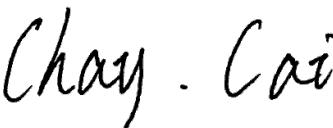




# FCC Radio Test Report

## FCC ID: 2BCGWHX510V2

This report concerns: Class II permissive Change


**Project No.** : 2506C147  
**Equipment** : AX3000 Whole Home Mesh Wi-Fi AP  
**Brand Name** : tp-link  
**Model Name** : HX510  
**Applicant** : TP-LINK CORPORATION PTE. LTD.  
**Address** : 7 Temasek Boulevard #29-03 Suntec Tower One, Singapore 038987  
**Manufacturer** : TP-LINK CORPORATION PTE. LTD.  
**Address** : 7 Temasek Boulevard #29-03 Suntec Tower One, Singapore 038987  
**Date of Receipt** : Jun. 11, 2025  
**Date of Test** : Jun. 12, 2025 ~ Jul. 10, 2025  
**Issued Date** : Aug. 14, 2025  
**Test Sample** : Engineering Sample No.: DG20250611181  
**Standard(s)** : FCC CFR Title 47, Part 15, Subpart C

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc. (Dongguan).

**Prepared by**

:   
Sheldon Ou

**Approved by**

:   
Chay Cai

No.3, Jinshagang 1st Road, Dalang, Dongguan, Guangdong People's Republic of China.

Tel: +86-769-8318-3000 Web: [www.newbtl.com](http://www.newbtl.com) Service mail: [btl\\_qa@newbtl.com](mailto:btl_qa@newbtl.com)

**Declaration**

**BTL** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

**BTL**'s reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** assumes no responsibility for the data provided by the customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by **BTL**.

The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

**BTL**'s laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.

**BTL** is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

**Limitation**

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

| Table of Contents                                            | Page      |
|--------------------------------------------------------------|-----------|
| <b>REVISION HISTORY</b>                                      | <b>4</b>  |
| <b>1 . APPLICABLE STANDARDS</b>                              | <b>5</b>  |
| <b>2 . SUMMARY OF TEST RESULTS</b>                           | <b>5</b>  |
| 2.1 TEST FACILITY                                            | 6         |
| 2.2 MEASUREMENT UNCERTAINTY                                  | 6         |
| 2.3 TEST ENVIRONMENT CONDITIONS                              | 6         |
| <b>3 . GENERAL INFORMATION</b>                               | <b>7</b>  |
| 3.1 GENERAL DESCRIPTION OF EUT                               | 7         |
| 3.2 DESCRIPTION OF TEST MODES                                | 9         |
| 3.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 10        |
| 3.4 SUPPORT UNITS                                            | 10        |
| 3.5 CUSTOMER INFORMATION DESCRIPTION                         | 10        |
| <b>4 . RADIATED EMISSIONS</b>                                | <b>11</b> |
| 4.1 LIMIT                                                    | 11        |
| 4.2 TEST PROCEDURE                                           | 12        |
| 4.3 DEVIATION FROM TEST STANDARD                             | 13        |
| 4.4 TEST SETUP                                               | 13        |
| 4.5 EUT OPERATING CONDITIONS                                 | 14        |
| 4.6 TEST RESULTS - 30 MHZ TO 1000 MHZ                        | 14        |
| 4.7 TEST RESULTS - ABOVE 1000 MHZ                            | 14        |
| <b>5 . MEASUREMENT INSTRUMENTS LIST</b>                      | <b>15</b> |
| <b>6 . EUT TEST PHOTO</b>                                    | <b>16</b> |
| <b>APPENDIX A - RADIATED EMISSION - 30 MHZ TO 1000 MHZ</b>   | <b>18</b> |
| <b>APPENDIX B - RADIATED EMISSION- ABOVE 1000 MHZ</b>        | <b>21</b> |

**REVISION HISTORY**

| Report No.          | Version | Description                                                                                                                                                                                                                                                                                                                                                                                                     | Issued Date   | Note  |
|---------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|
| BTL-FCCP-1-2506C147 | R00     | <p>This is a supplementary report to the original test report (BTL-FCCP-1-2405G108).</p> <p>1. Changed the FEM.</p> <p>2. Changed the FCC ID.</p> <p>3. Changed the information of applicant and manufacturer.</p> <p>Based on above described changes, the radiated emissions used original worst case to test and recorded in this report.</p> <p>The other test results please refer to original report.</p> | Aug. 14, 2025 | Valid |

## 1. APPLICABLE STANDARDS

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of A2LA:

KDB 558074 D01 15.247 Meas Guidance v05r02

KDB 662911 D01 Multiple Transmitter Output v02r01

## 2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

| FCC CFR Title 47, Part 15, Subpart C |                   |                          |          |        |
|--------------------------------------|-------------------|--------------------------|----------|--------|
| Standard(s) Section                  | Test Item         | Test Result              | Judgment | Remark |
| 15.247(d)<br>15.205(a)<br>15.209(a)  | Radiated Emission | APPENDIX A<br>APPENDIX B | PASS     | -----  |

Note:

(1) "N/A" denotes test is not applicable in this test report.

## 2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3, Jinshagang 1st Road, Dalang, Dongguan, Guangdong People's Republic of China.

BTL's Registration Number for FCC: 747969  
BTL's Designation Number for FCC: CN1377

## 2.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95.45% confidence level (based on a coverage factor (k=2))

The BTL measurement uncertainty as below table:

A. Radiated emissions test:

| Test Site       | Method | Measurement Frequency Range | Ant. H / V | $U_{\text{,dB}}$ |
|-----------------|--------|-----------------------------|------------|------------------|
| DG-CB03<br>(3m) | CISPR  | 30MHz ~ 200MHz              | V          | 4.40             |
|                 |        | 30MHz ~ 200MHz              | H          | 3.62             |
|                 |        | 200MHz ~ 1,000MHz           | V          | 4.58             |
|                 |        | 200MHz ~ 1,000MHz           | H          | 3.98             |

| Test Site       | Method | Measurement Frequency Range | $U_{\text{,dB}}$ |
|-----------------|--------|-----------------------------|------------------|
| DG-CB03<br>(3m) | CISPR  | 1GHz ~ 6GHz                 | 4.08             |

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

## 2.3 TEST ENVIRONMENT CONDITIONS

| Test Item                               | Temperature | Humidity | Test Voltage | Tested By  | Test Date     |
|-----------------------------------------|-------------|----------|--------------|------------|---------------|
| Radiated Emissions<br>-30MHz to 1000MHz | 22°C        | 56%      | AC 120V/60Hz | Calvin Wen | Jul. 03, 2025 |
| Radiated Emissions<br>-Above 1000MHz    | 22°C        | 56%      | AC 120V/60Hz | Calvin Wen | Jul. 03, 2025 |

### 3. GENERAL INFORMATION

#### 3.1 GENERAL DESCRIPTION OF EUT

|                         |                                                                                                                                              |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Equipment               | AX3000 Whole Home Mesh Wi-Fi AP                                                                                                              |
| Brand Name              | tp-link                                                                                                                                      |
| Test Model              | HX510                                                                                                                                        |
| Model Name              | HX510                                                                                                                                        |
| Model Difference(s)     | N/A                                                                                                                                          |
| Power Source            | DC voltage supplied from AC adapter.<br>Model: T120150-2B1                                                                                   |
| Power Rating            | Input: 100-240V~, 50/60Hz, 0.6A<br>Output: 12.0Vdc, 1.5A                                                                                     |
| Operation Frequency     | 2412 MHz ~ 2462 MHz                                                                                                                          |
| Modulation Type         | IEEE 802.11b: DSSS<br>IEEE 802.11g/n: OFDM<br>IEEE 802.11ax: OFDMA                                                                           |
| Bit Rate of Transmitter | IEEE 802.11b: 11/5.5/2/1 Mbps<br>IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps<br>IEEE 802.11n: up to 300 Mbps<br>IEEE 802.11ax: up to 573.6 Mbps |

Note:

1. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.
2. Channel List:

| CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n(HT20), IEEE 802.11ax(HE20),<br>CH03 - CH09 for IEEE 802.11n(HT40), IEEE 802.11ax(HE40) |                 |         |                 |         |                 |         |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|-----------------|---------|-----------------|---------|-----------------|
| Channel                                                                                                                                         | Frequency (MHz) | Channel | Frequency (MHz) | Channel | Frequency (MHz) | Channel | Frequency (MHz) |
| 01                                                                                                                                              | 2412            | 04      | 2427            | 07      | 2442            | 10      | 2457            |
| 02                                                                                                                                              | 2417            | 05      | 2432            | 08      | 2447            | 11      | 2462            |
| 03                                                                                                                                              | 2422            | 06      | 2437            | 09      | 2452            |         |                 |

## 3. Table for Filed Antenna:

| Antenna | Frequency (MHz) | Antenna Type | MAX Antenna Gain (dBi) |
|---------|-----------------|--------------|------------------------|
| 1       | 2412-2462       | PCB          | 2                      |
| 3       | 2412-2462       | PCB          | 2                      |

The EUT support Cyclic Shift Diversity(CDD) mode.

MIMO output power port and MIMO PSD port summing were performed in accordance with KDB 662911 D01. For the CDD results the Directional Gain was calculated in accordance with the following mothod.

For output power measurements:

Directional gain=  $G_{ANT} + \text{Array Gain} = 2 \text{ dBi}$

$G_{ANT}$  : equal to the gain of the antenna having the highest gain

Array Gain = 0 dB (i.e., no array gain) for  $N_{ANT} \leq 4$

For power spectral density (PSD) measurements:

Directional gain=  $G_{ANT} + \text{Array Gain} = 5.01 \text{ dBi}$

Array Gain =  $10 \log(N_{ANT}/N_{ss})$  dB.

$N_{ANT}$  : number of transmit antennas

$N_{ss}$  : number of spatial streams, The worst case directional gain will occur when  $N_{ss} = 1$

For TX Beamforming:

Directional gain=  $G_{ANT} + 10 \log(N_{ANT}/N_{ss}) = 5.01 \text{ dBi}$

| Test Mode          | Transmit and Receive Mode                    | Description                                                    |
|--------------------|----------------------------------------------|----------------------------------------------------------------|
| IEEE 802.11b       | <input checked="" type="checkbox"/> 2TX, 2RX | ANT 1 and ANT 3 can be used as transmitting/receiving antenna. |
| IEEE 802.11g       | <input checked="" type="checkbox"/> 2TX, 2RX | ANT 1 and ANT 3 can be used as transmitting/receiving antenna. |
| IEEE 802.11n HT20  | <input checked="" type="checkbox"/> 2TX, 2RX | ANT 1 and ANT 3 can be used as transmitting/receiving antenna. |
| IEEE 802.11n HT40  | <input checked="" type="checkbox"/> 2TX, 2RX | ANT 1 and ANT 3 can be used as transmitting/receiving antenna. |
| IEEE 802.11n VHT20 | <input checked="" type="checkbox"/> 2TX, 2RX | ANT 1 and ANT 3 can be used as transmitting/receiving antenna. |
| IEEE 802.11n VHT40 | <input checked="" type="checkbox"/> 2TX, 2RX | ANT 1 and ANT 3 can be used as transmitting/receiving antenna. |
| IEEE 802.11ax HE20 | <input checked="" type="checkbox"/> 2TX, 2RX | ANT 1 and ANT 3 can be used as transmitting/receiving antenna. |
| IEEE 802.11ax HE40 | <input checked="" type="checkbox"/> 2TX, 2RX | ANT 1 and ANT 3 can be used as transmitting/receiving antenna. |

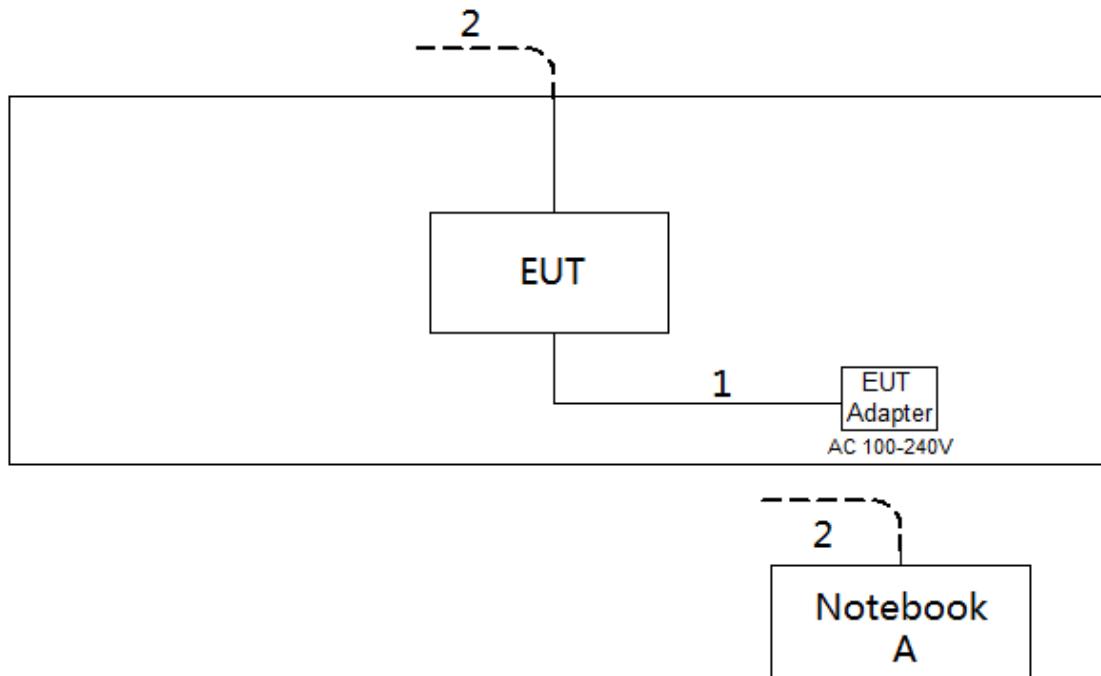
Note: The value of the antenna gain was declared by customer.

### 3.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

| Pretest Mode | Description                |
|--------------|----------------------------|
| Mode 1       | TX B Mode Channel 10       |
| Mode 2       | TX N(HT40) Mode Channel 04 |

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.


| <b>Radiated emissions test - Below 1GHz</b> |                      |
|---------------------------------------------|----------------------|
| Final Test Mode                             | Description          |
| Mode 1                                      | TX B Mode Channel 10 |

| <b>Radiated emissions test - Above 1 GHz</b> |                            |
|----------------------------------------------|----------------------------|
| Final Test Mode                              | Description                |
| Mode 2                                       | TX N(HT40) Mode Channel 04 |

Note:

1. For radiated emission Above 1 GHz test, the polarization of Vertical and Horizontal are evaluated, the worst case is Vertical and recorded.

### 3.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED



### 3.4 SUPPORT UNITS

| Item | Equipment | Brand | Model No.    | Series No. |
|------|-----------|-------|--------------|------------|
| A    | Notebook  | Honor | Nbl-WAQ9HNRP | N/A        |

| Item | Cable Type | Shielded Type | Ferrite Core | Length |
|------|------------|---------------|--------------|--------|
| 1    | DC Cable   | NO            | NO           | 1.5m   |
| 2    | RJ45 Cable | NO            | NO           | 10m    |

### 3.5 CUSTOMER INFORMATION DESCRIPTION

- 1) The antenna gain and beamforming gain are provided by the manufacturer.

## 4. RADIATED EMISSIONS

### 4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

#### LIMITS OF RADIATED EMISSION MEASUREMENT (30 MHz-1000 MHz)

| Frequency (MHz) | Field Strength ( $\mu$ V/m at 3m) |
|-----------------|-----------------------------------|
| 30-88           | 100                               |
| 88-216          | 150                               |
| 216-960         | 200                               |
| Above 960       | 500                               |

#### LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

| Frequency (MHz) | Band edge/ Harmonic at 3m ( $\text{dB}\mu\text{V}/\text{m}$ ) |         | Harmonic at 1m ( $\text{dB}\mu\text{V}/\text{m}$ ) |               |
|-----------------|---------------------------------------------------------------|---------|----------------------------------------------------|---------------|
|                 | Peak                                                          | Average | Peak                                               | Average       |
| Above 1000      | 74                                                            | 54      | 83.5 (Note 5)                                      | 63.5 (Note 5) |

Note:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level ( $\text{dB}\mu\text{V}/\text{m}$ )= $20\log$  Emission level ( $\mu\text{V}/\text{m}$ ).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

(5)

$$FS_{\text{limit}} = FS_{\text{max}} - 20\log\left(\frac{d_{\text{limit}}}{d_{\text{measure}}}\right)$$

$20\log (d_{\text{limit}}/d_{\text{measure}})=20\log (3/1)=9.5 \text{ dB}$ .

$FS_{\text{limit}}$ : Harmonic at 3m Peak and Average limit.

$FS_{\text{max}}$ : Harmonic at 1m Peak and Average Maximum value.

$d_{\text{limit}}$ : Harmonic at 3m test distance.

$d_{\text{measure}}$ : Harmonic Actual test distance.

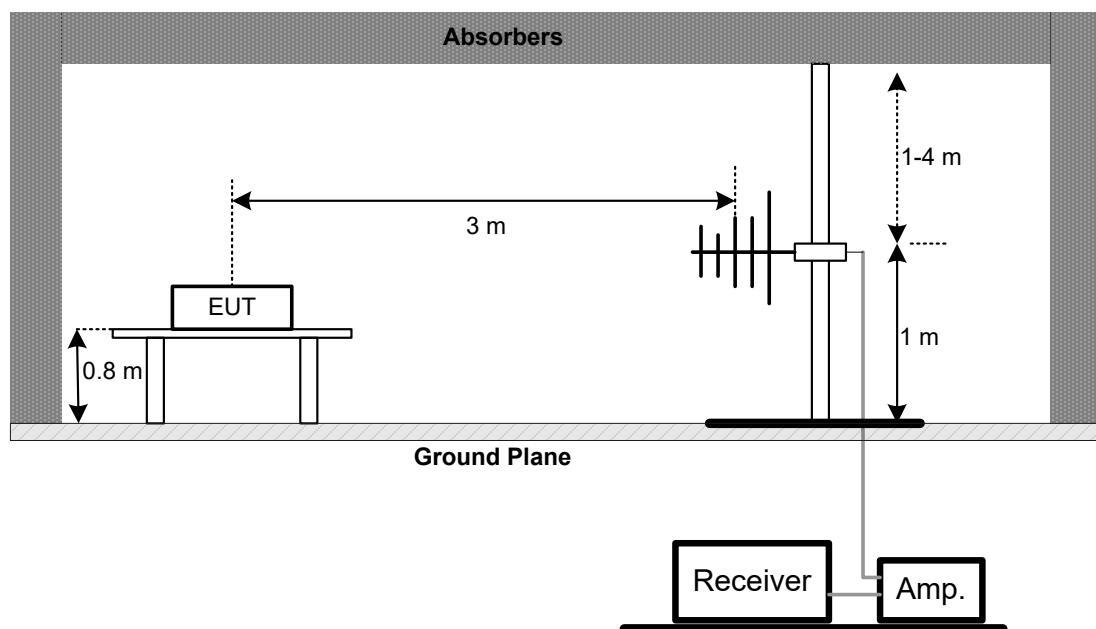
#### 4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m or 1m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

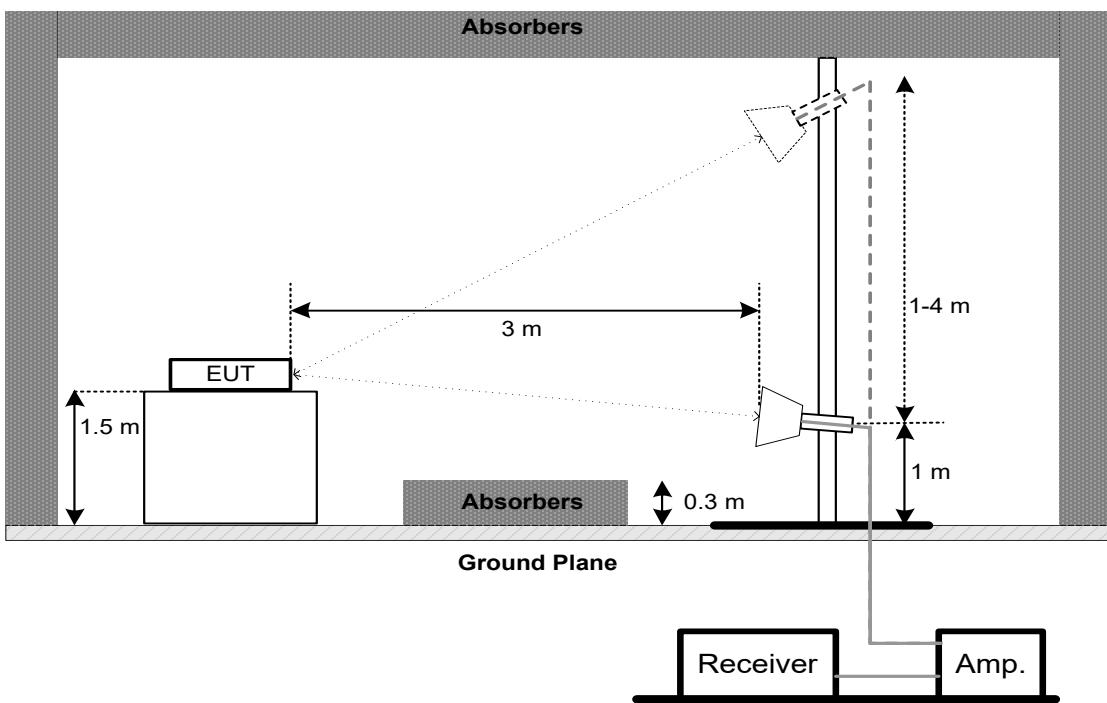
The following table is the setting of the receiver:

| Spectrum Parameters    | Setting                         |
|------------------------|---------------------------------|
| Start ~ Stop Frequency | 30 MHz~1000 MHz for RBW 100 kHz |

| Spectrum Parameters                        | Setting                                                    |
|--------------------------------------------|------------------------------------------------------------|
| Start Frequency                            | 1000 MHz                                                   |
| Stop Frequency                             | 10th carrier harmonic                                      |
| RBW / VBW<br>(Emission in restricted band) | 1 MHz / 3 MHz for PK value<br>1 MHz / 1/T Hz for AVG value |


| Receiver Parameters    | Setting                            |
|------------------------|------------------------------------|
| Start ~ Stop Frequency | 30 MHz~1000 MHz for QP detector    |
| Start ~ Stop Frequency | 1 GHz~26.5 GHz for PK/AVG detector |

#### 4.3 DEVIATION FROM TEST STANDARD


No deviation.

#### 4.4 TEST SETUP

**30 MHz to 1 GHz**



**Above 1 GHz  
Band edge**



**4.5 EUT OPERATING CONDITIONS**

The EUT was programmed to be in continuously transmitting mode.

**4.6 TEST RESULTS - 30 MHZ TO 1000 MHZ**

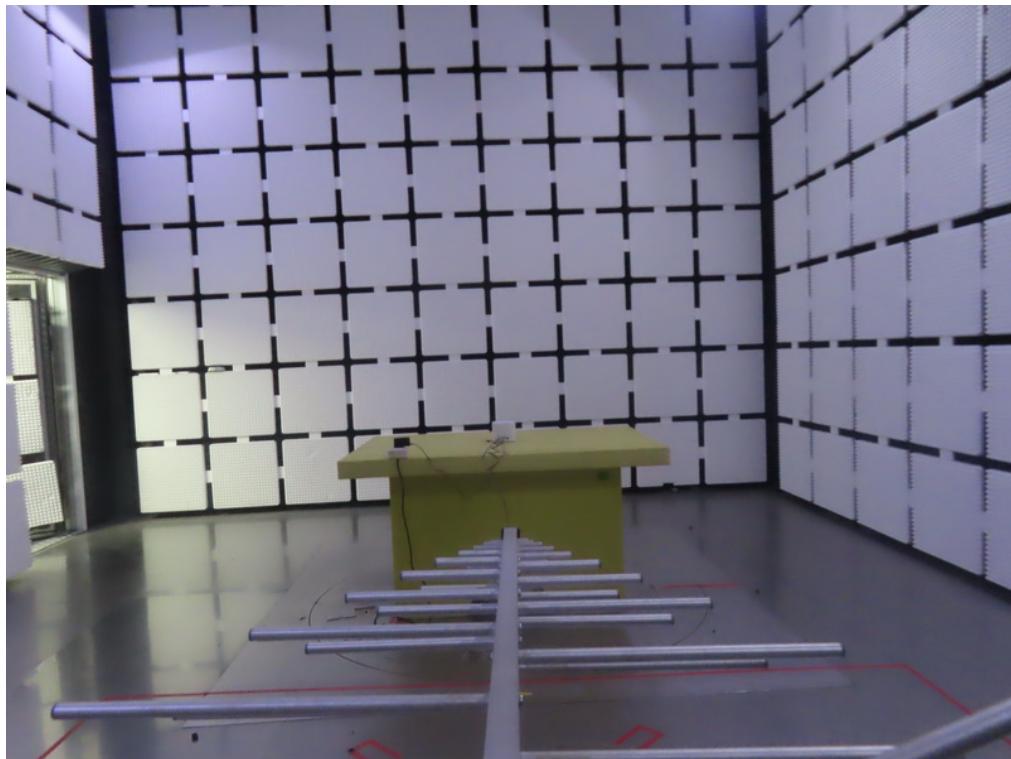
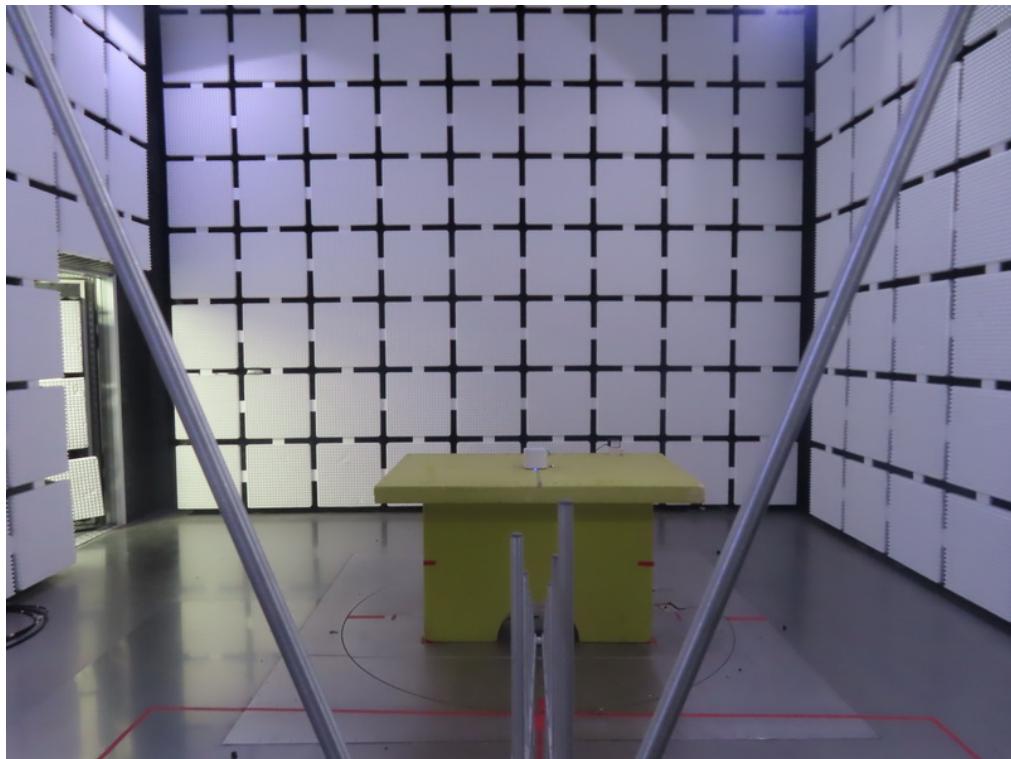
Please refer to the APPENDIX A.

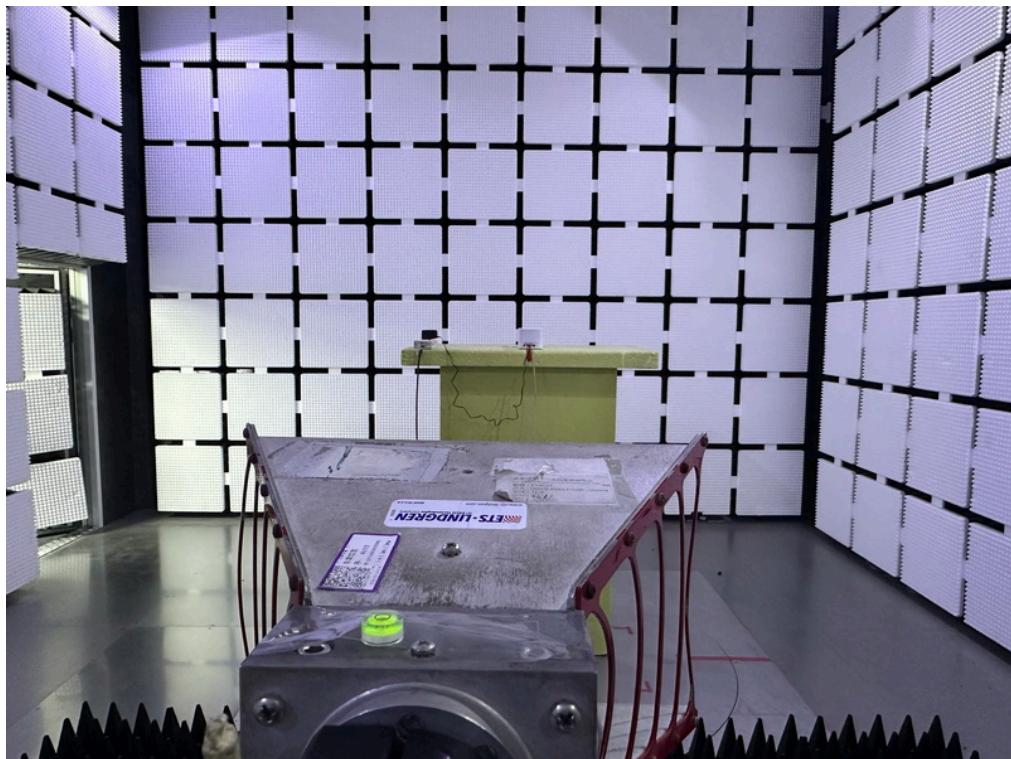
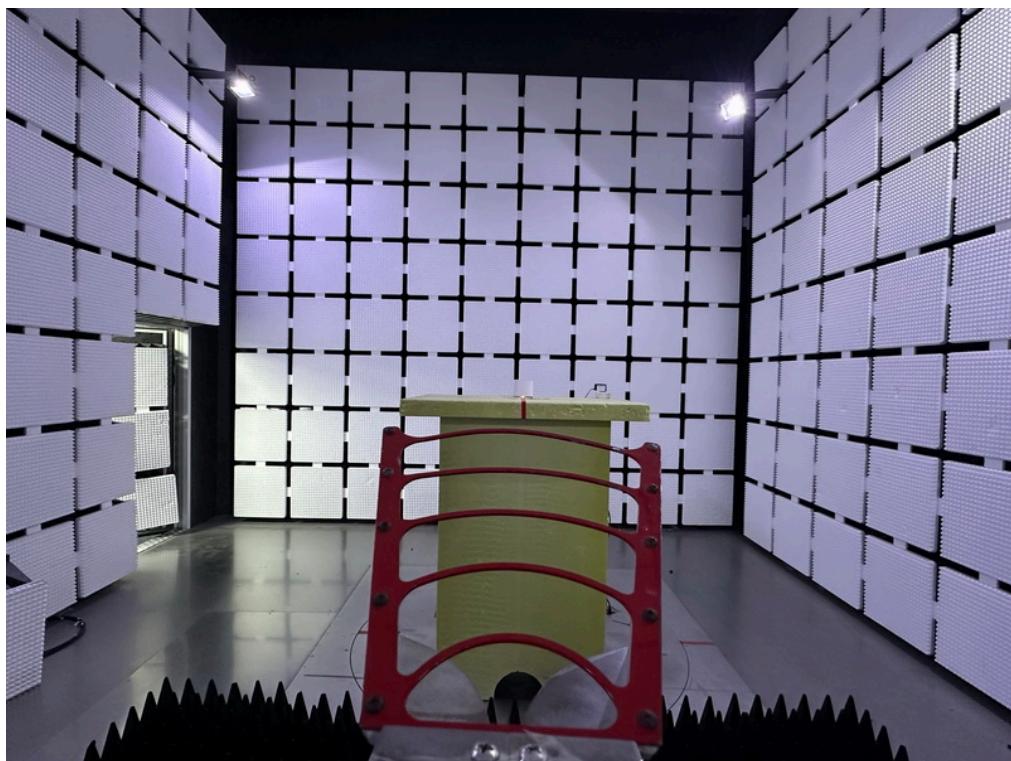
**4.7 TEST RESULTS - ABOVE 1000 MHZ**

Please refer to the APPENDIX B.

Remark:

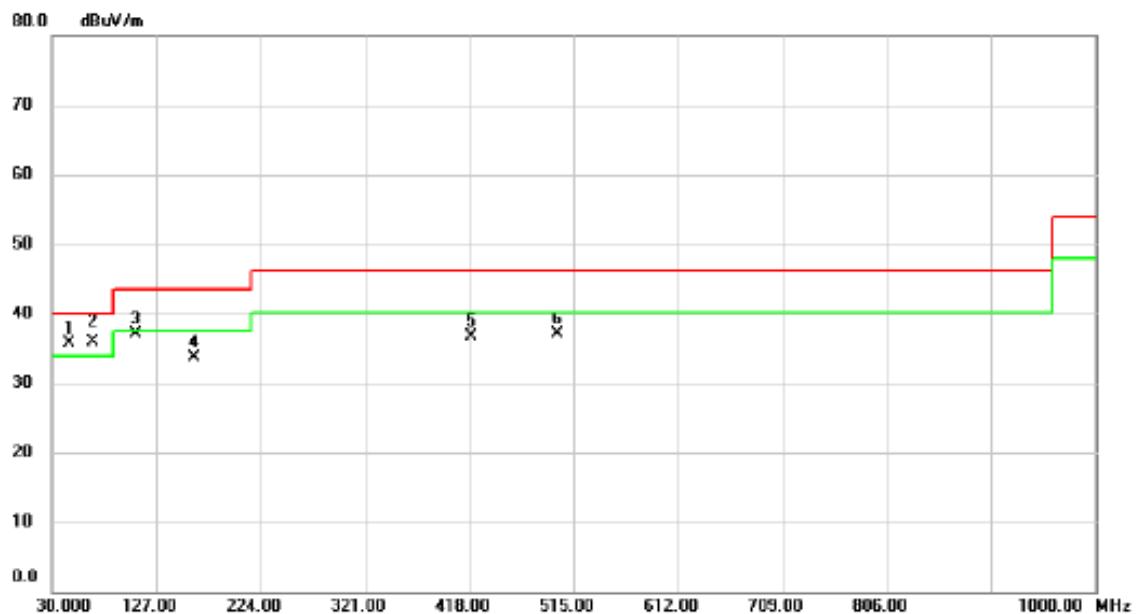
- (1) No limit: This is fundamental signal, the judgment is not applicable.  
For fundamental signal judgment was referred to Peak output test.



## 5. MEASUREMENT INSTRUMENTS LIST



| Radiated Emissions - 30 MHz to 1 GHz |                          |                |                       |            |                  |
|--------------------------------------|--------------------------|----------------|-----------------------|------------|------------------|
| Item                                 | Kind of Equipment        | Manufacturer   | Type No.              | Serial No. | Calibrated until |
| 1                                    | Trilog-Broadband Antenna | Schwarzbeck    | VULB 9168             | 01462      | Dec. 14, 2025    |
| 2                                    | Attenuator               | EMC INSTRUMENT | EMCI-N-6-06           | AT-06009   | Dec. 14, 2025    |
| 3                                    | Preamplifier             | EMC INSTRUMENT | EMC001330             | 980998     | May 17, 2026     |
| 4                                    | Cable                    | RegalWay       | LMR400-NMNM-12.5m     | N/A        | Jun. 04, 2026    |
| 5                                    | Cable                    | RegalWay       | LMR400-NMNM-3m        | N/A        | Jun. 04, 2026    |
| 6                                    | Cable                    | RegalWay       | LMR400-NMNM-0.5m      | N/A        | Jun. 04, 2026    |
| 7                                    | Receiver                 | Agilent        | N9038A                | MY52130039 | Jan. 10, 2026    |
| 8                                    | Positioning Controller   | MF             | MF-7802               | N/A        | N/A              |
| 9                                    | Measurement Software     | Farad          | EZ-EMC Ver.NB-03A1-01 | N/A        | N/A              |
| 10                                   | 966 Chamber room         | CM             | 9*6*6                 | N/A        | May 09, 2026     |

| Radiated Emissions - Above 1 GHz |                             |                  |                            |            |                  |
|----------------------------------|-----------------------------|------------------|----------------------------|------------|------------------|
| Item                             | Kind of Equipment           | Manufacturer     | Type No.                   | Serial No. | Calibrated until |
| 1                                | Multi-Device Controller     | ETS-Lindgren     | N/A                        | N/A        | N/A              |
| 2                                | Measurement Software        | Farad            | EZ-EMC Ver.NB-03A1-01      | N/A        | N/A              |
| 3                                | 966 Chamber room            | CM               | 9*6*6                      | N/A        | May 09, 2026     |
| 4                                | Cable                       | RegalWay         | RWLP50-4.0A-SMSM-12.5M     | N/A        | Jun. 29, 2026    |
| 5                                | Cable                       | RegalWay         | RWLP50-4.0A-NMRAS M-2.5M   | N/A        | Jun. 29, 2026    |
| 6                                | Cable                       | RegalWay         | RWLP50-4.0A-NMRAS MRA-0.8M | N/A        | Jun. 29, 2026    |
| 7                                | Receiver                    | Agilent          | N9038A                     | MY52130039 | Jan. 10, 2026    |
| 8                                | Double Ridged Guide Antenna | ETS              | 3115                       | 75846      | Mar. 02, 2026    |
| 9                                | Preamplifier                | EMC INSTRUMENT   | EMC118A45SE                | 980888     | Oct. 29, 2025    |
| 10                               | Attenuator                  | Talent Microwave | TA10A2-S-18                | N/A        | N/A              |
| 11                               | Filter                      | STI              | STI15-9912                 | N/A        | May 27, 2026     |

Remark "N/A" denotes no model name, serial no. or calibration specified.

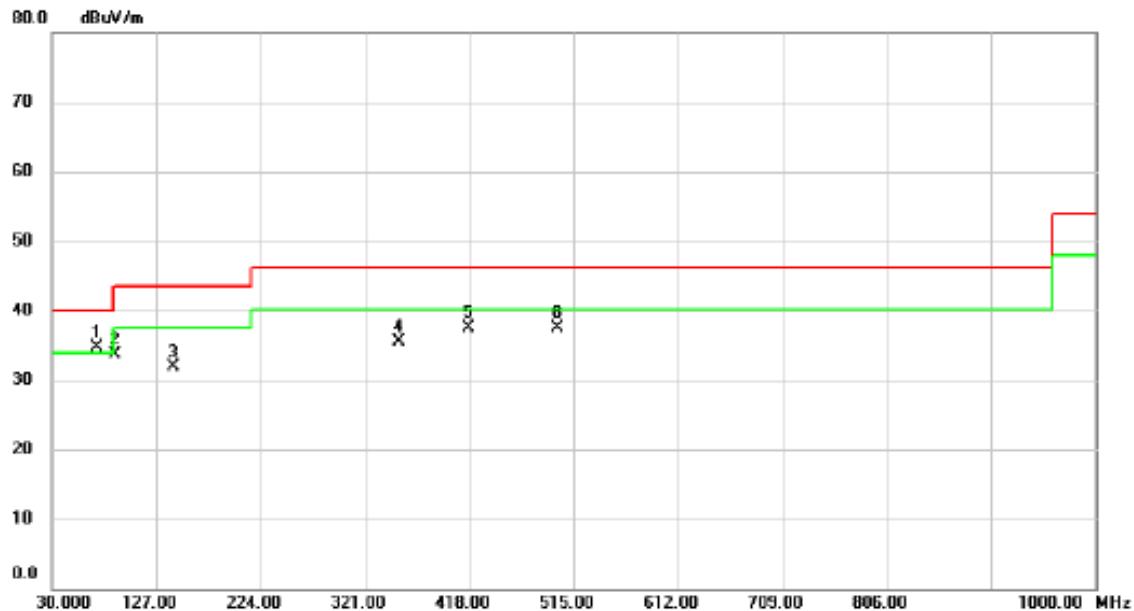

All calibration period of equipment list is one year.

**6. EUT TEST PHOTO****Radiated Emissions Test Photos****30 MHz to 1 GHz**

**Radiated Emissions Test Photos****Band edge**

**APPENDIX A - RADIATED EMISSION - 30 MHZ TO 1000 MHZ**

|           |                      |              |          |
|-----------|----------------------|--------------|----------|
| Test Mode | TX B Mode Channel 10 | Polarization | Vertical |
|-----------|----------------------|--------------|----------|




| No. | Mk. | Freq.<br>MHz | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Margin |          |
|-----|-----|--------------|------------------|-------------------|------------------|--------|--------|----------|
|     |     |              | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | !   | 46.490       | 46.73            | -11.11            | 35.62            | 40.00  | -4.38  | peak     |
| 2   | *   | 67.830       | 48.52            | -12.64            | 35.88            | 40.00  | -4.12  | QP       |
| 3   |     | 108.570      | 51.34            | -14.19            | 37.15            | 43.52  | -6.37  | peak     |
| 4   |     | 161.920      | 44.35            | -10.55            | 33.80            | 43.52  | -9.72  | peak     |
| 5   |     | 419.940      | 43.49            | -6.82             | 36.67            | 46.02  | -9.35  | peak     |
| 6   |     | 500.450      | 42.43            | -5.25             | 37.18            | 46.02  | -8.84  | peak     |

## REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.

|           |                      |              |            |
|-----------|----------------------|--------------|------------|
| Test Mode | TX B Mode Channel 10 | Polarization | Horizontal |
|-----------|----------------------|--------------|------------|




| No. Mk. | Freq.<br>MHz | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Margin |          |
|---------|--------------|------------------|-------------------|------------------|--------|--------|----------|
|         |              | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1 *     | 71.710       | 48.00            | -13.29            | 34.71            | 40.00  | -5.29  | peak     |
| 2       | 89.170       | 50.09            | -16.41            | 33.68            | 43.52  | -9.84  | peak     |
| 3       | 142.520      | 43.03            | -11.06            | 31.97            | 43.52  | -11.55 | peak     |
| 4       | 353.010      | 43.98            | -8.55             | 35.43            | 46.02  | -10.59 | peak     |
| 5       | 417.030      | 44.37            | -6.91             | 37.46            | 46.02  | -8.56  | peak     |
| 6       | 500.450      | 42.70            | -5.25             | 37.45            | 46.02  | -8.57  | peak     |

**REMARKS:**

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value

**APPENDIX B - RADIATED EMISSION- ABOVE 1000 MHZ**

|           |                            |              |          |
|-----------|----------------------------|--------------|----------|
| Test Mode | TX N(HT40) Mode Channel 04 | Polarization | Vertical |
|-----------|----------------------------|--------------|----------|



| No. | Mk. | Freq.<br>MHz | Reading<br>Level<br>dBuV | Correct<br>Factor<br>dB | Measure-<br>ment<br>dBuV/m | Limit<br>dB | Margin<br>dB | Detector | Comment  |
|-----|-----|--------------|--------------------------|-------------------------|----------------------------|-------------|--------------|----------|----------|
| 1   |     | 2387.000     | 60.53                    | 7.90                    | 68.43                      | 74.00       | -5.57        | peak     |          |
| 2   |     | 2387.600     | 45.14                    | 7.89                    | 53.03                      | 54.00       | -0.97        | AVG      |          |
| 3   |     | 2390.000     | 57.39                    | 7.89                    | 65.28                      | 74.00       | -8.72        | peak     |          |
| 4   |     | 2390.000     | 43.06                    | 7.89                    | 50.95                      | 54.00       | -3.05        | AVG      |          |
| 5   | X   | 2418.200     | 105.55                   | 7.96                    | 113.51                     | 74.00       | 39.51        | peak     | No Limit |
| 6   | *   | 2437.200     | 98.45                    | 8.01                    | 106.46                     | 54.00       | 52.46        | AVG      | No Limit |

**REMARKS:**

(1) Measurement Value = Reading Level + Correct Factor.  
(2) Margin Level = Measurement Value - Limit Value.

**End of Test Report**