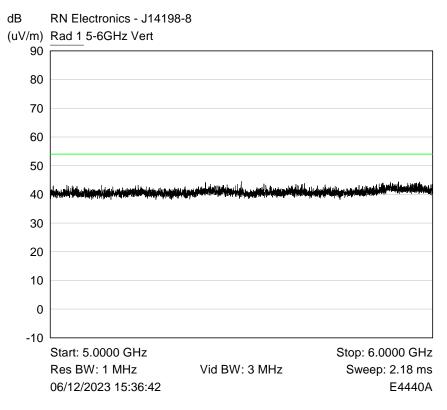


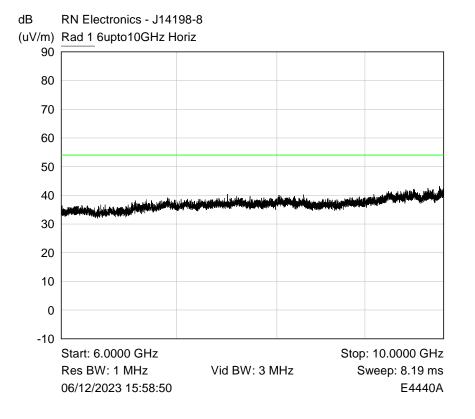
Plot of Peak emissions for UHF Vertical against the QP limit line.

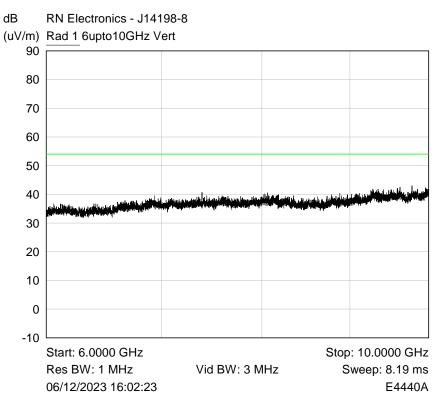

6.4 Radiated emissions 1 – 40 GHz

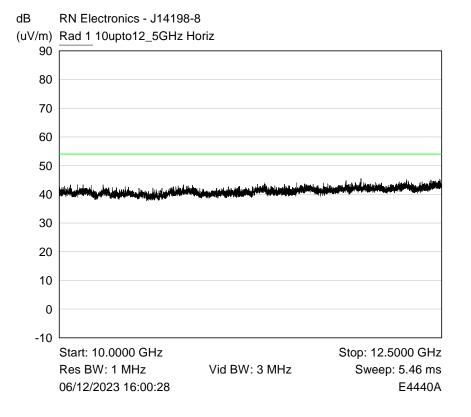

RF Parameters: Band 57-64 GHz, Power Maximum, Channel Spacing Single Channel, Modulation Pulsed Radar, Channel 60.5 GHz

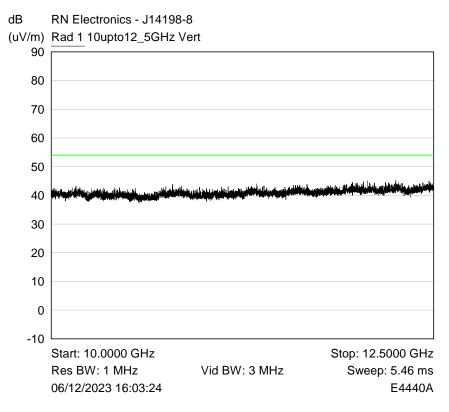


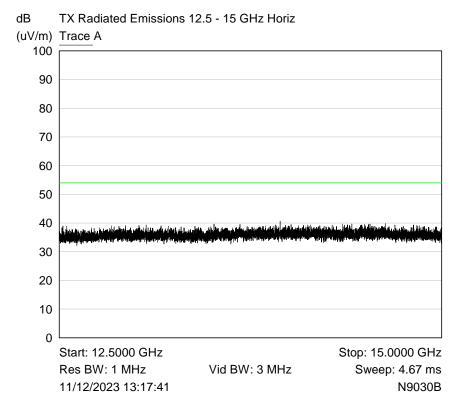

ALL RIGHTS RESERVED

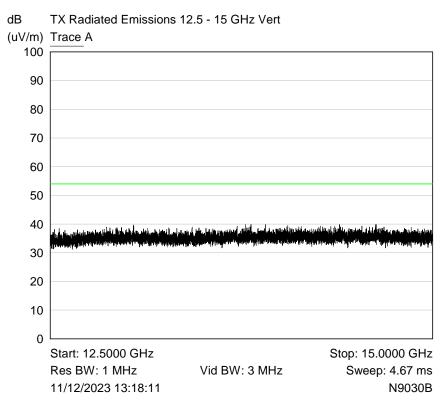


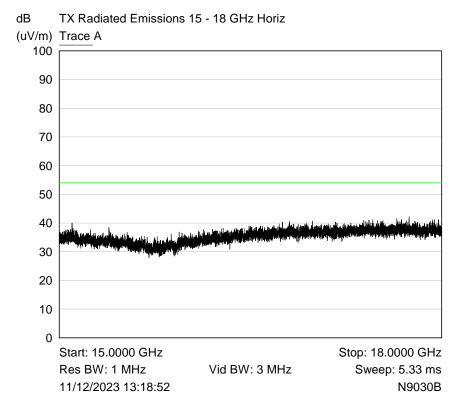

ALL RIGHTS RESERVED

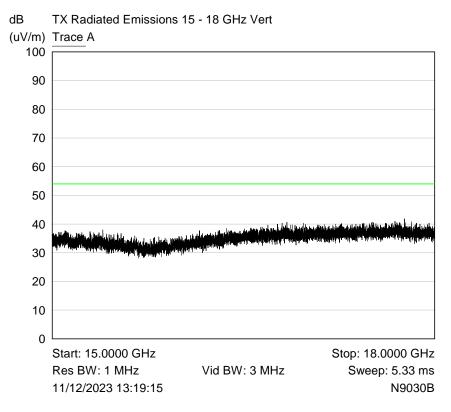


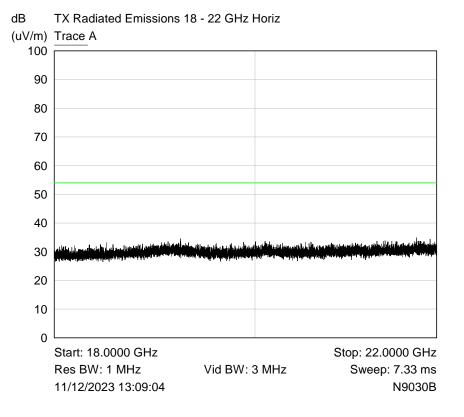

ALL RIGHTS RESERVED

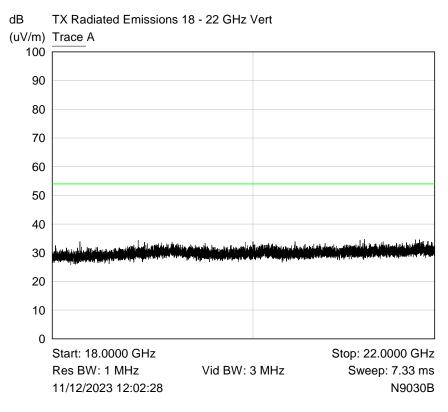


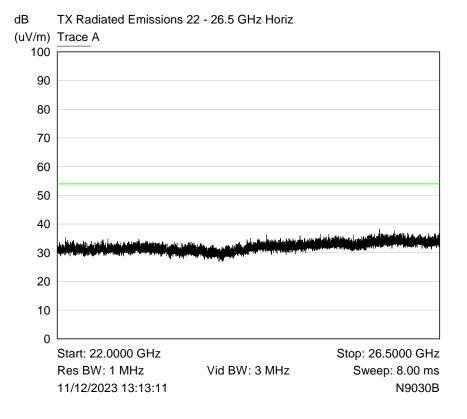

ALL RIGHTS RESERVED

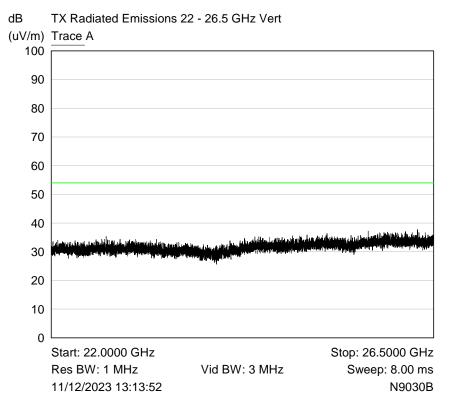


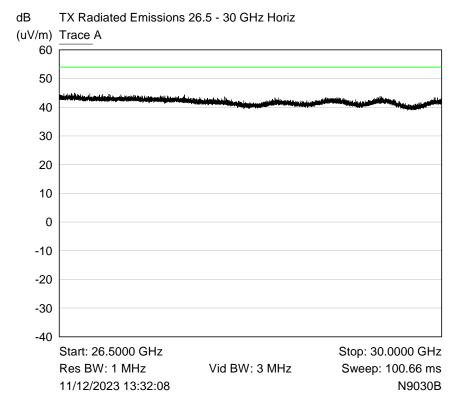

ALL RIGHTS RESERVED

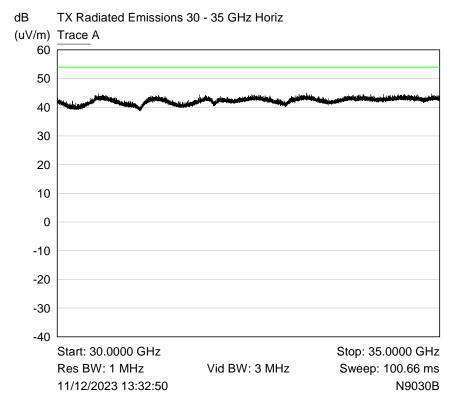


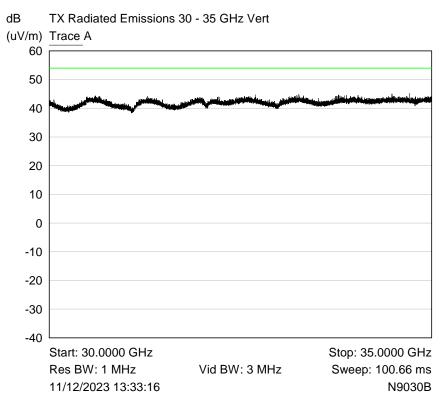

ALL RIGHTS RESERVED

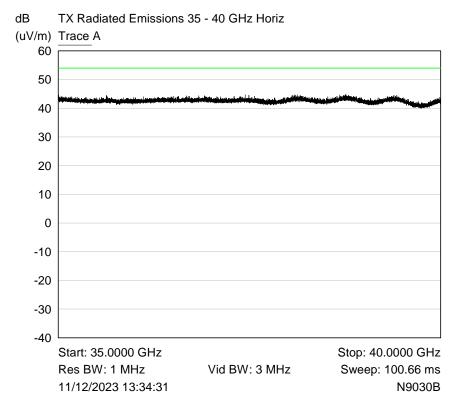


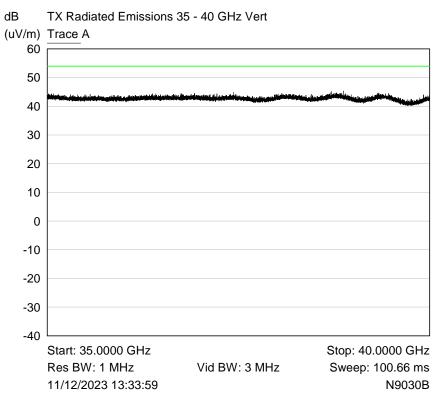

ALL RIGHTS RESERVED

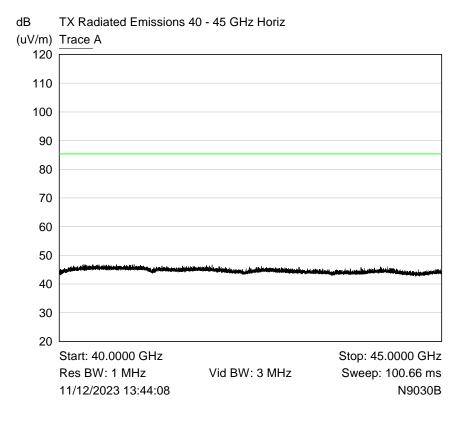


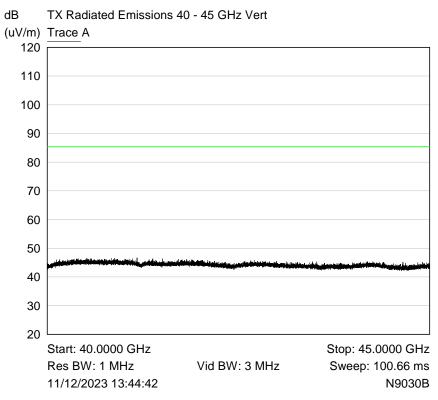

ALL RIGHTS RESERVED

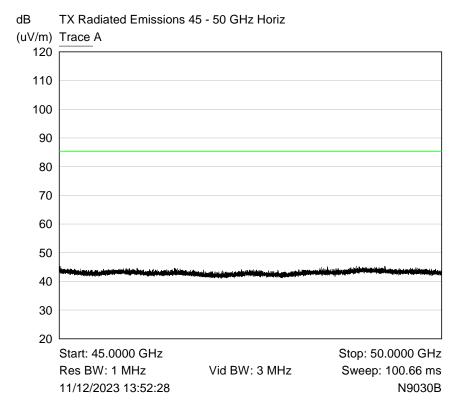


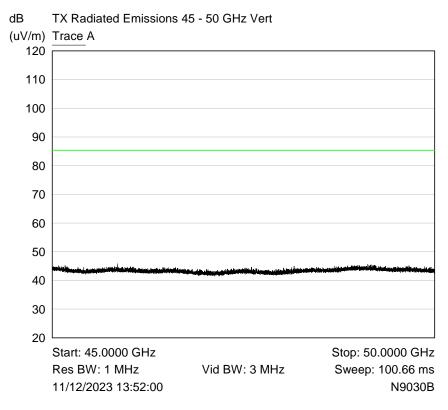


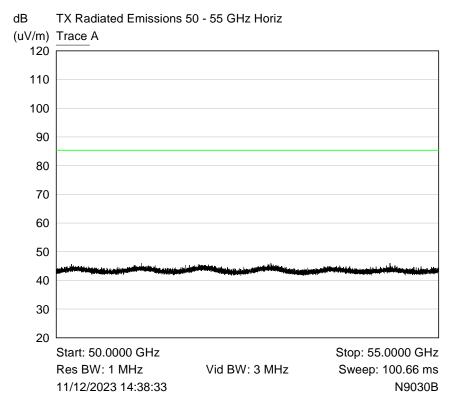


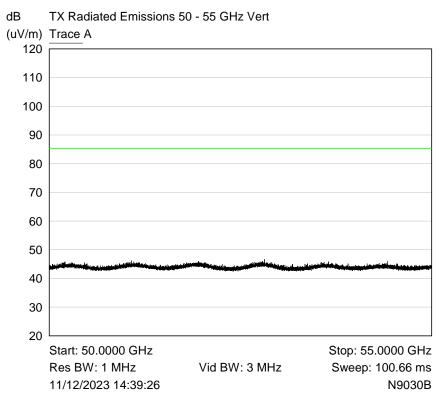


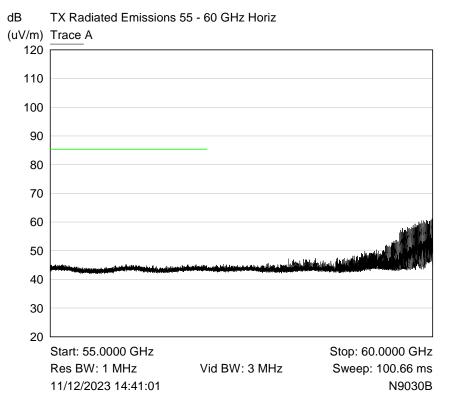


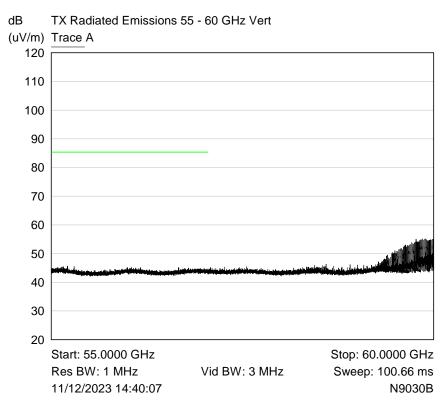


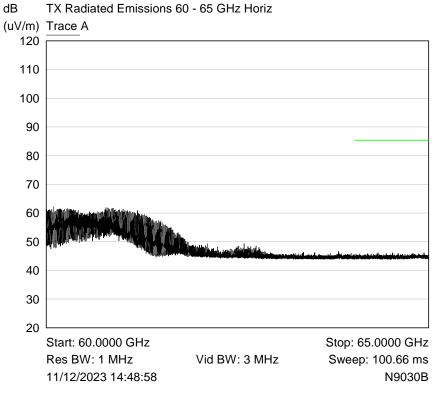

6.5 Radiated emissions 40 – 200 GHz

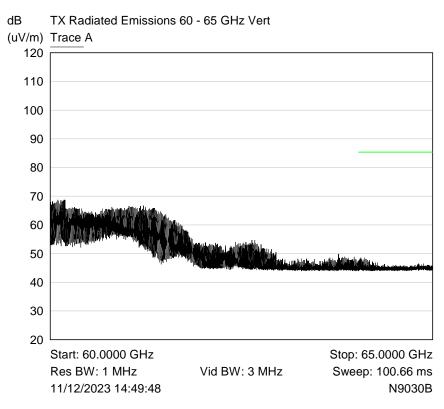

RF Parameters: Band 57-64 GHz, Power Maximum, Channel Spacing Single Channel, Modulation Pulsed Radar, Channel 60.5 GHz

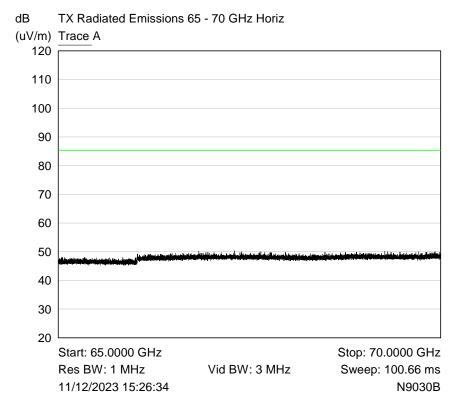


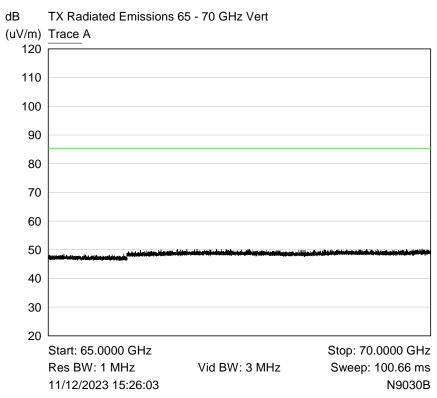


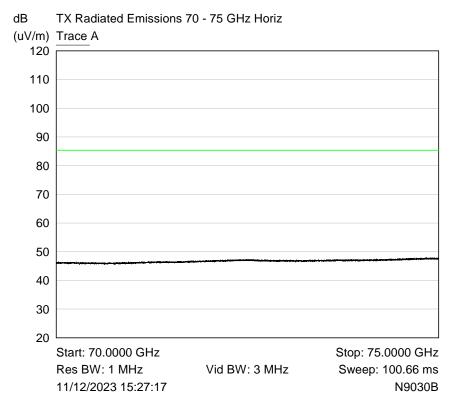


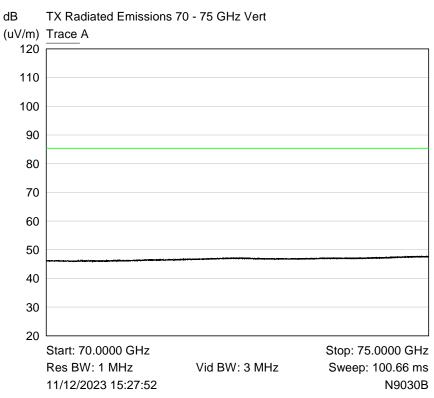


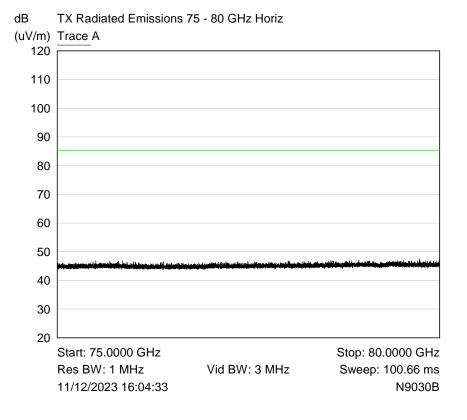

Note: plot shows fundamental transmission

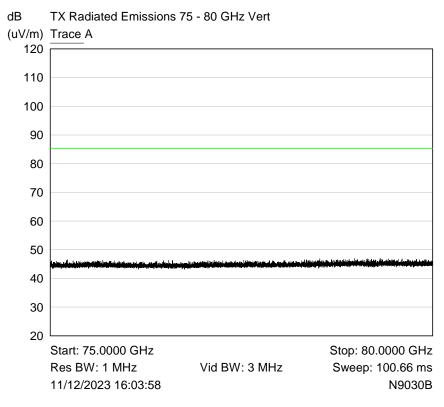

Note: plot shows fundamental transmission

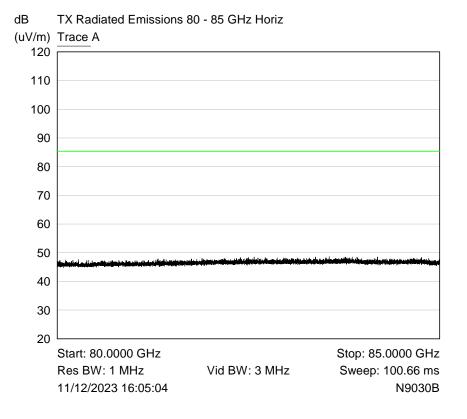


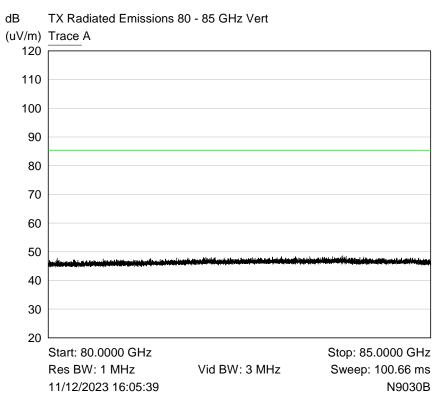

Note: plot shows fundamental transmission

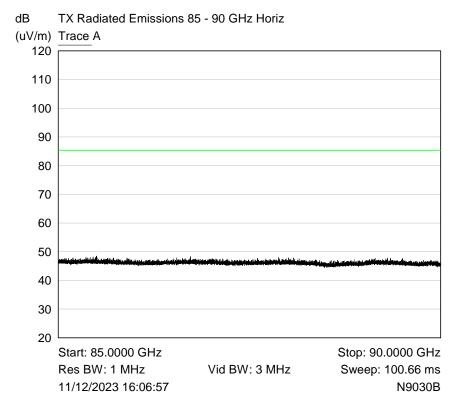


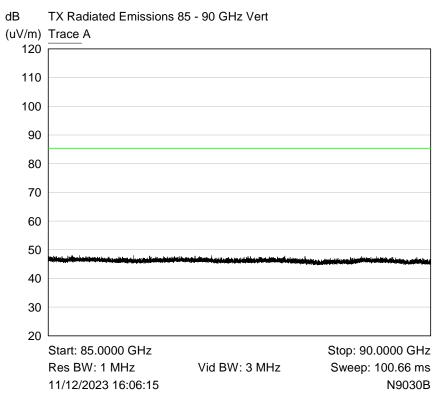

Note: plot shows fundamental transmission

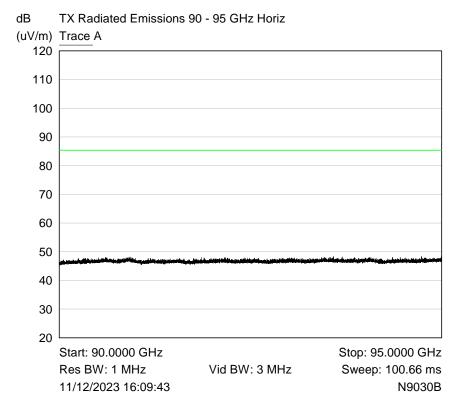


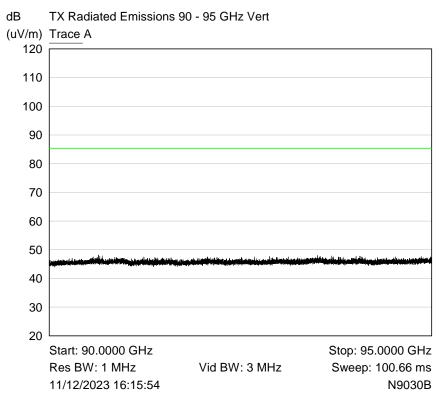


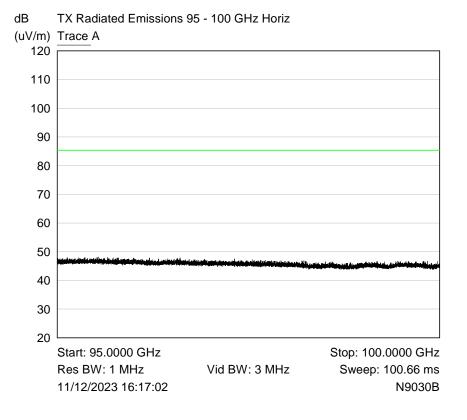


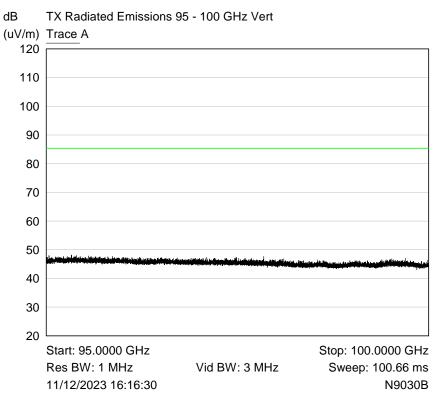


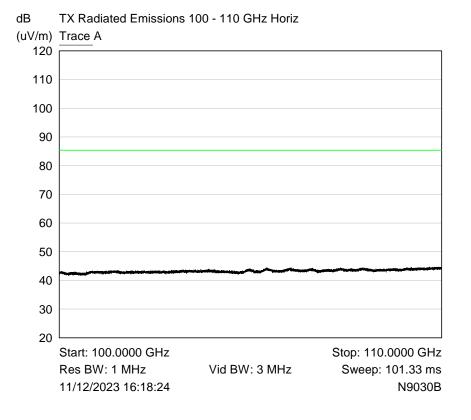


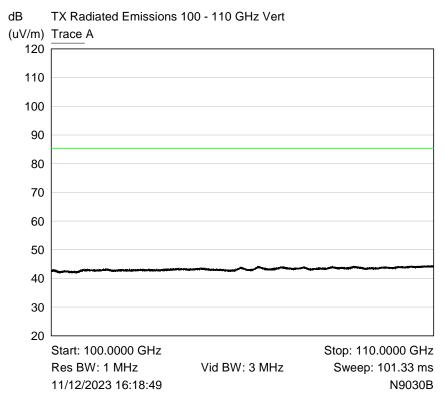


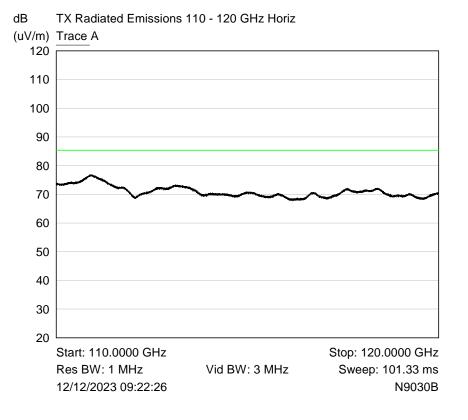


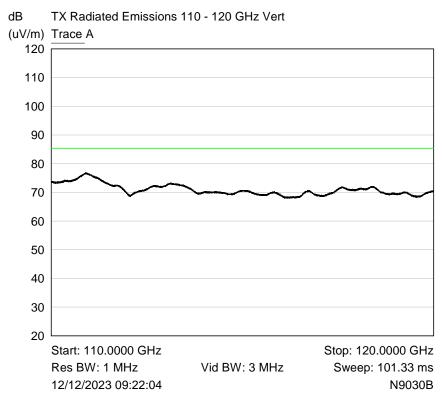


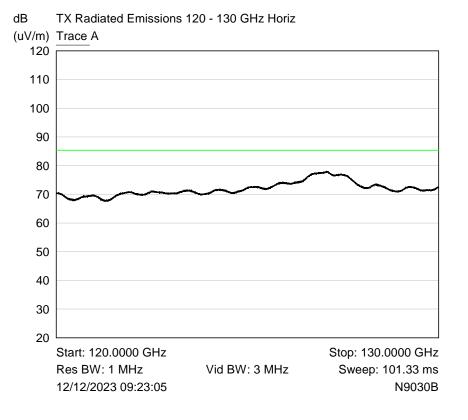


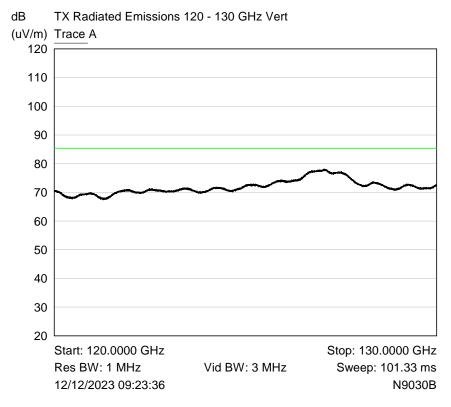


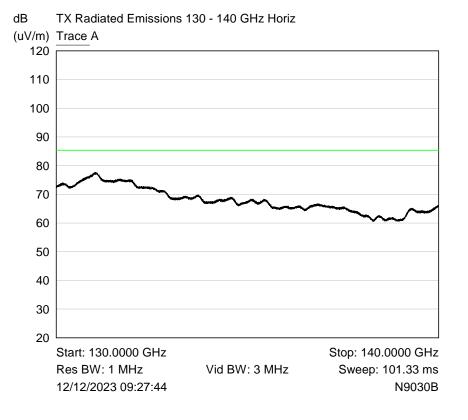


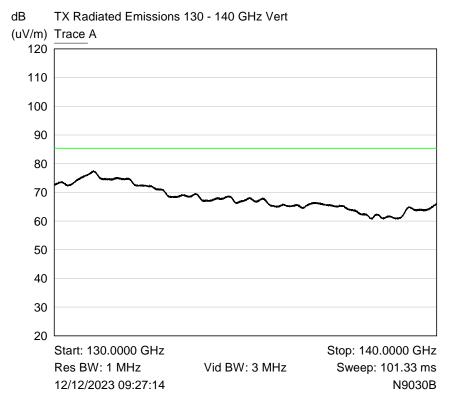


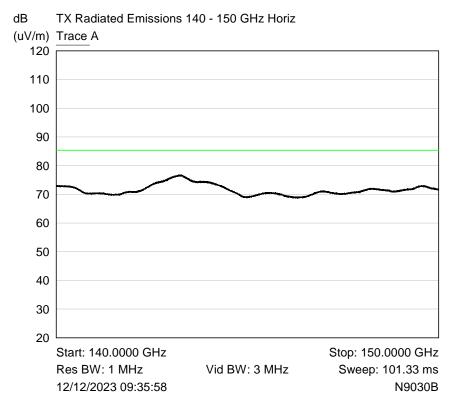


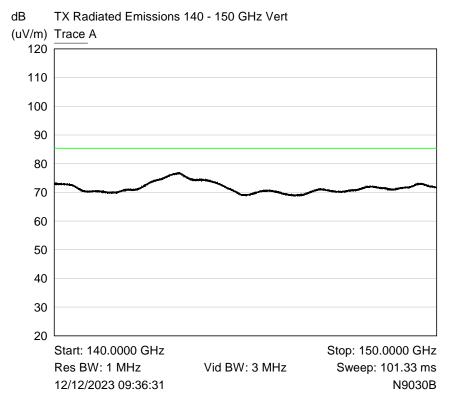


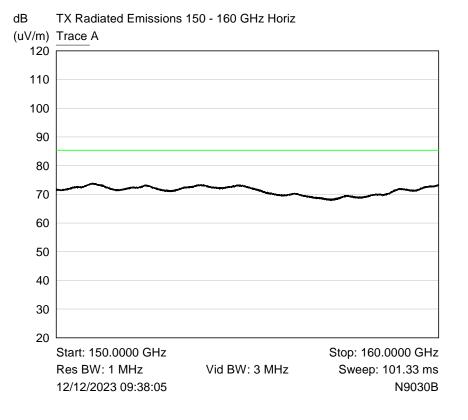


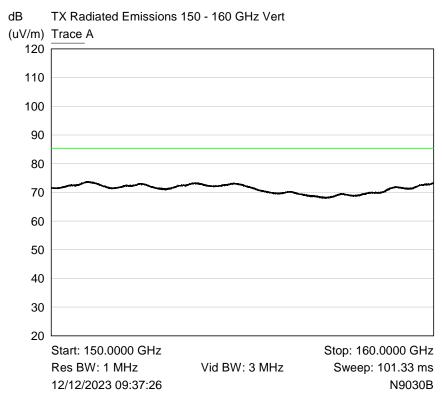


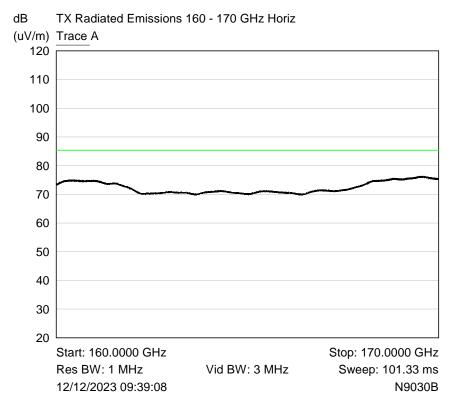


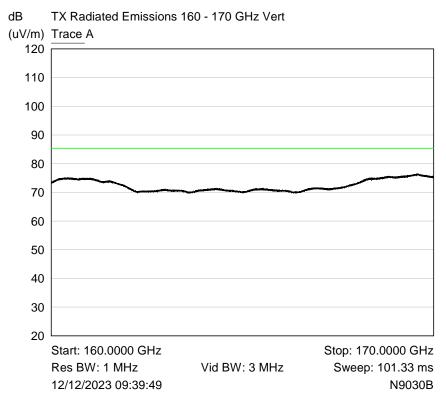


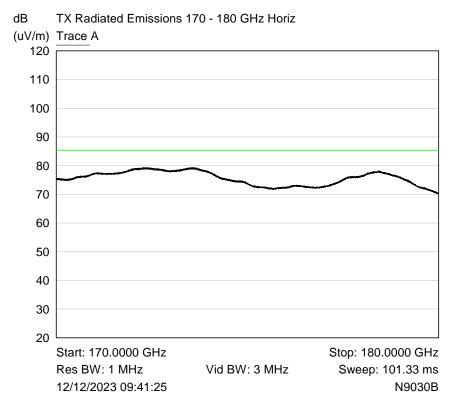


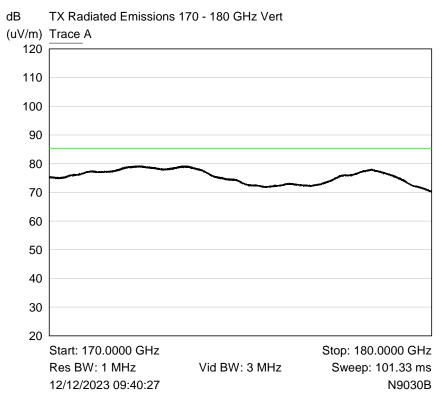


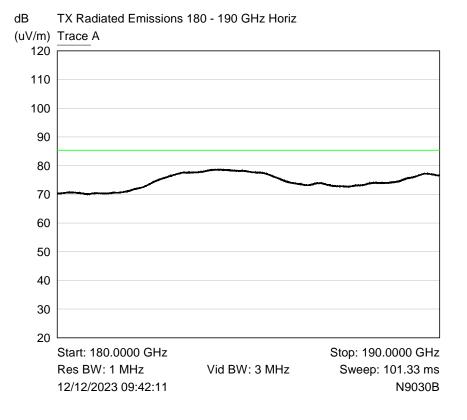


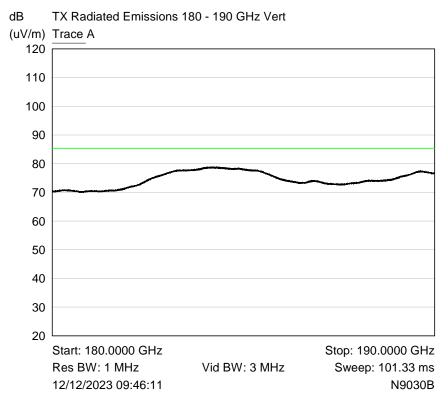


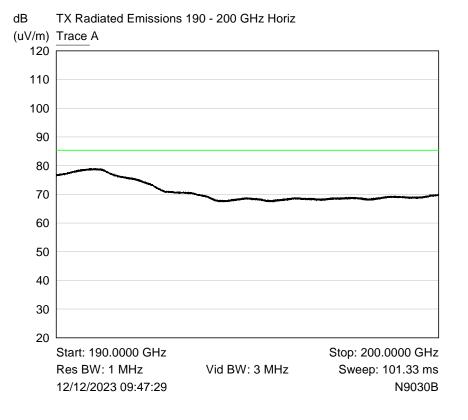


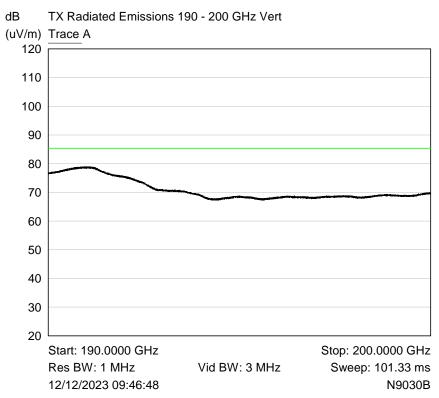


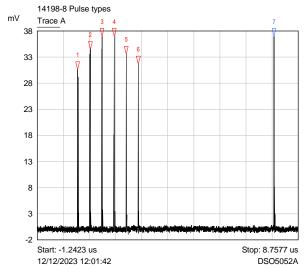


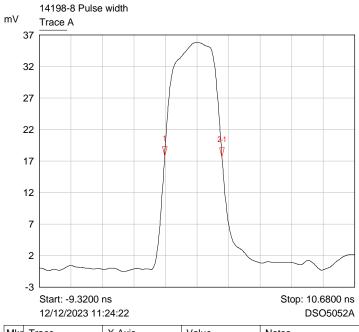




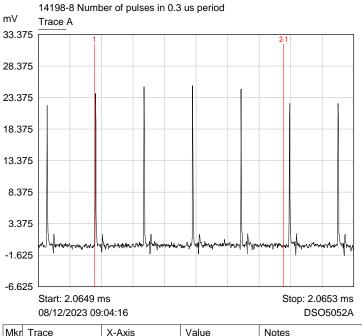








6.6 Duty Cycle



Mkr	Trace	X-Axis	Value	Notes
1 ▽	Trace A	320.0000 ns	30.62 mV	3.6 ns pulse
2 ▽	Trace A	800.0000 ns	34.53 mV	3.6 ns pulse
3 🏹	Trace A	1.2500 us	37.03 mV	3.6 ns pulse
4 ▽	Trace A	1.7100 us	37.03 mV	3.6 ns pulse
5 ▽	Trace A	2.1700 us	33.59 mV	3.6 ns pulse
6 ∇	Trace A	2.6300 us	31.72 mV	3.6 ns pulse
7 ▽	Trace A	7.8300 us	37.03 mV	6 ns pulse

Mkr	Trace	X-Axis	Value	Notes
1 🎖	Trace A	-1.3800 ns	17.79 mV	
2-1 🎖	Trace A	3.6400 ns	-175.78 uV	

ALL RIGHTS RESERVED

Mkr	Trace	X-Axis	Value	Notes
1	Trace A	2.0649 ms	-218.75 uV	
2-1	Trace A	300.0000 ns	312.50 uV	

REPORT NUMBER: 12-14198-8-23 Issue 01

ALL RIGHTS RESERVED

7 Explanatory Notes

7.1 Explanation of Table of Signals Measured

Measurements are made as required by the standard. These measurements are made and recorded using detectors, either peak, quasi peak or average dependant on the test. A table of results has been given following the relevant plots. This table looks similar to the one illustrated below dependant on the measurements required by the test: -

Signal No.	Freq (MHz)	Peak Amp (dBuV)	Pk – Lim 1 (dB)	QP Amp (dBuV)	QP – Lim1 (dB)	Av Amp (dBuV)	Av – Lim1 (dB)
1	12345	54.9	-10.5	48	-12.6	37.6	-14.4

Column One – Labelled Signal No. is an incremental number that the receiver has given to each signal that has been measured.

Column Two – Labelled Freq (MHz) is the approximate frequency of the signal received.

Column Three – Labelled Peak Amp ($dB\mu V$) is the level of received signal that was measured in dB above $1\mu V$ using the peak detector.

Column Four – Labelled Pk – Lim1 (dB) is the difference in level from the peak signal given to the active limit line. If this column appears in the table the peak detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Column Five – Labelled QP Amp (dB μ V) is the level of received signal that was measured in dB above 1 μ V using the quasi-peak detector.

Column Six – Labelled QP – Lim1 (dB) is the difference in level from the quasi-peak signal given to the active limit line. If this column appears in the table the quasi-peak detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Column Seven – Labelled Av Amp (dB μ V) is the level of received signal that was measured in dB above 1 μ V using the average detector.

Column Eight – Labelled Av – Lim1 (dB) is the difference in level from the average signal given to the active limit line. If this column appears in the table the average detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Only signals highlighted in red are deemed to exceed the limit of the detector required.

REPORT NUMBER: 12-14198-8-23 Issue 01

ALL RIGHTS RESERVED

7.2 Explanation of limit line calculations for radiated measurements

The limits given in the test standard are normally expressed as absolute values (e.g. in μ V/m at a specified distance), whereas the measured values are expressed as peak, quasi peak or average values in dB μ V/m referenced to the measuring instrument inputs. Kiwa Electrical Compliance calibrate the test set-up to account for any path losses, antenna gains, etc. so that the value read at the receiver relates directly to the absolute value required, except that it is expressed in dB relative to one 65icrovolt and may need to take account of any alternative measuring distance used. Examples:

- (a) limit of 500 μ V/m equates to 20.log (500) = 54 dB μ V/m.
- (b) limit of 300 μ V/m at 10m equates to 20.log (300 . 10/3) = 60 dB μ V/m at 3m
- © limit of 30 μ V/m at 30m, but below 30MHz, equates to 20.log(30) + 40.log(30/3) = 69.5 dB μ V/m at 3m, as extrapolation factor below 30MHz is 40dB/decade per 15.31(f)(2).

The measurement receiver used for emissions testing, performs the field strength (FS) calculations automatically. The receiver combines the signal amplitude (RA), Antenna Factor (AF) and Cable Loss (CL) factors for the frequency to be measured.

Example calculation: -FS = RA + AF + CL.

Receiver amplitude (RA)	Antenna factor (3) (AF)	m) Cable lo	oss (CL)	Field stre	ngth result (3m) (FS)
20dBuV	25 dB	3 dB		48dBuV/		
				m		

Additional calculation examples per ANSI C63.10 clause 9.4 – 9.6 equations 21, 22, 25 & 26:

Equation 21: E_{Linear} = $10^{((E_{log}^{-120})/20)}$

And therefore equation 21 transposed is: E_{Log} = 20xLog(E_{Linear)} +120

Where:

E_{Linear} is the field strength of the emission in V/m

 E_{Log} is the field strength of the emissions in $dB\mu V/m$

Equation 22: EIRP = E_{Meas} + $20log(d_{Meas})$ -104.7

Where:

EIRP is equivalent isotropically radiated power in dBm

E_{Meas} is the field strength of the emission at the measurement distance in dBµV/m

d_{Meas} is the measurement distance in metres

Equation 25: PD = EIRP_{Linear} / $4\pi d^2$

And therefore equation 25 transposed is: EIRP_{Linear} = PD x $4\pi d^2$

Where:

PD is the power density at distance specified by the limit, in W/m²

EIRP_{Linear} is the equivalent isotropically radiated power in Watts

d is the distance at which the power density limit is specified in metres

Equation 26: PD = E²Speclimit / 377

And therefore equation 26 transposed is: $E_{Spec \, limit} = \sqrt{(PD \, x \, 377)}$

Where:

PD is the power density at distance specified by the limit, in W/m²

Espec limit is the field strength at the distance specified by the limit in V/m

Example:

File Name: Basetime BV.14198-8 Issue 01

QMF21J - Issue 05 - RNE Issue 03; 47 CFR Part 15C 2022

ALL RIGHTS RESERVED

Radiated spurious emissions limit at 3metres of 90pW/cm².

 $90pW/cm^2 \times 100^2 = 0.9 \mu W/m^2 = (EIRP Linear)$

Equation 25 transposed: $0.9 \times 10^{-6} \times 4 \times \pi \times 3^2 = 0.0001017876 \text{ W}$

And

Equation 26 transposed: $E_{Spec\ limit} = \sqrt{(0.9x10^{-6}\ x\ 377)} = 0.01842\ V/m$.

And

Equation 21 transposed: $E_{Log} = 20Log(0.01842) + 120 = 85.3dB\mu V/m @ 3m$.

File Name: Basetime BV.14198-8 Issue 01

QMF21J - Issue 05 - RNE Issue 03; 47 CFR Part 15C 2022

REPORT NUMBER: 12-14198-8-23 Issue 01

ALL RIGHTS RESERVED

8 Photographs

Photos not included due to confidentiality request of client.

8.1 Radiated emission diagrams

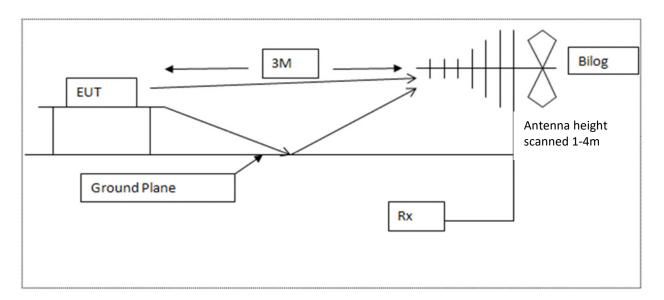


Diagram of the radiated emissions test setup 30 - 1000 MHz

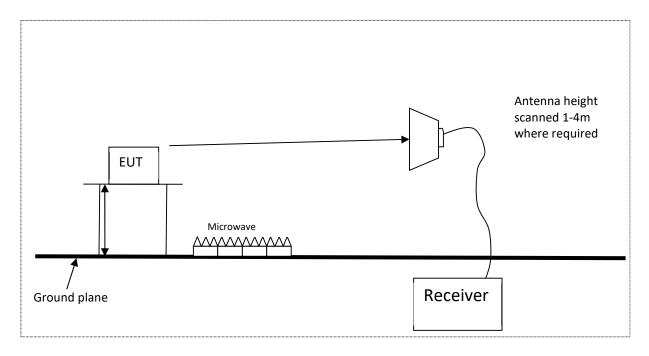


Diagram of the radiated emissions test setup above 1GHz

ALL RIGHTS RESERVED

9 Test equipment calibration list

The following is a list of the test equipment used by R.N. Electronics Ltd to test the unit detailed within this report. In line with our procedures, the equipment was within calibration for the period during which testing was carried out.

RN No.	Model No.	Description	Manufacturer	Calibration date	Cal period
E136	3105	Horn Antenna 1 – 12.5 GHz	EMCO	02-Apr-2023	12 months
E296-2	11970A	Harmonic Mixer 26.5-40GHz	Hewlett Packard	20-Jun-2023	12 months
E296-4	11970U	Harmonic Mixer 40-60GHz	Hewlett Packard	07-Jul-2023	24 months
E296-5	11970V	Harmonic Mixer 50-75GHz	Hewlett Packard	05-Jul-2023	24 months
E330	2224-20	Horn Antenna 26.5-40GHz	Flann (FMI)	17-Apr-2023	12 months
E411	N9039A	9 kHz – 1 GHz RF Filter Section	Agilent Technologies	05-Jul-2023	12 months
E412	E4440A	PSA 3 Hz – 26.5 GHz	Agilent Technologies	22-Sep-2023	24 months
E433	MG3693A	Signal Generator 2 GHz – 30 GHz	Anritsu	02-Oct-2023	12 months
E503	2524-20	Horn Antenna 50-75GHz	Flann (FMI)	17-Apr-2023	12 months
E520	MD4A	Diplexor IF DC-2.5GHz, LO 5-20GHz	Pacific Millimeter Products	15-Mar-2023	12 months
E580	24240	Horn Std Gain 40GHz – 60 GHz	Flann (FMI)	17-Apr-2023	12 months
E602	MG3692A	Signal Generator 10 MHz – 20 GHz	Anritsu	02-Mar-2023	12 months
E627	DSO5052A	Oscilloscope 500MHz 2CH 4Gsa/s	Agilent Technologies	14-Aug-2023	12 months
E651	MWX221	Cable N Type to SMA Blue 2m (M)	Junflon	05-Jul-2023	12 months
E658	E4418B	Power Meter EPM series	Agilent Technologies	09-Oct-2023	12 months
E717		Horn Std Gain 50-75GHz		19-May-2023	12 months
E718		Horn Std Gain 75-110GHz		17-Apr-2023	12 months
E719		Horn Std Gain 90-140GHz		17-Apr-2023	12 months
E720	28240	Horn Std Gain 90-140 GHz	Flann (FMI)	17-Apr-2023	12 months
E722	861G/387	Horn Std Gain 140-220GHz	Alpha Industries Inc	17-Apr-2023	12 months
E743	2017 4/2dB	Attenuator 4/2dB 30-1000MHz	RN Electronics	15-Mar-2023	12 months
E755	N9030B	PXA Signal Analyser 3 Hz to 50 GHz	Keysight Technologies	14-Aug-2023	12 months
E760	M05HWDX	Mixer 140-220GHz	OML Inc	#06-Dec-2023	6 months
E768	FBI-15_R0000	Isolator 50 to 75GHz	Millitech	22-Jul-2022	24 months
E839	5244D	Oscilloscope 200MHz 2CH	Pico Technology	23-May-23	12 months
E902	MWX221	Cable SMA (m) to SMA (m) 2m Blue (M)	Junflon	05-Jul-2023	12 months
E904	5086-7805	Pre-Amplifier 1GHz - 26.5GHz	Hewlett Packard	03-May-2023	12 months
E932	N5181A	Signal Generator 100kHz to 6GHz	Agilent Technologies	13-Jun-2023	12 months
E941	M08HWDX	Mixer 90-140GHz	9	#06-Dec-2023	+
			OML Inc		6 months
F024	V8486A	Power Sensor 50-75GHz	Hewlett Packard	06-Dec-2022	24 months
F042	45324H-1110	Directional Coupler 10dB WR15	Hughes	20-Apr-2022	24 months
F045	2511	Attenuator 50-75GHz Rotary	Flann (FMI)	05-Jan-2023	24 months
F139	ALN-62106025-01	Amplifier WR15	Ducommun	20-Jan-2023	12 months
F305	DET-15-RPFA0	Detector WR15	Millitech	06-Feb-2023	12 months
F362	ACO-055-510070- K4K4	Cable SMA to SMA 5.5m	Atlantic Microwave	05-Jul-2023	12 months
F379	QMC-MX4-15-F	Multiplier 50 - 75GHz X4 WR15	MMWave Group (Quantum)	25-Jul-2022	24 months
H070	M1970W	Waveguide Harmonic Mixer 75 - 110 GHz	Keysight Technologies	09-Oct-2023	12 months
H078	V530	Waveguide switch 50-75GHz		23-May-2022	24 months
LPE364	CBL6112A	Antenna BiLog 30MHz - 2GHz	Chase Electronics Ltd	28-Mar-2022	36 months
NSA-M	NSA - M	NSA - Site M	RN Electronics	29-Nov-2021	36 months
TMS78	3160-08	Horn Std Gain 12.4 - 18 GHz	ETS Systems	05-Oct-2023	12 months
TMS79	3160-09	Horn Std Gain 18 - 26.5 GHz	ETS Systems	23-May-2023	12 months
TMS81	6502	Antenna Active Loop	EMCO	17-Aug-2023	24 months
TMS82	8449B	Pre-Amplifier 1GHz - 26.5GHz	Agilent Technologies	#08-Jan-2024	12 months
		-	-		
ZSW1	V2.5.2	Measurement Software Suite	RN Electronics	Not appl	icable

[#] Equipment was within calibration dates for tests and has been re-calibrated since/during date of tests.

ALL RIGHTS RESERVED

10 Auxiliary and peripheral equipment

10.1 Customer supplied equipment

Item No.	Model No.	Description	Manufacturer	Serial No.
1	SF314-41-R70W	Laptop PC	Acer	NXHFEEH0011010139B6600
2	Not stated	Programming board 1	Not stated	Not stated
3	Not stated	Programming board 2	Not stated	Not stated

REPORT NUMBER: 12-14198-8-23 Issue 01

10.2 R.N. Electronics Ltd supplied equipment

No R.N. Electronics Ltd supplied equipment was used.

ALL RIGHTS RESERVED

11 Condition of the equipment tested

In order for the EUT to produce the results shown within this report the following modifications, if any, were implemented.

REPORT NUMBER: 12-14198-8-23 Issue 01

11.1 Modifications before test

No modifications were made before test by R.N. Electronics Ltd.

11.2 Modifications during test

No modifications were made during test by R.N. Electronics Ltd.

File Name: Basetime BV.14198-8 Issue 01

QMF21J - Issue 05 - RNE Issue 03; 47 CFR Part 15C 2022

ALL RIGHTS RESERVED

12 Description of test sites

Site A	Radio Laboratory and Anechoic Chamber
Site B	Semi-Anechoic Chamber and Control Room FCC Registration No. 293246, ISED Registration No. 5612A-4
Site C	Transient Laboratory
Site D	Screened Room (Conducted Immunity)
Site E	Screened Room (Control Room for Site D)
Site F	Screened Room (Conducted Emissions)
Site G	Screened Room (Control Room for Site H)
Site H	3m Semi-Anechoic Chamber (indoor OATS) FCC Registration No. 293246, ISED Registration No. 5612A-2, VCCI Registration No. 4065
Site J	Transient Laboratory
Site K	Screened Room (Control Room for Site M)
Site M	3m Semi-Anechoic Chamber (indoor OATS) FCC Registration No. 293246, ISED Registration No. 5612A-3
Site N	Radio Laboratory
Site Q	Fully-Anechoic Chamber
Site OATS	3m and 10m Open Area Test Site FCC Registration No. 293246, ISED Registration No. 5612A-1
Site R	Screened Room (Conducted Immunity)
Site S	Safety Laboratory
Site T	Transient Laboratory

REPORT NUMBER: 12-14198-8-23 Issue 01

CAB identifier as issued by Innovation, Science and Economic Development Canada is UK0002 CAB identifier as issued by FCC is UK2015

ALL RIGHTS RESERVED

13 Abbreviations and units

%	Percent	dΒμV	deciBels relative to 1µV
λ	Wavelength	dBμV/m	deciBels relative to 1µV/m
μΑ/m	microAmps per metre	dBc	deciBels relative to Carrier
μV	microVolts	dBd	deciBels relative to dipole gain
μW	microWatts	dBi	deciBels relative to isotropic gain
AC	Alternating Current	dBm	deciBels relative to 1mW
ACK	ACKnowledgement	dBr	deciBels relative to a maximum value
ACP	Adjacent Channel Power	dBW	deciBels relative to 1W
AFA	Adaptive Frequency Agility	DC	Direct Current
ALSE	Absorber Lined Screened Enclosure	DFS	Dynamic Frequency Selection
AM	Amplitude Modulation	DMO	Dynamic Modulation Order
Amb	Ambient	DSSS	Direct Sequence Spread Spectrum
ANSI	American National Standards Institute	DTA	Digital Transmission Analyser
ATPC	Automatic Transmit Power Control	EIRP	Equivalent Isotropic Radiated Power
AVG	Average	emf	electromotive force
AWGN	Additive White Gaussian Noise	ERC	European Radiocommunications Committee
BER	Bit Error Rate	ERP	Effective Radiated Power
BPSK	Binary Phase Shift Keying	ETSI	European Telecommunications Standards Institute
BT	BlueTooth	EU	European Union
BLE	BlueTooth Low Energy	EUT	Equipment Under Test
BW	Bandwidth	FCC	Federal Communications Commission
°С	Degrees Celsius	FER	Frame Error Rate
C/I	Carrier / Interferer	FHSS	Frequency Hopping Spread Spectrum
CAC	Channel Availability Check	FM	Frequency Modulation
CCA	Clear Channel Assessment	FSK	Frequency Shift Keying
CEPT	European Conference of Postal and Telecommunications Administrations	FSS	Fixed Satellite Service
CFR	Code of Federal Regulations	g	Grams
CISPR	Comité International Spécial des Perturbations Radioélectriques	GHz	GigaHertz
cm	centimetre	GNSS	Global Navigation Satellite System
COFDM	Coherent OFDM	GPS	Global Positioning System
COT	Channel Occupancy Time	Hz	Hertz
CS	Channel Spacing	IEEE	Institute of Electrical and Electronics Engineers
CW	Continuous Wave	IF	Intermediate Frequency
DAA	Detect And Avoid	ISED	Innovation Science and Economic Development
dB	deciBels	ITU	International Telecommunications Union
dBµA/m	deciBels relative to 1µA/m	KDB	Knowledge DataBase

REPORT NUMBER: 12-14198-8-23 Issue 01

ALL RIGHTS RESERVED

kg	kilogram	рW	picoWatts
kHz	kiloHertz	QAM	Quadrature Amplitude Modulation
kPa	Kilopascal	QP	Quasi Peak
LBT	Listen Before Talk	QPSK	Quadrature Phase Shift Keying
LISN	Line Impedance Stabilisation Network	RBW	Resolution Band Width
LNA	Low Noise Amplifier	RED	Radio Equipment Directive
LNB	Low Noise Block	R&TTE	Radio and Telecommunication Terminal Equipment
LO	Local Oscillator	Ref	Reference
m	metre	RF	Radio Frequency
mA	milliAmps	RFC	Remote Frequency Control
max	maximum	RFID	Radio Frequency IDentification
Mbit/s	MegaBits per second	RLAN	Radio Local Area Network
MCS	Modulation and Coding Scheme	RMS	Root Mean Square
MHz	MegaHertz	RNSS	Radio Navigation Satellite Service
mic	Microphone	RSL	Received Signal Level
MIMO	Multiple Input, Multiple Output	RSSI	Received Signal Strength Indicator
min	minimum	RTP	Room Temperature and Pressure
mm	millimetres	RTPC	Remote Transmit Power Control
ms	milliseconds	Rx	Receiver
mW	milliWatts	s	Seconds
NA	Not Applicable		Signal to Noise And Distortion
NFC	Near Field Communications	SRD	Short Range Device
nom	Nominal	Tx	Transmitter
nW	nanoWatt		United Kingdom Accreditation Service
OATS	Open Area Test Site		United Kingdom Conformity Assessed
OBW	Occupied Band Width		RUnited Kingdom Radio Equipment Regulations
OCW	Occupied Channel Width	UHF	Ultra High Frequency
OFDM	Orthogonal Frequency Division Multiplexing	U-NII	Unlicensed National Information Infrastructure
OOB	Out Of Band	USB	Universal Serial Bus
ppm	Parts per million	UWB	Ultra Wide Band
PER	Packet Error Rate	V	Volts
PK	Peak	V/m	Volts per metre
PMR	Private Mobile Radio	VBW	Video Band Width
PRBS	Pseudo Random Bit Sequence	VHF	Very High Frequency
PRF	Pulse Repetition Frequency	VSAT	Very Small Aperture Terminal
PSD	Power Spectral Density	W	Watts
PSU	Power Supply Unit		
. 00	. S. S. Cappi, Sint	I	

===== END OF TEST REPORT =====