

TEST REPORT

Product Name : BabyN-Intelligent Diaper Monitor

Brand Mark : N/A

Model No. : BabyN-EBG01 **Extension model** BabyN-EBT01

Report Number : BLA-EMC-202312-A3702

FCC ID : 2BD3D-BABYNEBG01

Date of Sample Receipt : 2023/12/19

Date of Test : 2023/12/19 to 2023/12/28

Date of Issue : 2023/12/28

Test Standard : 47 CFR Part 15, Subpart C 15.247

Test Result : Pass

Prepared for:

Shenda Chuangxin(Shenzhen)Technology Co.,Ltd. 204, Building D1, TCL Science Park, No.1001 Zhongshan Garden Road, Nanshan District, Shenzhen

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

TEL: +86-755-23059481

Compiled by:

Approved by:

Josu Blue Theng Review by:

Date:

Page 2 of 73

REPORT REVISE RECORD

Version No.	Date	Description	
00	2023/12/28	Original	

TABLE OF CONTENTS

1	TES	ST SUMMARY	5
2	GE	NERAL INFORMATION	6
3	GE	NERAL DESCRIPTION OF E.U.T.	6
4	TES	ST ENVIRONMENT	8
5	TF!	ST MODE	8
		ASUREMENT UNCERTAINTY	
6	ME	SCRIPTION OF SUPPORT UNIT	8
7			
8		BORATORY LOCATION	
9	TES	ST INSTRUMENTS LIST	10
1(со со	NDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	12
	10.1	LIMITS	
	10.2	BLOCK DIAGRAM OF TEST SETUP	
	10.3	PROCEDURE	
	10.4	TEST DATA	14
11	СО	NDUCTED BAND EDGES MEASUREMENT	17
	11.1	LIMITS	17
	11.2	BLOCK DIAGRAM OF TEST SETUP	
	11.3	TEST DATA	17
12	2 RA	DIATED SPURIOUS EMISSIONS	18
	12.1	LIMITS	18
	12.2	BLOCK DIAGRAM OF TEST SETUP	
	12.3	PROCEDURE	19
	12.4	TEST DATA	21
13	3 RA	DIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	30
	13.1	LIMITS	30
	13.2	BLOCK DIAGRAM OF TEST SETUP	31
	13.3	PROCEDURE	31
	13.4	TEST DATA	33
14	t co	NDUCTED SPURIOUS EMISSIONS	38
	14.1	LIMITS	38

Page 4 of 73

14.	.2	BLOCK DIAGRAM OF TEST SETUP	38
14.	.3	TEST DATA	38
15	POW	ER SPECTRUM DENSITY	39
15.	.1	LIMITS	39
15.	.2	BLOCK DIAGRAM OF TEST SETUP	39
15.	.3	TEST DATA	39
16	CON	DUCTED PEAK OUTPUT POWER	40
16.	.1	LIMITS	40
16.		BLOCK DIAGRAM OF TEST SETUP	
16.	.3	TEST DATA	40
17		MUM 6DB BANDWIDTH	
17.	.1	LIMITS	41
17.		BLOCK DIAGRAM OF TEST SETUP	
17.	.3	TEST DATA	41
18	ANTI	ENNA REQUIREMENT	42
18.	.1	CONCLUSION	42
19	APP	ENDIX1	43
		X A: PHOTOGRAPHS OF TEST SETUP	
			73

Page 5 of 73

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass

Page 6 of 73

2 GENERAL INFORMATION

A I' a 4	01 1- 01 (01 1)T - 1 1 0 - 1 (1		
Applicant	Shenda Chuangxin(Shenzhen)Technology Co.,Ltd.		
Address	204, Building D1, TCL Science Park, No.1001 Zhongshan Garden Road, Nanshan District, Shenzhen		
Manufacturer	Shenda Chuangxin(Shenzhen)Technology Co.,Ltd.		
Address	204, Building D1, TCL Science Park, No.1001 Zhongshan Garden Road, Nanshan District, Shenzhen		
Factory	Dongguan Tianjie Industry Co.,Ltd.		
Address	No.8, East 1st Ring Road, Xitou, Houjie Town, Dongguan City, Guangdong Province		
Product Name	BabyN-Intelligent Diaper Monitor		
Test Model No.	No. BabyN-EBG01		
Extension model	BabyN-EBT01		
Note The above model BabyN-EBT01 only reduces one sensor in PCB internal structure, and circuit compared to BabyN-EBG01, resulting less detection function, which is completely the same. The different the model name and appearance for commercial use.			

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	VNT2.0.2	
Software Version	V06	
Operation Frequency:	2402MHz-2480MHz	
Modulation Type:	GFSK	
Rate data:	1Mbps, 2Mbps	
Channel Spacing:	2MHz	
Number of Channels:	40	
Antenna Type:	Chip Antenna	
Antenna Gain:	2dBi (Provided by the applicant)	

Page 7 of 73

Operation	Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
: :		:::	: :	:: :	: :	::	: :	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz	
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Page 8 of 73

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	25°C	3.7Vdc

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION		
Transmitting mode	Keep the EUT in continuously transmitting mode with modulation.		

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)		
Occupied Channel Bandwidth	±5 %		
RF output power, conducted	±1.5 dB		
Power Spectral Density, conducted	±3.0 dB		
Unwanted Emissions, conducted	±3.0 dB		
Temperature	±3 °C		
Supply voltages	±3 %		
Time	±5 %		
Unwanted Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB		
Unwanted Radiated Emission (1GHz ~ 18GHz)	±4.44 dB		
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB		

Page 9 of 73

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
AC Adapter	UGREEN	CD112	N/A	From lab

8 LABORATORY LOCATION

All tests were performed at:

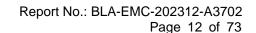
BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province,

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Page 10 of 73

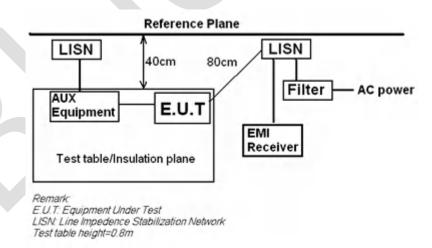
9 TEST INSTRUMENTS LIST


Test Equipm	nent Of Radiated	Spurious Emissions			
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber 1	SKET	966	N/A	2021/11/10	2024/11/9
Chamber 2	SKET	966	N/A	2022/07/20	2024/11/9
Spectrum	R&S	FSP40	100817	2023/08/30	2024/08/29
Receiver	R&S	ESR7	101199	2023/08/30	2024/08/29
Receiver	R&S	ESPI7	101477	2023/07/07	2024/07/06
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2022/10/12	2025/10/11
Horn Antenna	Schwarzbeck	BBHA9120D	01892 P:00331	2022/09/13	2025/09/12
Horn Antenna	Schwarzbeck	BBHA 9170	1106	2022/04/24	2024/04/23
Amplifier	SKET	LNPA_30M01G-30	SK2021060801	2023/07/07	2024/07/06
Amplifier	SKET	PA-000318G-45	N/A	2023/08/30	2024/08/29
Amplifier	SKET	LNPA_18G40G-50	SK2022071301	2023/07/14	2024/07/13
Filter group	SKET	2.4G/5G Filter group r	N/A	2023/07/07	2024/07/06
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A
Loop antenna	SCHNARZBE CK	FMZB1519B	00102	2022/09/14	2025/09/13
1kHZ calibration audio source	SKET	MCS-ABT-C35	N/A	2023/09/04	2024/09/03
Free Field Microphone	SKET	MGS MP 663	0414	2023/09/04	2024/09/03
Audio shielding box	SKET	SB-ABT-C35	N/A	2023/03/30	2024/03/29
Controller	SKET	N/A	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A
Signal Generator DTV	Signal Generator ECREDIX DSG-1000		N/A	N/A	N/A

Page 11 of 73

Test Equipment C	of Conducted Emi	ssions at AC P	ower Line (150kHz	-30MHz)	
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Shield room	SKET	833	N/A	2020/11/25	2023/11/24
Receiver	R&S	ESPI3	101082	2023/08/30	2024/08/29
LISN	R&S	ENV216	3560.6550.15	2023/08/30	2024/08/29
LISN	AT	AT166-2	AKK1806000003	2023/08/30	2024/08/29
ISN	TESEQ	ISNT8-cat6	53580	2023/08/30	2024/08/29
Single-channel vehicle artificial power network	Schwarzbeck	NNBM 8124	01045	2023/07/07	2024/07/06
Single-channel vehicle artificial power network	Schwarzbeck	NNBM 8124	01075	2023/07/07	2024/07/06
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A

Test Equipment	Of RF Conducte	ed Test				
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Spectrum	R&S	FSP40	100817	2023/08/30	2024/08/29	
Spectrum	Agilent	N9020A	MY49100060	2023/08/30	2024/08/29	
Spectrum	Agilent	N9020A	MY54420161	2023/08/30	2024/08/29	
Signal Generator	Agilent	N5182A	MY47420955	2023/08/30	2024/08/29	
Signal Generator	Agilent	N5181A	MY46240904	2023/07/07	2024/07/06	
Signal Generator	R&S	CMW500	132429	2023/08/30	2024/08/29	
BluetoothTester	Anritsu	MT8852B	06262047872	2023/08/30	2024/08/29	
Power probe	DARE	RPR3006W	14I00889SN042	2023/09/01	2024/08/31	
Power detection box	CDKMV	MW100-PSB	MW201020JYT	2023/07/07	2024/07/06	
DCPowersupply	zhaoxin	KXN-305D	20K305D1221363	2023/08/30	2024/08/29	
DCPowersupply	zhaoxin	RXN-1505D	19R1505D050168	2023/08/30	2024/08/29	
2.4GHz/5GHz RF Test software	MTS	MTS 8310	Version 2.0.0.0	N/A	N/A	
Audio Analyzer	Audio Precision	ATS-1	ATS141094	2023/07/07	2024/07/06	


10 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	60%

10.1 LIMITS

Frequency of	Conducted	limit(dBµV)							
emission(MHz)	Quasi-peak	Average							
0.15-0.5	66 to 56*	56 to 46*							
0.5-5	56	46							
5-30	60	50							
*Decreases with the logarithm	*Decreases with the logarithm of the frequency.								

10.2 BLOCK DIAGRAM OF TEST SETUP

10.3 PROCEDURE

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

Page 13 of 73

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

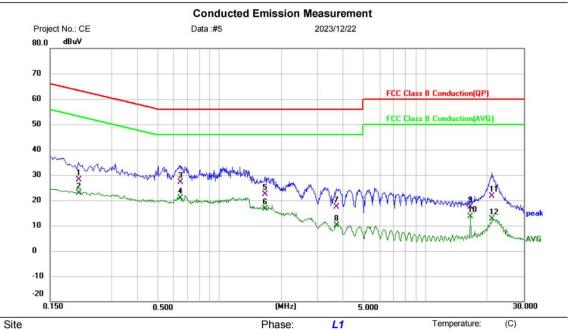
4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

Sweep Time: 10 ms

RBW: 9 KHz


VBW: 30 KHz

%RH

10.4 TEST DATA

[TestMode: Tx]; [Line: Line] ;[Power:AC120V/60Hz]

Limit: FCC Class B Conduction(QP) EUT: Intelligent Diaper Monitor

M/N: BabyN-EBG01

Mode: TX mode

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1		0.2060	17.78	10.38	28.16	63.37	-35.21	QP			
2		0.2060	12.60	10.38	22.98	53.37	-30.39	AVG			
3		0.6460	17.21	9.96	27.17	56.00	-28.83	QP			
4	*	0.6460	10.99	9.96	20.95	46.00	-25.05	AVG			
5		1.6700	12.35	10.03	22.38	56.00	-33.62	QP			
6		1.6700	6.70	10.03	16.73	46.00	-29.27	AVG			
7		3.6980	7.50	9.99	17.49	56.00	-38.51	QP			
8		3.6980	0.12	9.99	10.11	46.00	-35.89	AVG			
9		16.5260	3.70	13.62	17.32	60.00	-42.68	QP			
10		16.5260	0.08	13.62	13.70	50.00	-36.30	AVG			
11		21.1140	6.77	14.80	21.57	60.00	-38.43	QP			
12		21.1140	-2.05	14.80	12.75	50.00	-37.25	AVG			

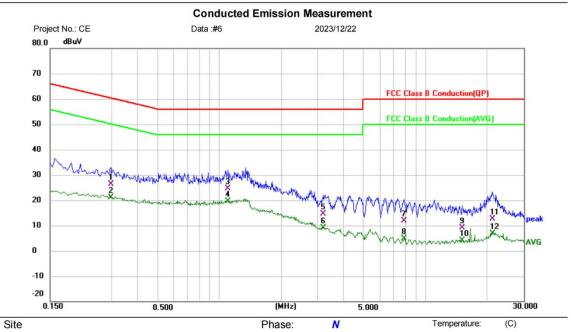
Power:

Distance:

L.I.S.N:

Engineer Signature

Sweep Time: 10 ms


RBW: 9 KHz

VBW: 30 KHz

%RH

[TestMode: Tx]; [Line: Neutral] ; [Power:AC120V/60Hz]

Limit: FCC Class B Conduction(QP)

EUT: Intelligent Diaper Monitor

M/N: BabyN-EBG01

Mode: TX mode

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1		0.2940	16.40	9.94	26.34	60.41	-34.07	QP			
2		0.2940	11.26	9.94	21.20	50.41	-29.21	AVG			
3		1.0940	14.75	9.88	24.63	56.00	-31.37	QP			
4	*	1.0940	9.70	9.88	19.58	46.00	-26.42	AVG			
5		3.1940	4.56	10.05	14.61	56.00	-41.39	QP			
6		3.1940	-1.00	10.05	9.05	46.00	-36.95	AVG			
7		7.8660	0.73	11.13	11.86	60.00	-48.14	QP			
8		7.8660	-6.34	11.13	4.79	50.00	-45.21	AVG			
9		15.0740	-3.95	13.08	9.13	60.00	-50.87	QP			
10		15.0740	-8.91	13.08	4.17	50.00	-45.83	AVG			
11	- 18	21.1980	-1.93	14.68	12.75	60.00	-47.25	QP			
12		21.1980	-7.75	14.68	6.93	50.00	-43.07	AVG			

Power:

Distance:

L.I.S.N: Fngineer Signature:

Page 16 of 73

Notes:

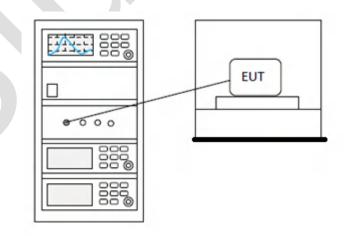
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Page 17 of 73

11 CONDUCTED BAND EDGES MEASUREMENT

Test Standard 47 CFR Part 15, Subpart C 15.247						
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	60%					

11.1 LIMITS


Limit:

spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated

In any 100 kHz bandwidth outside the frequency band in which the spread

11.2 BLOCK DIAGRAM OF TEST SETUP

emission limits specified in §15.209(a) (see §15.205(c)).

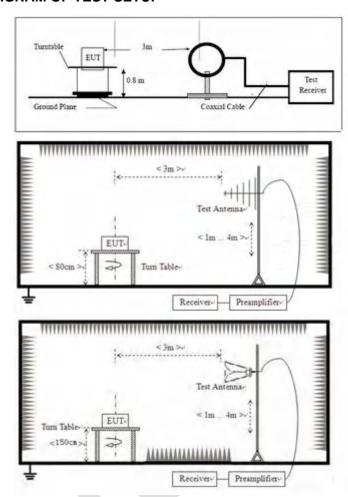
11.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 18 of 73

12 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247						
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6						
Test Mode (Pre-Scan)	TX						
Test Mode (Final Test)	TX						
Tester	Jozu						
Temperature	25℃						
Humidity	60%						


12.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

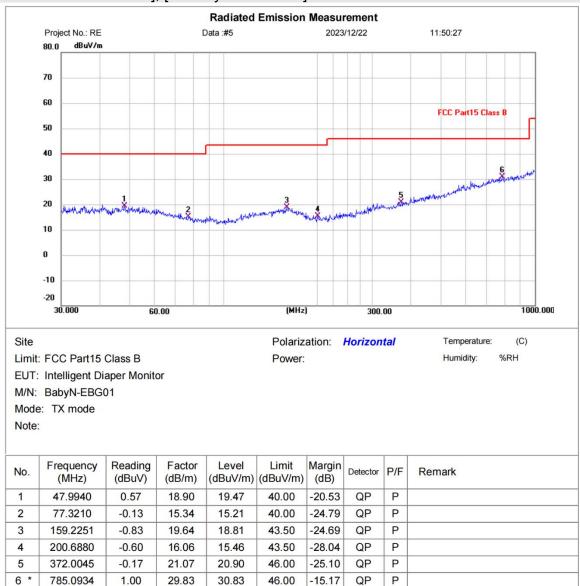
Page 20 of 73

- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

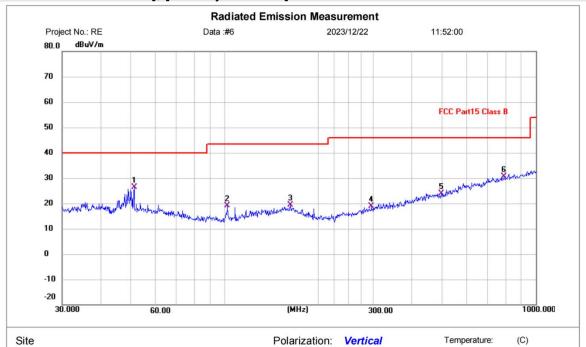
- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor


- 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

12.4 TEST DATA

Remark: During the test, pre-scan the BLE 1M, BLE 2M, and found the BLE 1M which it is worse case.


[TestMode: TX below 1G]; [Polarity: Horizontal]

*:Maximum data x:Over limit !:over margin

[TestMode: TX below 1G]; [Polarity: Vertical]

Limit: FCC Part15 Class B EUT: Intelligent Diaper Monitor

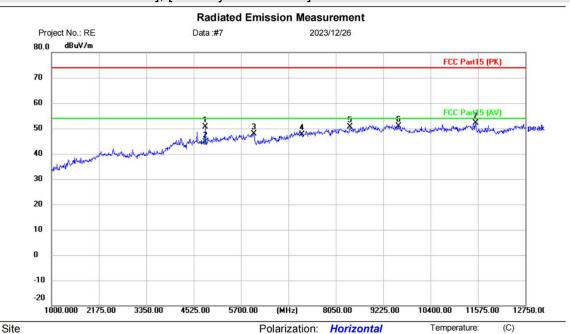
M/N: BabyN-EBG01 Mode: TX mode

Note:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	51.1209	6.82	19.56	26.38	40.00	-13.62	QP	Р	
2	102.0014	3.28	15.86	19.14	43.50	-24.36	QP	Р	
3	162.6106	0.33	18.95	19.28	43.50	-24.22	QP	Р	
4	296.1836	-0.44	19.23	18.79	46.00	-27.21	QP	Р	
5	497.6765	0.16	23.78	23.94	46.00	-22.06	QP	Р	
6	790.6188	0.79	29.75	30.54	46.00	-15.46	QP	Р	

Power:

^{*:}Maximum data x:Over limit !:over margin


%RH

Humidity:

Page 23 of 73

Remark: During the test, pre-scan the BLE 1M, BLE 2M, and found the BLE 1M which it is worse case.

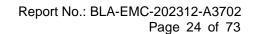
[TestMode: TX low channel]; [Polarity: Horizontal]

Limit: FCC Part15 (PK)

EUT: Intelligent Diaper Monitor

M/N: BabyN-EBG01 Mode: BLE1M TX-2402

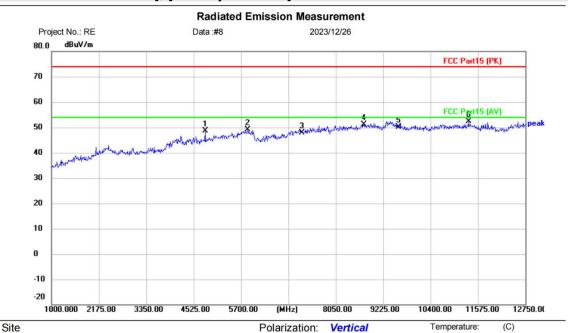
Note:


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4807.000	44.90	5.64	50.54	74.00	-23.46	peak	
2	*	4807.000	38.92	5.64	44.56	54.00	-9.44	AVG	
3		6017.250	42.25	5.63	47.88	74.00	-26.12	peak	
4		7206.000	38.32	9.24	47.56	74.00	-26.44	peak	
5		8402.500	40.34	10.26	50.60	74.00	-23.40	peak	
6		9608.000	38.69	12.31	51.00	74.00	-23.00	peak	
7		11516.25	39.70	12.54	52.24	74.00	-21.76	peak	

Power:

*:Maximum data (Reference Only x:Over limit !:over margin

Engineer Signature


FSP40 Receiver: ESR_1 Spectrum Analyzer: Antenna: EZ 9120D 1G-18G

%RH

[TestMode: TX low channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

EUT: Intelligent Diaper Monitor

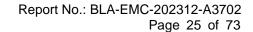
M/N: BabyN-EBG01 Mode: BLE1M TX-2402

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4807.000	42.89	5.64	48.53	74.00	-25.47	peak	
2		5864.500	40.74	8.48	49.22	74.00	-24.78	peak	
3		7206.000	38.64	9.24	47.88	74.00	-26.12	peak	
4		8743.250	39.57	11.57	51.14	74.00	-22.86	peak	
5		9608.000	37.74	12.31	50.05	74.00	-23.95	peak	
6	*	11340.00	39.63	12.67	52.30	74.00	-21.70	peak	

Power:

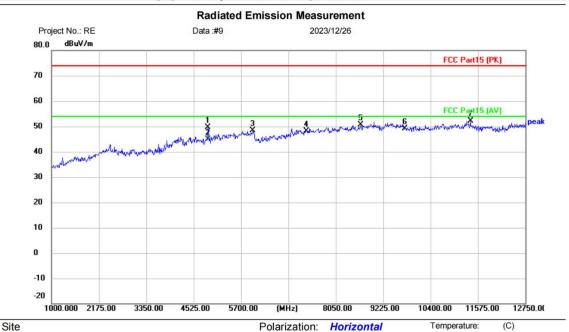
*:Maximum data x:Over limit !:over margin \(\text{Reference Only}


Engineer Signature

Receiver: ESR_1 Spectrum Analyzer: FSP40

Test Result: Pass

EZ 9120D 1G-18G


Antenna:

%RH

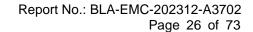
[TestMode: TX mid channel]; [Polarity: Horizontal]

Limit: FCC Part15 (PK)

EUT: Intelligent Diaper Monitor

M/N: BabyN-EBG01 Mode: BLE1M TX-2442

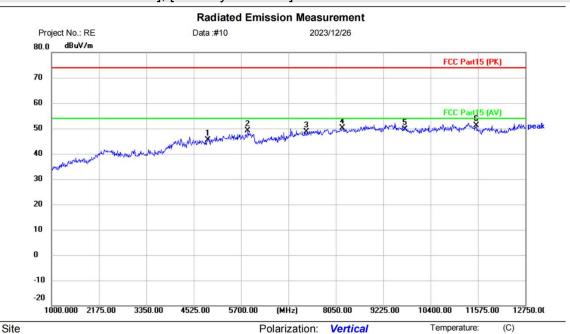
Note:


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4877.500	43.96	5.72	49.68	74.00	-24.32	peak	
2	*	4877.500	39.09	5.72	44.81	54.00	-9.19	AVG	
3		5993.750	39.69	8.75	48.44	74.00	-25.56	peak	
4		7326.000	38.59	9.43	48.02	74.00	-25.98	peak	
5		8672.750	39.23	11.40	50.63	74.00	-23.37	peak	
6		9768.000	36.90	12.22	49.12	74.00	-24.88	peak	
7		11387.00	39.49	12.63	52.12	74.00	-21.88	peak	

Power:

*:Maximum data Reference Only x:Over limit !:over margin

Engineer Signature


ESR_1 FSP40 Receiver: Spectrum Analyzer: Antenna: EZ 9120D 1G-18G

%RH

[TestMode: TX mid channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

EUT: Intelligent Diaper Monitor

M/N: BabyN-EBG01 Mode: BLE1M TX-2442

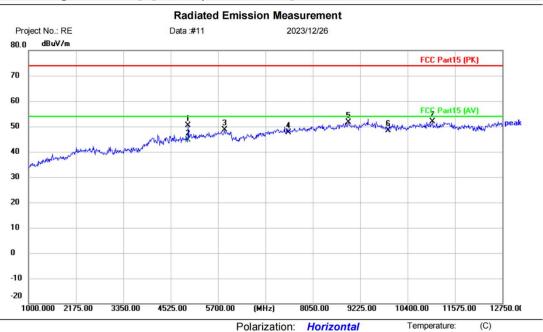
Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4884.000	39.73	5.75	45.48	74.00	-28.52	peak	
2		5864.500	40.63	8.48	49.11	74.00	-24.89	peak	
3		7326.000	39.17	9.43	48.60	74.00	-25.40	peak	
4		8214.500	40.29	9.87	50.16	74.00	-23.84	peak	
5		9768.000	37.38	12.22	49.60	74.00	-24.40	peak	
6	*	11528.00	38.72	12.48	51.20	74.00	-22.80	peak	

Power:

*:Maximum data x:Over limit !:over margin \(\text{Reference Only}

 Receiver:
 ESR_1
 Spectrum Analyzer:
 FSP40

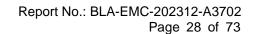

 Antenna:
 EZ 9120D 1G-18G
 Fnotineer Signature:

%RH

[TestMode: TX high channel]; [Polarity: Horizontal]

Site Limit: FCC Part15 (PK)

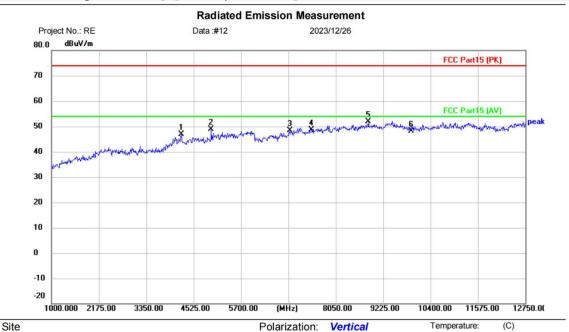
EUT: Intelligent Diaper Monitor


M/N: BabyN-EBG01 Mode: BLE1M TX-2480

Note:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4959.750	43.70	6.60	50.30	74.00	-23.70	peak	
2	*	4959.750	37.95	6.60	44.55	54.00	-9.45	AVG	
3		5864.500	40.22	8.48	48.70	74.00	-25.30	peak	
4		7440.000	38.01	9.64	47.65	74.00	-26.35	peak	
5		8931.250	39.46	12.19	51.65	74.00	-22.35	peak	
6		9920.000	36.30	12.14	48.44	74.00	-25.56	peak	
7		11022.75	38.54	13.32	51.86	74.00	-22.14	peak	

Power:


Antenna: EZ 9120D 1G-18G Engineer Signature:

%RH

[TestMode: TX high channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

EUT: Intelligent Diaper Monitor

M/N: BabyN-EBG01 Mode: BLE1M TX-2480

Note:

Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	4219.500	40.66	6.25	46.91	74.00	-27.09	peak	
	4959.750	42.26	6.60	48.86	74.00	-25.14	peak	
	6910.250	40.24	8.15	48.39	74.00	-25.61	peak	
	7440.000	38.97	9.64	48.61	74.00	-25.39	peak	
*	8860.750	39.93	11.83	51.76	74.00	-22.24	peak	
	9920.000	36.09	12.14	48.23	74.00	-25.77	peak	
	*	MHz 4219.500 4959.750 6910.250	Mk. Freq. Level MHz dBuV 4219.500 40.66 4959.750 42.26 6910.250 40.24 7440.000 38.97 * 8860.750 39.93	Mk. Freq. Level Factor MHz dBuV dB 4219.500 40.66 6.25 4959.750 42.26 6.60 6910.250 40.24 8.15 7440.000 38.97 9.64 * 8860.750 39.93 11.83	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 4219.500 40.66 6.25 46.91 4959.750 42.26 6.60 48.86 6910.250 40.24 8.15 48.39 7440.000 38.97 9.64 48.61 * 8860.750 39.93 11.83 51.76	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 4219.500 40.66 6.25 46.91 74.00 4959.750 42.26 6.60 48.86 74.00 6910.250 40.24 8.15 48.39 74.00 7440.000 38.97 9.64 48.61 74.00 * 8860.750 39.93 11.83 51.76 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dBuV/m dB 4219.500 40.66 6.25 46.91 74.00 -27.09 4959.750 42.26 6.60 48.86 74.00 -25.14 6910.250 40.24 8.15 48.39 74.00 -25.61 7440.000 38.97 9.64 48.61 74.00 -25.39 * 8860.750 39.93 11.83 51.76 74.00 -22.24	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dBuV/m dB Detector 4219.500 40.66 6.25 46.91 74.00 -27.09 peak 4959.750 42.26 6.60 48.86 74.00 -25.14 peak 6910.250 40.24 8.15 48.39 74.00 -25.61 peak 7440.000 38.97 9.64 48.61 74.00 -25.39 peak * 8860.750 39.93 11.83 51.76 74.00 -22.24 peak

Power:

*:Maximum data x:Over limit !:over margin \(\text{Reference Only}

Engineer Signature

Receiver: ESR_1 Spectrum Analyzer: FSP40

Test Result: Pass

EZ 9120D 1G-18G

Antenna:

Page 29 of 73

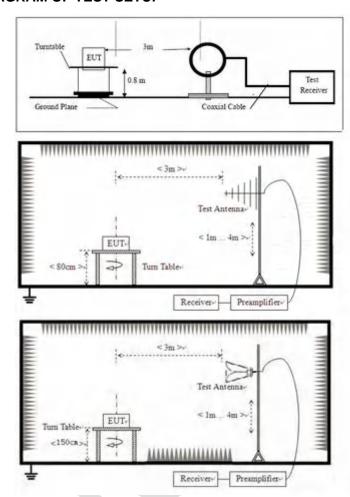
Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 30 of 73

13 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	60%


13.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

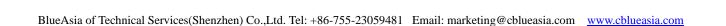
Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Page 32 of 73

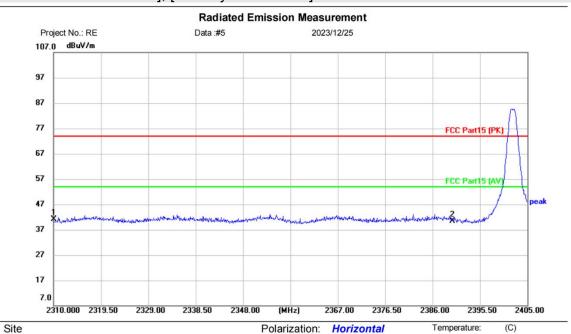

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

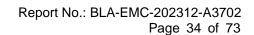


13.4 TEST DATA

Remark: During the test, pre-scan the BLE 1M, BLE 2M, and found the BLE 1M which it is worse case.

[TestMode: TX low channel]; [Polarity: Horizontal]

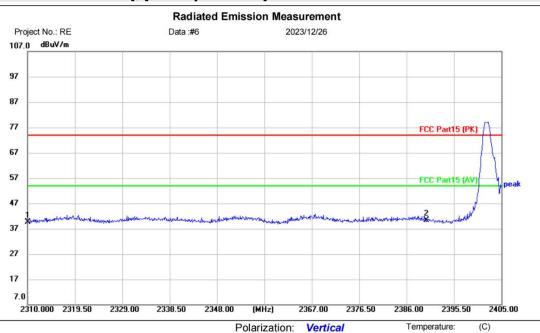
Limit: FCC Part15 (PK) EUT: Intelligent Diaper Monitor


Note:

M/N: BabyN-EBG01 Mode: BLE1M TX-2402

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2310.000	44.01	-2.89	41.12	74.00	-32.88	peak	
2		2390.000	43.02	-2.70	40.32	74.00	-33.68	peak	

Power:


Antenna: EZ 9120D 1G-18G Engineer Signature:

%RH

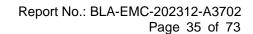
[TestMode: TX low channel]; [Polarity: Vertical]

Site Limit: FCC Part15 (PK)

EUT: Intelligent Diaper Monitor

M/N: BabyN-EBG01 Mode: BLE1M TX-2402

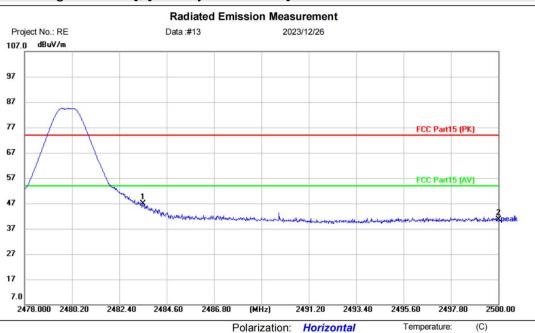
Note:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2310.000	42.41	-2.89	39.52	74.00	-34.48	peak	
2	*	2390.000	43.17	-2.70	40.47	74.00	-33.53	peak	

Power:

*:Maximum data x:Over limit !:over margin \(\text{Reference Only}

Receiver: ESR_1 Spectrum Analyzer: FSP40


Antenna: EZ 9120D 1G-18G Engineer Signature:

%RH

[TestMode: TX high channel]; [Polarity: Horizontal]

Site Limit: FCC Part15 (PK)

EUT: Intelligent Diaper Monitor

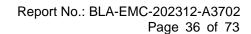
M/N: BabyN-EBG01 Mode: BLE1M TX-2480

Note:

No.	M	k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	24	183.500	49.69	-2.91	46.78	74.00	-27.22	peak	
2		25	500.000	43.55	-3.00	40.55	74.00	-33.45	peak	

Power:

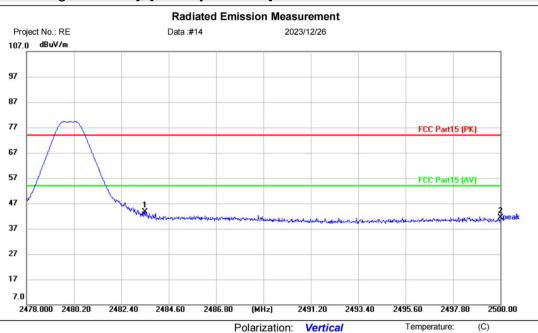
*:Maximum data x:Over limit !:over margin \(\text{Reference Only}


Engineer Signature

Receiver: ESR_1 Spectrum Analyzer: FSP40

Test Result: Pass

EZ 9120D 1G-18G


Antenna:

%RH

[TestMode: TX high channel]; [Polarity: Vertical]

Site Limit: FCC Part15 (PK)

EUT: Intelligent Diaper Monitor

M/N: BabyN-EBG01 Mode: BLE1M TX-2480

Note:

No.	٨	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	*	2483.500	46.45	-2.91	43.54	74.00	-30.46	peak	
2			2500.000	44.38	-3.00	41.38	74.00	-32.62	peak	

Power:

*:Maximum data x:Over limit !:over margin \(\text{Reference Only}

Engineer Signature

Receiver: ESR_1 Spectrum Analyzer: FSP40

Test Result: Pass

EZ 9120D 1G-18G

Antenna:

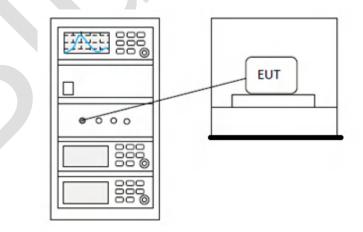
Page 37 of 73

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 38 of 73

14 CONDUCTED SPURIOUS EMISSIONS


Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25 ℃					
Humidity	60%					

14.1 LIMITS

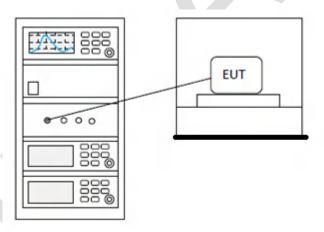
Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 TEST DATA

Page 39 of 73


15 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 11.10.2					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	60%					

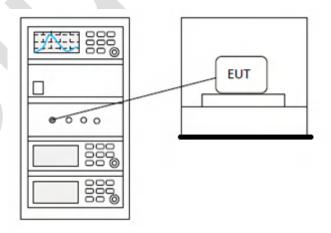
15.1 LIMITS

Limit: | ≤8dBm in any 3 kHz band during any time interval of continuous transmission

15.2 BLOCK DIAGRAM OF TEST SETUP

15.3 TEST DATA

Page 40 of 73


16 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.5					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25 ℃					
Humidity	60%					

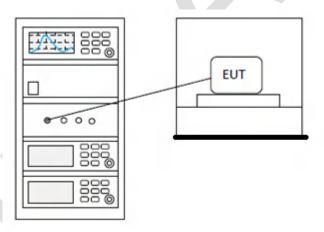
16.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)		
	1 for ≥50 hopping channels		
902-928	0.25 for 25≤ hopping channels <50		
	1 for digital modulation		
	1 for ≥75 non-overlapping hopping channels		
2400-2483.5	0.125 for all other frequency hopping systems		
	1 for digital modulation		
5725-5850	1 for frequency hopping systems and digital		
	modulation		

16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 TEST DATA

Page 41 of 73


17 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 11.8.1					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	60%					

17.1 LIMITS

l		
Limit:	≥500 kHz	
ı ımır•	2100 KH7	
1/111111	- 300 KHZ	

17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 TEST DATA

Page 42 of 73

18 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A

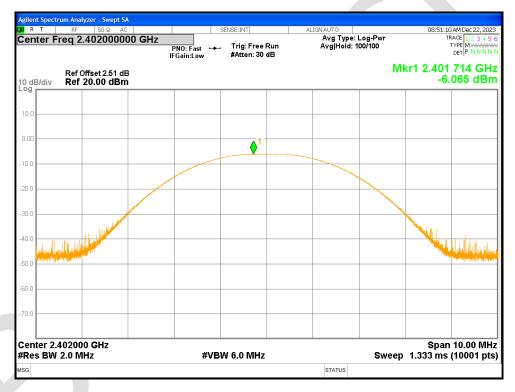
18.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The best case gain of the antenna is 2dBi.

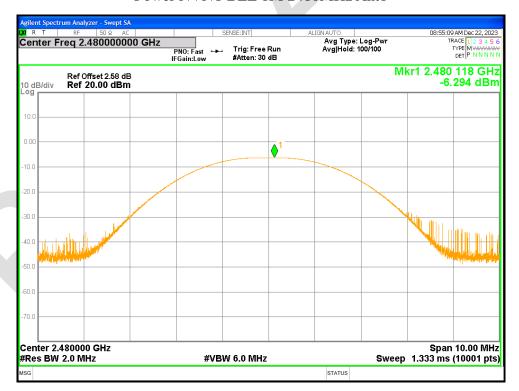

Page 43 of 73

19 APPENDIX1

Maximum Conducted Output Power


Condition	Mode	Frequency	Antenna Conducted		Limit	Verdict
		(MHz)		Power (dBm)	(dBm)	
NVNT	BLE 1M	2402	Ant1	-6.065	30	Pass
NVNT	BLE 1M	2442	Ant1	-7.127	30	Pass
NVNT	BLE 1M	2480	Ant1	-6.294	30	Pass
NVNT	BLE 2M	2402	Ant1	-6.018	30	Pass
NVNT	BLE 2M	2442	Ant1	-7.13	30	Pass
NVNT	BLE 2M	2480	Ant1	-6.255	30	Pass

Power NVNT BLE 1M 2402MHz Ant1



Power NVNT BLE 1M 2442MHz Ant1

Power NVNT BLE 1M 2480MHz Ant1

Power NVNT BLE 2M 2402MHz Ant1

Power NVNT BLE 2M 2442MHz Ant1

Power NVNT BLE 2M 2480MHz Ant1

Page 47 of 73

-6dB Bandwidth

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE 1M	2402	Ant1	0.677	0.5	Pass
NVNT	BLE 1M	2442	Ant1	0.686	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.667	0.5	Pass
NVNT	BLE 2M	2402	Ant1	1.077	0.5	Pass
NVNT	BLE 2M	2442	Ant1	1.12	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.109	0.5	Pass

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

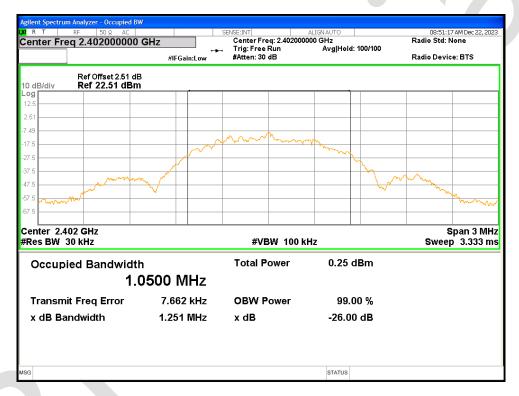
08:53:59 AM Dec 22, 2023 Center Freq: 2.442000000 GHz Trig: Free Run Avg #Atten: 30 dB Center Freq 2.442000000 GHz Radio Std: None Avg|Hold: 100/100 #IFGain:Low Mkr3 2.442349 GHz Ref Offset 2.53 dB Ref 22.53 dBm -13.642 dBm 10 dB/div Span 2 MHz Sweep 1.333 ms Center 2.442 GHz #Res BW 100 kHz **#VBW 300 kHz Total Power** -1.19 dBm Occupied Bandwidth 1.0717 MHz **Transmit Freq Error** 5.657 kHz **OBW Power** 99.00 % x dB Bandwidth 685.7 kHz x dB -6.00 dB

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2480MHz Ant1


09:01:19 AM Dec 22, 2023 Radio Std: None Center Freq 2.480000000 GHz #IFGain:Low Radio Device: BTS Mkr3 2.480572 GHz -15.284 dBm Ref Offset 2.58 dB Ref 22.58 dBm 10 dB/div Span 3 MHz Sweep 1.333 ms Center 2.48 GHz #Res BW 100 kHz #VBW 300 kHz Occupied Bandwidth **Total Power** -0.12 dBm 2.0546 MHz 17.555 kHz **Transmit Freq Error OBW Power** 99.00 % x dB Bandwidth 1.109 MHz x dB -6.00 dB STATUS

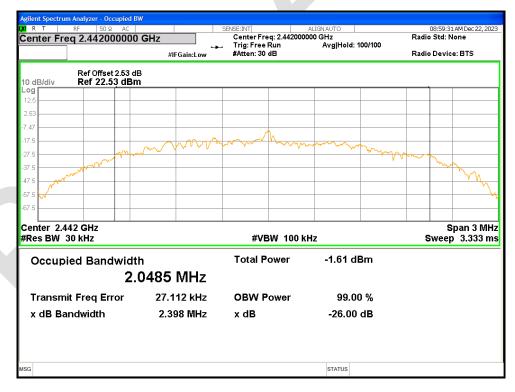
Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.0500
NVNT	BLE 1M	2442	Ant1	1.0527
NVNT	BLE 1M	2480	Ant1	1.0507
NVNT	BLE 2M	2402	Ant1	2.0408
NVNT	BLE 2M	2442	Ant1	2.0485
NVNT	BLE 2M	2480	Ant1	2.0494

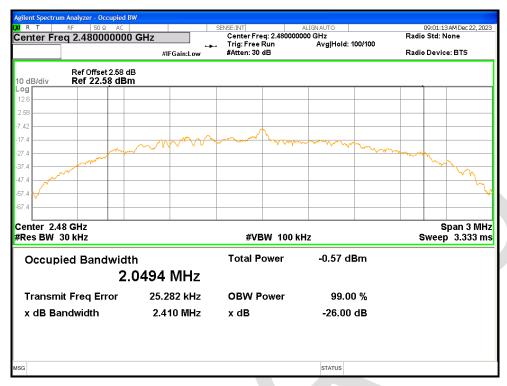
OBW NVNT BLE 1M 2402MHz Ant1

OBW NVNT BLE 1M 2442MHz Ant1

OBW NVNT BLE 1M 2480MHz Ant1

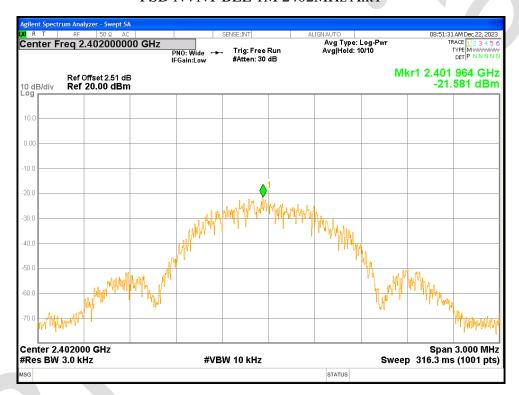


OBW NVNT BLE 2M 2402MHz Ant1


7:44 AM Dec 22, 2023 Center Freq: 2.4020000000 GHz Trig: Free Run Avg #Atten: 30 dB Center Freq 2.402000000 GHz Radio Std: None Avg|Hold: 100/100 Radio Device: BTS #IFGain:Low Ref Offset 2.51 dB Ref 22.51 dBm 10 dB/div Span 3 MHz Sweep 3.333 ms Center 2.402 GHz #Res BW 30 kHz **#VBW 100 kHz Total Power** -0.31 dBm Occupied Bandwidth 2.0408 MHz **Transmit Freq Error** 25.952 kHz **OBW Power** 99.00 % x dB Bandwidth 2.396 MHz -26.00 dB x dB

OBW NVNT BLE 2M 2442MHz Ant1

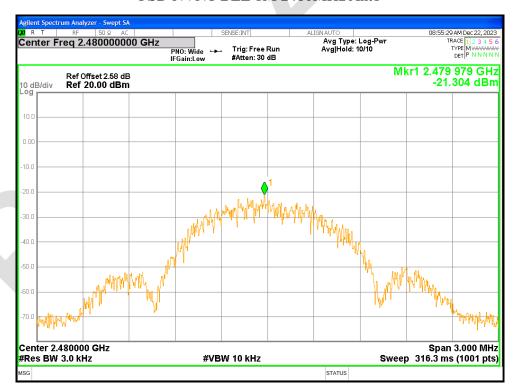
OBW NVNT BLE 2M 2480MHz Ant1



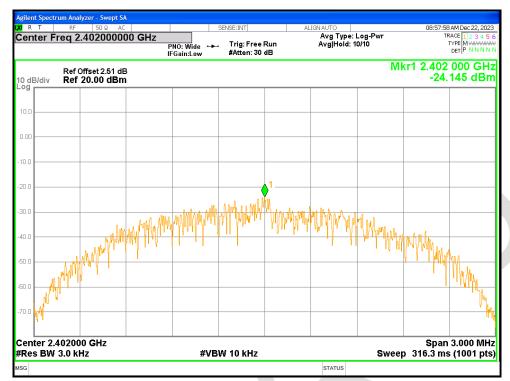
Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-21.581	8	Pass
NVNT	BLE 1M	2442	Ant1	-22.368	8	Pass
NVNT	BLE 1M	2480	Ant1	-21.304	8	Pass
NVNT	BLE 2M	2402	Ant1	-24.145	8	Pass
NVNT	BLE 2M	2442	Ant1	-24.926	8	Pass
NVNT	BLE 2M	2480	Ant1	-23.911	8	Pass

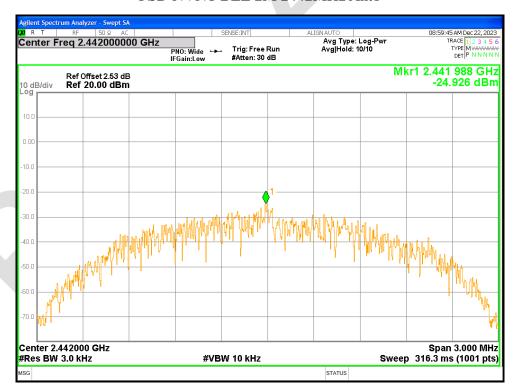
PSD NVNT BLE 1M 2402MHz Ant1



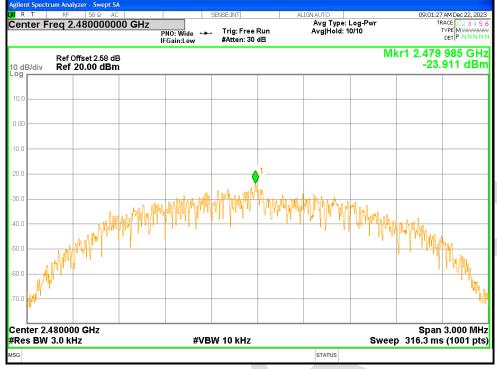
PSD NVNT BLE 1M 2442MHz Ant1

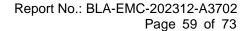


PSD NVNT BLE 1M 2480MHz Ant1



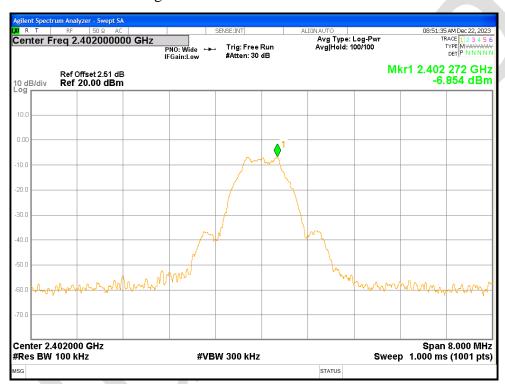
PSD NVNT BLE 2M 2402MHz Ant1


PSD NVNT BLE 2M 2442MHz Ant1



PSD NVNT BLE 2M 2480MHz Ant1

Page 58 of 73



Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-49.30	-20	Pass
NVNT	BLE 1M	2480	Ant1	-48.03	-20	Pass
NVNT	BLE 2M	2402	Ant1	-49.09	-20	Pass
NVNT	BLE 2M	2480	Ant1	-48.46	-20	Pass

Band Edge NVNT BLE 1M 2402MHz Ant1 Ref

Band Edge NVNT BLE 1M 2402MHz Ant1 Emission



Band Edge NVNT BLE 1M 2480MHz Ant1 Ref

Band Edge NVNT BLE 1M 2480MHz Ant1 Emission

Band Edge NVNT BLE 2M 2402MHz Ant1 Ref

Band Edge NVNT BLE 2M 2402MHz Ant1 Emission

Band Edge NVNT BLE 2M 2480MHz Ant1 Ref

Band Edge NVNT BLE 2M 2480MHz Ant1 Emission

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-34.37	-20	Pass
NVNT	BLE 1M	2442	Ant1	-30.26	-20	Pass
NVNT	BLE 1M	2480	Ant1	-32.35	-20	Pass
NVNT	BLE 2M	2402	Ant1	-30.4	-20	Pass
NVNT	BLE 2M	2442	Ant1	-34.41	-20	Pass
NVNT	BLE 2M	2480	Ant1	-34.44	-20	Pass

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Ref



Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Emission

Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Ref

Tx. Spurious NVNT BLE 1M 2442MHz Ant1 Emission


April	Spectrum	Analyzer - Swept	SA				
R T	RF	50 a	AC	SENSE	INT	ALIGNAUTO	0854:40 AM Dec 22, 2023
Ref	Green	Freq	13, 265000000	GHz			
PNO: Fast	Free Run	Ref	Offset 2,53 dB				
10 dB/dlv	Ref	20,00 dBm	20,				

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Ref

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Emission

Tx. Spurious NVNT BLE 2M 2402MHz Ant1 Ref

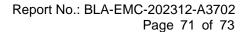
Tx. Spurious NVNT BLE 2M 2402MHz Ant1 Emission



Tx. Spurious NVNT BLE 2M 2442MHz Ant1 Ref

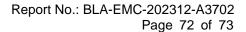
Tx. Spurious NVNT BLE 2M 2442MHz Ant1 Emission




Tx. Spurious NVNT BLE 2M 2480MHz Ant1 Ref

Tx. Spurious NVNT BLE 2M 2480MHz Ant1 Emission





Conducted Emissions at AC Power Line (150kHz-30MHz)

Page 73 of 73

APPENDIX B: PHOTOGRAPHS OF EUT

Reference to the test report No. BLA-EMC-202312-A3701

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.