

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No. CTA25090401101 FCC ID. 2BCLR-XH-C3F

Compiled by

(position+printed name+signature).: File administrators Zoey Cao

Supervised by

(position+printed name+signature).: Project Engineer Ace Chai

Approved by

(position+printed name+signature).: RF Manager Eric Wang

Date of issue Sep. 09, 2025

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name ShenZhen Sparkleiot Technology CO., LTD

Room 302, Building A, No. 28, Tongfu Road, Hehua Community, Pinghu

Street, Longgang District, Shenzhen, Guangdong, China

Test specification....::

Standard FCC Part 15.247

TRF Originator Shenzhen CTA Testing Technology Co., Ltd.

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: WiFi module

Trade Mark..... N/A

Manufacturer...... ShenZhen Sparkleiot Technology CO., LTD

Model/Type reference: XH-C3F

Listed Models..... Refer to page 2

Modulation Type CCK/DSSS/OFDM

Operation Frequency From 2412 - 2462MHz

Rating...... DC 3.3V From external circuit

Result..... PASS

CTATESTING

Page 2 of 27 Report No.: CTA25090401101

TEST REPORT

Equipment under Test WiFi module

Model /Type XH-C3F

Listed Models XH-C3M, XH-C3P, XH-C3B, XH-C3U, XH-C3E, XH-C3S, XH-C3L,

ESP32-C3 MINI

CTATESTING The PCB board, circuit, structure and internal of these models are the Model difference

same, Only model number and colour is different for these model.

ShenZhen Sparkleiot Technology CO., LTD **Applicant**

Address Room 302, Building A, No. 28, Tongfu Road, Hehua Community, Pinghu

Street, Longgang District, Shenzhen, Guangdong, China

ShenZhen Sparkleiot Technology CO., LTD Manufacturer

Address Room 302, Building A, No. 28, Tongfu Road, Hehua Community, Pinghu

Street, Longgang District, Shenzhen, Guangdong, China

	(en)	CTATES!
NG	Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATEST

Report No.: CTA25090401101

Contents

	1 TEST STANDARDS	
	2 SUMMARY	
	2.1 General Remarks	Ę
	2.2 Product Description	
	2.3 Equipment Under Test	-7/19
	2.4 Short description of the Equipment under Test (EUT)	7
	2.5 FUT configuration	6
	2.4 Short description of the Equipment under Test (EUT) 2.5 EUT configuration	6
	2.7 Block Diagram of Test Setup	6
	2.8 Related Submittal(s) / Grant (s)	
	2.9 Modifications	
	3 TEST ENVIRONMENT	
	3.1 Address of the test laboratory	
CTA	3.2 Test Facility	
	3.3 Environmental conditions	7
1	3.4 Test Description	ξ
	3.5 Statement of the measurement uncertainty	8
	3.6 Equipments Used during the Test	10
	4 TEST CONDITIONS AND RESULTS	11
	4.1 AC Power Conducted Emission	
	4.2 Radiated Emission	12
	4.3 Maximum Peak Conducted Output Power	
	4.4 Power Spectral Density	
	4.5 6dB Bandwidth	23
	4.6 Out-of-band Emissions	
	4.7 Antenna Requirement	
	4.8 On Time and Duty Cycle	26
	4.8 On Time and Duty Cycle	27
	6 Photos of the EUT	27
	0 1 notes of the 20 1	-6
	CTATE	
	6 Photos of the EUT	

Page 4 of 27 Report No.: CTA25090401101

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2020 +Cor. 1-2023+ C63.10a-2024+ Errata to C63.10a-2024: American National Standard for **Testing Unlicensed Wireless Devices**

KDB558074 D01 v05r02: Guidance for Compliance Measurements on Digital Transmission Systems (DTS) ,Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under J.247 §15.247 of The FCC rules.

Page 5 of 27 Report No.: CTA25090401101

SUMMARY

General Remarks

Date of receipt of test sample	:	Sep. 04, 2025	(
Testing commenced on		Sep. 04, 2025	TESTIN
Testing concluded on	:	Sep. 09, 2025	CTA.

2.2 Product Description

Product description:	WiFi module
Model/Type reference:	XH-C3F
Power supply:	DC 3.3V From external circuit
testing sample ID:	V1.0
Hardware version:	V1.0
Software version:	CTA250904011-1# (Engineer sample) CTA250904011-2# (Normal sample)
WIFI :	
Supported type:	802.11b/802.11g/802.11n(HT20)/ 802.11n(HT40)
Modulation:	802.11b: DSSS 802.11g/802.11n(HT20)/ 802.11n(HT40): OFDM
Operation frequency:	802.11b/802.11g/802.11n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz
Channel number:	802.11b/802.11g/802.11n(HT20): 11 802.11n(HT40):7
Channel separation:	5MHz
Antenna type:	PCB antenna
Antenna gain:	0.76 dBi

Equipment Under Test

Power supply system utilised

Refer to section 2.2

2.4 Short description of the Equipment under Test (EUT)

This is a WiFi module.

For more details, refer to the user's manual of the EUT.

Tools software(EspRFTestTool_v3.6)				
2412 MHz	2437MHz	2462 MHz		
16	16	16		
15	15	15		
15	15	15		
2422 MHz	2437MHz	2452 MHz		
14	14	14		
	2412 MHz 16 15 15	2412 MHz 2437MHz 16 16 15 15 15 15		

Page 6 of 27 Report No.: CTA25090401101

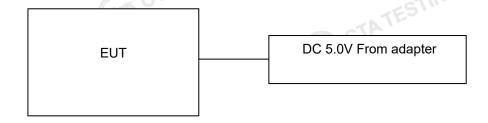
2.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer

supplied by the lab

Adapter information (Auxiliary test supplied by test Lab)	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A
Test board information (Auxiliary test supplied by manufacturer)	


EUT operation mode 2.6

The application provider specific test softwareto control sample in continuous TX and RX for testing meet KDB558074 test requirement.

IEEE 802.11b/g/n: Thirteen channels are provided to the EUT.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		2011
6	2437		
7	2442		

2.7 Block Diagram of Test Setup

CTATESTING Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart CTATESTING C Rules.

2.9 **Modifications**

No modifications were implemented to meet testing criteria.

Page 7 of 27 Report No.: CTA25090401101

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

ISED#: 27890 CAB identifier: CN0127

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

CTATESTING During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	25 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

	Autiospitette pressure.	330-103011bai
Co	onducted testing:	
CIA	Temperature:	25 ° C
	7E51"	
	Humidity:	44 %
	Carlo	
	Atmospheric pressure:	950-1050mbar
		THE STATE OF THE S

AC Power Conducted Emission

Temperature:	24 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
CTATESI	ESTING

Page 8 of 27 Report No.: CTA25090401101

Test Description

	FCC PART 15.247			
	FCC Part 15.207	AC Power Conducted Emission	PASS	
	FCC Part 15.247(a)(2)	6dB Bandwidth	PASS	
	FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS	
	FCC Part 15.247(b)	Maximum Peak Conducted Output Power	PASS	
	FCC Part 15.247(e)	Power Spectral Density	PASS	
	FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS	
CTATE	FCC Part 15.247(d)	Band Edge	PASS	
CAL	FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS	
	Domorke		•	

- We tested all test mode and recorded worst case in report
- 3. RF Conducted test Offset= cable loss, For conducted spurious emission test, cable loss is the maximum value in the range of test.

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Peak Conducted Output Power	11b/DSSS	1 Mbps	1/6/11
Power Spectral Density 6dB Bandwidth	11g/OFDM	6 Mbps	1/6/11
Spurious RF conducted emission	11n(20MHz)/OFDM	MCS0	1/6/11
Radiated Emission 9KHz~1GHz& Radiated Emission 1GHz~10 th Harmonic	11n(40MHz)/OFDM	MCS0	3/6/9
	11b/DSSS	1 Mbps	1/11
Band Edge	11g/OFDM	6 Mbps	1/11
CTA TES Danie Lugo	11n(20MHz)/OFDM	MCS0	1/11
CIA	11n(40MHz)/OFDM	MCS0	3/9

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

Shenzhen CTA Testing Technology Co., Ltd.

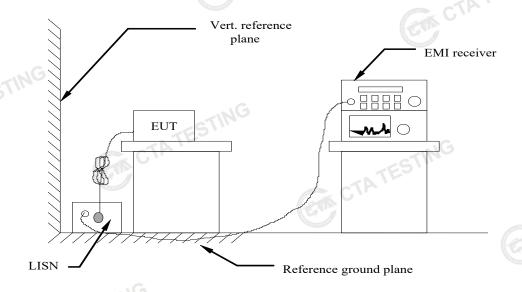
Page 9 of 27 Report No.: CTA25090401101

	Output Peak power	30MHz~18GHz	0.55 dB	(1)
	Power spectral density	/	0.57 dB	(1)
	Spectrum bandwidth	/	1.1%	(1)
CT CT	Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
	Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
	Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)
	Time	1	±2%	(1)

CTATE (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 10 of 27 Report No.: CTA25090401101

3.6 Equipments Used during the Test


	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date	
	LISN	R&S	ENV216	CTA-308	2025/08/04	2026/08/03	
	LISN	R&S	ENV216	CTA-314	2025/07/30	2026/07/29	
	EMI Test Receiver	R&S	ESPI	CTA-307	2025/07/30	2026/07/29	
	EMI Test Receiver	R&S	ESCI	CTA-306	2025/07/30	2026/07/29	
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2025/07/30	2026/07/29	
	Vector Signal generator	Agilent	N5182A	CTA-305	2025/07/30	2026/07/29	
TE	Analog Signal Generator	R&S	E4421B	CTA-304	2025/07/30	2026/07/29	
CTA	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2025/07/30	2026/07/29	
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2025/07/31	2026/07/30	
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16	
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12	
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16	
1G	Horn Antenna	Schwarzbeck	BBHA 9170	CTA-346	2025/05/18	2028/05/17	
	Amplifier	Schwarzbeck	BBV9745	CTA-312	2025/07/30	2026/07/29	
	Amplifier	Tonscend	TAP-011840	CTA-313	2025/07/30	2026/07/29	
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2025/07/30	2026/07/29	
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2025/07/30	2026/07/29	
	Automatic control unit	Tonscend	JS0806-2	CTA-404	2025/07/30	2026/07/29	
	Power Sensor	Agilent	U2021XA	CTA-405	2025/07/30	2026/07/29	
	Amplifier	SKET	LNPA 1840G-50	CTA-345	2025/05/17	2026/05/16	
	Spectrum analyzer	R&S	FSV40-N	CTA-344	2025/05/17	2026/05/16	
	Power Meter	R&S	NRVS	CTA-354	2025/07/30	2026/07/29	
	Attenuator	XINQY	10dB	N/A	N/A	N/A	
CTATE	Programmable Constant Temperature And Humidity Test Chamber	DONGGUAN JINGYU	HT-H-408	CTA-053	2025/07/30	2026/07/29	
7	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A	
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	
Ğ					CT CT		

Report No.: CTA25090401101 Page 11 of 27

TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

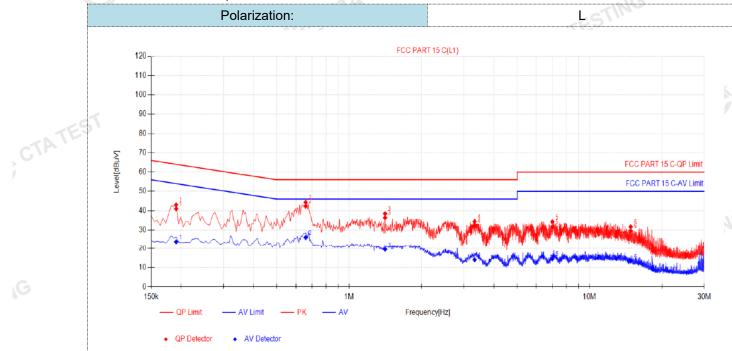
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2020.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2020
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2020
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limi	t (dBuV)
Frequency range (wiriz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the	ne frequency.	
TEST RESULTS	CIA	TATESTING

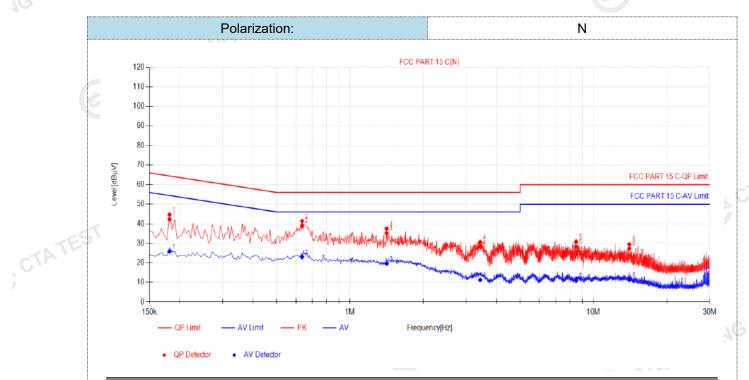

TEST RESULTS

Report No.: CTA25090401101 Page 12 of 27

Remark:

1. All modes of 802.11b/g/n were tested at Low, Middle, and High channel; only the worst result of 802.11b CH11 was reported as below:

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


a A	Final	Final Data List												
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dΒμV]	ΑV Value [dBμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict		
	1	0.1905	10.05	30.91	40.96	64.01	23.05	13.78	23.83	54.01	30.18	PASS		
	2	0.6585	9.96	32.30	42.26	56.00	13.74	16.13	26.09	46.00	19.91	PASS		
	3	1.41	9.90	26.47	36.37	56.00	19.63	9.63	19.53	46.00	26.47	PASS		
	4	3.327	9.98	22.24	32.22	56.00	23.78	4.06	14.04	46.00	31.96	PASS		
	5	6.999	10.30	21.35	31.65	60.00	28.35	4.17	14.47	50.00	35.53	PASS		
nT.	6	14.829	10.31	19.22	29.53	60.00	30.47	3.01	13.32	50.00	36.68	PASS		

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

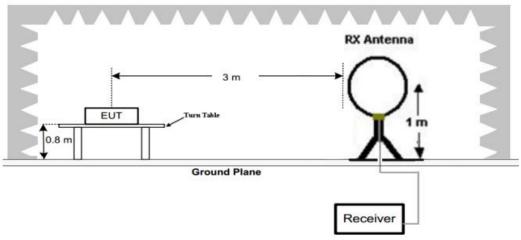
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV)

CTA TESTING

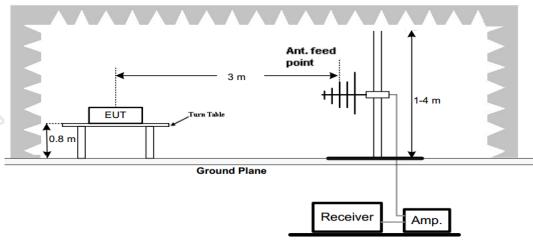
Page 13 of 27 Report No.: CTA25090401101

	Final Data List												
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict	
	1	0.1815	10.03	32.26	42.29	64.42	22.13	15.77	25.80	54.42	28.62	PASS	
	2	0.636	10.12	28.86	38.98	56.00	17.02	12.88	23.00	46.00	23.00	PASS	
10	3	1.4145	10.15	24.98	35.13	56.00	20.87	9.46	19.61	46.00	26.39	PASS	
	4	3.426	10.19	17.83	28.02	56.00	27.98	1.09	11.28	46.00	34.72	PASS	
100	5	8.484	10.41	17.84	28.25	60.00	31.75	0.45	10.86	50.00	39.14	PASS	
	6	14.0325	10.42	16.96	27.38	60.00	32.62	0.81	11.23	50.00	38.77	PASS	

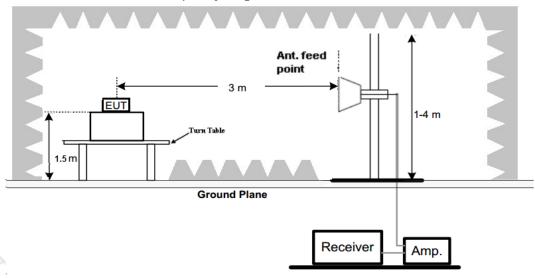
Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

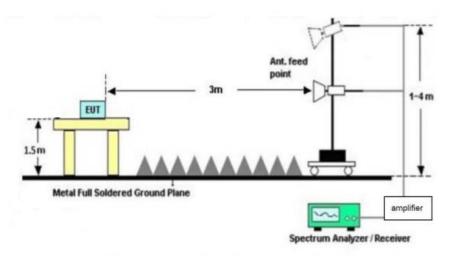

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
 - 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

Page 14 of 27 Report No.: CTA25090401101


Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz


Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Page 15 of 27 Report No.: CTA25090401101

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3.5
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

Test Frequency	Test Receiver/Spectrum Setting	Detector
range		
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz,	Peak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	NG
ansd=AF +CL-AG	CTATESTIN
ATION LIMIT	

Transd=AF +CL-AG

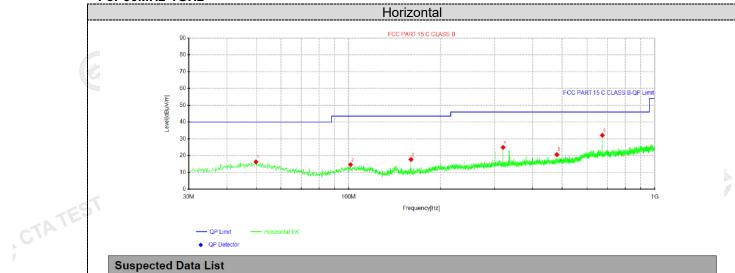
RADIATION LIMIT

Page 16 of 27 Report No.: CTA25090401101

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

	Frequency (MHz)	Distance (Meters)	Radiated (dBμV/m)	Radiated (μV/m)
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
	1.705-30	3	20log(30)+ 40log(30/3)	30
TES	30-88	3	40.0	100
CTA	88-216	3	43.5	150
.	216-960	3	46.0	200
1	Above 960	3	54.0	500

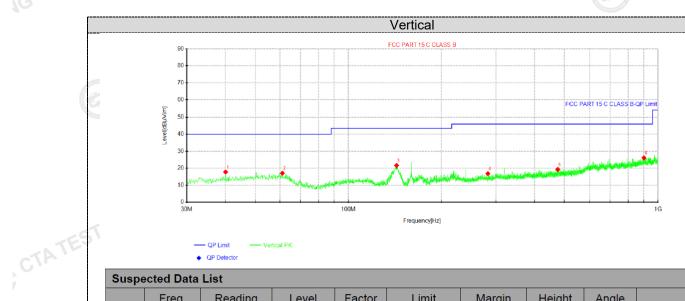

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

Page 17 of 27 Report No.: CTA25090401101

For 30MHz-1GHz


Susp	Suspected Data List										
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delerity		
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	49.7638	27.41	16.26	-11.15	40.00	23.74	100	262	Horizontal		
2	101.537	27.61	14.64	-12.97	43.50	28.86	200	5	Horizontal		
3	159.98	33.38	17.71	-15.67	43.50	25.79	100	140	Horizontal		
4	320.03	35.87	24.92	-10.95	46.00	21.08	100	184	Horizontal		
5	480.08	29.92	20.60	-9.32	46.00	25.40	200	184	Horizontal		
6	673.837	37.51	32.13	-5.38	46.00	13.87	100	148	Horizontal		

CTATESTING

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 18 of 27 Report No.: CTA25090401101

Suspe	Suspected Data List										
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority		
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	40.0638	29.73	17.78	-11.95	40.00	22.22	100	106	Vertical		
2	61.1612	30.11	17.07	-13.04	40.00	22.93	200	132	Vertical		
3	143.126	37.20	21.62	-15.58	43.50	21.88	100	202	Vertical		
4	282.685	28.16	16.79	-11.37	46.00	29.21	100	62	Vertical		
5	475.593	28.62	19.28	-9.34	46.00	26.72	200	80	Vertical		
6	900.575	28.67	26.11	-2.56	46.00	19.89	100	261	Vertical		

CTA TESTING

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 19 of 27 Report No.: CTA25090401101

For 1GHz to 25GHz

Note: 802.11b/802.11g/802.11n (HT20)/802.11n (HT40)Mode all have been tested, only worse case

802.11n20 mode is reported

(above 1GHz)

Frequency(MHz):			2412		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4824.00	62.04	PK	74	11.96	66.40	32.4	5.11	41.87	-4.36
4824.00	44.98	AV	54	9.02	49.34	32.4	5.11	41.87	-4.36
7236.00	54.59	PK	74	19.41	55.22	36.58	6.43	43.64	-0.63
7236.00	43.37	AV	54	10.63	44.00	36.58	6.43	43.64	-0.63

	TING								1	Ductority
	Frequency(MHz):			24	12	Pola	arity:	VERTICAL		
	Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
Ī	4824.00	60.32	PK	74	13.68	64.68	32.4	5.11	41.87	-4.36
	4824.00	42.96	AV	54	11.04	47.32	32.4	5.11	41.87	-4.36
	7236.00	52.81	PK	74	21.19	53.44	36.58	6.43	43.64	-0.63
I	7236.00	41.69	AV	54	12.31	42.32	36.58	6.43	43.64	-0.63

Frequency(MHz):			2437		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4874.00	61.52	PK	74	12.48	65.47	32.56	5.34	41.85	-3.95
4874.00	44.16	AV	54	9.84	48.11	32.56	5.34	41.85	-3.95
7311.00	53.98	PK	74	20.02	54.34	36.54	6.81	43.71	-0.36
7311.00	42.68	AV	54	11.32	43.04	36.54	6.81	43.71	-0.36
(CVI)					TES				

Frequency(MHz):		2437		Polarity:		VERTICAL			
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4874.00	59.73	PK	74	14.27	63.68	32.56	5.34	41.85	-3.95
4874.00	42.66	AV	54	11.34	46.61	32.56	5.34	41.85	-3.95
7311.00	52.29	PK	74	21.71	52.65	36.54	6.81	43.71	-0.36
7311.00	40.72	AV	54	13.28	41.08	36.54	6.81	43.71	-0.36

		ATA			NG				
Frequency(MHz):			2462		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	60.97	PK	74	13.03	64.43	32.73	5.64	41.83	-3.46
4924.00	43.61	AV	54	10.39	47.07	32.73	5.64	41.83	-3.46
7386.00	53.29	PK	74	20.71	53.35	36.5	7.23	43.79	-0.06
7386.00	41.99	AV	54	12.01	42.05	36.5	7.23	43.79	-0.06
	-51	110		•		•		•	_

Frequency(MHz):			2462		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	59.18	PK	74	14.82	62.64	32.73	5.64	41.83	-3.46
4924.00	41.99	AV	54	12.01	45.45	32.73	5.64	41.83	-3.46
7386.00	51.32	PK	74	22.68	51.38	36.5	7.23	43.79	-0.06
7386.00	40.34	AV	54	13.66	40.40	36.5	7.23	43.79	-0.06

Report No.: CTA25090401101 Page 20 of 27

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) The other emission levels were very low against the limit.
- 4) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Results of Band Edges Test (Radiated)

Note: 802.11b/802.11g/802.11n (HT20)/802.11n (HT40)Mode all have been tested, only worse case 802.11n20 mode is reported

Frequency(MHz):			2412		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.83 PK		74	12.17	72.25	27.42	4.31	42.15	-10.42
2390.00	42.44	ΑV	54	11.56	52.86	27.42	4.31	42.15	-10.42
Frequency(MHz):		2412		Polarity:			VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.72	PK	74	14.28	70.14	27.42	4.31	42.15	-10.42
2390.00	40.58	AV	54	13.42	51.00	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	62	Pola	arity:	Н	ORIZONTA	\L
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	61.13	PK	74	12.87	71.24	27.7	4.47	42.28	-10.11
2483.50	41.73	ΑV	54	12.27	51.84	27.7	4.47	42.28	-10.11
Freque	Frequency(MHz):		24	62	Pola	rity:	VERTICAL		
	Emission Level (dBuV/m)				1	1		ı	_
Frequency (MHz)	Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
	Le	vel			Value	Factor	Factor	amplifier	Factor

Note:

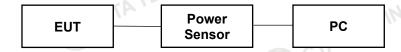
- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) The other emission levels were very low against the limit.
- RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Page 21 of 27 Report No.: CTA25090401101

Maximum Peak Conducted Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm.


Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Method PM is Measurement using an RF Peak power sensor. The procedure for this method is as follows:

- 1. The testing follows the ANSI C63.10 Section 11.9.1.2
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power sensor.
- 3. The power sensor shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

Test Configuration

Test Results

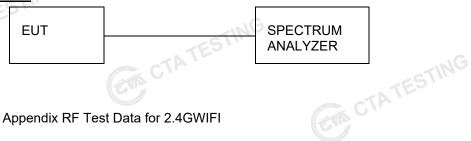
Please refer to Appendix RF Test Data for 2.4GWIFI

Note:

- 1) Measured output power at difference data rate for each mode and recorded worst case for each mode.
- 2) Test results including cable loss.
- 3) Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; MCS0 at IEEE 802.11n HT20; MCS0 at IEEE 802.11n HT40; CTATES

Page 22 of 27 Report No.: CTA25090401101

Power Spectral Density


Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- 3. Set the VBW ≥ 3× RBW.
- Set the span to 1.5 times the DTS channel bandwidth.
- Detector = peak.
- Sweep time = auto couple.
- Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

Test Results

Please refer to Appendix RF Test Data for 2.4GWIFI

Note:

- Measured peak power spectrum density at difference data rate for each mode and recorded worst case 1) for each mode.
- Test results including cable loss; 2)
- Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; MCS0 at IEEE 802.11n HT20; MCS0 at IEEE 802.11n HT40;

Page 23 of 27 Report No.: CTA25090401101

6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

- a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz.
- b) Set the VBW ≥ [3 × RBW].
- c) Detector = peak.
- d) Trace mode = max-hold.
- e) Sweep = No faster than coupled (auto) time.
- f) Allow the trace to stabilize.

Test Configuration

Test Results

Please refer to Appendix RF Test Data for 2.4GWIFI

- Measured peak power spectrum density at difference data rate for each mode and recorded worst case 1) for each mode.
- Test results including cable loss; 2)
- Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; MCS0 at IEEE 802.11n HT20; CTATES MCS0 at IEEE 802.11n HT40;

Page 24 of 27 Report No.: CTA25090401101

Out-of-band Emissions

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

The testing follows the ANSI C63.10 Section 11.11.2 and 11.11.3 and 6.10.4:

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW ≥ [3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

Test Configuration

Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage CTATESTING measurement data. And record the worst data in the report.

Please refer to Appendix RF Test Data for 2.4GWIFI

Page 25 of 27 Report No.: CTA25090401101

Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

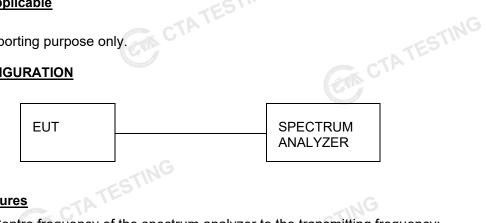
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken CTATE antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result:

The PCB antenna maximum gain of antenna was 0.76 dBi.


Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATEST

Page 26 of 27 Report No.: CTA25090401101

On Time and Duty Cycle

None; for reporting purpose only.

TEST CONFIGURATION

CTATESTING **Test Procedures**

- CTA TESTING 1). Set the Centre frequency of the spectrum analyzer to the transmitting frequency;
- 2). Set the span=0MHz, RBW=8MHz, VBW=8MHz, Sweep time=Auto;
- 3). Detector = peak:
- 4). Trace mode = Single hold.

TEST RESULTS

Please refer to Appendix RF Test Data for 2.4GWIFI Duty Cycle= Transmission Duration/ Transmission Period CTATES

Page 27 of 27 Report No.: CTA25090401101

Test Setup Photos of the EUT

Please refer to separated files for Test Setup Photos of the EUT.

Photos of the EUT

CTA TESTING Please refer to separated files for External Photos & Internal Photos of the EUT.