

Antenna Test report

Model Name: YX-P550-X2

Date: 23th Dec, 2023

Shenzhen Xinlingke Technology Co., Ltd.

www.kpantenna.com

诚信 · 感恩

Catalogue

CONTENT

- O1 Project Introducation and Photoes
- 02 Report Versions
- Introduction of Company and Test Environment
- 04 Enviornment Test
- 05 Matching Circuit
- 06 Data of WIFI Antenna
- 07 Antenna Location
- 08 Conclusion

01.Project Introducation and Photoes-Project Introducation

DE Engineer	Engineer Vene	Email	2532625702@qq.com		
RF Engineer	Engineer Kong	Mobile	18477016343		
	Antenna	Overview			
Status of Sample machine	Whole machine	Project Name	YX-P550-X2		
Antenna Type	PIFA	Structure mode	FPC+Coaxial line		
Main Antenna	2G:850/900/1800/1900 3	G:850/1900 4G:B2.3.4.	5.7.8.28A.40		
Other Antenna	Diversity Three-in-one antenna				

02.Report Versions

Version	Report Time	Commissioning Overview
A0	2023.12.23	Antenna Test Report
A1		
A2		
A3		
A4		
A5		
A6		
A7		
A8		
A9		
A10		

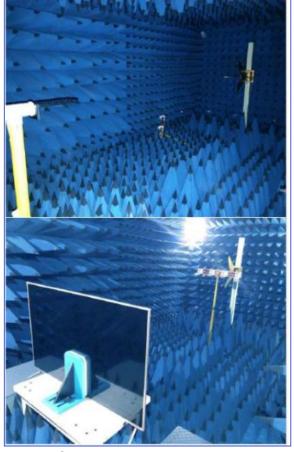
www.kpantenna.com

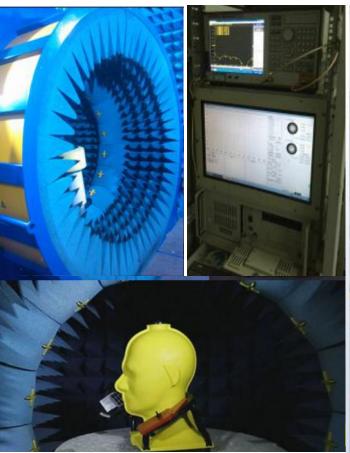
03.Introduction of Company and Test Environment- Company

Company Experience

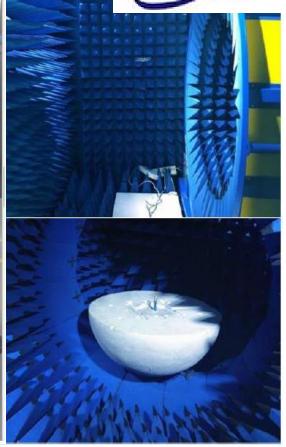
Shenzhen Xinlingke Technology Co., Ltd. owns 12 years of experience in R & D and production of various mobile communication terminals. Company has established a joint RF device laboratory with universities. Company is proficient in antennas of 5G NSA and SA, ultra thin mobile phones, NB IOT / EMTC, and base station.

The products of company cover many fields, such as smart home, Internet of vehicles, smart wear, mobile phones, pad, base station etc.


Company has been committed to improving our long-term competitiveness by providing whole RF solution, insisted on taking customer demand as the first place.

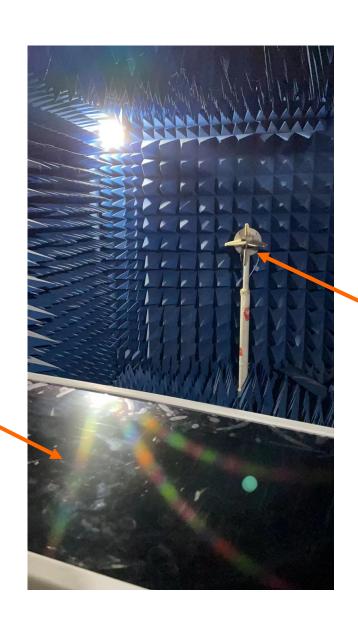


www.kpantenna.com


诚信 · 感恩

04.Introduction of Company and Test Environment-Test Environment

The company owns several OTA darkrooms whose frequency bands covers from 400mhz to 8.5ghz.


 Providing OTA test for whole machine which include but not be limited to 5G NSA, SA(trp/tis), WiFi active test (supporting 11b/11g/11n/11ax mode), bluetooth/GPS active test

- Providing antenna gain and efficiency
- Providing2D pattern / Apple chart analysis
- Providing upper and lower hemisphere efficiency
- Providing mutual interference correlation coefficient test items.

05.Enviornment Test

Location of Tested Machine

Location of Loudspeaker

www.kpantenna.com

06.Antenna correlation data

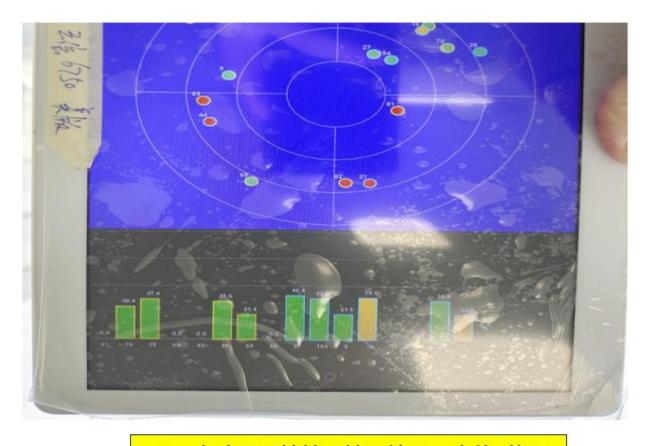
Main antenna active data

Band	Channel	TRP	TIS
	L	16.6	
B2	M	17.6	
	Н	17.5	-93.4
	L	17.4	
В3	М	16.1	
	Н	15.4	-93.5
	L	17.2	
B4	М	16.2	
	Н	15.3	-91.2
	L	18.5	
B5	М	18.3	
	Н	17.5	-90.1

Band	Channel	TRP	TIS
	L	14.6	
В7	М	14.3	
	Н	14.1	-89.4
	L	15.2	
B8	М	13.7	
	Н	12.5	-86.2
D20	L	14.6	
B28a	М	16.1	-92.5
	L	14.2	
B40	M	14.6	
	Н	15.5	-90.4

07.WIFI active data

2.4G WIFI active data


2. 4GWIFI	80	2. 11b (11M	D
channe1	1	7	13
TRP	11.4	12. 5	12. 6
TIS			-81.6

5G WIFI active data

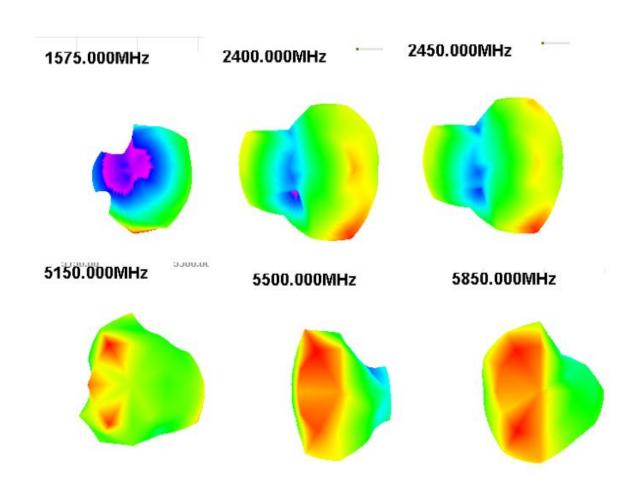
5GWIFI	802	2.11a (54	IM)
channel	36	149	165
TRP	3.6	6. 7	6. 6
TIS			-66. 5

08. GPS/BT/ measured data

GPS在我司五楼楼顶搜星情况,定位时间1 分钟。蓝牙无遮挡12米听歌流畅。

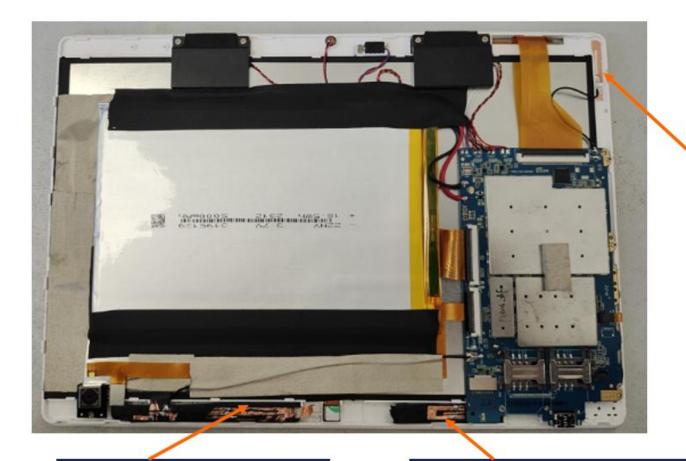
09. Gain data

								700.000MHz	820.000MHz
		Freq	Gain	2000	-0.95				
		(MHz)	(dBi)	2010	-2. 23				
		1700	-0.5	2020	-1.53				
Post	Gain	1710	0.62	2030	-0.89				
Freq (MHz)	(dBi)	1720	0.05	2040	-1.01	2500	0.25		
700	-4.85	1730	0.09	2050	-0.64	2510	0.27		
710	-3.94	1740	0.46	2060	-0.86	2520	0.49		
720	-3.69	1750	0.17	2070	-0.46	2530	0.28		
730	-3.62	1760	-0.02	2080	-1.29	2540	-0.02		
740	-3.96	1770	0.03	2090	-0.83	2550	-0.39		
750	-3.32	1780	-0.21	2100	-0.33	2560	-0.48		
760	-3	1790	-0.12	2110	-0.54	2570	-0.32	900.000MHz	1710.000MHz
770	-3.1	1800	0.67	2120	-1.03 -0.91	2580	-0.1		
780	-3, 26	1810	0.67	2140	-0.12	2590	-0.34		
790	-2.91	1820	0.52	2150	-0.71	2600 2610	-0.32 0.5		
800	-2.2	1830	0.38	2160	-1.1	2620	0.09		
810	-1.94	1840	1.28	2170	-0.71	2630	-0.12		
820	-1.47	1850	1.39	2300	-1.22	2640	-0.27		
830	-0.75	1860	0.81	2310	-1.09	2650	0. 45		
840	-0.62	1870	0.36	2320	-0.87	2000	0. 10		
850	-0.24	1880	1.87	2330	-0.45				
860	-0.93	1890	1.14	2340	-0.57			4000 0000411-	0550 000001
870	-1.95	1900	1.2	2350	-0.29			1900.000MHz	2550.000MHz
880	-2.73	1910	0.81	2360	0.43				
890	-3.54	1920	1. 41	2370	-0.1				
900	-4. 42	1930	1.04	2380	-0.03				
910	-5	1940 1950	1. 22	2390	0.51				
920	-4.63	1960	0.71	2400	0.39				
930	-5.33	1970	-0.12	2500	0.25				
940	-5.5	1980	-0.49	2510	0.27				
950	-6.72	1990	-0.19	2520	0.49				
		2000	-0.95	2530	0. 28				
				2540	-0.02				


www.kpantenna.com

10. Gain data

Freq	Gain
(MHz)	(dBi)
1550	-2.94
1555	-2.98
1560	-2.95
1565	-2.89
1570	-3.07
1575	-3.06
1580	-2.76
1585	-2.71
1590	-3
1595	-3.28
1600	-3.32
-	-3.32 Gain
Freq (MHz)	100 100
Freq	Gain
Freq (MHz)	Gain (dBi)
Freq (MHz) 2400	Gain (dBi) -3.17
Freq (MHz) 2400 2410	Gain (dBi) -3.17 -2.91
Freq (MHz) 2400 2410 2420	Gain (dBi) -3.17 -2.91 -2.97
Freq (MHz) 2400 2410 2420 2430	Gain (dBi) -3.17 -2.91 -2.97 -3.2
Freq (MHz) 2400 2410 2420 2430 2440	Gain (dBi) -3.17 -2.91 -2.97 -3.2 -2.59
Freq (MHz) 2400 2410 2420 2430 2440 2450	Gain (dBi) -3.17 -2.91 -2.97 -3.2 -2.59 -2.59
Freq (MHz) 2400 2410 2420 2430 2440 2450 2460	Gain (dBi) -3.17 -2.91 -2.97 -3.2 -2.59 -2.56 -2.81
Freq (MHz) 2400 2410 2420 2430 2440 2450 2460 2470	Gain (dBi) -3.17 -2.91 -2.97 -3.2 -2.59 -2.56 -2.81 -3.28

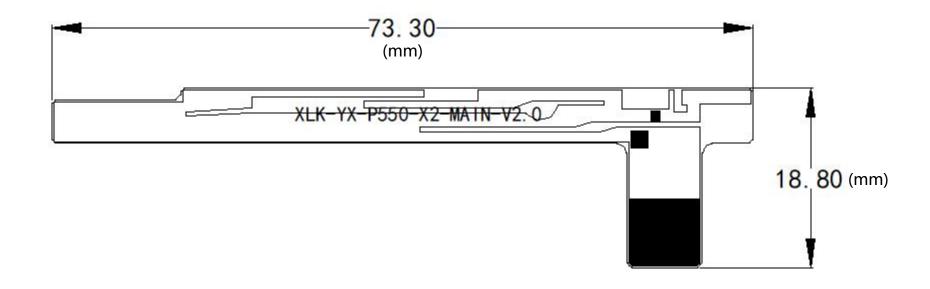

Freq	Gain
(MHz)	(dBi)
5150	-0.44
5200	-2.76
5250	-3. 63
5300	-3, 47
5350	-2.76
5400	-2. 45
5450	-1.82
5500	-1. 2
5550	-1.6
5600	-1. 99
5650	-2.04
5700	-1. 23
5750	-2.37
5800	-2. 52
5850	-1.87

www.kpantenna.com

11. Antenna location diagram

Diversity antenna position

Main antenna position


Three-in-one antenna location

www.kpantenna.com

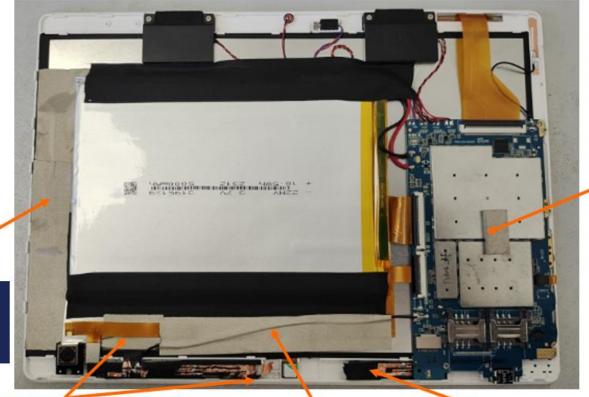
12. Antenna structure

Main antenna



13. Antenna structure

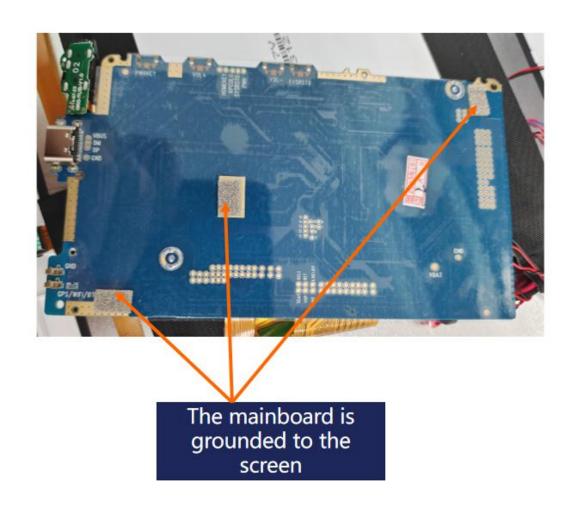
Three-in-one antenna



14. Antenna structure Diversity antenna

15. Environmental treatment

The conductive sponge attached to the mainboard is grounded to the bottom shell


Screen TP adhesive conductive cloth shielding interference

The small board of the main antenna is grounded with conductive cloth and the screen. The antenna should be padded with foam cotton. The higher the better

The coaxial line is covered with conductive cloth to shield interference Antenna with foam cotton pad high

16.Environmental treatment

www.kpantenna.com

THANKS!

Shenzhen Xinlingke Technology Co., Ltd.

www.kpantenna.com

诚信 · 感恩