

MPE Evaluation

Applicant: Dongguan Chenxing Design Technology Co., Ltd.

FCC ID: 2BCYG-HW210HW310

Model: HW310, HW210

MPE Evaluation

RF Exposure Compliance Requirement

Standard Requirement

According to KDB447498D01 General RF Exposure Guidance v06 and FCC 1.1310 Radiofrequency radiation exposure limits for General Population/Uncontrolled Exposure

EUT RF Exposure

$$P_d = PG/4 \pi R^2$$

P_d = power density in mW/cm²

P = output power to antenna in mW

G = gain of antenna in linear scale

$\pi = 3.14$

R = distance between observation point and center of the radiator in cm

Bluetooth (BLE mode):

The Max Output Power is 3.418 dBm in 2.402GHz;

Antenna gain: -0.68 dBi, gain of antenna in linear scale: 0.86

$R=20\text{cm}$

$$P_d = PG/(4 \pi R^2) = 0.00038 \text{ mW/cm}^2 < 1(\text{limits}) \text{ mW/cm}^2$$

Bluetooth (Classic mode):

The Max Output Power is 4.409 dBm Normal mode 2.402GHz;

Antenna gain: -0.68dBi, gain of antenna in linear scale: 0.86

$R=20\text{cm}$

gain of antenna in linear scale: 0.86

$R=20\text{cm}$

$$P_d = PG/(4 \pi R^2) = 0.00047 \text{ mW/cm}^2 < 1(\text{limits}) \text{ mW/cm}^2$$

CONCLUSION: Both of the **BLE** and **BDR/EDR**, can transmit simultaneously, the formula of calculated the MPE is:

$CPD1 / LPD1 + CPD2 / LPD2 + CPD3 / LPD3 < 1$

CPD = Calculation power density

LPD = Limit of power density

--END--