

TEST REPORT

FCC Cat_M1 Test for SARA-R422M8S

Class II Permissive Change

APPLICANT

IOWISE Technologies Inc.

REPORT NO.

HCT-RF-2312-FC030-R1

DATE OF ISSUE

February 8, 2024

Tested by Jung Ki Lim

Technical ManagerJong Seok Lee

AT.

Am

HCT CO., LTD. Bongjai Huh / CEO

HCT CO.,LTD.

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 645 6300 Fax. +82 31 645 6401

TEST REPORT

FCC Cat_M1 Test for SARA-R422<u>M8S</u> REPORT NO. HCT-RF-2312-FC030-R1

DATE OF ISSUE February 08, 2024

Applicant	IOWISE Technologies Inc. 5114 Balcones Woods Dr Ste 307-204 Austin, TX 78759
Product Name Model Name Host Model name	Electronic Monitoring Device SARA-R422M8S SX Version
FCC ID	2BD5CSXVERSION
Date of Test	November 06, 2023 ~ December 11, 2023
Location of Test	■ Permanent Testing Lab □ On Site Testing Lab (Address: <i>Address of testing location</i>)
FCC Classification:	PCS Licensed Transmitter (PCB)
FCC Rule Part(s):	§ 90, § 22
	The result shown in this test report refer only to the sample(s) tested unless otherwise stated. This test results were applied only to the test methods required by the standard.

F-TP22-03 (Rev. 05) Page 2 of 25

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description	
0	January 03, 2024	4 Initial Release	
1	February 08, 2024	Revised the applicant address	

Notice

Content

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section § 2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked *.

Information provided by the applicant is marked **.

Test results provided by external providers are marked ***.

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

The test results in this test report are not associated with the ((KS Q) ISO/IEC 17025) accreditation by KOLAS (Korea Laboratory Accreditation Scheme) / A2LA (American Association for Laboratory Accreditation) that are under the ILAC (International Laboratory Accreditation Cooperation) Mutual Recognition Agreement (MRA).

F-TP22-03 (Rev. 05) Page 3 of 25

CONTENTS

REVISION HISTORY	3
Notice	3
CONTENTS	4
1. GENERAL INFORMATION	5
2. INTRODUCTION	6
2.1. DESCRIPTION OF EUT	6
2.2. MEASURING INSTRUMENT CALIBRATION	6
2.3. TEST FACILITY	6
3. DESCRIPTION OF TESTS	7
3.1 TEST PROCEDURE	7
3.2 CONDUCTED OUTPUT POWER	8
3.3 RADIATED POWER	9
3.4 RADIATED SPURIOUS EMISSIONS	10
3.5 OCCUPIED BANDWIDTH.	11
3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	12
3.7 CHANNEL EDGE	13
3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	14
3.9 WORST CASE(RADIATED TEST)	15
3.10 WORST CASE(CONDUCTED TEST)	16
4. LIST OF TEST EQUIPMENT	17
5. MEASUREMENT UNCERTAINTY	18
6. SUMMARY OF TEST RESULTS	19
7. SAMPLE CALCULATION	20
8. TEST DATA	22
8.1 Conducted Output Power	22
8.2 RADIATED SPURIOUS EMISSIONS	23
8.2.1 Cat_M1	23
8.3 STRADDLE CHANNEL	24
8.3.1 RADIATED SPURIOUS EMISSIONS	24
8.3.1.1 Cat_M1	24
9. ANNEX A_ TEST SETUP PHOTO	25

F-TP22-03 (Rev. 05) Page 4 of 25

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name:	IOWISE Technologies Inc.
Address:	5114 Balcones Woods Dr Ste 307-204 Austin, TX 78759
FCC ID:	2BD5CSXVERSION
Application Type:	Class II Permissive Change
FCC Classification:	PCS Licensed Transmitter (PCB)
FCC Rule Part(s):	§ 90, § 22
EUT Type:	Electronic Monitoring Device
Model(s):	SARA-R422M8S
Host Model(s):	SX Version
Tx Frequency:	814.7 MHz – 823.3 MHz (Cat-M1 – Band 26 (1.4 MHz)) 815.5 MHz – 822.5 MHz (Cat-M1 – Band 26 (3 MHz)) 816.5 MHz – 821.5 MHz (Cat-M1 – Band 26 (5 MHz)) 819.0 MHz (Cat-M1 – Band 26 (10 MHz))
Date(s) of Tests:	November 06, 2023 ~ December 11, 2023
Serial number:	Radiated :355438111542315 Conducted : 355438111542877

F-TP22-03 (Rev. 05) Page 5 of 25

2. INTRODUCTION

2.1. DESCRIPTION OF EUT

The EUT was a Electronic Monitoring Device with GSM/GPRS/EGPRS and Cat_M1&NB-IOT.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the **74**, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

F-TP22-03 (Rev. 05) Page 6 of 25

3. DESCRIPTION OF TESTS

3.1 TEST PROCEDURE

Test Description	Test Procedure Used
Occupied Bandwidth	- KDB 971168 D01 v03r01 - Section 4.3 - ANSI C63.26-2015 - Section 5.4.4
Channel Edge	- KDB 971168 D01 v03r01 - Section 6.0 - ANSI C63.26-2015 - Section 5.7
Spurious and Harmonic Emissions at Antenna Terminal	- KDB 971168 D01 v03r01 - Section 6.0 - ANSI C63.26-2015 - Section 5.7
Conducted Output Power	- KDB 971168 D01 v03r01 - Section 5.2.4 - ANSI C63.26-2015 - Section 5.2.1 & 5.2.4.2
Frequency stability	- ANSI C63.26-2015 – Section 5.6
Effective Radiated Power/ Effective Isotropic Radiated Power	- KDB 971168 D01 v03r01 - Section 5.2 & 5.8 - ANSI/TIA-603-E-2016 - Section 2.2.17
Radiated Spurious and Harmonic Emissions	- KDB 971168 D01 v03r01 - Section 6.2 - ANSI/TIA-603-E-2016 - Section 2.2.12

Note:

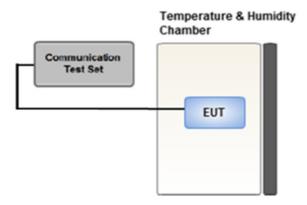
1. The equipment changes of C2PC models does not degrade the data reported to the Commission in original application report listed below.

FCC ID: XPYUBX20VA01 previous report.

F-TP22-03 (Rev. 05) Page 7 of 25

3.2 CONDUCTED OUTPUT POWER

Test Overview


According to ANSI C63.26-2015 Section 5.2.1 when measuring the maximum RF output power from such devices, control over the EUT must be provided either through special test software (provided by manufacturer specifically for compliance testing, but not accessible by an end user) or through use of a base station emulator, communications test set, call box, or similar instrumentation that is capable of establishing a communications link with the EUT to enable control over variable parameters (e.g., output power, OBW, etc.).

In some cases, these instruments also include basic digital spectrum analyzer and/or power meter capabilities that can be utilized to measure the RF output power if the specified detectors and requirements can be realized and the measurement functions have been calibrated.

Test Procedure

- 1. The RF port of the EUT was connected to the Communication Tester via an RF cable.
- 2. Conducted average power was measured using a calibrated Radio Communication Tester.

Test setup

F-TP22-03 (Rev. 05) Page 8 of 25

3.3 RADIATED POWER

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-E-2016 Clause 2.2.17.

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1 MHz
- $3. VBW \ge 3 \times RBW$
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

Test Note

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

P_{d (dBm)} = Pg _(dBm) - cable loss _(dB) + antenna gain _(dB)

Where: P_d is the dipole equivalent power and P_g is the generator output power into the substitution antenna.

3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.

These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference

between the gain of the horn and an isotropic antenna are taken into consideration

- 4. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- 5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

F-TP22-03 (Rev. 05) Page 9 of 25

3.4 RADIATED SPURIOUS EMISSIONS

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method according to ANSI/TIA-603-E-2016.

Test Settings

- 1. RBW = 100 kHz for emissions below 1 GHz and 1 MHz for emissions above 1 GHz
- $2. VBW \ge 3 \times RBW$
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = Max Hold
- 7. The trace was allowed to stabilize
- 8. Test channel: Low/ Middle/ High
- 9. Frequency range: We are performed all frequency to 10th harmonics from 9 kHz.

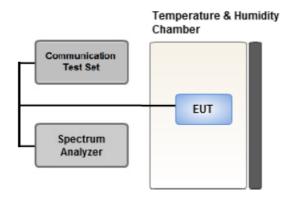
Test Note

- 1. Measurements value show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
 - The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data
- 3. For spurious emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The spurious emissions is calculated by the following formula;

Result (dBm) = Pg (dBm) - cable loss (dB) + antenna gain (dBi)

Where: Pgis the generator output power into the substitution antenna.


If the fundamental frequency is below 1 GHz, RF output power has been converted to EIRP.

 $EIRP_{(dBm)} = ERP_{(dBm)} + 2.15 dB$

F-TP22-03 (Rev. 05) Page 10 of 25

3.5 OCCUPIED BANDWIDTH.

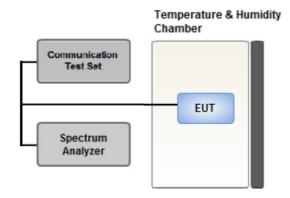
Test setup

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

The EUT makes a call to the communication simulator.

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth


Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- $3. VBW \ge 3 \times RBW$
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - $1\,$ $\,5\,\%$ of the 99 % occupied bandwidth observed in Step 7

F-TP22-03 (Rev. 05) Page 11 of 25

3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

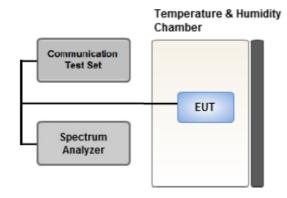
Test setup

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic.

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.


Test Settings

- 1. RBW = 1 MHz
- 2. VBW \geq 3 MHz
- 3. Detector = RMS
- 4. Trace Mode = trace average
- 5. Sweep time = auto
- 6. Number of points in sweep ≥ 2 x Span / RBW

F-TP22-03 (Rev. 05) Page 12 of 25

3.7 CHANNEL EDGE

Test setup

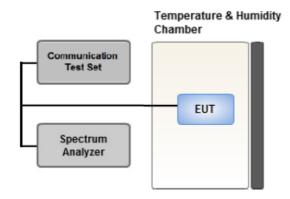
Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW:
 - .- EA licensee's frequency block by up to and including 37.5 kHz: 300 Hz
 - .- EA licensee's frequency block greater than 37.5 kHz: 100 kHz
- $4. VBW > 3 \times RBW$
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Notes


For 90.691(a), RBW=300 Hz for offset less than 37.5 kHz from channel edge and RBW=100 kHz for offsets greater than 37.5 kHz is allowed.

Where Margin < 1 dB the emission level is either corrected by $10 \log(1 \, \text{MHz/ RB})$ or the emission is integrated over a 1 MHz bandwidth to determine the final result. When using the integration method the integration window is either centered on the emission or, for emissions at the band edge, centered by an offset of 500 kHz from the block edge so that the integration window is the 1 MHz adjacent to the block edge

F-TP22-03 (Rev. 05) Page 13 of 25

3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test setup

Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015.

The frequency stability of the transmitter is measured by:

1. Temperature:

The temperature is varied from -30 $^{\circ}$ C to +50 $^{\circ}$ C in 10 $^{\circ}$ C increments using an environmental chamber.

- 2. Primary Supply Voltage:
 - .- Unless otherwise specified, vary primary supply voltage from 85 % to 115% of the nominal value for other than hand carried battery equipment.
 - .- For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20 °C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

F-TP22-03 (Rev. 05) Page 14 of 25

3.9 WORST CASE(RADIATED TEST)

- The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- All modes of operation were investigated and the worst case configuration results are reported. Mode : Stand alone, Stand alone + External accessories

Worst case: Stand alone + External accessories

- In the case of radiated spurious emissions, all bandwidth of operation was investigated and the worst case bandwidth results are reported. (Worst case: 5 MHz(cat M1))
- The worst case is reported with the EUT positioning, modulations, and paging service configurations shown in the test data
- Please refer to the table below.

[Ant Worst case]

Test Description		Modulation	RB size	RB offset	Axis
Radiated Spurious and Harmonic Emissions	Cat_M1	16QAM	1	0	Х

F-TP22-03 (Rev. 05) Page 15 of 25

3.10 WORST CASE(CONDUCTED TEST)

- Worst case: Of all modulation, We have tested modulation of the high Conducted Output Power.

[Worst case]

Test Description	Test Channel
Conducted Output Power	Cat_M1 : 26915

F-TP22-03 (Rev. 05) Page 16 of 25

4. LIST OF TEST EQUIPMENT

Equipment	Model	Manufacture	Serial No.	Due to Calibration	Calibration Interval	
Precision Dipole Antenna	UHAP	Schwarzbeck	01273	03/27/2024	Biennial	
Precision Dipole Antenna	UHAP	Schwarzbeck	01274	03/27/2024	Biennial	
Horn Antenna(1~18 GHz)	BBHA 9120D	Schwarzbeck	02289	03/21/2024	Biennial	
Horn Antenna(1~18 GHz)	BBHA 9120D	Schwarzbeck	9120D-1299	04/27/2025	Biennial	
Horn Antenna(15~40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170342	09/29/2024	Biennial	
Horn Antenna(15~40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170124	03/28/2025	Biennial	
Loop Antenna(9 kHz~30 MHz)	FMZB1513	Rohde & Schwarz	1513-175	01/16/2025	Biennial	
Bilog Antenna	VULB9160	Schwarzbeck	3150	03/09/2025	Biennial	
Hybrid Antenna	VULB9160	Schwarzbeck	760	02/24/2025	Biennial	
RF Switching System	FBSR-06B (1G HPF + LNA)	T&M SYSTEM	F3L1	05/22/2024	Annual	
RF Switching System	FBSR-06B (3G HPF + LNA)	T&M SYSTEM	F3L2	05/22/2024	Annual	
RF Switching System	FBSR-06B (6G HPF + LNA)	T&M SYSTEM	F3L3	05/22/2024	Annual	
RF Switching System	FBSR-06B (LNA)	T&M SYSTEM	F3L4	05/22/2024	Annual	
Power Amplifier	CBL18265035	CERNEX	22966	11/17/2024	Annual	
Power Amplifier	CBL26405040	CERNEX	25956	03/02/2024	Annual	
DC Power Supply	E3632A	Hewlett Packard	MY40004427	08/25/2024	Annual	
Power Splitter(DC~26.5 GHz)	11667B	Hewlett Packard	11275	03/02/2024	Annual	
Chamber	SU-642	ESPEC	93008124	02/22/2024	Annual	
Signal Analyzer(10 Hz~26.5 GHz)	N9020A	Agilent	MY51110063	04/11/2024	Annual	
ATTENUATOR(20 dB)	8493C	Hewlett Packard	17280	04/19/2024	Annual	
Spectrum Analyzer(10 Hz~40 GHz)	FSV40	REOHDE & SCHWARZ	101436	02/22/2024	Annual	
Base Station	8960 (E5515C)	Agilent	MY48360800	08/10/2024	Annual	
Wideband Radio Communication Tester	MT8821C	Anritsu Corp.	6201588559	01/17/2024	Annual	
SIGNAL GENERATOR (100 kHz~40 GHz)	SMB100A	REOHDE & SCHWARZ	177633	06/22/2024	Annual	
Signal Analyzer(5 Hz~40.0 GHz)	N9030B	KEYSIGHT	MY55480167	05/24/2024	Annual	
4-Way Divider	ZC4PD-K1844+	Mini-Circuits	942907	09/19/2024	Annual	
FCC LTE Mobile Conducted RF Automation Test Software	-	HCT CO., LTD.,	-	-	-	

Note:

- 1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.
- 2. Especially, especially all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

F-TP22-03 (Rev. 05) Page 17 of 25

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.90 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.14 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.16 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.57 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.76 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.52 (Confidence level about 95 %, <i>k</i> =2)

F-TP22-03 (Rev. 05) Page 18 of 25

6. SUMMARY OF TEST RESULTS

6.1 Test Condition: Conducted Test

Test Description	FCC Part Section(s)	Test Limit	Test Result	
Occupied Bandwidth	§ 2.1049	N/A	NT ^{Note2}	
Channel Edge / Spurious and	S 2 10F1	< 50 + 10log10 (P[Watts]) at Band Edge		
Harmonic Emissions at	§ 2.1051,	and for all out-of-band emissions	NT ^{Note2}	
Antenna Terminal.	§ 90.691	within 37.5 kHz of Block Edge		
Band Edge / Spurious and Harmonic Emissions at	§ 2.1051,	< 43 + 10log10 (P[Watts]) at Band Edge	NTNote2	
Antenna Terminal.	§ 22.917(a)	and for all out-of-band emissions	INI	
Canduated Output Davier	§ 2.1046	c 100 Wette	€Note3	
Conducted Output Power	§ 90.635	< 100 Watts	Civotes	
	§ 2.1055,			
Frequency stability / variation	§ 90.213	< 2.5 ppm	NT ^{Note2}	
of ambient temperature	§ 22.355			

Note:

- 1. C = Comply, NT = Not Tested, NA = Not Applicable, NC = Not Comply
- C2PC models are electrically identical to the Original models.
 The Product Equality Declaration includes detailed information about the changes between the devices.
- 3. Output power was verified to be within the expected tune up tolerances prior to performing the spot checks for radiated spurious emissions to confirm that the proposed changes to the digital circuitry had not adversely affected the previously reported values in the original filing.

6.2 Test Condition: Radiated Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Effective Radiated Power	§ 22.913(a)(5)	< 7 Watts max. ERP (Only 15 MHz B.W)	NT
Radiated Spurious and Harmonic Emissions	§ 2.1053, § 90.691 § 22.917(a)	< 43 + 10log10 (P[Watts]) for all out-of band emissions	PASS

Note:

1. C = Comply, NT = Not Tested, NA = Not Applicable, NC = Not Comply

F-TP22-03 (Rev. 05) Page 19 of 25

7. SAMPLE CALCULATION

7.1 ERP Sample Calculation

Ch.	/ Freq.	Measured	Substitute	Ant. Gain			ERP	
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBd)	C.L	Pol.	w	dBm
128	824.20	-21.37	38.40	-10.61	0.95	Н	0.483	26.84

ERP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power.

7.2 EIRP Sample Calculation

Ch./ Freq.		Measured	Substitute				EIRP	
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBi)	C.L	Pol.	w	dBm
20175	1,732.50	-15.75	18.45	9.90	1.76	Н	0.456	26.59

EIRP = Substitute LEVEL(dBm) + Ant. Gain – CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of equivalent isotropic radiated power.

F-TP22-03 (Rev. 05) Page 20 of 25

7.3. Emission Designator

GSM Emission Designator

Emission Designator = 249KGXW Emission Designator = 249KG7W

W = Combination (Audio/Data) W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M17F9W Emission Designator = 4M48G7D

WCDMA BW = 4.17 MHz LTE BW = 4.48 MHz F = Frequency Modulation G = Phase Modulation 9 = Composite Digital Info 7 = Quantized/Digital Info

W = Combination (Audio/Data) D = Data transmission; telemetry; telecommand

EDGE Emission Designator

QPSK Modulation

QAM Modulation

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

F-TP22-03 (Rev. 05) Page 21 of 25

8. TEST DATA

8.1 Conducted Output Power

	Band	B.W (MHz)	Channel	Modulation	RB	Original Power (dBm)	C2PC Power (dBm)
Cat_M1	26	5	26915	16-QAM	1	23.19	22.91

F-TP22-03 (Rev. 05) Page 22 of 25

8.2 RADIATED SPURIOUS EMISSIONS

8.2.1 Cat_M1

■ MODE: B26

■ MODULATION SIGNAL: <u>5 MHz 16QAM</u>

■ DISTANCE: 3 meters

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBi)	Substitute Level (dBm)	C.L (dB)	Pol	Result (dBm)	Limit (dBm)
	1 633.00	-33.55	8.70	-41.47	1.93	Н	-34.70	-13.00
	2 449.50	-34.90	10.20	-39.52	2.52	Н	-31.84	-13.00
26715 (816.5)	3 266.00	-43.39	10.60	-45.08	2.86	V	-37.34	-13.00
(010.5)	4 082.50	-48.07	11.20	-47.90	3.28	Н	-39.98	-13.00
	4 899.00	-54.12	11.10	-49.93	3.57	V	-42.40	-13.00
	1 643.00	-36.48	8.70	-45.10	1.97	V	-38.37	-13.00
	2 464.50	-34.35	10.20	-38.72	2.51	Н	-31.03	-13.00
26765 (821.5)	3 286.00	-42.78	10.60	-45.22	2.89	Н	-37.51	-13.00
(021.0)	4 107.50	-49.44	11.30	-48.02	3.19	Н	-39.91	-13.00
	4 929.00	-54.32	11.10	-50.58	3.63	Н	-43.11	-13.00

F-TP22-03 (Rev. 05) Page 23 of 25

8.3 STRADDLE CHANNEL

8.3.1 RADIATED SPURIOUS EMISSIONS

8.3.1.1 Cat_M1

■ MODE: <u>B26</u>

■ MODULATION SIGNAL: <u>5 MHz 16QAM</u>

■ DISTANCE: 3 meters

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBi)	Substitute Level (dBm)	C.L (dB)	Pol	Result (dBm)	Limit (dBm)
	1 648.00	-34.24	9.20	-43.23	2.02	V	-36.05	-13.00
26790 (824.0)	2 472.00	-35.32	10.20	-39.46	2.49	Н	-31.75	-13.00
	3 296.00	-43.14	10.75	-45.49	2.91	V	-37.65	-13.00
	4 120.00	-48.92	11.30	-48.21	3.22	Н	-40.13	-13.00
	4 944.00	-56.11	11.00	-51.63	3.60	V	-44.23	-13.00

F-TP22-03 (Rev. 05) Page 24 of 25

9. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2312-FC030-P

F-TP22-03 (Rev. 05) Page 25 of 25