



# **FCC Test Report**

Report No.: AGC14499240405FR01

FCC ID : 2BCUQ-W610D

**APPLICATION PURPOSE**: Original Equipment

**PRODUCT DESIGNATION**: Portable DECT Phone

BRAND NAME : LINXVIL

**MODEL NAME** : W610D, W610DP, W710P, W610P

**APPLICANT**: Fanvil Link Technology Co., LTD

**DATE OF ISSUE** : Jun. 14, 2024

**STANDARD(S)** : FCC Part 15 Subpart D §15.323

**REPORT VERSION** : V1.0

Attestation of Global Chenzhen Co., Ltd



Page 2 of 71

# **Report Revise Record**

| Report Version | Revise Time | Issued Date   | Valid Version | Notes           |
|----------------|-------------|---------------|---------------|-----------------|
| V1.0           | /           | Jun. 14, 2024 | Valid         | Initial Release |



# **Table of Contents**

| 1. General Information                                 | 5          |
|--------------------------------------------------------|------------|
| 2. Product Information                                 | $\epsilon$ |
| 2.1 Product Technical Description                      | €          |
| 2.2 Test Frequency List                                | $\epsilon$ |
| 2.3 Related Submittal(S) / Grant (S)                   | 7          |
| 2.4 Test Methodology                                   | 7          |
| 2.5 Automatic Discontinuation of Transmission          | 7          |
| 2.6 Digital Modulation Techniques                      | ε          |
| 2.7 Special Accessories                                | 8          |
| 2.8 Equipment Modifications                            | 8          |
| 2.9 Antenna Requirement                                | 8          |
| 3. Test Environment                                    | g          |
| 3.1 Address of The Test Laboratory                     | g          |
| 3.2 Test Facility                                      | g          |
| 3.3 Environmental Conditions                           | 10         |
| 3.4 Measurement Uncertainty                            | 10         |
| 3.5 List of Equipment Used                             | 11         |
| 4.System Test Configuration                            | 13         |
| 4.1 EUT Configuration                                  | 13         |
| 4.2 EUT Exercise                                       | 13         |
| 4.3 Configuration of Tested System                     | 13         |
| 4.4 Equipment Used in Tested System                    | 14         |
| 4.5 Summary of Test Results                            |            |
| 5. Description of Test Modes                           |            |
| 6. 26dB Emission Bandwidth & 99% Occupied Bandwidth    | 17         |
| 6.1 Provisions Applicable                              | 17         |
| 6.2 Measurement Procedure                              | 17         |
| 6.3 Measurement Setup (Block Diagram of Configuration) | 17         |
| 6.4 Measurement Result                                 | 18         |
| 7. Peak Transmit Power and Antenna Gain                | 20         |
| 7.1 Provisions Applicable                              | 20         |
| 7.2 Measurement Procedure                              | 20         |
| 7.3 Measurement Setup (Block Diagram of Configuration) | 20         |
| 7.4 Measurement Result                                 | 21         |
| 8. Power Spectral Density                              | <b>2</b> 4 |
| 8.1 Provisions Applicable                              | 24         |
| 8.2 Measurement Procedure                              | 24         |
| 8.2 Measurement Setup (Block Diagram of Configuration) | 24         |
| 8.3 Measurement Result                                 | 25         |



| 9. In-Band Unwanted Emissions                                            | 27 |
|--------------------------------------------------------------------------|----|
| 9.1 Provisions Applicable                                                | 27 |
| 9.2 Measurement Procedure                                                | 27 |
| 9.3 Measurement Setup (Block Diagram of Configuration)                   | 27 |
| 9.4 Measurement Result                                                   | 28 |
| 10. Out-of-Band Unwanted Emissions                                       | 30 |
| 10.1 Provisions Applicable                                               | 30 |
| 10.2 Measurement Procedure                                               | 30 |
| 10.3 Measurement Setup (Block Diagram of Configuration)                  | 30 |
| 10.4 Measurement Result                                                  | 31 |
| 11. Radiated Emission                                                    | 39 |
| 11.1 Limits of Radiated Emission Test                                    | 39 |
| 11.2 Measurement Procedure                                               | 39 |
| 11.3 Measurement Setup (Block Diagram of Configuration)                  | 41 |
| 11.4 Measurement Result                                                  |    |
| 12. AC Power Line Conducted Emission                                     | 52 |
| 12.1 Limits of Line Conducted Emission Test                              | 52 |
| 12.2 Measurement Setup (Block Diagram of Configuration)                  | 52 |
| 12.3 Preliminary Procedure of Line Conducted Emission Test               |    |
| 12.4 Final Procedure of Line Conducted Emission Test                     | 53 |
| 12.5 Measurement Result                                                  | 53 |
| 13. Carrier Frequency Stability                                          | 58 |
| 13.1 Provisions Applicable                                               | 58 |
| 13.2 Measurement Procedure                                               | 58 |
| 13.3 Measurement Setup (Block Diagram of Configuration)                  | 58 |
| 13.4 Measurement Result                                                  | 59 |
| 14. Specific Requirements for UPCS Device                                | 61 |
| 14.1 Monitoring Time Requirements                                        | 61 |
| 14.2 Lowest Monitoring Threshold Requirements                            | 62 |
| 14.3 Acknowledgements and Transmission Duration Requirements             | 63 |
| 14.4 Least Interfered Channel (LIC) Selection Requirements               | 64 |
| 14.5 Random Waiting Requirements                                         | 65 |
| 14.6 Monitoring Bandwidth Requirements                                   | 66 |
| 14.7 Monitoring Antenna Requirements                                     | 67 |
| 14.8 Dual Access Criteria Check Requirements                             | 68 |
| 14.9 Alternative Monitoring Interval for Co-Located Devices Requirements | 69 |
| 14.10 Frame Repetition Stability And Period And Jitter                   | 70 |
| Appendix I: Photographs of Test Setup                                    | 71 |
| Annendix II: Photographs of Test FUT                                     | 71 |



Report No.: AGC14499240405FR01 Page 5 of 71

# 1. General Information

| Applicant                    | Fanvil Link Technology Co., LTD                                                                                                      |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Address                      | A03, A08, 3rd Floor, Building 2, Dagian IndustralPlant, Zone 67, Xingdong Community, Xin'anStreet, Bao'an District, Shenzhen, China  |
| Manufacturer                 | Fanvil Link Technology Co., LTD                                                                                                      |
| Address                      | A03, A08, 3rd Floor, Building 2, Dagian IndustralPlant, Zone 67, Xingdong Community, Xin'anStreet, Bao'an District, Shenzhen , China |
| Product Designation          | Portable DECT Phone                                                                                                                  |
| Brand Name                   | LINKVIL                                                                                                                              |
| Test Model                   | W610D                                                                                                                                |
| Series Model                 | W610DP, W710P, W610P                                                                                                                 |
| Difference Description       | Only the model names are different                                                                                                   |
| Date of receipt of test item | May 06, 2024                                                                                                                         |
| Date of Test                 | May 06, 2024~Jun. 12, 2024                                                                                                           |
| Deviation from Standard      | No any deviation from the test method                                                                                                |
| Condition of Test Sample     | Normal                                                                                                                               |
| Test Result                  | Pass                                                                                                                                 |
| Test Report Form No          | AGCER-FCC-DECT-V1                                                                                                                    |

Note: The test results of this report relate only to the tested sample identified in this report.

| Prepared By | Jour Gai                        |               |
|-------------|---------------------------------|---------------|
|             | Jack Gui<br>(Project Engineer)  | Jun. 14, 2024 |
| Reviewed By | Calvin Lin                      |               |
|             | Calvin Liu<br>(Reviewer)        | Jun. 14, 2024 |
| Approved By | Max Zhang                       |               |
|             | Max Zhang<br>Authorized Officer | Jun. 14, 2024 |



Page 6 of 71

# 2. Product Information

# 2.1 Product Technical Description

| Equipment Type            | Portable Part (PP)                                           |
|---------------------------|--------------------------------------------------------------|
| Frequency Band            | 1920 MHz to 1930 MHz                                         |
| Operation Frequency Range | 1921.536 MHz to 1928.448 MHz                                 |
| Hardware Version          | V1.0                                                         |
| Software Version          | T0.4.8.5                                                     |
| Type of Modulation        | Digital (Gaussian Frequency Shift Keying)                    |
| Modulation Technique      | GFSK                                                         |
| Number of channels        | 5 RF Channels, 5 x 12 = 60 TDMA Duplex Channels              |
| Channel Separation        | 1728 kHz                                                     |
| Emission Designator       | F7D                                                          |
| Maximum Transmitter Power | 18.15dBm for conducted power 20.82dBm for EIRP               |
| Antenna Designation       | Integral Antenna                                             |
| Antenna Gain              | 4.6dBi                                                       |
| Power Supply              | DC 3.8V, 1900mAh by battery or charging for DC 5V by adapter |

# 2.2 Test Frequency List

| Channel Number | Frequency        |
|----------------|------------------|
| 0              | 1928.448 MHz     |
| 1              | 1926.720 MHz     |
| 2              | 1924.992 MHz     |
| 3              | 1923.264 MHz     |
| 4              | 1921.536 MHz     |
|                | 0<br>1<br>2<br>3 |

Note: All channels operation in the 1920-1930 MHz band, meeting the requirement of FCC 47 CFR Part 15.303



Report No.: AGC14499240405FR01 Page 7 of 71

# 2.3 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: **2BCUQ-W610D**, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

# 2.4 Test Methodology

The tests were performed according to following standards:

| No. | Identity           | Document Title                                                                                                                                                       |  |
|-----|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1   | FCC 47 CFR Part 2  | Frequency allocations and radio treaty matters; general rules and regulations                                                                                        |  |
| 2   | FCC 47 CFR Part 15 | Radio Frequency Devices                                                                                                                                              |  |
| 3   | ANSI C63.4-2014    | American National Standard for Methods of Measurement of Radio- Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz |  |
| 4   | ANSI C63.10-2013   | American National Standard for Testing Unlicensed Wireless Devices                                                                                                   |  |
| 5   | ANSI C63.17-2013   | American National Standard Methods of Measurement of the Electromagnetic and Operational Compatibility of Unlicensed Personal Communications Services (UPCS) Devices |  |

#### 2.5 Automatic Discontinuation of Transmission

| Does the EUT transmit Control and Signaling Information? |                                                |  |
|----------------------------------------------------------|------------------------------------------------|--|
| ⊠ Yes                                                    | □ No                                           |  |
| Type of EUT:                                             |                                                |  |
| ☐ Initiating Device                                      | □ Responding Device     □                      |  |
| The following tests simulate the reaction of the EU      | JT in case of either absence of information to |  |

| No. | Test                            | EUT Reaction | Results |
|-----|---------------------------------|--------------|---------|
| 1   | Power removed: EUT              | A            | Pass    |
| 2   | Switch Off: EUT                 | N/A          | Pass    |
| 3   | Hook-On: EUT                    | N/A          | Pass    |
| 4   | Power Removed: Companion Device | В            | Pass    |
| 5   | Switch Off: Companion Device    | В            | Pass    |
| 6   | Hook-On: Companion Device       | В            | Pass    |

#### Note:

- A Connection breakdown, Cease of all transmissions
- B Connection breakdown, EUT transmits control and signaling information
- C Connection breakdown, Companion Device transmits control and signaling information

transmit or operational failure after a connection with the companion device is established.

N/A: Not Applicable (EUT does not have On/Off switch and cannot perform Hook-On)



Page 8 of 71

# 2.6 Digital Modulation Techniques

The test sample is an isochronous digital modulated device that operates in 1920-1930 MHz band. This device bases on DECT technology described in European Standards EN 300 175-2 and EN 300 175-3, now operating in frequency channels mentioned above.

The operating modes are MC/TDMA/TDD (Multi carrier / Time Division Multiple Access / Time Division Duplex) using Digital GFSK (Gaussian Frequency Shift Keying) modulation.

For further details see operational description provided by manufacturer.

# 2.7 Special Accessories

Not available for this EUT intended for grant.

## 2.8 Equipment Modifications

Not available for this EUT intended for grant.

# 2.9 Antenna Requirement

## **Standard Requirement**

## 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### **EUT Antenna:**

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is 4.6dBi.



Page 9 of 71

#### 3. Test Environment

## 3.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address:1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

# 3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

# CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories.)

# A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

# FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

# IC-Registration No.: 24842(CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.



Page 10 of 71

# 3.3 Environmental Conditions

| Normal Conditions | Extreme Conditions                 |
|-------------------|------------------------------------|
| 15 - 35           | -20 - 45                           |
| 20 % - 75 %       | 20 % - 75 %                        |
| 86 - 106          | 86 - 106                           |
| DC 3.8V           | LV DC 3.23V/HV DC 4.37V            |
|                   | 15 - 35<br>20 % - 75 %<br>86 - 106 |

Note: The Extreme Temperature and Extreme Voltages declared by the manufacturer.

# 3.4 Measurement Uncertainty

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

| Item                                          | Measurement Uncertainty    |
|-----------------------------------------------|----------------------------|
| Uncertainty of Conducted Emission for AC Port | $U_c = \pm 2.9 \text{ dB}$ |
| Uncertainty of Radiated Emission below 1GHz   | $U_c = \pm 3.9 \text{ dB}$ |
| Uncertainty of Radiated Emission above 1GHz   | $U_c = \pm 4.9 \text{ dB}$ |
| Uncertainty of total RF power, conducted      | $U_c = \pm 0.8 \text{ dB}$ |
| Uncertainty of RF power density, conducted    | $U_c = \pm 2.6 \text{ dB}$ |
| Uncertainty of spurious emissions, conducted  | U <sub>c</sub> = ±2 %      |
| Uncertainty of Occupied Channel Bandwidth     | U <sub>c</sub> = ±2 %      |



Report No.: AGC14499240405FR01 Page 11 of 71

3.5 List of Equipment Used

| • I         | RF Conducted Test System |                                  |              |                |            |                              |                              |  |  |
|-------------|--------------------------|----------------------------------|--------------|----------------|------------|------------------------------|------------------------------|--|--|
| Used        | Equipment No.            | Test Equipment                   | Manufacturer | Model No.      | Serial No. | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |  |
| $\boxtimes$ | AGC-ER-E087              | Spectrum Analyzer                | KEYSIGHT     | N9020B         | MY56101792 | 2023-05-25                   | 2025-05-24                   |  |  |
| $\boxtimes$ | AGC-ER-E087              | Spectrum Analyzer                | KEYSIGHT     | N9020B         | MY56101792 | 2024-05-23                   | 2025-05-22                   |  |  |
|             | AGC-ER-E075              | Small Environmental<br>Tester    | SH-242       | ESPEC          | 93008290   | 2022-08-03                   | 2024-08-02                   |  |  |
|             | 1                        | Universal Switch<br>Control Unit | Tonscend     | JS             | N/A        | N/A                          | N/A                          |  |  |
| $\boxtimes$ | AGC-ER-E037              | Signal Generator                 | Agilent      | N5182A         | MY50140530 | 2024-05-23                   | 2025-05-22                   |  |  |
| $\boxtimes$ | AGC-ER-E040              | Signal Generator                 | Agilent      | N8257D         | MY45141029 | 2023-03-03                   | 2025-03-02                   |  |  |
| $\boxtimes$ | AGC-ER-E033              | RF Test Plat (DECT)              | RTX          | RTX-2012-HS-RF | N/A        | 2022-08-04                   | 2024-08-03                   |  |  |
| $\boxtimes$ |                          | RF Connection<br>Cable           | N/A          | 1#             | N/A        | Each time                    | N/A                          |  |  |
| $\boxtimes$ |                          | RF Connection<br>Cable           | N/A          | 2#             | N/A        | Each time                    | N/A                          |  |  |

| • F         | Radiated Spurious Emission |                                       |               |            |              |                              |                              |  |  |
|-------------|----------------------------|---------------------------------------|---------------|------------|--------------|------------------------------|------------------------------|--|--|
| Used        | Equipment No.              | Test Equipment                        | Manufacturer  | Model No.  | Serial No.   | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |  |
| $\boxtimes$ | AGC-EM-E116                | EMI Test Receiver                     | R&S           | ESCI       | 100034       | 2024-05-24                   | 2025-05-23                   |  |  |
| $\boxtimes$ | AGC-EM-E061                | Spectrum Analyzer                     | Agilent       | N9010A     | MY53470504   | 2024-05-28                   | 2025-05-27                   |  |  |
| $\boxtimes$ | AGC-EM-E086                | Loop Antenna                          | ZHINAN        | ZN30900C   | 18051        | 2024-03-05                   | 2026-03-04                   |  |  |
| $\boxtimes$ | AGC-EM-E005                | Wideband Antenna                      | SCHWARZBECK   | VULB9168   | VULB9168-494 | 2023-01-05                   | 2025-01-04                   |  |  |
|             | AGC-EM-E102                | Broadband Ridged<br>Horn Antenna      | ETS           | 3117       | 00154520     | 2023-06-03                   | 2025-06-02                   |  |  |
|             | AGC-EM-E082                | Horn Antenna                          | SCHWARZBECK   | BBHA 9170  | #768         | 2023-09-24                   | 2025-09-23                   |  |  |
| $\boxtimes$ | AGC-EM-E146                | Pre-amplifier                         | ETS           | 3117-PA    | 00246148     | 2022-08-04                   | 2024-08-03                   |  |  |
|             | AGC-EM-A116                | Band Stop Filter<br>(1850-1950MHz)    | MICRO-TRONICS | BRC50720   | N/A          | 2024-05-23                   | 2025-05-22                   |  |  |
|             | AGC-EM-A091                | High Pass Filter 2<br>(1200-18000MHz) | N/A           | N/A        | N/A          | 2024-05-23                   | 2025-05-22                   |  |  |
| $\boxtimes$ | AGC-EM-A138                | 6dB Attenuator                        | Eeatsheep     | LM-XX-6-5W | N/A          | N/A                          | N/A                          |  |  |
|             | AGC-EM-A139                | 6dB Attenuator                        | Eeatsheep     | LM-XX-6-5W | N/A          | N/A                          | N/A                          |  |  |



Report No.: AGC14499240405FR01 Page 12 of 71

| •           | AC Power Line Conducted Emission |                   |              |            |            |                              |                              |  |  |
|-------------|----------------------------------|-------------------|--------------|------------|------------|------------------------------|------------------------------|--|--|
| Used        | Equipment No.                    | Test Equipment    | Manufacturer | Model No.  | Serial No. | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |  |
|             | AGC-EM-E045                      | EMI Test Receiver | R&S          | ESPI       | 101206     | 2023-06-03                   | 2024-06-02                   |  |  |
| $\boxtimes$ | AGC-EM-E045                      | EMI Test Receiver | R&S          | ESPI       | 101206     | 2024-05-28                   | 2025-05-27                   |  |  |
| $\boxtimes$ | AGC-EM-A130                      | 6dB Attenuator    | Eeatsheep    | LM-XX-6-5W | DC-6GZ     | 2023-06-09                   | 2025-06-08                   |  |  |
| $\boxtimes$ | AGC-EM-E023                      | AMN               | R&S          | 100086     | ESH2-Z5    | 2023-06-03                   | 2024-06-02                   |  |  |
| $\boxtimes$ | AGC-EM-E023                      | AMN               | R&S          | 100086     | ESH2-Z5    | 2024-05-28                   | 2025-05-27                   |  |  |

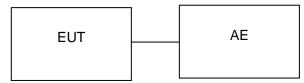
| • Tes       | Test Software |                 |              |                                  |                     |  |  |  |
|-------------|---------------|-----------------|--------------|----------------------------------|---------------------|--|--|--|
| Used        | Equipment No. | Test Equipment  | Manufacturer | Model No.                        | Version Information |  |  |  |
| $\boxtimes$ | AGC-EM-S011   | RSE Test System | Tonscend     | TS <sup>+</sup> Ver2.1(JS36-RSE) | 4.0.0.0             |  |  |  |
| $\boxtimes$ | AGC-EM-S003   | RE Test System  | FARA         | EZ-EMC                           | V.RA-03A            |  |  |  |
|             | AGC-EM-S001   | CE Test System  | R&S          | ES-K1                            | V1.71               |  |  |  |



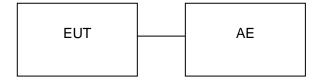
Page 13 of 71

# 4. System Test Configuration

# 4.1 EUT Configuration


The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

## 4.2 EUT Exercise


The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

# 4.3 Configuration of Tested System

Radiated Emission Configure:



Conducted Emission Configure:





Page 14 of 71

# 4.4 Equipment Used in Tested System

The following peripheral devices and interface cables were connected during the measurement:

| No | . Equipment | Manufacturer | Model No. | Specification Information | Cable              |
|----|-------------|--------------|-----------|---------------------------|--------------------|
| 1  | Earphone    | CXT          | N/A       | N/A                       | 1.2m<br>unshielded |

## ☐ Test Accessories Come From The Manufacturer

|     | 2 Tour Noodescenies Come From The Managedure |              |                       |                                                      |                    |  |  |  |
|-----|----------------------------------------------|--------------|-----------------------|------------------------------------------------------|--------------------|--|--|--|
| No. | Equipment                                    | Manufacturer | Model No.             | Specification Information                            | Cable              |  |  |  |
| 1   | Adapter 1#                                   | Gangqi       | GQ12-050200-AU        | Input: AC 100-240V 50/60Hz, 0.4A<br>Output: DC 5V 2A | 1.3m<br>unshielded |  |  |  |
| 2   | Adapter 2#                                   | FRECOM       | F12L20-050200SPA<br>U | Input: AC 100-240V 50/60Hz, 0.3A<br>Output: DC 5V 2A | 1.3m<br>unshielded |  |  |  |
| 3   | Bottom socket<br>power supply                | LINVIL       | N/A                   | Input: DC 5V 2A<br>Output: DC 4.35V                  | N/A                |  |  |  |
| 4   | Battery                                      | YJ           | YJ563170              | DC 3.8V 1900mA 7.22Wh                                | N/A                |  |  |  |
| 5   | Back Clip                                    | N/A          | N/A                   | N/A                                                  | N/A                |  |  |  |
| 6   | DECT System                                  | LINVIL       | W710D                 | N/A                                                  | N/A                |  |  |  |
| 7   | Portable DECT<br>Phone                       | LINVIL       | W610D                 | N/A                                                  | N/A                |  |  |  |



Page 15 of 71

# 4.5 Summary of Test Results

| No. | FCC Rules                                        | Description of Test                               | Reference Method                                                                   | Result |
|-----|--------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------|--------|
| 1   | §15.203, §15.317                                 | Antenna Equipment                                 | Declaration & Visual inspection                                                    | Pass   |
| 2   | §15.323 (c)(e)                                   | Specific Requirements for Upcs Device             | ANSI C63.17-2013<br>Clause 6.2, 7.3, 7.5,<br>8.1, 8.2, 8.3, 8.4 and<br>Paragraph 4 | Pass   |
| 3   | §15.303                                          | Channel Frequency                                 | Declaration                                                                        | Pass   |
| 4   | §15.319 (b)                                      | Digital Modulation Techniques                     | Declaration                                                                        | Pass   |
| 5   | §15.319 (f)                                      | Automatic Discontinuation of<br>Transmission      | Manual evaluation                                                                  | Pass   |
| 6   | §15.319(c)(e), §15.31(e)                         | Peak Transmit Power and Antenna Gain              | ANSI C63.17-2013<br>Clause 6.1.2                                                   | Pass   |
| 7   | §15.323 (a)                                      | 26dB Emission Bandwidth<br>&99%Occupied Bandwidth | ANSI C63.17-2013<br>Clause 6.1.3 or 7.4                                            | Pass   |
| 8   | §15.319 (d)                                      | Power Spectral Density                            | ANSI C63.17-2013<br>Clause 6.1.5                                                   | Pass   |
| 9   | §15.323 (d)                                      | In-Band Emission                                  | ANSI C63.17-2013<br>Clause 6.1.6.1                                                 | Pass   |
| 10  | §15.323 (d)                                      | Out-of-Band Emission                              | ANSI C63.17-2013<br>Clause 6.1.6.2                                                 | Pass   |
| 11  | §15.323 (f)                                      | Carrier Frequency Stability                       | ANSI C63.17-2013<br>Clause 6.2.1                                                   | Pass   |
| 12  | §15.319(g), §15.323(d)<br>§15.209(a), §15.109(a) | Radiated Emission                                 | ANSI C63.10-2013<br>Clause 11.11 & Clause<br>11.12                                 | Pass   |
| 13  | §15.207, §15.315                                 | AC Power Line Conducted Emission                  | ANSI C63.10-2013<br>Section 6.2                                                    | Pass   |

#### Note:

- 1) N/A: In this whole report not applicable.
- 2) Not required if the Conducted Out-of-Band Emissions test is passed, and assessed in the FCC 47 CFR Part 15B test report.



Page 16 of 71

# 5. Description of Test Modes

| Summary table of Test Cases        |                                                                                                                                                                         |  |  |  |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Took Itama                         | Modulation                                                                                                                                                              |  |  |  |  |
| Test Item                          | DECT- Portable Part/GFSK                                                                                                                                                |  |  |  |  |
| Radiated & Conducted<br>Test Cases | Mode 1: UPCS TX CH00_1921.536 MHz (Connect the adapter) Mode 2: UPCS TX CH02_1924.992 MHz (Connect the adapter) Mode 3: UPCS TX CH04_1928.448 MHz (Connect the adapter) |  |  |  |  |
| AC Conducted Emission              | Mode 1: UPCS connects to PC to Transmit Data (Powered by adapter 1#)  Mode 2: UPCS connects to PC to Transmit Data (Powered by adapter 2#)                              |  |  |  |  |

#### Note:

- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

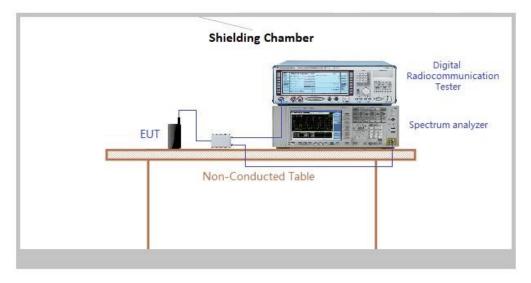


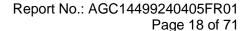
Report No.: AGC14499240405FR01 Page 17 of 71

# 6. 26dB Emission Bandwidth & 99% Occupied Bandwidth

# **6.1 Provisions Applicable**

Please refer to FCC 47 CFR Part 15.319(c) &15.319(e) for specification details:


Operation shall be contained within the 1920–1930 MHz band. The emission bandwidth shall be less than 2.5 MHz. The power level shall be as specified in § 15.319(c), but in no event shall the emission bandwidth be less than 50 kHz


#### **6.2 Measurement Procedure**

The testing follows the ANSI C63.17-2013 Section 6.1.2

- 1. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter.
- 2. The EUT shall transmit in a burst mode (shall not be configured to transmit continuously) so that transient effects associated with the burst edges are captured by the emission bandwidth measurement.
- 3. Use the following spectrum analyzer settings:
- a) Set RBW: Approximately 1% of the emission bandwidth (a rough estimate may be obtained from peak power level measurement, or use manufacturer's declared value).
- b) Set the video bandwidth (VBW)  $\geq$  3 x RBW.
- c) Center frequency: Nominal center frequency of channel.
- d) Span:  $\geq$  2  $\times$  the expected emission bandwidth.
- e) Sweep time: Coupled to frequency span and RBW.
- f) Amplitude scale: Log.
- g) Detection: Peak detection with maximum hold enabled.
- 4. Record the maximum level of the modulated carrier. Find the two furthest frequencies above and below the frequency of the maximum level of the modulated carrier where the signal level is 26 dB below the peak level of the carrier. The difference in frequency between these two frequencies is the emission bandwidth

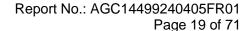
## 6.3 Measurement Setup (Block Diagram of Configuration)



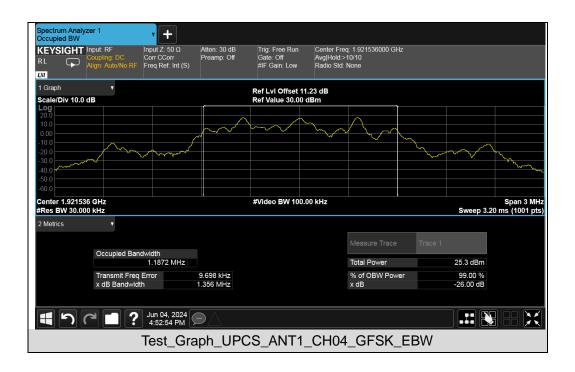





#### 6.4 Measurement Result


| Test<br>Channel | Test<br>Frequency<br>(MHz) | Occupied<br>Bandwidth<br>(MHz) | EBW (MHz) | EBW Limits                                                  | Pass or<br>Fail |
|-----------------|----------------------------|--------------------------------|-----------|-------------------------------------------------------------|-----------------|
| 0               | 1928.448                   | 1.1884                         | 1.358     | 50 kHz <limits<2.5mhz< td=""><td>Pass</td></limits<2.5mhz<> | Pass            |
| 2               | 1924.992                   | 1.1893                         | 1.351     | 50 kHz <limits<2.5mhz< td=""><td>Pass</td></limits<2.5mhz<> | Pass            |
| 4               | 1921.536                   | 1.1872                         | 1.356     | 50 kHz <limits<2.5mhz< td=""><td>Pass</td></limits<2.5mhz<> | Pass            |

Test Graphs of Occupied Bandwidth and -26dB Bandwidth




Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report.  $Further\ enquiry\ of\ validity\ or\ verification\ of\ the\ test\ report\ should\ be\ addressed\ to\ AGC\ by\ agc 01@agccert.com.$ 

Web: http://www.agccert.com/









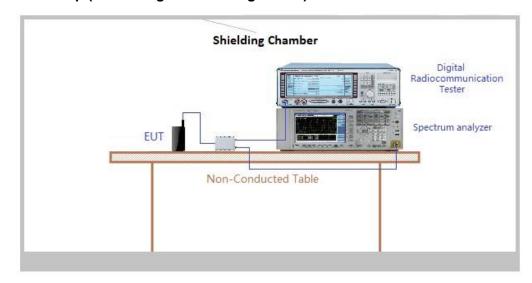
Report No.: AGC14499240405FR01 Page 20 of 71

# 7. Peak Transmit Power and Antenna Gain

# 7.1 Provisions Applicable

Please refer to FCC 47 CFR Part 15.319(c) &15.319(e) for specification details:

Peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in hertz. Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.


The peak transmit power shall be reduced by the amount in decibels that the maximum directional gain of the antenna exceeds 3 dBi.

#### 7.2 Measurement Procedure

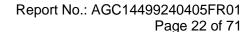
The testing follows the ANSI C63.17-2013 Section 6.1.2

| RBW              | ≥ Emission bandwidth                                                                  |
|------------------|---------------------------------------------------------------------------------------|
| Video bandwidth  | ≥ RBW                                                                                 |
| Span             | Span Zero                                                                             |
| Center frequency | Nominal center frequency of transmit carrier                                          |
| Amplitude scale  | Log (linear may be used if analyzer has sufficient linear dynamic range and accuracy) |
| Detection        | Peak detection                                                                        |
| Trigger Video    | Trigger Video                                                                         |
| Sweep rate       | Sufficiently rapid to permit the transmit pulse to be resolved accurately             |

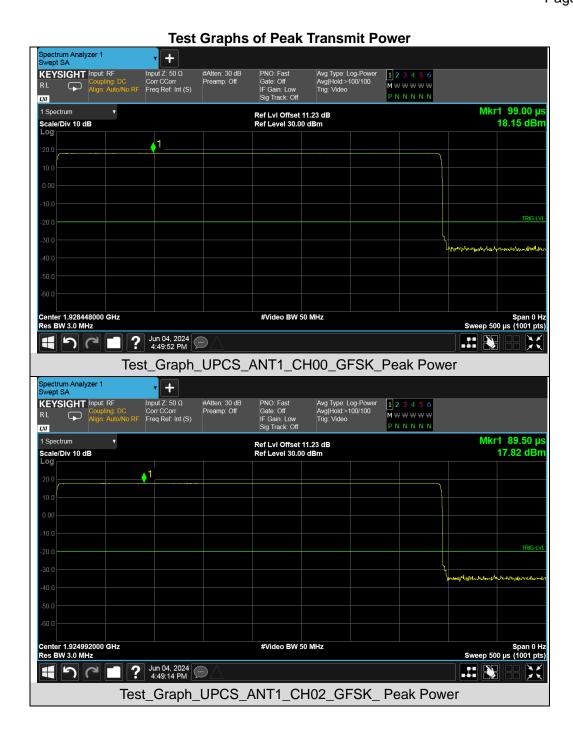
## 7.3 Measurement Setup (Block Diagram of Configuration)

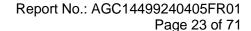




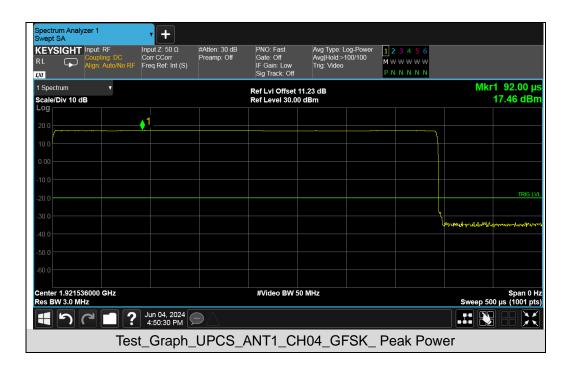

Report No.: AGC14499240405FR01 Page 21 of 71

7.4 Measurement Result


| Calculation of Peak Transmit Power Limit (P <sub>max</sub> ): |                          |                                           |                            |  |  |  |  |
|---------------------------------------------------------------|--------------------------|-------------------------------------------|----------------------------|--|--|--|--|
|                                                               | $P_{\text{max}} = 3$     | 5*log <sub>10</sub> B-10                  | When G <sub>A</sub> ≤ 3dBi |  |  |  |  |
| $\boxtimes$                                                   | $P_{max} = 5*log_{10} B$ | s-10 dBm-(G <sub>A</sub> - 3dBi)          | When G <sub>A</sub> > 3dBi |  |  |  |  |
| Where,                                                        | $G_A$                    | = EUT Gain: 4.6 dBi                       |                            |  |  |  |  |
| vviiere,                                                      | В                        | = Measured Emission Bandwidth (Hz)        |                            |  |  |  |  |
| Calculation of I                                              | EIRP Limit:              |                                           |                            |  |  |  |  |
| $\boxtimes$                                                   | EIRP <sub>EUT</sub>      | $\leq P_{max} + g$ , $G_A > g$ (g=3dBi)   |                            |  |  |  |  |
|                                                               | EIRP <sub>EUT</sub>      | $\leq P_{max} + G_A, G_A \leq g (g=3dBi)$ |                            |  |  |  |  |


| Test Channel | Test Frequency<br>(MHz) | Maximum<br>Antenna Gain<br>(dBi) | EBW<br>(MHz) | Maximum<br>Conducted<br>Peak Transmit<br>Power<br>(dBm) | Limits<br>(dBm) | Pass / Fail |
|--------------|-------------------------|----------------------------------|--------------|---------------------------------------------------------|-----------------|-------------|
| 0            | 1928.448                |                                  | 1.358        | 18.15                                                   | ≤19.06          | Pass        |
| 2            | 1924.992                | 4.6                              | 1.351        | 17.82                                                   | ≤19.05          | Pass        |
| 4            | 1921.536                |                                  | 1.356        | 17.46                                                   | ≤19.06          | Pass        |

| Test Channel | Test Frequency<br>(MHz) | Maximum<br>Conducted<br>Peak Transmit<br>Power<br>(dBm) | Maximum<br>Antenna Gain<br>(dBi) | E.I.R.P.<br>(dBm) | Limits<br>(dBm) | Pass / Fail |
|--------------|-------------------------|---------------------------------------------------------|----------------------------------|-------------------|-----------------|-------------|
| 0            | 1928.448                | 18.15                                                   |                                  | 21.15             | ≤22.06          | Pass        |
| 2            | 1924.992                | 17.82                                                   | 3                                | 20.82             | ≤22.05          | Pass        |
| 4            | 1921.536                | 17.46                                                   |                                  | 20.46             | ≤22.06          | Pass        |















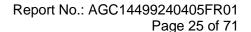

Report No.: AGC14499240405FR01 Page 24 of 71

# 8. Power Spectral Density

# 8.1 Provisions Applicable

Please refer to FCC 47 CFR Part 15.319(d) for specification details:


Power spectral density shall not exceed 3 milliwatts in any 3 kHz bandwidth as measured with a spectrum analyzer having a resolution bandwidth of 3 kHz.

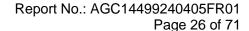

# 8.2 Measurement Procedure

The testing follows the ANSI C63.17-2013 Section 6.1.5

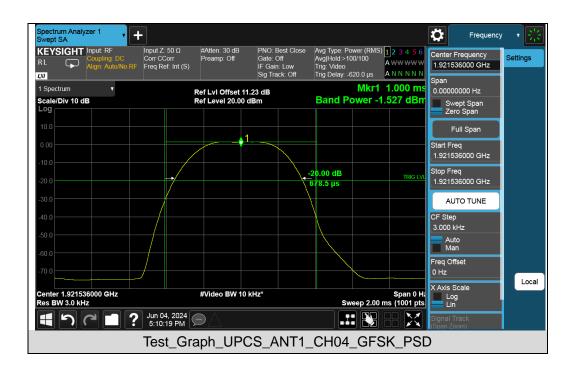
| RBW              | 3 kHz                                                                                                                                                                                               |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Video bandwidth  | ≥ 3*RBW                                                                                                                                                                                             |
| Span             | Span Zero                                                                                                                                                                                           |
| Center frequency | Nominal center frequency of transmit carrier                                                                                                                                                        |
| Amplitude scale  | RMS                                                                                                                                                                                                 |
| Detection        | Sample detection and averaged for a minimum of 100 sweeps                                                                                                                                           |
| Trigger Video    | External or internal                                                                                                                                                                                |
| Sweep Time       | For burst signals, sufficient to include essentially all of the maximum length burst at the output of a 3 kHz filter (e.g., maximum input burst duration plus 600µs). For continuous signals, 20ms. |

# 8.2 Measurement Setup (Block Diagram of Configuration)









#### 8.3 Measurement Result

| Test<br>Channel | Test Frequency<br>(MHz) | Power density<br>(dBm/3kHz) | Power density<br>(mW/3kHz) | Limit<br>(mW/3kHz) | Pass or Fail |
|-----------------|-------------------------|-----------------------------|----------------------------|--------------------|--------------|
| 0               | 1928.448                | -0.998                      | 0.79                       | €3                 | Pass         |
| 2               | 1924.992                | -1.907                      | 0.64                       | ≤3                 | Pass         |
| 4               | 1921.536                | -1.527                      | 0.70                       | ≤3                 | Pass         |

**Test Graphs of Power Spectral Density** + **₽** Frequency KEYSIGHT Input: RF Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) PNO: Best Close Gate: Off #Atten: 30 dB Preamp: Off Avg Type: Power (RMS) 12 3 4 5 6 Avg|Hold:>100/100 Center Frequency 1.928448000 GHz Settings A WW WW V ANNNNN ĻXI Mkr1 1.000 m 1 Spectrum 0.00000000 Hz Ref LvI Offset 11.23 dB Ref Level 20.00 dBm Band Power -0.998 dBr Scale/Div 10 dB Swept Span Zero Span Full Span Start Freq 1.928448000 GHz Stop Freq 1.928448000 GHz -20.00 dB AUTO TUNE 3.000 kHz Auto Man Freq Offset 0 Hz Local X Axis Scale Log Lin r 1.928448000 GHz #Video BW 10 kHz Span 0 H; Sweep 2.00 ms (1001 pts Res BW 3.0 kHz ? Jun 04, 2024 5:09:41 PM 5 ... 💸 Test Graph UPCS ANT1 CH00 GFSK PSD pectrum Analyzer 1 vept SA Frequency Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) KEYSIGHT Input: RF PNO: Best Close Gate: Off Avg Type: Power (RMS) 12 3 4 5 6 Avg|Hold:>100/100 Center Frequency 1.924992000 GHz Settings A WW WW V ANNNNN L)XI Mkr1 1.000 m 1 Spectrum 0.00000000 Hz Ref LvI Offset 11.23 dB Ref Level 20.00 dBm Band Power -1.907 dBr Scale/Div 10 dB Swept Span Zero Span Full Span 1.924992000 GHz Stop Freq 1.924992000 GHz 0.00 dB AUTO TUNE CF Step 3.000 kHz Auto Man Freq Offset Local X Axis Scale Log Lin #Video BW 10 kHz Stop 1.924992000 GHz Sweep 2.00 ms (1001 pts Start 1.924992000 GHz W 3.0 kHz ? Jun 04, 2024 5:06:27 PM Test\_Graph\_UPCS\_ANT1\_CH02\_GFSK\_PSD







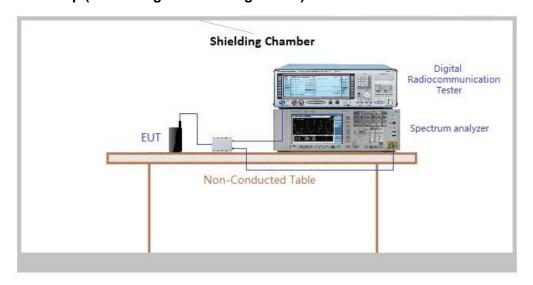


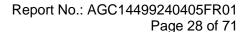
Report No.: AGC14499240405FR01 Page 27 of 71

## 9. In-Band Unwanted Emissions

# 9.1 Provisions Applicable

Please refer to FCC 47 CFR Part 15.323(d) for specification details:

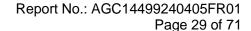

Emissions inside the band must comply with the following emission mask: In the bands between 1B and 2B measured from the center of the emission bandwidth the total power emitted by the device shall be at least 30 dB below the transmit power permitted for that device; in the bands between 2B and 3B measured from the center of the emission bandwidth the total power emitted by an intentional radiator shall be at least 50 dB below the transmit power permitted for that radiator; in the bands between 3B and the band edge the total power emitted by an intentional radiator in the measurement bandwidth shall be at least 60 dB below the transmit power permitted for that radiator. B" is defined as the emission bandwidth of the device in hertz. Compliance with the emission limits is based on the use of measurement instrumentation employing peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.


#### 9.2 Measurement Procedure

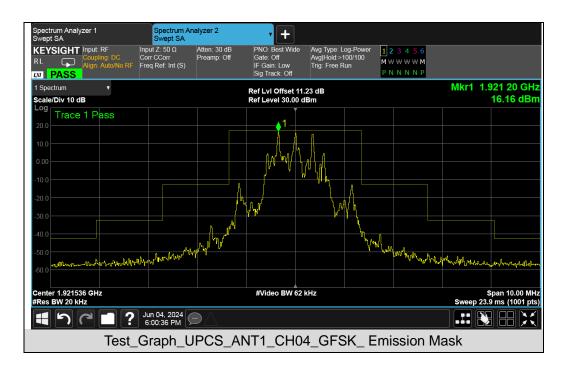
The testing follows the ANSI C63.17-2013 Section 6.1.6.1

| RBW              | Approximately 1% of the Emission bandwidth (B)                                                                              |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Video bandwidth  | ≥ 3*RBW                                                                                                                     |
| Span             | Approximately equal to 3.5 B                                                                                                |
| Center frequency | Nominal center frequency of transmit carrier                                                                                |
| Detection        | Peak detection and max hold enabled                                                                                         |
| Amplitude scale  | Log                                                                                                                         |
| Sweep Time       | The sweep time shall be sufficiently slow that the swept frequency rate shall not exceed one RBW per three transmit bursts. |
| Number of sweeps | Sufficient to stabilize the trace                                                                                           |


## 9.3 Measurement Setup (Block Diagram of Configuration)






#### 9.4 Measurement Result









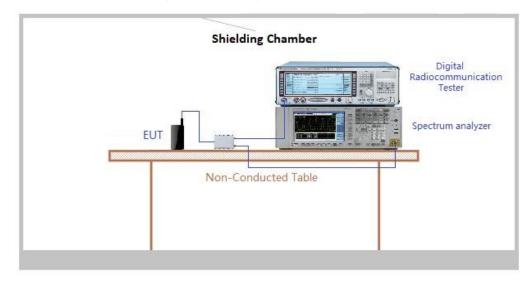


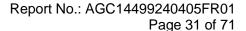


## 10. Out-of-Band Unwanted Emissions

# **10.1 Provisions Applicable**

Please refer to FCC 47 CFR Part 15.323(d) for specification details:


- a) In the region between the band edges and 1.25 MHz below and above the lower and the upper band edges, respectively, the measured emission level shall not exceed -9.5 dBm.
- b) In the region between 1.25 and 2.5 MHz below and above the lower and the upper band edges, respectively, the measured emission level shall not exceed -29.5 dBm.
- c) In the region at 2.5 MHz or greater below and above the lower and upper band edges, respectively, the measured emission level shall not exceed -39.5 dBm.

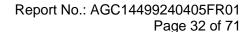

## **10.2 Measurement Procedure**

The testing follows the ANSI C63.17-2013 Section 6.1.6.2

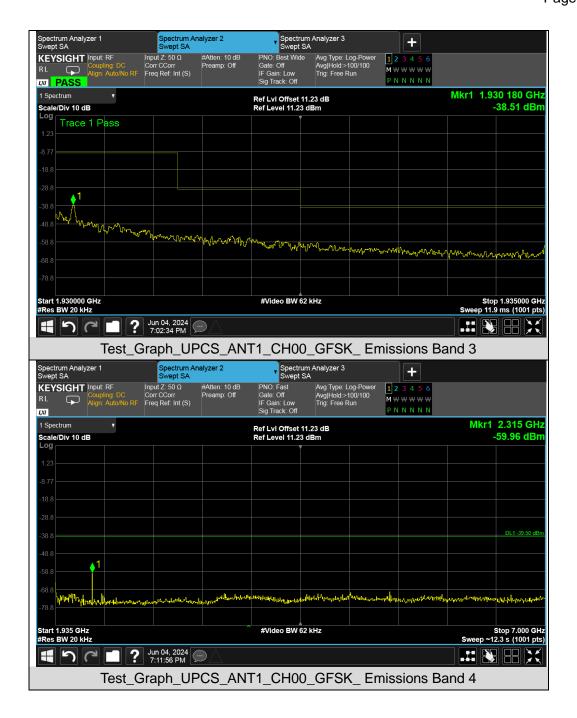
| RBW              | Approximately 1% of the Emission bandwidth (B)                                                                              |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Video bandwidth  | ≥ 3*RBW                                                                                                                     |
| Span             | Approximately equal to 3.5 B                                                                                                |
| Center frequency | Nominal center frequency of transmit carrier                                                                                |
| Detection        | Peak detection and max hold enabled                                                                                         |
| Amplitude scale  | Log                                                                                                                         |
| Sweep Time       | The sweep time shall be sufficiently slow that the swept frequency rate shall not exceed one RBW per three transmit bursts. |
| Number of sweeps | Sufficient to stabilize the trace                                                                                           |

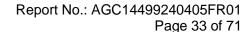
# 10.3 Measurement Setup (Block Diagram of Configuration)



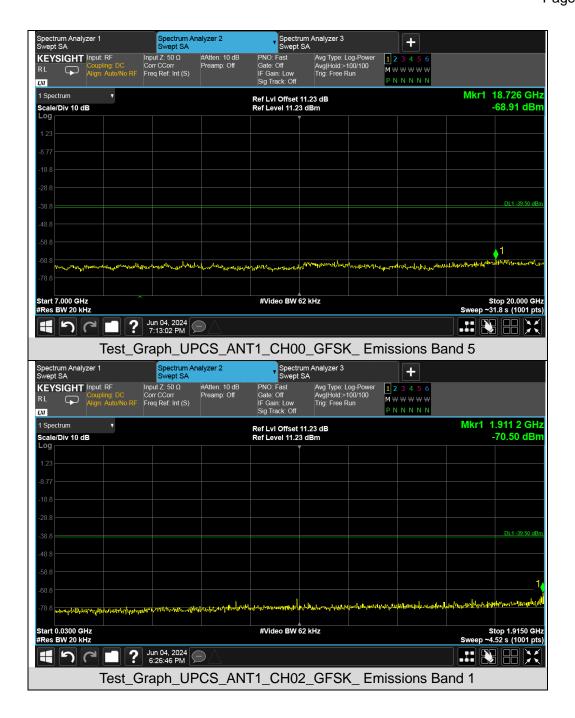



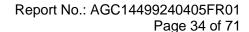




#### 10.4 Measurement Result

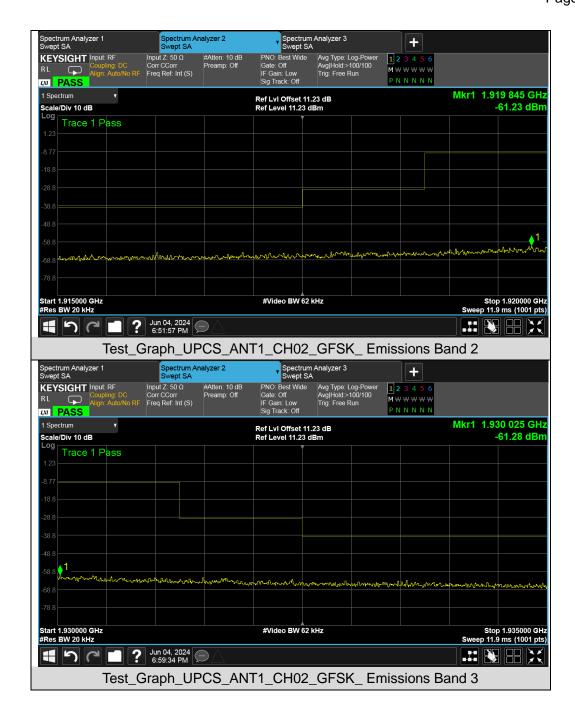


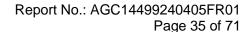


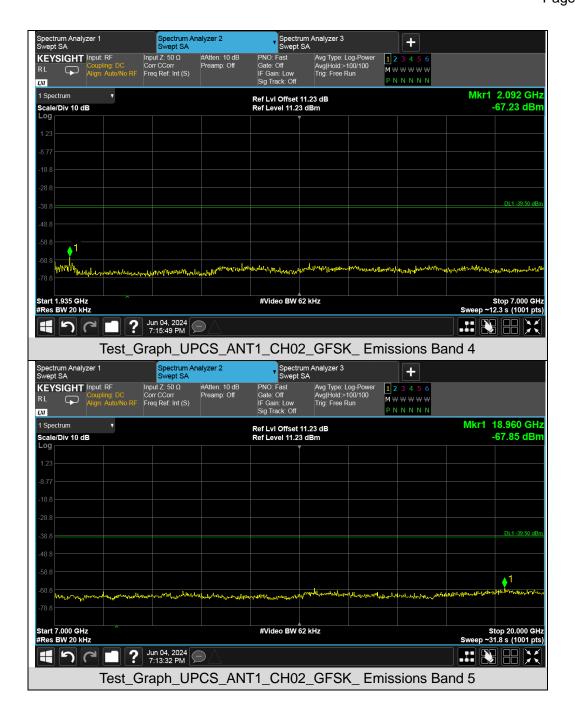



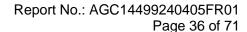


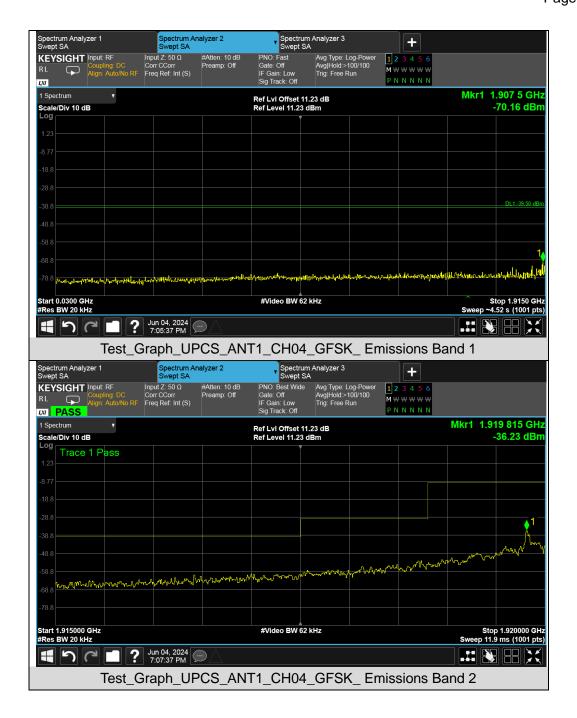



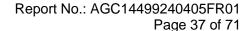


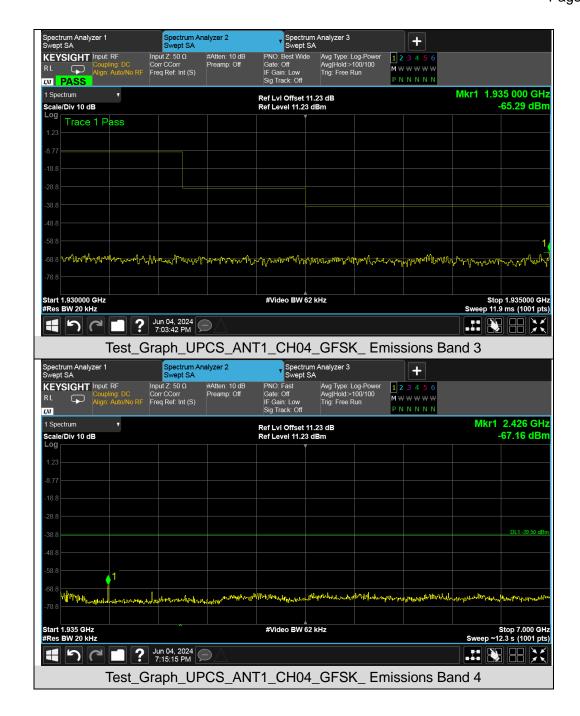



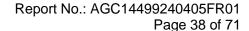


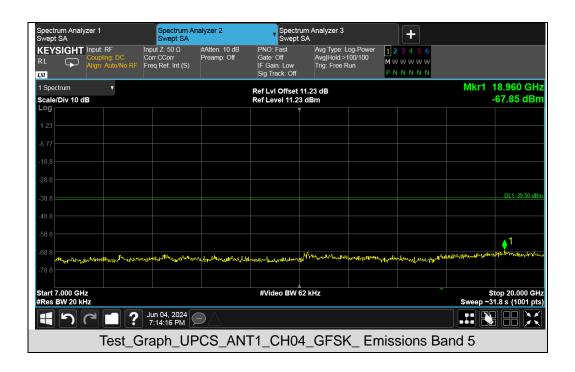




















Page 39 of 71

#### 11. Radiated Emission

#### 11.1 Limits of Radiated Emission Test

15 209 Limit in the below table has to be followed

| Frequencies<br>(MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) |
|----------------------|-----------------------------------|-------------------------------|
| 0.009~0.490          | 2400/F(kHz)                       | 300                           |
| 0.490~1.705          | 24000/F(kHz)                      | 30                            |
| 1.705~30.0           | 30                                | 30                            |
| 30~88                | 100                               | 3                             |
| 88~216               | 150                               | 3                             |
| 216~960              | 200                               | 3                             |
| Above 960            | 500                               | 3                             |

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level  $(dBuV/m) = 20 \log Emission level (uV/m)$ .
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

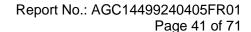
Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

#### 11.2 Measurement Procedure

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for



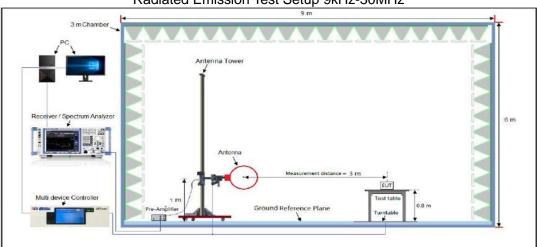
Page 40 of 71


maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

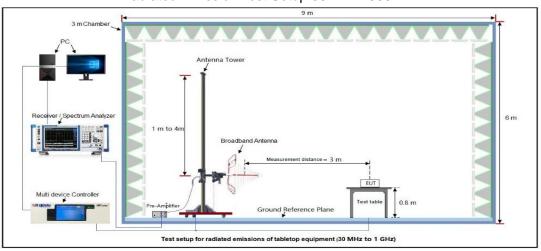
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

The following table is the setting of spectrum analyzer and receiver.

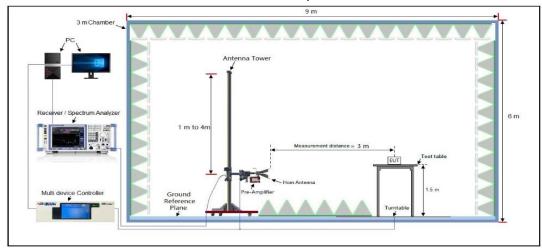
| Spectrum Parameter     | Setting                                   |
|------------------------|-------------------------------------------|
| Start ~Stop Frequency  | 9kHz~150kHz/RB 200Hz for QP               |
| Start ~Stop Frequency  | 150kHz~30MHz/RB 9kHz for QP               |
| Start ~Stop Frequency  | 30MHz~1000MHz/RB 120kHz for QP            |
| Start ~Stop Frequency  | 1GHz~26.5GHz                              |
| Start ~Stop i requency | 1MHz/3MHz for Peak, 1MHz/3MHz for Average |


| Receiver Parameter    | Setting                        |
|-----------------------|--------------------------------|
| Start ~Stop Frequency | 9kHz~150kHz/RB 200Hz for QP    |
| Start ~Stop Frequency | 150kHz~30MHz/RB 9kHz for QP    |
| Start ~Stop Frequency | 30MHz~1000MHz/RB 120kHz for QP |






# 11.3 Measurement Setup (Block Diagram of Configuration)


Radiated Emission Test Setup 9kHz-30MHz



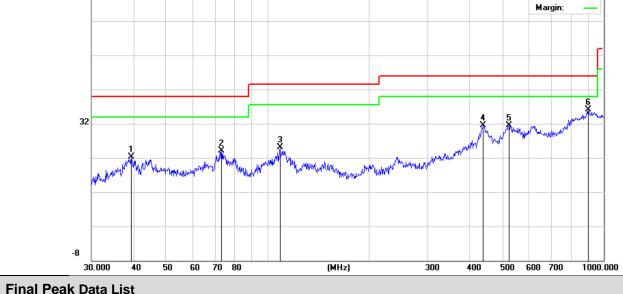
### Radiated Emission Test Setup 30MHz-1000MHz



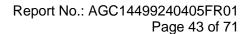
### Radiated Emission Test Setup Above 1000MHz





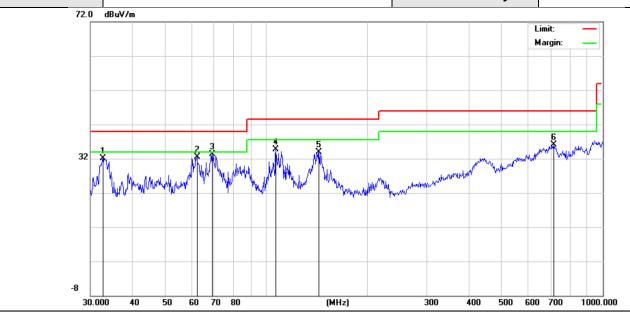

Report No.: AGC14499240405FR01 Page 42 of 71

#### 11.4 Measurement Result


### **Radiated Emission Below 30MHz**

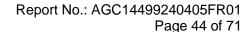
The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

|                                              | Dedicted Emission Test Desults of 20MUs 4CUs |                             |                        |  |  |  |  |  |  |
|----------------------------------------------|----------------------------------------------|-----------------------------|------------------------|--|--|--|--|--|--|
| Radiated Emission Test Results at 30MHz-1GHz |                                              |                             |                        |  |  |  |  |  |  |
| EUT Name                                     | Portable DECT Phone                          | Model Name                  | W610D                  |  |  |  |  |  |  |
| Temperature                                  | 25° C                                        | Relative Humidity           | 55.4%                  |  |  |  |  |  |  |
| Pressure                                     | 960hPa                                       | Test Voltage                | DC 5V by adapter 1#    |  |  |  |  |  |  |
| Test Mode                                    | Mode 3                                       | Antenna Polarity Horizontal |                        |  |  |  |  |  |  |
| 72.0                                         | dBuV/m                                       |                             |                        |  |  |  |  |  |  |
|                                              |                                              |                             | imit: ——<br>Hargin: —— |  |  |  |  |  |  |



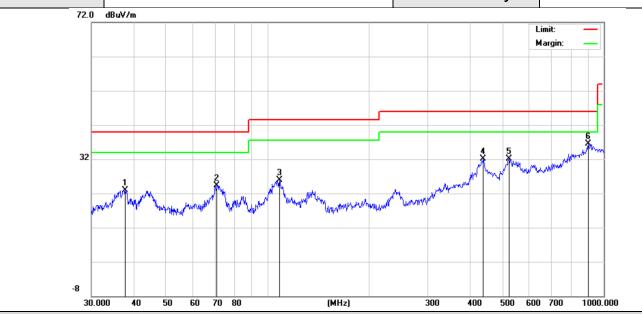

| Final I | Peak Data Lis  | t                 |                |                   |                |             |              |            |
|---------|----------------|-------------------|----------------|-------------------|----------------|-------------|--------------|------------|
| NO.     | Freq.<br>[MHz] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height [cm] | Angle<br>[°] | Polarity   |
| 1       | 39.4371        | 22.25             | 13.66          | 40.00             | 17.75          | 100         | 160          | Horizontal |
| 2       | 73.1025        | 24.09             | 12.89          | 40.00             | 15.91          | 100         | 170          | Horizontal |
| 3       | 109.0285       | 25.09             | 16.29          | 43.50             | 18.41          | 100         | 90           | Horizontal |
| 4       | 438.6553       | 31.52             | 24.81          | 46.00             | 14.48          | 100         | 220          | Horizontal |
| 5       | 522.7178       | 31.53             | 25.02          | 46.00             | 14.47          | 100         | 160          | Horizontal |
| 6       | 900.1473       | 36.09             | 31.78          | 46.00             | 9.91           | 100         | 140          | Horizontal |



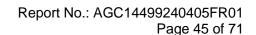



| Radiated Emission Test Results at 30MHz-1GHz |        |                   |                     |  |  |  |
|----------------------------------------------|--------|-------------------|---------------------|--|--|--|
| EUT Name                                     | W610D  |                   |                     |  |  |  |
| Temperature                                  | 25° C  | Relative Humidity | 55.4%               |  |  |  |
| Pressure                                     | 960hPa | Test Voltage      | DC 5V by adapter 1# |  |  |  |
| Test Mode                                    | Mode 3 | Antenna Polarity  | Vertical            |  |  |  |



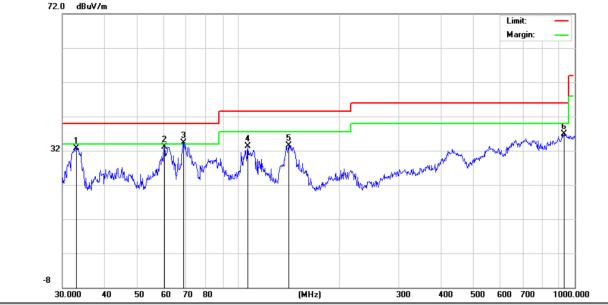

### **Final Peak Data List**

| NO. | Freq.<br>[MHz] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Polarity |
|-----|----------------|-------------------|----------------|-------------------|----------------|----------------|--------------|----------|
| 1   | 32.6340        | 32.16             | 14.47          | 40.00             | 7.84           | 100            | 200          | Vertical |
| 2   | 62.2128        | 32.45             | 17.08          | 40.00             | 7.55           | 100            | 110          | Vertical |
| 3   | 69.1140        | 33.22             | 17.01          | 40.00             | 6.78           | 100            | 80           | Vertical |
| 4   | 106.7587       | 34.76             | 15.38          | 43.50             | 8.74           | 100            | 250          | Vertical |
| 5   | 143.3260       | 34.00             | 18.20          | 43.50             | 9.5            | 100            | 170          | Vertical |
| 6   | 714.1734       | 36.09             | 28.60          | 46.00             | 9.91           | 100            | 180          | Vertical |






| Radiated Emission Test Results at 30MHz-1GHz |        |                   |                     |  |  |
|----------------------------------------------|--------|-------------------|---------------------|--|--|
| EUT NamePortable DECT PhoneModel NameW610D   |        |                   |                     |  |  |
| Temperature                                  | 25° C  | Relative Humidity | 55.4%               |  |  |
| Pressure                                     | 960hPa | Test Voltage      | DC 5V by adapter 2# |  |  |
| Test Mode                                    | Mode 3 | Antenna Polarity  | Horizontal          |  |  |




#### **Final Peak Data List** Freq. Level Factor Limit Margin Height Angle NO. Polarity [MHz] [dBµV/m] [dB] [dBµV/m] [dB] [cm] 37.8121 22.95 12.96 40.00 17.05 Horizontal 1 100 160 2 70.8315 24.32 12.82 40.00 15.68 100 170 Horizontal 108.6470 25.85 16.29 43.50 17.65 100 90 Horizontal 3 4 438.6553 32.02 24.81 46.00 13.98 100 220 Horizontal 5 522.7178 32.03 25.02 46.00 13.97 100 160 Horizontal 6 900.1473 36.59 31.78 46.00 9.41 100 140 Horizontal





| Radiated Emission Test Results at 30MHz-1GHz |                     |                   |                     |  |  |  |
|----------------------------------------------|---------------------|-------------------|---------------------|--|--|--|
| EUT Name                                     | Portable DECT Phone | Model Name        | W610D               |  |  |  |
| Temperature                                  | 25° C               | Relative Humidity | 55.4%               |  |  |  |
| Pressure                                     | 960hPa              | Test Voltage      | DC 5V by adapter 2# |  |  |  |
| Test Mode Mode 3                             |                     | Antenna Polarity  | Vertical            |  |  |  |
| 72.0                                         | dBuV/m              |                   | <u> </u>            |  |  |  |



### **Final Peak Data List**

| NO. | Freq.<br>[MHz] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Polarity |
|-----|----------------|-------------------|----------------|-------------------|----------------|----------------|--------------|----------|
| 1   | 32.9791        | 32.64             | 14.58          | 40.00             | 7.36           | 100            | 200          | Vertical |
| 2   | 60.2800        | 33.13             | 17.10          | 40.00             | 6.87           | 100            | 110          | Vertical |
| 3   | 68.8721        | 34.21             | 17.01          | 40.00             | 5.79           | 100            | 80           | Vertical |
| 4   | 106.7587       | 33.26             | 15.38          | 43.50             | 10.24          | 100            | 250          | Vertical |
| 5   | 141.3298       | 33.51             | 18.20          | 43.50             | 9.99           | 100            | 170          | Vertical |
| 6   | 929.0081       | 36.89             | 29.52          | 46.00             | 9.11           | 100            | 180          | Vertical |

### **RESULT: PASS**

**Note:** 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been pre-tested. The mode 3 is the worst case and recorded in the report.



Page 46 of 71

### **Radiated Emission Above 1GHz**

| EUT         | Portable DECT Phone | Model Name        | W610D               |
|-------------|---------------------|-------------------|---------------------|
| Temperature | 25° C               | Relative Humidity | 55.4%               |
| Pressure    | 960hPa              | Test Voltage      | DC 5V by adapter 1# |
| Test Mode   | Mode 1              | Antenna           | Horizontal          |

| requency                               | Meter<br>Reading | Factor | Emission<br>Level | Limits   | Margin | Value Type |  |  |
|----------------------------------------|------------------|--------|-------------------|----------|--------|------------|--|--|
| (MHz)                                  | (dBµV)           | (dB)   | (dBµV/m)          | (dBµV/m) | (dB)   | ]          |  |  |
| 3856.896                               | 51.11            | 0.11   | 51.22             | 74.00    | -22.78 | Peak       |  |  |
| 8856.896                               | 37.89            | 0.11   | 38.00             | 54.00    | -16.00 | AVG        |  |  |
| 785.344                                | 48.75            | 2.45   | 51.20             | 74.00    | -22.80 | Peak       |  |  |
| 785.344                                | 40.16            | 2.45   | 42.61             | 54.00    | -11.39 | AVG        |  |  |
| Remark:                                |                  |        |                   |          |        |            |  |  |
| 5785.344 40.16 2.45 42.61 54.00 -11.39 |                  |        |                   |          |        |            |  |  |

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

| EUT         | Portable DECT Phone | Model Name        | W610D               |
|-------------|---------------------|-------------------|---------------------|
| Temperature | 25° C               | Relative Humidity | 55.4%               |
| Pressure    | 960hPa              | Test Voltage      | DC 5V by adapter 1# |
| Test Mode   | Mode 1              | Antenna           | Vertical            |

| Frequency                                             | Meter<br>Reading | Factor | Emission<br>Level | Limits   | Margin | Value Type |  |
|-------------------------------------------------------|------------------|--------|-------------------|----------|--------|------------|--|
| (MHz)                                                 | (dBµV)           | (dB)   | (dBµV/m)          | (dBµV/m) | (dB)   |            |  |
| 3856.896                                              | 50.41            | 0.11   | 50.52             | 74.00    | -23.48 | Peak       |  |
| 3856.896                                              | 38.54            | 0.11   | 38.65             | 54.00    | -15.35 | AVG        |  |
| 5785.344                                              | 49.37            | 2.45   | 51.82             | 74.00    | -22.18 | Peak       |  |
| 5785.344                                              | 40.52            | 2.45   | 42.97             | 54.00    | -11.03 | AVG        |  |
| Remark:                                               |                  |        |                   |          |        |            |  |
| Factor = Antenna Factor + Cable Loss – Pre-amplifier. |                  |        |                   |          |        |            |  |



Report No.: AGC14499240405FR01 Page 47 of 71

| EUT         | Portable DECT Phone | Model Name        | W610D               |
|-------------|---------------------|-------------------|---------------------|
| Temperature | 25° C               | Relative Humidity | 55.4%               |
| Pressure    | 960hPa              | Test Voltage      | DC 5V by adapter 1# |
| Test Mode   | Mode 2              | Antenna           | Horizontal          |

| Frequency                                            | Meter<br>Reading | Factor | Emission<br>Level | Limits   | Margin | Value Type |  |
|------------------------------------------------------|------------------|--------|-------------------|----------|--------|------------|--|
| (MHz)                                                | (dBµV)           | (dB)   | (dBµV/m)          | (dBµV/m) | (dB)   | ,          |  |
| 3849.984                                             | 49.33            | 0.12   | 49.45             | 74.00    | -24.55 | Peak       |  |
| 3849.984                                             | 39.12            | 0.12   | 39.24             | 54.00    | -14.76 | AVG        |  |
| 5774.976                                             | 48.51            | 2.46   | 50.97             | 74.00    | -23.03 | Peak       |  |
| 5774.976                                             | 39.77            | 2.46   | 42.23             | 54.00    | -11.77 | AVG        |  |
| Remark:                                              |                  |        |                   |          |        |            |  |
| Factor - Antenna Factor + Cable Loss - Pre-amplifier |                  |        |                   |          |        |            |  |

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

| EUT         | Portable DECT Phone | Model Name        | W610D               |
|-------------|---------------------|-------------------|---------------------|
| Temperature | 25° C               | Relative Humidity | 55.4%               |
| Pressure    | 960hPa              | Test Voltage      | DC 5V by adapter 1# |
| Test Mode   | Mode 2              | Antenna           | Vertical            |

| Frequency                                             | Meter<br>Reading | Factor | Emission<br>Level | Limits   | Margin | Value Type |
|-------------------------------------------------------|------------------|--------|-------------------|----------|--------|------------|
| (MHz)                                                 | (dBµV)           | (dB)   | (dBµV/m)          | (dBµV/m) | (dB)   |            |
| 3849.984                                              | 50.19            | 0.12   | 50.31             | 74.00    | -23.69 | Peak       |
| 3849.984                                              | 38.72            | 0.12   | 38.84             | 54.00    | -15.16 | AVG        |
| 5774.976                                              | 49.33            | 2.46   | 51.79             | 74.00    | -22.21 | Peak       |
| 5774.976                                              | 38.75            | 2.46   | 41.21             | 54.00    | -12.79 | AVG        |
| Remark:                                               |                  |        |                   |          |        |            |
| Factor = Antenna Factor + Cable Loss – Pre-amplifier. |                  |        |                   |          |        |            |



Report No.: AGC14499240405FR01 Page 48 of 71

| EUT         | Portable DECT Phone | Model Name        | W610D               |
|-------------|---------------------|-------------------|---------------------|
| Temperature | 25° C               | Relative Humidity | 55.4%               |
| Pressure    | 960hPa              | Test Voltage      | DC 5V by adapter 1# |
| Test Mode   | Mode 3              | Antenna           | Horizontal          |

| Frequency                                  | Meter<br>Reading                                      | Factor | Emission<br>Level | Limits   | Margin | Value Type |  |  |
|--------------------------------------------|-------------------------------------------------------|--------|-------------------|----------|--------|------------|--|--|
| (MHz)                                      | (dBµV)                                                | (dB)   | (dBµV/m)          | (dBµV/m) | (dB)   |            |  |  |
| 3843.072                                   | 48.52                                                 | 0.13   | 48.65             | 74.00    | -25.35 | Peak       |  |  |
| 3843.072                                   | 39.74                                                 | 0.13   | 39.87             | 54.00    | -14.13 | AVG        |  |  |
| 5764.608                                   | 48.93                                                 | 2.51   | 51.44             | 74.00    | -22.56 | Peak       |  |  |
| 5764.608 39.55 2.51 42.06 54.00 -11.94 AVG |                                                       |        |                   |          |        |            |  |  |
| Remark:                                    |                                                       |        |                   |          |        |            |  |  |
| Factor = Anter                             | Factor = Antenna Factor + Cable Loss – Pre-amplifier. |        |                   |          |        |            |  |  |

| EUT         | Portable DECT Phone | Model Name              | W610D               |
|-------------|---------------------|-------------------------|---------------------|
| Temperature | 25° C               | Relative Humidity 55.4% |                     |
| Pressure    | 960hPa              | Test Voltage            | DC 5V by adapter 1# |
| Test Mode   | Mode 3              | Antenna                 | Vertical            |

| Frequency                                  | Meter<br>Reading                                      | Factor | Emission<br>Level | Limits   | Margin | Value Type |  |  |
|--------------------------------------------|-------------------------------------------------------|--------|-------------------|----------|--------|------------|--|--|
| (MHz)                                      | (dBµV)                                                | (dB)   | (dBµV/m)          | (dBµV/m) | (dB)   |            |  |  |
| 3843.072                                   | 49.63                                                 | 0.13   | 49.76             | 74.00    | -24.24 | Peak       |  |  |
| 3843.072                                   | 39.42                                                 | 0.13   | 39.55             | 54.00    | -14.45 | AVG        |  |  |
| 5764.608                                   | 49.21                                                 | 2.51   | 51.72             | 74.00    | -22.28 | Peak       |  |  |
| 5764.608 39.17 2.51 41.68 54.00 -12.32 AVG |                                                       |        |                   |          |        |            |  |  |
| Remark:                                    |                                                       |        |                   |          |        |            |  |  |
| Factor = Anter                             | Factor = Antenna Factor + Cable Loss – Pre-amplifier. |        |                   |          |        |            |  |  |



Report No.: AGC14499240405FR01 Page 49 of 71

| EUT         | Portable DECT Phone | Model Name        | W610D               |
|-------------|---------------------|-------------------|---------------------|
| Temperature | 25° C               | Relative Humidity | 55.4%               |
| Pressure    | 960hPa              | Test Voltage      | DC 5V by adapter 2# |
| Test Mode   | Mode 1              | Antenna           | Horizontal          |

| Frequency                                            | Meter<br>Reading | Factor | Emission<br>Level | Limits   | Margin | Value Type |  |
|------------------------------------------------------|------------------|--------|-------------------|----------|--------|------------|--|
| (MHz)                                                | (dBµV)           | (dB)   | (dBµV/m)          | (dBµV/m) | (dB)   |            |  |
| 3856.896                                             | 49.52            | 0.11   | 49.63             | 74.00    | -24.37 | Peak       |  |
| 3856.896                                             | 40.15            | 0.11   | 40.26             | 54.00    | -13.74 | AVG        |  |
| 5785.344                                             | 48.74            | 2.45   | 51.19             | 74.00    | -22.81 | Peak       |  |
| 5785.344                                             | 41.03            | 2.45   | 43.48             | 54.00    | -10.52 | AVG        |  |
| Remark:                                              |                  |        |                   |          |        |            |  |
| Factor - Antonna Factor + Coble Loss - Pro amplifier |                  |        |                   |          |        |            |  |

| Factor = Antenna Factor + Cable Loss – Pre-amplifier.

| EUT         | Portable DECT Phone | Model Name        | W610D               |
|-------------|---------------------|-------------------|---------------------|
| Temperature | 25° C               | Relative Humidity | 55.4%               |
| Pressure    | 960hPa              | Test Voltage      | DC 5V by adapter 2# |
| Test Mode   | Mode 1              | Antenna           | Vertical            |

| Frequency      | Meter<br>Reading | Factor           | Emission<br>Level | Limits   | Margin | Value Type |
|----------------|------------------|------------------|-------------------|----------|--------|------------|
| (MHz)          | (dBµV)           | (dB)             | (dBµV/m)          | (dBµV/m) | (dB)   | ]          |
| 3856.896       | 50.15            | 0.11             | 50.26             | 74.00    | -23.74 | Peak       |
| 3856.896       | 39.77            | 0.11             | 39.88             | 54.00    | -14.12 | AVG        |
| 5785.344       | 49.34            | 2.45             | 51.79             | 74.00    | -22.21 | Peak       |
| 5785.344       | 40.58            | 2.45             | 43.03             | 54.00    | -10.97 | AVG        |
| Remark:        | -                |                  |                   |          |        | _          |
| Factor = Anter | na Factor + Cal  | ole Loss – Pre-a | mplifier.         |          |        |            |



Report No.: AGC14499240405FR01 Page 50 of 71

| EUT         | Portable DECT Phone | Model Name        | W610D               |
|-------------|---------------------|-------------------|---------------------|
| Temperature | 25° C               | Relative Humidity | 55.4%               |
| Pressure    | 960hPa              | Test Voltage      | DC 5V by adapter 2# |
| Test Mode   | Mode 2              | Antenna           | Horizontal          |

| Frequency      | Meter<br>Reading | Factor           | Emission<br>Level | Limits   | Margin | Value Type |
|----------------|------------------|------------------|-------------------|----------|--------|------------|
| (MHz)          | (dBµV)           | (dB)             | (dBµV/m)          | (dBµV/m) | (dB)   |            |
| 3849.984       | 51.30            | 0.12             | 51.42             | 74.00    | -22.58 | Peak       |
| 3849.984       | 40.04            | 0.12             | 40.16             | 54.00    | -13.84 | AVG        |
| 5774.976       | 49.51            | 2.46             | 51.97             | 74.00    | -22.03 | Peak       |
| 5774.976       | 39.02            | 2.46             | 41.48             | 54.00    | -12.52 | AVG        |
| Remark:        |                  |                  | •                 |          |        |            |
| Factor = Anter | nna Factor + Cat | ole Loss – Pre-a | mplifier.         |          | _      |            |

| EUT         | Portable DECT Phone | Model Name        | W610D               |
|-------------|---------------------|-------------------|---------------------|
| Temperature | 25° C               | Relative Humidity | 55.4%               |
| Pressure    | 960hPa              | Test Voltage      | DC 5V by adapter 2# |
| Test Mode   | Mode 2              | Antenna           | Vertical            |

| Frequency      | Meter<br>Reading | Factor           | Emission<br>Level | Limits   | Margin | Value Type |
|----------------|------------------|------------------|-------------------|----------|--------|------------|
| (MHz)          | (dBµV)           | (dB)             | (dBµV/m)          | (dBµV/m) | (dB)   |            |
| 3849.984       | 49.90            | 0.12             | 50.02             | 74.00    | -23.98 | Peak       |
| 3849.984       | 39.85            | 0.12             | 39.97             | 54.00    | -14.03 | AVG        |
| 5774.976       | 49.74            | 2.46             | 52.20             | 74.00    | -21.80 | Peak       |
| 5774.976       | 40.01            | 2.46             | 42.47             | 54.00    | -11.53 | AVG        |
| Remark:        |                  |                  |                   |          |        |            |
| Factor = Anten | na Factor + Cal  | ole Loss – Pre-a | mplifier.         |          | •      |            |



Report No.: AGC14499240405FR01 Page 51 of 71

| EUT         | Portable DECT Phone | Model Name        | W610D               |
|-------------|---------------------|-------------------|---------------------|
| Temperature | 25° C               | Relative Humidity | 55.4%               |
| Pressure    | 960hPa              | Test Voltage      | DC 5V by adapter 2# |
| Test Mode   | Mode 3              | Antenna           | Horizontal          |

| Frequency      | Meter<br>Reading | Factor           | Emission<br>Level | Limits   | Margin | Value Type |
|----------------|------------------|------------------|-------------------|----------|--------|------------|
| (MHz)          | (dBµV)           | (dB)             | (dBµV/m)          | (dBµV/m) | (dB)   |            |
| 3843.072       | 49.89            | 0.13             | 50.02             | 74.00    | -23.98 | Peak       |
| 3843.072       | 40.02            | 0.13             | 40.15             | 54.00    | -13.85 | AVG        |
| 5764.608       | 50.24            | 2.51             | 52.75             | 74.00    | -21.25 | Peak       |
| 5764.608       | 38.41            | 2.51             | 40.92             | 54.00    | -13.08 | AVG        |
| Remark:        |                  |                  |                   |          |        | 3          |
| Factor = Anter | nna Factor + Cal | ole Loss – Pre-a | mplifier.         |          | _      |            |

| EUT         | Portable DECT Phone | Model Name        | W610D               |
|-------------|---------------------|-------------------|---------------------|
| Temperature | 25° C               | Relative Humidity | 55.4%               |
| Pressure    | 960hPa              | Test Voltage      | DC 5V by adapter 2# |
| Test Mode   | Mode 3              | Antenna           | Vertical            |

| Frequency      | Meter<br>Reading | Factor          | Emission<br>Level | Limits   | Margin | Value Type |
|----------------|------------------|-----------------|-------------------|----------|--------|------------|
| (MHz)          | (dBµV)           | (dB)            | (dBµV/m)          | (dBµV/m) | (dB)   |            |
| 3843.072       | 50.02            | 0.13            | 50.15             | 74.00    | -23.85 | Peak       |
| 3843.072       | 39.65            | 0.13            | 39.78             | 54.00    | -14.22 | AVG        |
| 5764.608       | 50.01            | 2.51            | 52.52             | 74.00    | -21.48 | Peak       |
| 5764.608       | 39.07            | 2.51            | 41.58             | 54.00    | -12.42 | AVG        |
| Remark:        | -                |                 |                   |          |        |            |
| Factor = Anter | na Factor + Cal  | le Loss – Pre-a | mnlifier          |          |        |            |

### **RESULT: PASS**

### Note:

The amplitude of other spurious emissions from 1G to 20 GHz which are attenuated more than 20 dB below the permissible value need not be reported.

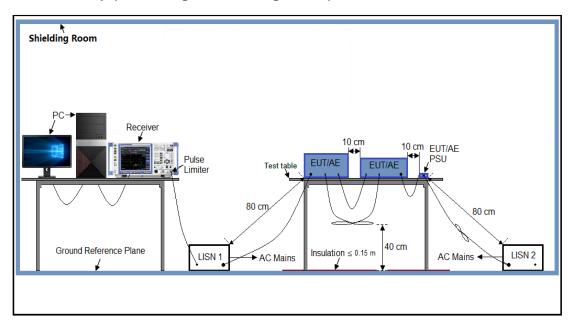
Factor = Antenna Factor + Cable loss - Amplifier gain, Margin=Measure result-Limit.

The "Factor" value can be calculated automatically by software of measurement system.



Report No.: AGC14499240405FR01 Page 52 of 71

12. AC Power Line Conducted Emission


### 12.1 Limits of Line Conducted Emission Test

| Fraguenay     | Maximum RF  | Line Voltage   |
|---------------|-------------|----------------|
| Frequency     | Q.P. (dBμV) | Average (dBµV) |
| 150kHz~500kHz | 66-56       | 56-46          |
| 500kHz~5MHz   | 56          | 46             |
| 5MHz~30MHz    | 60          | 50             |

#### Note:

- 1. The lower limit shall apply at the transition frequency.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

# 12.2 Measurement Setup (Block Diagram of Configuration)





Report No.: AGC14499240405FR01 Page 53 of 71

12.3 Preliminary Procedure of Line Conducted Emission Test

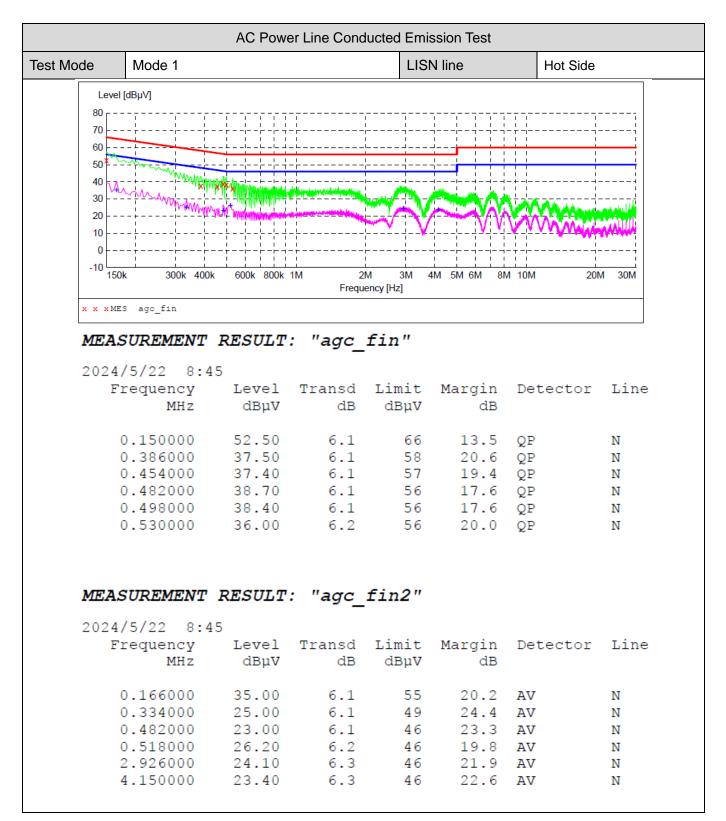
- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipment received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC 5V power from adapter which received AC120V/60Hz power from a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

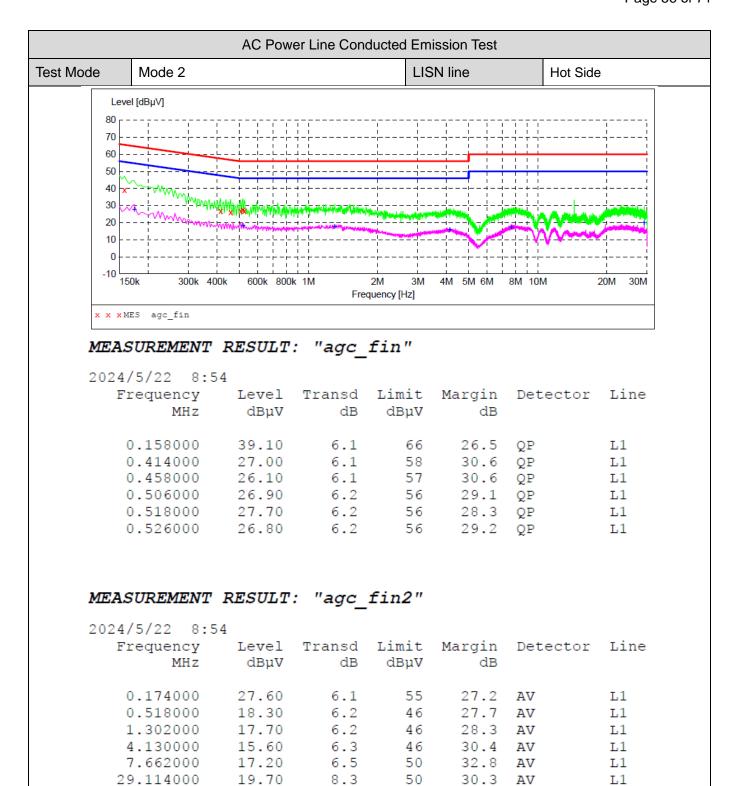
### 12.4 Final Procedure of Line Conducted Emission Test

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less 2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

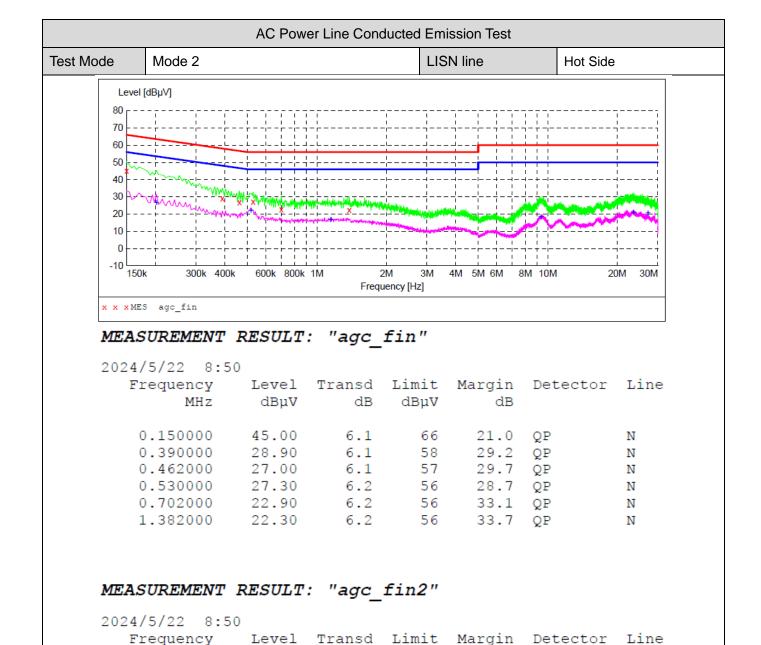
#### 12.5 Measurement Result




|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.01 0.00                                                                                                 | Line Conde                                                                    | Joted Eirile                                                          | ssion Test                                                                           |                                                    |                                                    |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Mode    | Mode 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                                                                               | LISN                                                                  | N line                                                                               | Ho                                                 | ot Side                                            |
| Leve    | el [dBµV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                           |                                                                               |                                                                       |                                                                                      |                                                    |                                                    |
| 80 -    | !!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           | <u>-</u>                                                                      |                                                                       |                                                                                      |                                                    |                                                    |
| 70      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                               |                                                                       |                                                                                      |                                                    |                                                    |
| 60      | W-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                         |                                                                               |                                                                       | <del></del>                                                                          | 1 1                                                |                                                    |
| 50      | V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | White                                                                                                     |                                                                               |                                                                       | 7                                                                                    |                                                    |                                                    |
| 30      | The state of the s | X                                                                                                         | The transportation of the second                                              |                                                                       |                                                                                      |                                                    |                                                    |
| 20      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VTP4 VICTORIAN AND AND AND AND AND AND AND AND AND A                                                      | Alada and harman                                                              |                                                                       |                                                                                      | AAAA                                               | A A A A A A A A A A A A A A A A A A A              |
| 10      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                               | Mary Mary                                                             |                                                                                      | $\Delta \Delta \Lambda$                            | MAIMI                                              |
| 0 -     | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                           | !<br>!<br><b></b>                                                             |                                                                       |                                                                                      | <br>   <br>  -+-                                   |                                                    |
| -10     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                  |                                                                               | <u> </u>                                                              |                                                                                      | <u> </u>                                           | i                                                  |
|         | 50k 300k 400k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 600k 800k 11                                                                                              |                                                                               | // 3M /<br>ency [Hz]                                                  | 4M 5M 6M 8I                                                                          | M 10M                                              | 20M 30M                                            |
|         | (DC f:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           | ricque                                                                        | vy [: 12]                                                             |                                                                                      |                                                    |                                                    |
| x x x M | MES agc_fin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |                                                                               |                                                                       |                                                                                      |                                                    |                                                    |
| MEZ     | ASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RESULT:                                                                                                   | "agc                                                                          | fin"                                                                  |                                                                                      |                                                    |                                                    |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | _                                                                             |                                                                       |                                                                                      |                                                    |                                                    |
| 202     | 4/5/22 8:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                         |                                                                               |                                                                       |                                                                                      |                                                    |                                                    |
|         | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Leve                                                                                                      |                                                                               |                                                                       |                                                                                      |                                                    |                                                    |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                               |                                                                       |                                                                                      |                                                    |                                                    |
|         | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dΒμ                                                                                                       |                                                                               |                                                                       |                                                                                      |                                                    |                                                    |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | E 1                                                                           | 6.6                                                                   | 0.5                                                                                  | 0.0                                                | T 1                                                |
|         | 0.154000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 57.30                                                                                                     | 6.1                                                                           | 66                                                                    | 8.5                                                                                  | QP                                                 | L1                                                 |
|         | 0.154000<br>0.394000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57.30<br>41.90                                                                                            | 6.1                                                                           | 58                                                                    | 16.1                                                                                 | QP                                                 | L1                                                 |
|         | 0.154000<br>0.394000<br>0.486000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57.30<br>41.90<br>40.50                                                                                   | 6.1<br>6.1                                                                    | 58<br>56                                                              | 16.1<br>15.7                                                                         | QP<br>QP                                           | L1<br>L1                                           |
|         | 0.154000<br>0.394000<br>0.486000<br>0.498000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57.30<br>41.90<br>40.50<br>40.80                                                                          | 6.1<br>6.1<br>6.1                                                             | 58<br>56<br>56                                                        | 16.1<br>15.7<br>15.2                                                                 | QP<br>QP<br>QP                                     | L1<br>L1<br>L1                                     |
|         | 0.154000<br>0.394000<br>0.486000<br>0.498000<br>0.506000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 57.30<br>41.90<br>40.50<br>40.80<br>39.30                                                                 | 6.1<br>6.1<br>6.2                                                             | 58<br>56<br>56<br>56                                                  | 16.1<br>15.7<br>15.2<br>16.7                                                         | QP<br>QP<br>QP<br>QP                               | L1<br>L1<br>L1<br>L1                               |
|         | 0.154000<br>0.394000<br>0.486000<br>0.498000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57.30<br>41.90<br>40.50<br>40.80                                                                          | 6.1<br>6.1<br>6.1                                                             | 58<br>56<br>56                                                        | 16.1<br>15.7<br>15.2                                                                 | QP<br>QP<br>QP                                     | L1<br>L1<br>L1                                     |
|         | 0.154000<br>0.394000<br>0.486000<br>0.498000<br>0.506000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 57.30<br>41.90<br>40.50<br>40.80<br>39.30                                                                 | 6.1<br>6.1<br>6.2                                                             | 58<br>56<br>56<br>56                                                  | 16.1<br>15.7<br>15.2<br>16.7                                                         | QP<br>QP<br>QP<br>QP                               | L1<br>L1<br>L1<br>L1                               |
| ME?     | 0.154000<br>0.394000<br>0.486000<br>0.498000<br>0.506000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 57.30<br>41.90<br>40.50<br>40.80<br>39.30<br>37.70                                                        | 6.1<br>6.1<br>6.2<br>6.2                                                      | 58<br>56<br>56<br>56<br>56                                            | 16.1<br>15.7<br>15.2<br>16.7                                                         | QP<br>QP<br>QP<br>QP                               | L1<br>L1<br>L1<br>L1                               |
|         | 0.154000<br>0.394000<br>0.486000<br>0.498000<br>0.506000<br>0.554000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57.30<br>41.90<br>40.50<br>40.80<br>39.30<br>37.70                                                        | 6.1<br>6.1<br>6.2<br>6.2                                                      | 58<br>56<br>56<br>56<br>56                                            | 16.1<br>15.7<br>15.2<br>16.7<br>18.3                                                 | QP<br>QP<br>QP<br>QP<br>QP                         | L1<br>L1<br>L1<br>L1<br>L1                         |
| 202     | 0.154000<br>0.394000<br>0.486000<br>0.498000<br>0.506000<br>0.554000<br>ASUREMENT<br>4/5/22 8:4<br>Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57.30<br>41.90<br>40.50<br>40.80<br>39.30<br>37.70<br><b>RESULT:</b> 1 Level                              | 6.1<br>6.1<br>6.2<br>6.2<br>7************************************             | 58<br>56<br>56<br>56<br>56<br>56                                      | 16.1<br>15.7<br>15.2<br>16.7<br>18.3                                                 | QP<br>QP<br>QP<br>QP<br>QP                         | L1<br>L1<br>L1<br>L1                               |
| 202     | 0.154000<br>0.394000<br>0.486000<br>0.498000<br>0.506000<br>0.554000<br>ASUREMENT<br>4/5/22 8:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.30<br>41.90<br>40.50<br>40.80<br>39.30<br>37.70                                                        | 6.1<br>6.1<br>6.2<br>6.2                                                      | 58<br>56<br>56<br>56<br>56<br>56                                      | 16.1<br>15.7<br>15.2<br>16.7<br>18.3                                                 | QP<br>QP<br>QP<br>QP<br>QP                         | L1<br>L1<br>L1<br>L1<br>L1                         |
| 202     | 0.154000<br>0.394000<br>0.486000<br>0.498000<br>0.506000<br>0.554000<br>ASUREMENT<br>4/5/22 8:4<br>Frequency<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57.30<br>41.90<br>40.50<br>40.80<br>39.30<br>37.70<br><b>RESULT:</b> 1 Level dBμV                         | 6.1<br>6.1<br>6.2<br>6.2<br>"agc_:<br>Transd<br>dB                            | 58<br>56<br>56<br>56<br>56<br>56<br>Limit<br>dBμV                     | 16.1<br>15.7<br>15.2<br>16.7<br>18.3<br>Margin<br>dB                                 | QP<br>QP<br>QP<br>QP<br>QP                         | L1<br>L1<br>L1<br>L1<br>L1                         |
| 202     | 0.154000<br>0.394000<br>0.486000<br>0.498000<br>0.506000<br>0.554000<br>ASUREMENT<br>4/5/22 8:4<br>Frequency<br>MHz<br>0.154000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.30<br>41.90<br>40.50<br>40.80<br>39.30<br>37.70<br><b>RESULT:</b> 1 Level dBμV 41.50                   | 6.1<br>6.1<br>6.2<br>6.2<br>7 agc_<br>Transd<br>dB                            | 58<br>56<br>56<br>56<br>56<br>56<br>Limit<br>dBμV                     | 16.1<br>15.7<br>15.2<br>16.7<br>18.3<br>Margin<br>dB                                 | QP<br>QP<br>QP<br>QP<br>QP                         | L1<br>L1<br>L1<br>L1<br>L1                         |
| 202     | 0.154000<br>0.394000<br>0.486000<br>0.498000<br>0.506000<br>0.554000<br>ASUREMENT<br>4/5/22 8:4<br>Frequency<br>MHz<br>0.154000<br>0.226000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 57.30<br>41.90<br>40.50<br>40.80<br>39.30<br>37.70<br><b>RESULT:</b> 1 Level dBµV 41.50 35.00             | 6.1<br>6.1<br>6.2<br>6.2<br>6.2<br>"agc<br>Transd<br>dB<br>6.1<br>6.1         | 58<br>56<br>56<br>56<br>56<br>56<br>56<br>4 Limit<br>dBμV<br>56<br>53 | 16.1<br>15.7<br>15.2<br>16.7<br>18.3<br>Margin<br>dB<br>14.3<br>17.6                 | QP<br>QP<br>QP<br>QP<br>QP                         | L1<br>L1<br>L1<br>L1<br>L1<br>L1                   |
| 202     | 0.154000<br>0.394000<br>0.486000<br>0.498000<br>0.506000<br>0.554000<br>4/5/22 8:4<br>Frequency<br>MHz<br>0.154000<br>0.226000<br>0.442000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57.30<br>41.90<br>40.50<br>40.80<br>39.30<br>37.70<br><b>RESULT:</b> 1 Level dBμV 41.50 35.00 23.40       | 6.1<br>6.1<br>6.2<br>6.2<br>6.2<br>"agc:<br>Transd<br>dB<br>6.1<br>6.1<br>6.1 | 58<br>56<br>56<br>56<br>56<br>56<br>56<br>47                          | 16.1<br>15.7<br>15.2<br>16.7<br>18.3<br>Margin<br>dB<br>14.3<br>17.6<br>23.6         | QP<br>QP<br>QP<br>QP<br>QP<br>AV<br>AV             | L1<br>L1<br>L1<br>L1<br>L1<br>L1<br>L1             |
| 202     | 0.154000<br>0.394000<br>0.486000<br>0.498000<br>0.506000<br>0.554000<br>ASUREMENT<br>4/5/22 8:4<br>Frequency<br>MHz<br>0.154000<br>0.226000<br>0.442000<br>0.494000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57.30<br>41.90<br>40.50<br>40.80<br>39.30<br>37.70<br><b>RESULT:</b> 1 Level dBµV 41.50 35.00 23.40 26.40 | 6.1<br>6.1<br>6.2<br>6.2<br>6.2<br>***************************                | 58<br>56<br>56<br>56<br>56<br>56<br>56<br>47<br>46                    | 16.1<br>15.7<br>15.2<br>16.7<br>18.3<br>Margin<br>dB<br>14.3<br>17.6<br>23.6<br>19.7 | QP<br>QP<br>QP<br>QP<br>QP<br>AV<br>AV<br>AV       | L1<br>L1<br>L1<br>L1<br>L1<br>L1<br>L1<br>L1<br>L1 |
| 202     | 0.154000<br>0.394000<br>0.486000<br>0.498000<br>0.506000<br>0.554000<br>4/5/22 8:4<br>Frequency<br>MHz<br>0.154000<br>0.226000<br>0.442000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57.30<br>41.90<br>40.50<br>40.80<br>39.30<br>37.70<br><b>RESULT:</b> 1 Level dBµV 41.50 35.00 23.40 24.30 | 6.1<br>6.1<br>6.2<br>6.2<br>6.2<br>"agc:<br>Transd<br>dB<br>6.1<br>6.1<br>6.1 | 58<br>56<br>56<br>56<br>56<br>56<br>56<br>47                          | 16.1<br>15.7<br>15.2<br>16.7<br>18.3<br>Margin<br>dB<br>14.3<br>17.6<br>23.6         | QP<br>QP<br>QP<br>QP<br>QP<br>AV<br>AV<br>AV<br>AV | L1<br>L1<br>L1<br>L1<br>L1<br>L1<br>L1             |


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/














Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

dΒ

6.1

6.2

6.2

6.6

7.7

8.1

dBuV

54

46

46

50

50

50

dB

ΑV

ΑV

ΑV

ΑV

ΑV

AV

Ν

Ν

Ν

Ν

Ν

Ν

27.1

23.9

29.4

31.6

29.2

29.6

MHz

0.202000

0.518000

1.150000

9.350000

23.522000

27.174000

dBuV

26.40

22.10

16.60

18.40

20.80

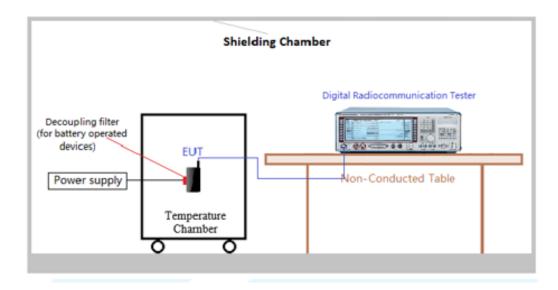
20.40



Report No.: AGC14499240405FR01 Page 58 of 71

# 13. Carrier Frequency Stability

### 13.1 Provisions Applicable


Please refer to FCC 47 CFR Part 15.319(c) &15.319(e) for specification details:

The frequency stability of the carrier frequency of the intentional radiator shall be maintained within ±10 ppm over 1 hour or the interval between channel access monitoring, whichever is shorter. The frequency stability shall be maintained over a temperature variation of -20° to + 50 °C at normal supply voltage, and over a variation in the primary supply voltage of 85 percent to 115 percent of the rated supply voltage at a temperature of 20 °C. For equipment that is capable only of operating from a battery, the frequency stability tests shall be performed using a new battery without any further requirement to vary supply voltage.

#### 13.2 Measurement Procedure

The testing follows the ANSI C63.17-2013 Section 6.2.1

### 13.3 Measurement Setup (Block Diagram of Configuration)





Report No.: AGC14499240405FR01 Page 59 of 71

### 13.4 Measurement Result

### • Carrier Frequency Stability over Time at Nominal Temperature:

| Average Mean Carrier | Max. Diff. | Min. Diff. | Max Dev. | Limit |
|----------------------|------------|------------|----------|-------|
| Frequency (MHz)      | (kHz)      | (kHz)      | (ppm)    | (ppm) |
| 1924.993573          | 6.8        | 1.3        | 2.86     | ±10   |
| 1921.538456          | 6.5        | 1.3        | 2.71     | ±10   |
| 1928.449426          | 6.4        | 1.5        | 2.54     | ±10   |

Note 1: Max Dev. (ppm) = [(Max. Diff. - Min. Diff.) / Average Mean Carrier Freq.]\*10<sup>6</sup>

### Carrier Frequency Stability over Time at Nominal Temperature:

| Voltage | Measured Carrier | Difference | Deviation | Limit |
|---------|------------------|------------|-----------|-------|
| (V)     | Frequency (MHz)  | (kHz)      | (ppm)     | (ppm) |
|         | 1924.9941        | 2.1        | 1.09      |       |
| 3.80    | 1921.5342        | -1.8       | -0.94     |       |
|         | 1928.4476        | -0.4       | -0.21     |       |
| 3.23    | 1924.9932        | 1.2        | 0.62      |       |
|         | 1921.5369        | 0.9        | 0.47      | ±10   |
|         | 1928.4458        | -2.2       | -1.14     |       |
| 4.37    | 1924.9951        | 3.1        | 1.61      |       |
|         | 1921.5366        | 0.6        | 0.31      |       |
|         | 1928.4489        | 0.9        | 0.47      |       |

Note 1: Difference (kHz) = Measured Carrier Freq. - Carrier Freq.

Note 2: Deviation (ppm) = [Difference (kHz) / Carrier Freq.] x 10<sup>6</sup>



Report No.: AGC14499240405FR01 Page 60 of 71

## Carrier Frequency Stability over Temperature:

| Temperature | Measured Carrier | Difference | Deviation | Limit |
|-------------|------------------|------------|-----------|-------|
| (°C)        | Frequency (MHz)  | (kHz)      | (ppm)     | (ppm) |
|             | 1924.9941        | Ref        | Ref       |       |
| T = +20°C   | 1921.5342        | Ref        | Ref       |       |
|             | 1928.4476        | Ref        | Ref       |       |
| T = -20°C   | 1924.9939        | 1.9        | 0.99      |       |
|             | 1921.5367        | 0.7        | 0.36      | ±10   |
|             | 1928.4456        | -2.4       | -1.24     |       |
| T = +45°C   | 1924.9949        | 2.9        | 1.51      |       |
|             | 1921.5363        | 0.3        | 0.16      |       |
|             | 1928.4485        | 0.5        | 0.26      |       |

Note 1: Set the Measured Carrier Frequency (MHz) T = +20°C as Ref Level

Note 2: Difference (kHz) = Measured Carrier Freq.  $T = -20^{\circ}C$  - Measured Carrier Freq.  $T = +20^{\circ}C$  or Measured Carrier Freq.  $T = +45^{\circ}C$  - Measured Carrier Freq.  $T = +20^{\circ}C$ 

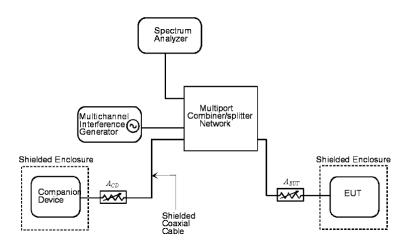
Note 3: Deviation (ppm) = [Difference (kHz) / Carrier Freq.] x 10<sup>6</sup>.



Report No.: AGC14499240405FR01 Page 61 of 71

# 14. Specific Requirements for UPCS Device

# 14.1 Monitoring Time Requirements


According to the requirements of FCC Part 15.323(c)(1) as follows:

Immediately prior to initiating transmission, devices must monitor the combined time and spectrum window in which they intend to transmit. For a period of at least 10 milliseconds for systems designed to use a 10 milliseconds or shorter frame period or at least 20 milliseconds for systems designed to use a 20 milliseconds frame period.

#### 14.1.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 7.3.4, 7.5

### 14.1.2 Measurement Setup



#### 13.1.2 Measurement Result

| Initial transmit channel and Interferer level                                                                                                                    | Final transmit Channel | Results |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|
| Apply the interference on f1 at level TU+UM, and no interference on f2. Initiate transmission and verify thetransmission on f2.                                  | f2                     | Pass    |
| Apply the interference on f2 at level TU+UM, at the same time, no interference on f1. After about 20ms, initiate transmission and verify the transmission on f1. | f1                     | Pass    |



Page 62 of 71

# 14.2 Lowest Monitoring Threshold Requirements

According to the requirements of FCC Part 15.323(c)(2) as follows:

The monitoring threshold must not be more than 30 dB above the thermal noise power for a bandwidth equivalent to the emission bandwidth used by the device.

### 14.2.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 7.3.1

### 14.2.2 Measurement Result

Not Applicable



Report No.: AGC14499240405FR01 Page 63 of 71

14.3 Acknowledgements and Transmission Duration Requirements

According to the requirements of FCC Part 15.323(c)(3)(4) as follows:

Occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria.

Once access to specific combined time and spectrum windows is obtained an acknowledgement from a system participant must be received by the initiating transmitter within one second or transmission must cease.

Periodic acknowledgements must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgement, at which time the access criteria must be repeated.

#### 14.3.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 8.2.1& 8.2.2.

#### 14.3.2 Measurement Result

| Test ref. to ANSI C63.17 clause 8.2.1            | Observation                                                             | Verdict |
|--------------------------------------------------|-------------------------------------------------------------------------|---------|
| Initial transmission without acknowledgements    | Not applicable for EUT that transmits control and signaling information | N/A     |
| Transmission time after loss of acknowledgements | 10.0                                                                    | Pass    |

| Test ref. to ANSI C63.17 clause 8.2.2                   | Observation                                                      | Verdict |
|---------------------------------------------------------|------------------------------------------------------------------|---------|
| Transmission duration on same time and frequency window | Only for initiating device that controls which time slot is used | N/A     |



Page 64 of 71

### 14.4 Least Interfered Channel (LIC) Selection Requirements

According to the requirements of FCC Part 15.323(c)(5) as follows:

Occupation of the same combined time and spectrum windows by a device or group of cooperating devices If access to spectrum is not available as determined by the above, and a minimum of 40 duplex system access channels are defined for the system, the time and spectrum windows with the lowest power level below a monitoring threshold of 50 dB above the thermal noise power determined for the emission bandwidth may be accessed.

Calculation of monitoring threshold limits for isochroous devices:

Lowest threshold: TL = -174+10Log10B + Mu + PMAX-PEUT(dBm)

Upper threshold: TU = -174+10Log10B + Mu + PMAX-PEUT(dBm)

Where: B=Emission bandwidth (Hz)

Mu=dB the threshold may exceed thermal noise (30 for TL& 50 for TU)

PMAX=5\*Log10B-10(dBm)

PEUT=Transmitted power (dBm)

| Monitor   | В     | Mυ   | P <sub>MAX</sub> | P <sub>EUT</sub> | Threshold |
|-----------|-------|------|------------------|------------------|-----------|
| Threshold | (MHz) | (dB) | (dBm)            | (dBm)            | (dBm)     |
| TL        | 1.351 | 30   | 19.05            | 18.15            | -81.79    |
| TU        | 1.351 | 50   | 19.05            | 18.15            | -61.79    |

The EUT must not transmit until the interference level is less than or equal to: Measured Threshold Level ≤TU

Where: TU=Upper threshold level

#### 14.4.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 7.3.2& 7.3.3& 7.3.4.

### 14.4.2 Measurement Result

| Monitor threshold      | Measured Threshold Level | Limit (dBm) |
|------------------------|--------------------------|-------------|
| Lowest Threshold (dBm) | N/A                      | -81.79      |
| Upper Threshold (dBm)  | N/A                      | -61.79      |

Note: N/A Not applicable - EUT which supports at least of 40 duplex system access channels and implements Least Interfered Channel (LIC) algorithm is permitted to use an upper monitoring threshold.



Page 65 of 71

# 14.5 Random Waiting Requirements

According to the requirements of FCC Part 15.323(c)(6) as follows:

If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same window after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available.

#### 14.5.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 8.1.3.

### 14.5.2 Measurement Result

Not Applicable

Note: The manufacturer declares that this provision is not utilized by the EUT.



Page 66 of 71

### 14.6 Monitoring Bandwidth Requirements

According to the requirements of FCC Part 15.323(c)(7) as follows:

The monitoring system bandwidth must be equal to or greater than the occupied bandwidth of the intended transmission. Note: Testing of the monitoring system bandwidth is not required if the designed bandwidth from the manufacturer is available and given in the test report.

The maximum reaction time of the monitor shall be less than 50\*SQRT{1.25/EBW or OBW[MHz]} µs for signals at the applicable threshold level but shall not be required to be less than 50µs.

If a signal of 6 dB or more above the threshold level is detected, the maximum reaction time shall be 35\*SQRT{1.25/EBW or OBW[MHz]} µs but shall not be required to be less than 35µs.

#### 14.6.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 7.5.

#### 14.6.2 Measurement Result

| Test Equation (µs)         | EBW (MHz) | Pulse width(µs) | Limit (us) | Result |
|----------------------------|-----------|-----------------|------------|--------|
| 50 (1.25/B) <sup>1/2</sup> | 1.351     | 48.09           | 50         | Pass   |
| 25 (1.25/B) <sup>1/2</sup> | 1.351     | 24.05           | 35         | Pass   |



Page 67 of 71

### 14.7 Monitoring Antenna Requirements

According to the requirements of FCC Part 15.323(c)(8)(9) as follows:

The monitoring system shall use the same antenna used for transmission, or an antenna that yields equivalent reception at that location.

### 14.7.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 paragraph 4.

#### 14.7.2 Measurement Result

The antenna of the EUT used for transmission is the same interior antenna that used for monitoring.



Report No.: AGC14499240405FR01 Page 68 of 71

### 14.8 Dual Access Criteria Check Requirements

According to the requirements of FCC Part 15.323(c)(10) as follows:

A device initiating a communication (hereafter called an initiating device) may attempt to establish a duplex connection by monitoring both its intended transmit and receive time and spectrum windows.

If both the intended transmit and receive time and spectrum windows meet the access criteria, then the initiating device can initiate a transmission in the intended transmit time and spectrum window.

If the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting in the receive time and spectrum window monitored by the initiating device.

#### 14.8.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 8.3.1&8.3.2.

#### 14.8.2 Measurement Result

EUT that do NOT implements the LIC procedure:

| Test ref. to ANSI C63.17 clause 8.3.1                      | Observation            | Verdict |  |
|------------------------------------------------------------|------------------------|---------|--|
| b) EUT is restricted to a single carrier f1 for TDMA       | EUT can transmit       | Pass    |  |
| systems. The Test is Pass if EUT can transmit              | EUT Can transmit       |         |  |
| c) d) Interference at level TL+ UM on all timeslots except |                        |         |  |
| one receive slot where interference is at least            | No connection possible | N/A     |  |
| 10 dB below TL                                             |                        |         |  |
| e) f) Interference at level TL+ UM on all timeslots except |                        |         |  |
| one transmit slot where interference is at least           | No connection possible | N/A     |  |
| 10 dB below TL                                             |                        |         |  |

### EUTs that implements the LIC procedure:

| Test ref. to ANSI C63.17 clause 8.3.1                | Observation                 | Verdict |
|------------------------------------------------------|-----------------------------|---------|
| b) EUT is restricted to a single carrier f1 for TDMA | EUT can transmit            | Pass    |
| systems. The Test is Pass if EUT can transmit        | EOT Carritarismit           | Pa55    |
| c) d) Transmission on interference-free receive      | Connected on the target Rx  | Door    |
| time/spectrum window                                 | window and its duplex mate. | Pass    |
| e) f) Transmission on interference-free transmit     | Connected on the target Tx  | Door    |
| time/spectrum window                                 | window and its duplex mate. | Pass    |



Page 69 of 71

### 14.9 Alternative Monitoring Interval for Co-Located Devices Requirements

According to the requirements of FCC Part 15.323(c)(11) as follows:

An initiating device that is prevented from monitoring during its intended transmit window due to monitoring system blocking from the transmissions of a co-located (within 1 m) transmitter of the same system, may monitor the portions of the time and spectrum window in which they are to receive over a period of at least 10 ms.

The monitored time and spectrum window must total at least 50% of the 10 ms frame interval and the monitored spectrum must be within 1.25 MHz of the centre frequency of channel(s) already occupied by that device or co-located cooperating devices.

If the access criteria are met for the intended receive time and spectrum window under the above conditions, then transmission in the intended transmit window by the initiating device may commence.

#### 14.9.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 8.4.

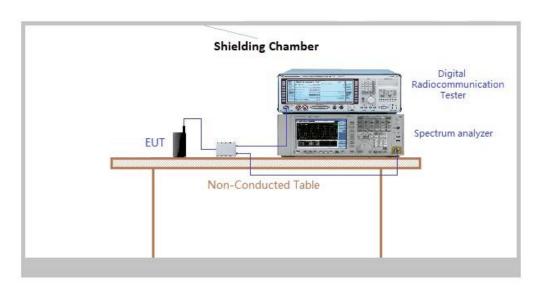
#### 14.9.2 Measurement Result

Note: The manufacturer declares that this provision is not utilized by the EUT.



Report No.: AGC14499240405FR01 Page 70 of 71

### 14.10 Frame Repetition Stability And Period And Jitter


According to the requirements of FCC Part 15.323(c)(13) as follows:

The frame period (a set of consecutive time slots in which the position of each time slot can be identified by reference to a synchronizing source) of an intentional radiator operating in this band shall be 20 milliseconds or 10 milliseconds/X where X is a positive whole number. Each device that implements time division for the purposes of maintaining a duplex connection on a given frequency carrier shall maintain a frame repetition rate with a frequency stability of at least 50 parts per million (ppm). Each device which further divides access in time in order to support multiple communication links on a given frequency carrier shall maintain a frame repetition rate with a frequency stability of at least 10 ppm. The jitter (time-related, abrupt, spurious variations in the duration of the frame interval) introduced at the two ends of such a communication link shall not exceed 25 microseconds for any two consecutive transmissions. Transmissions shall be continuous in every time and spectrum window during the frame period defined for the device.

#### 14.10.1 Measurement Procedure

For detailed test methods, please refer to ANSI C63.17-2013 Clause 6.2.2&6.2.3

### 14.10.2 Measurement Setup



#### 14.10.3 Measurement Result

| Carrier Frequency |       | Frame Jitter (us) |      |       |      |            |
|-------------------|-------|-------------------|------|-------|------|------------|
| (MHz)             | min   | mean              | max  | △min  | ∆max | Limit of △ |
| 1924.992          | -0.79 | 0                 | 0.98 | -0.79 | 0.91 | ±25        |



Page 71 of 71

**Appendix I: Photographs of Test Setup** 

Refer to the Report No.: AGC14499240405AP04

Appendix II: Photographs of Test EUT

Refer to the Report No.: AGC14499240405AP03

----End of Report----



# Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.