

FCC SAR Test Report

Applicant : Shenzhen COI Technology Co., Ltd.

Address : Room 406, B Building, SIBIONO BUILDING,
19, 1st Science & Technology Middle Road,
Nanshan district, Shenzhen, China

Product Name : 2 in 1 Laptop

Report Date : Nov. 15, 2023

Shenzhen Anbotek Compliance Laboratory Limited

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community,
Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
Tel: (86) 0755-26066440 Fax: (86) 0755-26014772 Email: service@anbotek.com

Code:AB-RF-05-b

Hotline
400-003-0500
www.anbotek.com.cn

Contents

1 Statement of Compliance	6
2 General Information.....	7
2.1 Client Information	7
2.2 Description of Equipment Under Test (EUT).....	7
2.3 Device Category and SAR Limits	8
2.4 Applied Standard	8
2.5 Environment of Test Site.....	8
2.6 Test Configuration.....	8
3 Specific Absorption Rate (SAR)	9
3.1 Introduction.....	9
3.2 SAR Definition	9
4 SAR Measurement System	10
4.1 E-Field Probe.....	11
4.2 Data Acquisition Electronics (DAE).....	11
4.3 Robot.....	12
4.4 Measurement Server	12
4.5 Phantom	13
4.6 Device Holder	14
4.7 Data Storage and Evaluation.....	14
5 Test Equipment List.....	17
6 Tissue Simulating Liquids.....	18
7 System Verification Procedures	20
8 EUT Testing Position.....	22
8.1 Body-Supported Device Configurations.....	22
9 Measurement Procedures	23
9.1 Spatial Peak SAR Evaluation	23
9.2 Power Reference Measurement.....	24
9.3 Area Scan Procedures	24
9.4 Zoom Scan Procedures.....	24
9.5 Volume Scan Procedures	25
9.6 Power Drift Monitoring	25
10 TEST CONDITIONS AND RESULTS.....	26
10.1 Conducted Power	26
10.2 Transmit Antennas.....	35
10.3 Standalone SAR Test Exclusion Considerations	36
10.4 Estimated SAR	38
10.5 SAR Test Results.....	39
10.6 Simultaneous Transmission Analysis.....	42
11 Measurement Uncertainty	43

Report No.:18220WC30223201

FCC ID: 2BC8L-LEBOOKIV

Page 3 of 90

Appendix A.	EUT Photos and Test Setup Photos.....	45
Appendix B.	Plots of SAR System Check	46
Appendix C.	Plots of SAR Test Data.....	49
Appendix D.	DASY System Calibration Certificate.....	52

TEST REPORT

Applicant : Shenzhen COI Technology Co., Ltd.
Manufacturer : Shenzhen COI Technology Co., Ltd.
Product Name : 2 in 1 Laptop
Model No. : LEBOOK IV
Trade Mark : N/A
Rating(s) : DC 11.55V From battery and DC 5V/9V/12V/15V/20V From external circuit

Test Standard(s) : IEC 62209-2:2010; IEEE 1528:2013; FCC 47 CFR Part 2.1093;
ANSI/IEEE C95.1:2005; Reference FCC KDB 447498; KDB 248227;
KDB 616217; KDB 865664

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the IEEE 1528-2013, FCC 47 CFR Part 2.1093, ANSI/IEEE C95.1:2005 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt

Oct. 13, 2023

Date of Test

Oct. 17, 2023 – Oct. 19, 2023

Prepared By

(Ella Liang)

Approved & Authorized Signer

(Kingkong Jin)

Version

Version No.	Date	Description
R00	Nov. 15, 2023	Original

1 Statement of Compliance

<Highest SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013. The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

<Highest SAR Summary>

Frequency Band	Highest Reported 1g-SAR(W/Kg)	
	Body (0mm)	
WLAN2.4G		0.405
WLAN5.2G		0.390
WLAN5.8G		0.443
Simultaneous Reported SAR (W/Kg)		1.032
SAR Test Limit (W/Kg)		1.60
Test Result	PASS	

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013

2 General Information

2.1 Client Information

Applicant	:	Shenzhen COI Technology Co., Ltd.
Address	:	Room 406, B Building, SIBIONO BUILDING, 19, 1st Science &Technology Middle Road, Nanshan district, Shenzhen, China
Manufacturer	:	Shenzhen COI Technology Co., Ltd.
Address	:	Room 406, B Building, SIBIONO BUILDING, 19, 1st Science &Technology Middle Road, Nanshan district, Shenzhen, China

2.2 Description of Equipment Under Test (EUT)

Product Name	:	2 in 1 Laptop
Model No.	:	LEBOOK IV
Listed Models	:	N/A
Trade Mark	:	N/A
Hardware version:	:	03
Software version:	:	Windows11 22H2
Test Power Supply	:	DC 11.55V From battery and DC 5V/9V/12V/15V/20V From external circuit
Test Sample No.	:	18220WC30223201-2-1(Engineering Sample)
Tx Frequency	:	BT:2402~2480MHz 2.4G WIFI: 2412~2462MHz 5.1G WIFI:5180~5240MHz 5.8G WIFI:5745~5825MHz
Type of Modulation	:	BT: GFSK, Π/4DQPSK, 8DPSK 2.4G WIFI: BPSK,QPSK,16QAM,64QAM, 1024QAM 5G WIFI: BPSK,QPSK,16QAM,64QAM, 256QAM, 1024QAM
Category of device	:	Portable device
Remark:		
The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.		

2.3 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.4 Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093:2013)
- ANSI/IEEE C95.1:2005
- IEEE Std 1528:2013
- KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- KDB 865664 D02 RF Exposure Reporting v01r02
- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- KDB 616217 D04 SAR for laptop and tablets v01r02

2.5 Environment of Test Site

Items	Required	Actual
Temperature (°C)	18-25	22~23
Humidity (%RH)	30-70	55~65

2.6 Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal.

3 Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

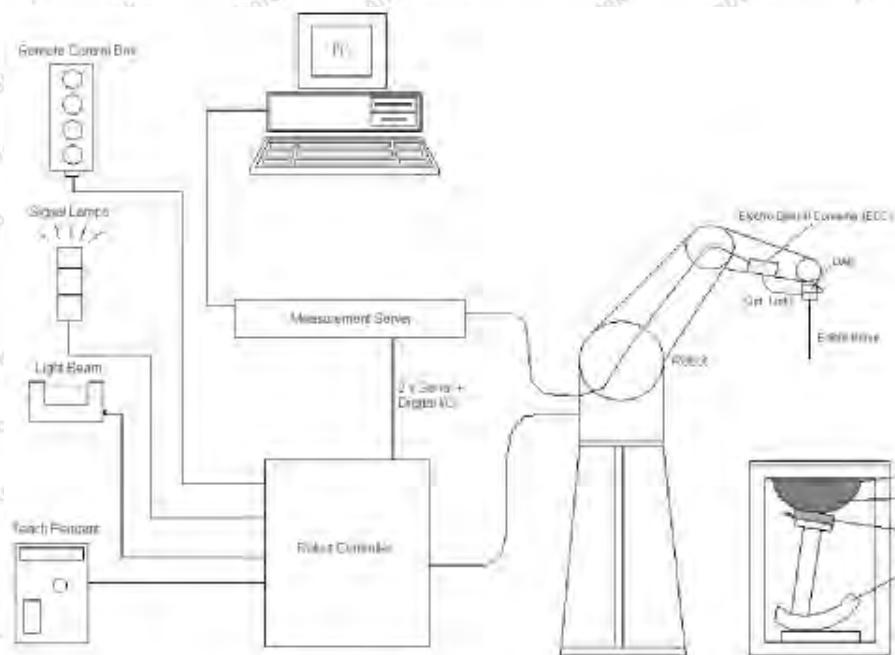
$$\text{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\text{SAR} = C \left(\frac{\delta T}{\delta t} \right)$$

Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by


$$\text{SAR} = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

4 SAR Measurement System

DASY System Configurations

The DASYsystem for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

4.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

➤ E-Field Probe Specification

<EX3DV4 Probe>

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	10 μ W/g to 100 W/kg; Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)	
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

Photo of EX3DV4

➤ E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Photo of DAE

4.3 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controllersystem, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ± 0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

4.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

4.5 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

4.6 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Device Holder

4.7 Data Storage and Evaluation

➤ Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an

incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [W/kg]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

➤ Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

- Conversion factor ConvF_i

- Diode compression point dcp_i

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity σ

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i, (i = x, y, z)

U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

$$\text{E-field Probes: } \mathbf{E}_i = \sqrt{\frac{V_i}{\text{Norm}_i \cdot \text{ConvF}}}$$

$$\text{H-field Probes: } \mathbf{H}_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i , ($i = x, y, z$)

Norm_i = sensor sensitivity of channel i , ($i = x, y, z$), $\mu\text{V}/(\text{V}/\text{m})^2$ for E-field Probes

ConvF = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$\mathbf{E}_{\text{tot}} = \sqrt{\mathbf{E}_x^2 + \mathbf{E}_y^2 + \mathbf{E}_z^2}$$

The primary field data are used to calculate the derived field units.

$$\text{SAR} = \mathbf{E}_{\text{tot}}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in W/kg

E_{tot} = total field strength in V/m

σ = conductivity in [mho/m] or [$\text{Siemens}/\text{m}$]

ρ = equivalent tissue density in g/cm^3

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

5 Test Equipment List

Manufacturer	Name of Equipment	Type/Model	Serial Number	Calibration	
				Last Cal.	Due Date
SPEAG	2450MHz System Validation Kit	D2450V2	910	Jun. 15,2021	Jun. 14,2024
SPEAG	5GHz System Validation Kit	D5GHzV2	1160	Oct. 02, 2021	Oct. 01, 2024
Rohde & Schwarz	UNIVERSAL RADIO COMMUNICATION TESTER	CMW500	1201.0002K50- 104209-JC	Nov.09, 2022	Nov.08, 2023
SPEAG	Data Acquisition Electronics	DAE3	428	Aug.30,2023	Aug.29,2024
SPEAG	Dosimetric E-Field Probe	EX3DV4	7396	May 06,2023	May 05,2024
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Oct.26, 2022	Oct.25, 2023
SPEAG	DAK	DAK-3.5	1226	NCR	NCR
SPEAG	SAM Twin Phantom	QD000P40CD	1802	NCR	NCR
SPEAG	ELI Phantom	QDOVA004AA	2058	NCR	NCR
AR	Amplifier	ZHL-42W	QA1118004	NCR	NCR
Agilent	Power Sensor	N8481H	MY51240001	Oct.26, 2022	Oct.25, 2023
Agilent	Spectrum Analyzer	N9020A	MY51170037	Oct.26, 2022	Oct.25, 2023
Agilent	Signal Generation	N5182A	MY48180656	Oct.26, 2022	Oct.25, 2023
Worken	Directional Coupler	0110A05601O-10	COM5BNW1A2	Oct.26, 2022	Oct.25, 2023

Note:

1. The calibration certificate of DASY can be referred to appendix C of this report.
2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
3. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it.

6 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

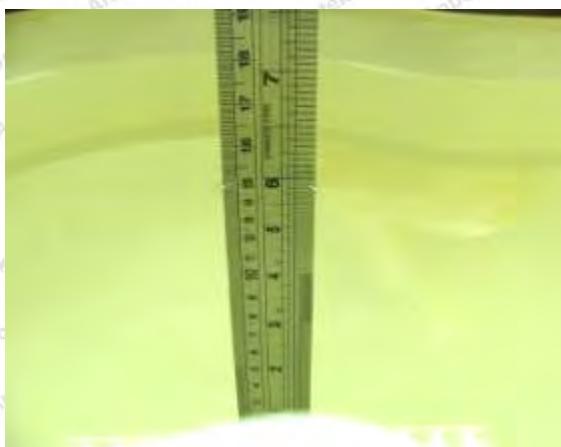


Photo of Liquid Height for Head SAR

Photo of Liquid Height for Body SAR

The following table gives the recipes for tissue simulating liquid.

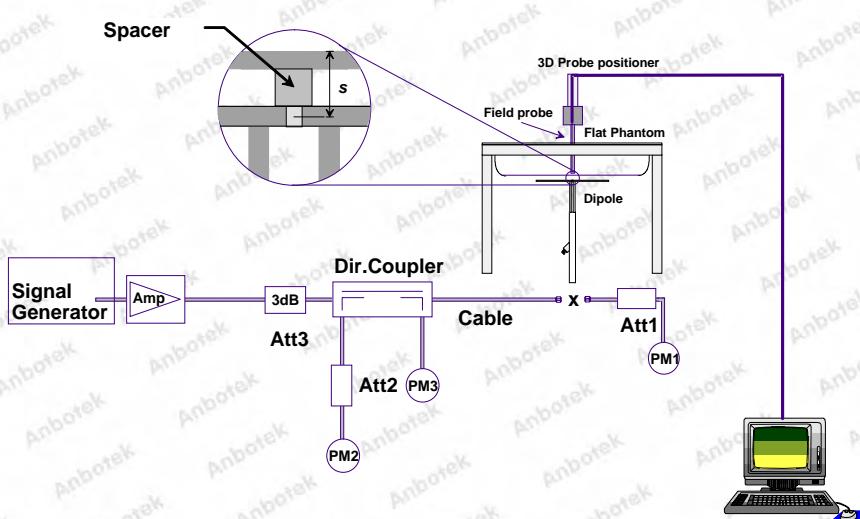
Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (ϵ_r)
For Head								
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
1800,1900,2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0	45.0	1.80	39.2
2600	54.8	0	0	0.1	0	45.1	1.96	39.0
For Body								
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
1800,1900,2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7
2600	65.5	0	0	0	0	31.5	2.16	52.5

The following table shows the measuring results for simulating liquid.

Measured Frequency (MHz)	Target Tissue		Measured Tissue			Liquid Temp.	Test Data	
	ϵ_r	σ	ϵ_r	Dev. (%)	σ	Dev. (%)		
2450	52.7	1.95	53.596	1.70%	1.983	-0.40%	22.3	10/17/2023
5250	48.9	5.36	48.880	-0.04%	5.358	-2.49%	22.7	10/18/2023
5750	48.3	5.94	47.566	-1.52%	5.850	-1.28%	22.6	10/19/2023

7 System Verification Procedures

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.


➤ Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

➤ System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom.

The equipment setup is shown below:

System Setup for System Evaluation

Photo of Dipole Setup**➤ Validation Results**

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Power fed onto reference dipole (mW)	Targeted SAR (W/kg)	Measured SAR (W/kg)	Normalized SAR (W/kg)	Deviation (%)
10/17/2023	2450	250	51.8	13.74	54.96	6.10%
10/18/2023	5250	100	77.8	8.15	81.50	4.76%
10/19/2023	5750	100	78.3	8.35	83.50	6.64%

Target and Measurement SAR after Normalized

8 EUT Testing Position

8.1 Body-Supported Device Configurations

According to KDB 616217 section 4.3, SAR should be separately assessed with each surface and separation distance positioned against the flat phantom that correspond to the intended use as specified by the manufacturer. The antennas in tablets are typically located near the back (bottom) surface and/or along the edges of the devices; therefore, SAR evaluation is required for these configurations. Exposures from antennas through the front (top) surface of the display section of a full-size tablet, away from the edges, are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary, except for tablets that are designed to require continuous operations with the hand(s) next to the antenna(s).

- To position the device parallel to the phantom surface with either keypad up or down.
- To adjust the device parallel to the flat phantom.
- To adjust the distance between the device surface and the flat phantom to 0 mm.
- When each surface is measurement, the SAR Test Exclusion Threshold in KDB 447498 should be applied.

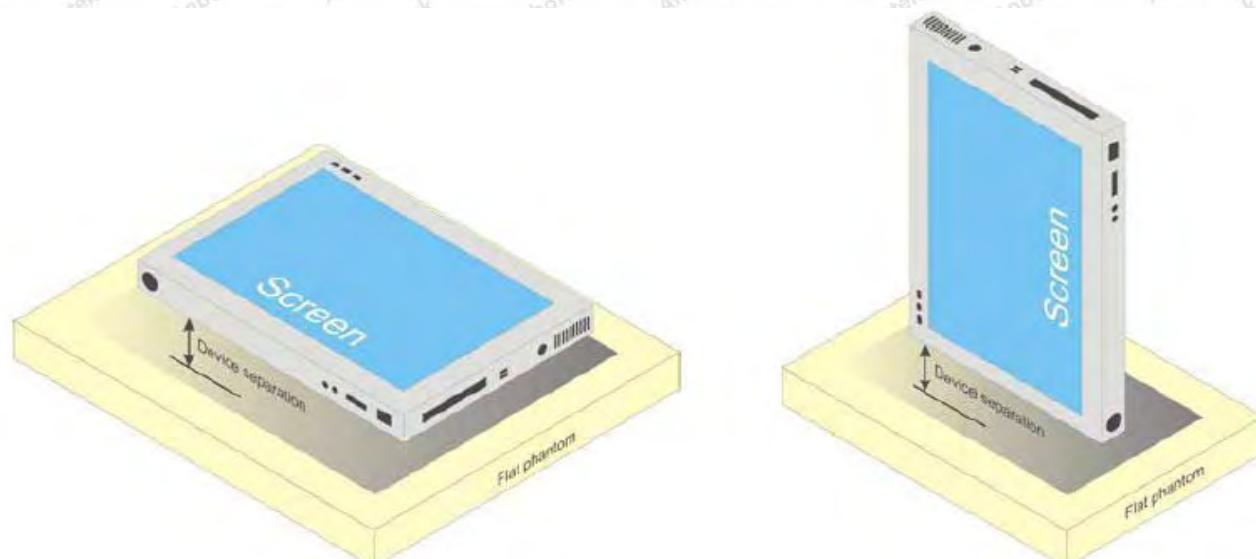


Fig.81 Illustration for Body Position

9 Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels at the worst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values from the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.3 Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5$ mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
	≤ 2 GHz: ≤ 15 mm $2 - 3$ GHz: ≤ 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm
Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	

9.4 Zoom Scan Procedures

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

		≤ 3 GHz		> 3 GHz			
Maximum zoom scan spatial resolution: $\Delta x_{Zoom}, \Delta y_{Zoom}$		≤ 2 GHz: ≤ 8 mm $2 - 3$ GHz: ≤ 5 mm*		3 - 4 GHz: ≤ 5 mm* 4 - 6 GHz: ≤ 4 mm*			
uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm		3 - 4 GHz: ≤ 4 mm 4 - 5 GHz: ≤ 3 mm 5 - 6 GHz: ≤ 2 mm			
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm	3 - 4 GHz: ≤ 3 mm 4 - 5 GHz: ≤ 2.5 mm 5 - 6 GHz: ≤ 2 mm			
		$\Delta z_{Zoom}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 - 4 GHz: ≥ 28 mm 4 - 5 GHz: ≥ 25 mm 5 - 6 GHz: ≥ 22 mm			
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.							
* When zoom scan is required and the <u>reported</u> SAR from the <i>area scan based 1-g SAR estimation</i> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.							

9.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregateSAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

10 TEST CONDITIONS AND RESULTS

10.1 Conducted Power

General Note:

- 1 For each antenna, transmit power in SISO operation is larger than (or equal to) the power in MIMO operation, RF exposure compliance of MIMO mode can be deduced from the compliance simultaneous transmission of antennas operating in SISO mode.
- 2 Per KDB 248227 D01v02r02, the simultaneous SAR provisions in KDB publication 447498 should be applied to determine simultaneous transmission SAR test exclusion for WiFi MIMO. If the sum of 1g single transmission chain SAR measurements is < 1.6W/kg and SAR peak to location ratio ≤ 0.04, no additional SAR measurements for MIMO.
- 3 The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures. For "Not required", SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band or when MIMO mode was not performed, due to for each antenna, transmit power in SISO operation is larger than (or equal to) the power in MIMO operation, RF exposure compliance of MIMO mode can be deduced from the compliance simultaneous transmission of antennas operating in SISO mode. Additional output power measurements were not necessary.
- 4 Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions.
- 5 For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine

if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s).

6 For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band.

7 DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.¹⁸ The initial test position procedure is described in the following:

- When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band.
- When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closest/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
- For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

8 Per 201904 TCBC workshops, General principles of FCC KDB Publication 248227 D01 can be applied to determine the SAR Initial Test Configurations and test reduction for 802.11ax SAR testing. For the table below the 802.11ax maximum power is SU (non-OFDMA), and the SU maximum power also higher than RU (OFDMA)

9 In applying the test guidance, the IEEE 802.11 mode with the maximum output power (out of all modes) should be considered for testing

10 For modes with the same maximum output power, the guidance from section 5.3.2 a) of FCC KDB Publication 248227 D01 should be applied, with 802.11ax being considered as the highest 802.11 mode for the appropriate frequency bands

11 When SAR testing for 802.11ax is required

- If the maximum output power is highest for OFDMA scenarios, choose the tone size with the maximum number of tones and the highest maximum output power
- Otherwise, consider the fully allocated channel for SAR testing
- When SAR testing is required on RU sizes less than the fully allocated channel, use the RU number closest to the middle of the channel, choosing the higher RU number when two RUs are equidistant to the middle of the channel

<WLAN 2.4GHz Conducted Power>

Ant1

Mode	Channel	Frequency (MHz)	Conducted Peak Output Power(dBm)	Conducted Average Output Power(dBm)	Tune-up
802.11b	1	2412	14.84	12.53	13±1.0
	6	2437	15.49	13.16	13±1.0
	11	2462	15.30	12.98	13±1.0
802.11g	1	2412	13.40	10.43	10±1.0
	6	2437	13.86	10.76	10±1.0
	11	2462	13.81	10.81	10±1.0
802.11n(HT20)	1	2412	13.33	9.91	10±1.0
	6	2437	13.75	10.52	10±1.0
	11	2462	13.52	10.37	10±1.0
802.11n(HT40)	3	2422	12.26	9.13	10±1.0
	6	2437	13.02	9.48	10±1.0
	9	2452	13.00	9.59	10±1.0
802.11ax(HT20)	1	2412	14.26	10.72	11±1.0
	6	2437	14.98	11.54	11±1.0
	11	2462	14.56	11.3	11±1.0
802.11ax(HT40)	3	2422	12.98	9.83	10±1.0
	6	2437	13.93	10.71	10±1.0
	9	2452	13.93	10.69	10±1.0

Ant2

Mode	Channel	Frequency (MHz)	Conducted Peak Output Power(dBm)	Conducted Average Output Power(dBm)	Tune-up
802.11b	1	2412	14.03	11.72	12±1.0
	6	2437	14.43	12.10	12±1.0
	11	2462	14.50	12.18	12±1.0
802.11g	1	2412	13.63	10.66	10±1.0
	6	2437	13.83	10.73	10±1.0
	11	2462	13.89	10.89	10±1.0
802.11n(HT20)	1	2412	13.37	9.95	10±1.0
	6	2437	13.48	10.25	10±1.0
	11	2462	14.00	10.85	10±1.0
802.11n(HT40)	3	2422	12.18	8.74	9.5±1.0
	6	2437	13.14	9.6	9.5±1.0
	9	2452	12.91	9.5	9.5±1.0
802.11ax(HT20)	1	2412	13.39	9.85	10±1.0
	6	2437	13.92	10.48	10±1.0
	11	2462	14.17	10.91	10±1.0
802.11ax(HT40)	3	2422	12.43	9.28	10±1.0
	6	2437	13.16	9.94	10±1.0
	9	2452	12.99	9.75	10±1.0

MIMO mode

Mode	Channel	Frequency (MHz)	Conducted Peak Output Power(dBm)		Conducted Average Output Power(dBm)			
			Ant1	Ant2	Ant1	Tune-up	Ant2	Tune-up
802.11n(HT20)	1	2412	13.33	13.37	9.91	10±1.0	9.95	10±1.0
	6	2437	13.75	13.48	10.52	10±1.0	10.25	10±1.0
	11	2462	13.52	14.00	10.37	10±1.0	10.85	10±1.0
802.11n(HT40)	3	2422	12.26	12.18	9.12	10±1.0	8.74	9.5±1.0
	6	2437	13.02	13.14	9.48	10±1.0	9.60	9.5±1.0
	9	2452	13.00	12.91	9.59	10±1.0	9.50	9.5±1.0
802.11ax(HT20)	1	2412	14.26	13.39	10.72	11±1.0	9.85	10±1.0
	6	2437	14.98	13.92	11.54	11±1.0	10.48	10±1.0
	11	2462	14.56	14.17	11.3	11±1.0	10.91	10±1.0
802.11ax(HT40)	3	2422	12.98	12.43	9.83	10±1.0	9.28	10±1.0
	6	2437	13.93	13.16	10.71	10±1.0	9.94	10±1.0
	9	2452	13.93	12.99	10.69	10±1.0	9.75	10±1.0

<WLAN 5.2GHz Conducted Power>

Ant1

Type	Channel	Frequency (MHz)	Conducted Average Output Power(dBm)	Tune-up
802.11a	36	5180	13.74	13±1.0
	40	5200	12.65	13±1.0
	48	5240	12.45	13±1.0
802.11n(HT20)	36	5180	12.44	12±1.0
	40	5200	11.33	12±1.0
	48	5240	11.03	12±1.0
802.11n(HT40)	38	5190	12.18	12±1.0
	46	5230	11.57	12±1.0
802.11ac(HT20)	36	5180	12.46	12±1.0
	40	5200	11.47	12±1.0
	48	5240	11.33	12±1.0
802.11ac(HT40)	38	5190	12.51	12±1.0
	46	5230	12.31	12±1.0
802.11ac(HT80)	42	5210	12.28	12±1.0
802.11ax(HT20)	36	5180	12.91	12±1.0
	40	5200	11.97	12±1.0
	48	5240	11.90	12±1.0
802.11ax(HT40)	38	5190	12.64	12±1.0
	46	5230	12.29	12±1.0
802.11ax(HT80)	42	5210	12.20	12±1.0

Ant2

Type	Channel	Frequency (MHz)	Conducted Average Output Power(dBm)	Tune-up
802.11a	36	5180	13.59	13±1.0
	40	5200	12.74	13±1.0
	48	5240	12.62	13±1.0
802.11n(HT20)	36	5180	12.58	12±1.0
	40	5200	11.81	12±1.0
	48	5240	11.68	12±1.0
802.11n(HT40)	38	5190	12.33	12±1.0
	46	5230	12.09	12±1.0
802.11ac(HT20)	36	5180	12.50	12±1.0
	40	5200	12.08	12±1.0
	48	5240	11.98	12±1.0
802.11ac(HT40)	38	5190	12.71	12±1.0
	46	5230	12.43	12±1.0
802.11ac(HT80)	42	5210	12.40	12±1.0
802.11ax(HT20)	36	5180	12.99	12±1.0
	40	5200	12.14	12±1.0
	48	5240	12.04	12±1.0
802.11ax(HT40)	38	5190	12.75	12±1.0
	46	5230	12.37	12±1.0
802.11ax(HT80)	42	5210	12.45	12±1.0

MIMO mode

Type	Channel	Frequency (MHz)	Conducted Average Output Power(dBm)			
			Ant1	Tune-up	Ant2	Tune-up
802.11n(HT20)	36	5180	12.44	12±1.0	12.58	12±1.0
	40	5200	11.33	12±1.0	11.81	12±1.0
	48	5240	11.03	12±1.0	11.68	12±1.0
802.11n(HT40)	38	5190	12.18	12±1.0	12.33	12±1.0
	46	5230	11.57	12±1.0	12.09	12±1.0
802.11ac(HT20)	36	5180	12.46	12±1.0	12.50	12±1.0
	40	5200	11.47	12±1.0	12.08	12±1.0
	48	5240	11.33	12±1.0	11.98	12±1.0
802.11ac(HT40)	38	5190	12.51	12±1.0	12.71	12±1.0
	46	5230	12.31	12±1.0	12.43	12±1.0
802.11ac(HT80)	42	5210	12.28	12±1.0	12.40	12±1.0
802.11ax(HT20)	36	5180	12.91	12±1.0	12.99	12±1.0
	40	5200	11.97	12±1.0	12.14	12±1.0
	48	5240	11.90	12±1.0	12.04	12±1.0
802.11ax(HT40)	38	5190	12.64	12±1.0	12.75	12±1.0
	46	5230	12.29	12±1.0	12.37	12±1.0
802.11ax(HT80)	42	5210	12.20	12±1.0	12.45	12±1.0

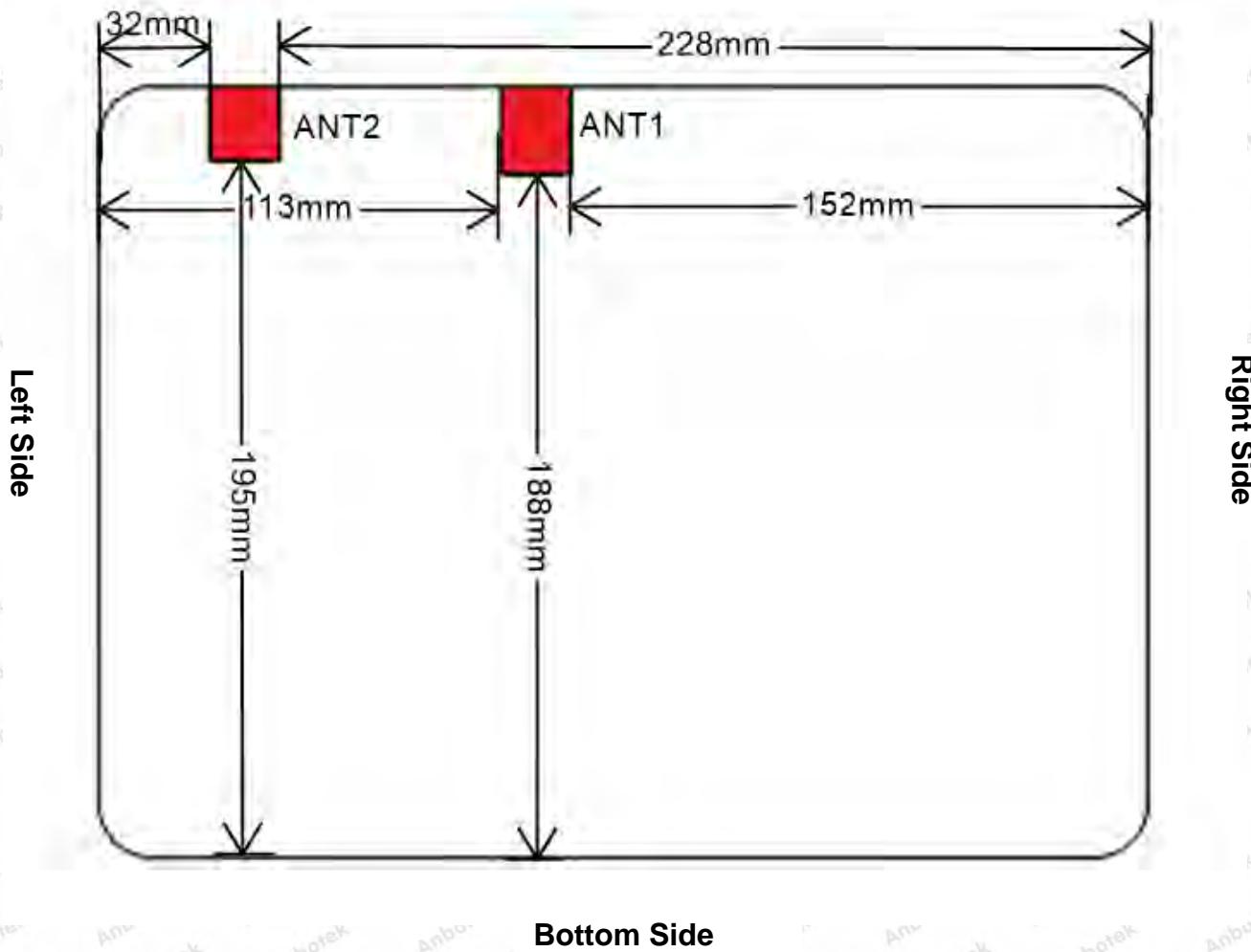
Ant1

Type	Channel	Frequency (MHz)	Conducted Average Output Power(dBm)	Tune-up
802.11a	149	5745	10.24	11±1.0
	157	5785	11.32	11±1.0
	165	5825	12.19	12±1.0
802.11n(HT20)	149	5745	9.24	10±1.0
	157	5785	10.27	10±1.0
	165	5825	11.25	11±1.0
802.11n(HT40)	151	5755	9.55	10±1.0
	159	5795	10.35	10±1.0
802.11ac(HT20)	149	5745	9.30	10±1.0
	157	5785	10.45	10±1.0
	165	5825	11.56	11±1.0
802.11ac(HT40)	151	5755	9.72	10±1.0
	159	5795	10.61	10±1.0
802.11ac(HT80)	155	5775	10.45	10±1.0
802.11ax(HT20)	149	5745	9.36	10±1.0
	157	5785	10.45	10±1.0
	165	5825	11.46	11±1.0
802.11ax(HT40)	151	5755	9.77	10±1.0
	159	5795	10.64	10±1.0
802.11ax(HT80)	155	5775	10.33	10±1.0

Type	Channel	Frequency (MHz)	Conducted Average Output Power(dBm)	Tune-up
802.11a	149	5745	10.18	11±1.0
	157	5785	11.28	11±1.0
	165	5825	12.11	12±1.0
802.11n(HT20)	149	5745	9.32	10±1.0
	157	5785	10.29	10±1.0
	165	5825	11.25	11±1.0
802.11n(HT40)	151	5755	9.56	10±1.0
	159	5795	10.45	10±1.0
802.11ac(HT20)	149	5745	9.37	10±1.0
	157	5785	10.54	10±1.0
	165	5825	11.56	11±1.0
802.11ac(HT40)	151	5755	9.83	10±1.0
	159	5795	10.70	10±1.0
802.11ac(HT80)	155	5775	10.43	10±1.0
802.11ax(HT20)	149	5745	9.41	10±1.0
	157	5785	10.69	10±1.0
	165	5825	11.70	11±1.0
802.11ax(HT40)	151	5755	9.80	10±1.0
	159	5795	10.69	10±1.0
802.11ax(HT80)	155	5775	10.39	10±1.0

MIMO mode

Type	Channel	Frequency (MHz)	Conducted Average Output Power(dBm)			
			Ant1	Tune-up	Ant2	Tune-up
802.11n(HT20)	149	5745	9.24	10±1.0	9.32	10±1.0
	157	5785	10.27	10±1.0	10.29	10±1.0
	165	5825	11.25	11±1.0	11.25	11±1.0
802.11n(HT40)	151	5755	9.55	10±1.0	9.56	10±1.0
	159	5795	10.35	10±1.0	10.45	10±1.0
802.11ac(HT20)	149	5745	9.30	10±1.0	9.37	10±1.0
	157	5785	10.45	10±1.0	10.54	10±1.0
	165	5825	11.56	11±1.0	11.56	11±1.0
802.11ac(HT40)	151	5755	9.72	10±1.0	9.83	10±1.0
	159	5795	10.61	10±1.0	10.70	10±1.0
802.11ac(HT80)	155	5775	10.45	10±1.0	10.43	10±1.0
802.11ax(HT20)	149	5745	9.36	10±1.0	9.41	10±1.0
	157	5785	10.45	10±1.0	10.69	10±1.0
	165	5825	11.46	11±1.0	11.70	11±1.0
802.11ax(HT40)	151	5755	9.77	10±1.0	9.80	10±1.0
	159	5795	10.64	10±1.0	10.69	10±1.0
802.11ax(HT80)	155	5775	10.33	10±1.0	10.39	10±1.0


<Bluetooth Conducted Power>

Mode	Channel	Frequency (MHz)	Conducted Average Output Power(dBm)	Tune-up
GFSK	0	2402	0.14	1±1.0
	39	2441	0.40	1±1.0
	78	2480	0.92	1±1.0
π/4DQPSK	0	2402	0.52	1±1.0
	39	2441	1.14	1±1.0
	78	2480	1.94	1±1.0
8DPSK	0	2402	0.71	1±1.0
	39	2441	1.36	1±1.0
	78	2480	1.90	1±1.0
BLE1M(GFSK)	00	2402	5.93	5±1.0
	19	2440	5.85	5±1.0
	39	2480	5.72	5±1.0
BLE2M(GFSK)	00	2402	5.88	5±1.0
	19	2440	5.87	5±1.0
	39	2480	5.74	5±1.0

10.2 Transmit Antennas

Top Side

Bottom Side

Back View

Antenna information:

Ant1:WLAN/BT TX RX antenna	Ant2:WLAN TX RX antenna
----------------------------	-------------------------

Distance of The Antenna to the EUT surface and edge						
Antennas	Front	Back	Top Side	Bottom Side	Left Side	Right Side
Ant1	<5mm	<5mm	<5mm	188mm	113mm	152mm
Ant2	<5mm	<5mm	<5mm	195mm	32mm	228mm

10.3 Standalone SAR Test Exclusion Considerations

General Note:

- 1 The below table, when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW"
- 2 Maximum power is the source-based time-average power and represents the maximum RF output power among production units
- 3 Per KDB 447498 D01v06, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 4 Per KDB 447498 D01v06, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold.
- 5 Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

$$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0 \text{ for 1-g SAR and } \leq 7.5 \text{ for 10-g extremity SAR}$$
 - $f(\text{GHz})$ is the RF channel transmit frequency in GHz.
 - Power and distance are rounded to the nearest mW and mm before calculation.
 - The result is rounded to one decimal place for comparison.
- 6 Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following:
 - a) $[\text{Threshold at 50 mm in step 1} + (\text{test separation distance} - 50 \text{ mm}) \cdot (f(\text{MHz})/150)] \text{ mW}$, at 100 MHz to 1500 MHz
 - b) $[\text{Threshold at 50 mm in step 1} + (\text{test separation distance} - 50 \text{ mm}) \cdot 10] \text{ mW}$ at > 1500 MHz and \leq 6 GHz
- 7 The below table, exemption limits for routine evaluation based on frequency and separation distance was according to SAR-based Exemption – §1.1307(b)(3)(i)(B).

Standalone SAR test exclusion considerations Ant1								
Wireless Interface	Frequency (MHz)	Configuration	Maximum Average Power		Separation Distance (mm)	Calculation Result	SAR Exclusion Thresholds	Standalone SAR Exclusion
			dBm	mW				
2.4GHz WLAN	2437	Rear Size	14.00	25.119	5	7.8	3	no
		Left Size	14.00	25.119	113	25.119	630.8	yes
		Right Size	14.00	25.119	152	25.119	1020.8	yes
		Top Size	14.00	25.119	5	7.8	3	no
		Bottom Size	14.00	25.119	188	25.119	1380.8	yes
5.2 GHz WLAN	5180	Rear Size	14.00	25.119	5	11.4	3	no
		Left Size	14.00	25.119	113	25.119	631.1	yes
		Right Size	14.00	25.119	152	25.119	1021.1	yes
		Top Size	14.00	25.119	5	11.4	3	no
		Bottom Size	14.00	25.119	188	25.119	1381.1	yes
5.8 GHz	5825	Rear Size	12.00	15.849	5	7.7	3	no

WLAN		Left Size	12.00	15.849	113	15.849	630.8	yes
		Right Size	12.00	15.849	152	15.849	1020.8	yes
		Top Size	12.00	15.849	5	7.7	3	no
		Bottom Size	12.00	15.849	188	15.849	1380.8	yes
Bluetooth*	2402	Rear Size	6.00	3.981	5	1.2	3	yes
		Left Size	6.00	3.981	113	3.981	630.1	yes
		Right Size	6.00	3.981	152	3.981	1020.1	yes
		Top Size	6.00	3.981	5	1.2	3	yes
		Bottom Size	6.00	3.981	188	3.981	1380.1	yes

Standalone SAR test exclusion considerations Ant2

Wireless Interface	Frequency (MHz)	Configuration	Maximum Average Power		Separation Distance (mm)	Calculation Result	SAR Exclusion Thresholds	Standalone SAR Exclusion
			dBm	mW				
2.4GHz WLAN	2462	Rear Size	13.00	19.953	5	6.3	3	no
		Left Size	13.00	19.953	32	1	3	yes
		Right Size	13.00	19.953	228	19.953	1780.6	yes
		Top Size	13.00	19.953	5	6.3	3	no
		Bottom Size	13.00	19.953	195	19.953	1450.6	yes
5.2 GHz WLAN	5180	Rear Size	14.00	25.119	5	11.4	3	no
		Left Size	14.00	25.119	32	1.8	3	yes
		Right Size	14.00	25.119	228	25.119	1781.1	yes
		Top Size	14.00	25.119	5	11.4	3	no
		Bottom Size	14.00	25.119	195	25.119	1451.1	yes
5.8 GHz WLAN	5825	Rear Size	12.00	15.849	5	7.7	3	no
		Left Size	12.00	15.849	32	1.2	3	yes
		Right Size	12.00	15.849	228	15.849	1780.8	yes
		Top Size	12.00	15.849	5	7.7	3	no
		Bottom Size	12.00	15.849	195	15.849	1450.8	yes

Remark:

1. Maximum average power including tune-up tolerance;
2. Bluetooth including BLE-Lower Energy Bluetooth and Classical Bluetooth;
3. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
4. Per KDB 648474, if overall diagonal dimension of the display section of a tablet larger than 20 cm, no need consider Hotspot mode.

10.4 Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

- (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(\text{GHz})/x}$] W/kg for test separation distances ≤ 50 mm;
where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
- 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm

Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific physical test configuration is ≤ 1.6 W/Kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

$$\text{Ratio} = \frac{(\text{SAR}_1 + \text{SAR}_2)^{1.5}}{(\text{peak location separation, mm})} < 0.04$$

Estimated stand alone SAR					
Communication system	Frequency (MHz)	Configuration	Maximum Power (dBm)	Separation Distance (mm)	Estimated SAR _{1-g} (W/kg)
Bluetooth	2402	Body	6	0	0.165
/	/	/	/	/	/
/	/	/	/	/	/

Remark:

1. Maximum average power including tune-up tolerance;
2. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
3. Body including Hotspot mode as body use distance is 0mm from manufacturer declaration of user manual.

10.5 SAR Test Results

General Note:

- 1 Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a) Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b) For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
 - c) For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- 2 Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - $\leq 0.8 \text{ W/kg}$ or 2.0 W/kg , for 1-g or 10-g respectively, when the transmission band is $\leq 100 \text{ MHz}$
 - $\leq 0.6 \text{ W/kg}$ or 1.5 W/kg , for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - $\leq 0.4 \text{ W/kg}$ or 1.0 W/kg , for 1-g or 10-g respectively, when the transmission band is $\geq 200 \text{ MHz}$
- 3 Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is $\geq 0.8 \text{ W/kg}$.

WLAN Note:

- 1 Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \text{ W/kg}$.
- 2 Per KDB 248227 D01v02r02, WLAN5.2GHz SAR testing is not required when the WLAN5.3GHz band highest reported SAR for a test configuration is $\leq 1.2 \text{ W/kg}$, SAR is not required for WLAN5.2GHz band.
- 3 When the reported SAR of the test position is $> 0.4 \text{ W/kg}$, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closest/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is $\leq 0.8 \text{ W/kg}$ or all required test position are tested.
- 4 For all positions / configurations, when the reported SAR is $> 0.8 \text{ W/kg}$, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is $\leq 1.2 \text{ W/kg}$ or all required channels are tested.
- 5 For WLAN SAR testing was performed on single antenna RF power in SISO mode is larger or equal to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission exclusion analysis was performed with SAR test results of each antenna in SISO mode.
- 6 Per KDB 248227 D01v02r02, the simultaneous SAR provisions in KDB publication 447498 should be applied to determine simultaneous transmission SAR test exclusion for WiFi MIMO. If the sum of 1g single transmission chain SAR measurements is $< 1.6 \text{ W/kg}$ and SAR peak to location ratio ≤ 0.04 , no additional SAR measurements for MIMO.
- 7 During SAR testing the WLAN transmission was verified using a spectrum analyzer.

Body SAR

SAR Values [WIFI 2.4G]

Plot No.	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
Measured / Reported SAR numbers-Body Ant1											
	802.11b	Front Side	0	06	2437	13.16	14.00	1.213	-0.10	0.268	0.325
#1	802.11b	Rear Side	0	06	2437	13.16	14.00	1.213	0.06	0.334	0.405
	802.11b	Top Edge	0	06	2437	13.16	14.00	1.213	0.05	0.324	0.393
Measured / Reported SAR numbers-Body Ant2											
	802.11b	Front Side	0	11	2462	12.18	13.00	1.208	0.07	0.259	0.313
	802.11b	Rear Side	0	11	2462	12.18	13.00	1.208	-0.11	0.315	0.380
	802.11b	Top Edge	0	11	2462	12.18	13.00	1.208	0.07	0.327	0.395

Remark: The highest reported SAR for OFDM is adjusted by the ratio of OFDM to DSSS specified maximum output power was 0.347 W/Kg(0.405*(12/14)=0.347) So ODFM SAR test is not required for Ant1.

The highest reported SAR for OFDM is adjusted by the ratio of OFDM to DSSS specified maximum output power was 0.334 W/Kg(0.395*(11/13)=0.334) So ODFM SAR test is not required for Ant2.

SAR Values [WIFI 5.2G]

Plot No.	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
Measured / Reported SAR numbers-Body Ant1											
	802.11a	Front Side	0	36	5180	13.74	14.00	1.062	0.09	0.261	0.277
	802.11a	Rear Side	0	36	5180	13.74	14.00	1.062	0.11	0.341	0.362
	802.11a	Top Edge	0	36	5180	13.74	14.00	1.062	0.07	0.330	0.350
Measured / Reported SAR numbers-Body Ant2											
	802.11a	Front Side	0	36	5180	13.59	14.00	1.099	0.09	0.254	0.279
	802.11a	Rear Side	0	36	5180	13.59	14.00	1.099	0.11	0.329	0.362
#2	802.11a	Top Edge	0	36	5180	13.59	14.00	1.099	0.07	0.355	0.390

SAR Values [WIFI 5.8G]

Plot No.	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)
Measured / Reported SAR numbers-Body Ant1											
	802.11a	Front Side	0	165	5825	12.19	13.00	1.205	0.05	0.214	0.258
	802.11a	Rear Side	0	165	5825	12.19	13.00	1.205	-0.11	0.336	0.405
	802.11a	Top Edge	0	165	5825	12.19	13.00	1.205	0.09	0.352	0.424
Measured / Reported SAR numbers-Body Ant2											
	802.11a	Front Side	0	165	5825	12.11	13.00	1.227	0.03	0.205	0.252
	802.11a	Rear Side	0	165	5825	12.11	13.00	1.227	-0.05	0.321	0.394
#3	802.11a	Top Edge	0	165	5825	12.11	13.00	1.227	0.07	0.361	0.443

Note:

1. Per KDB 865664 D01V01, for each frequency band, repeated SAR measurement is required only when the measured SAR is $\geq 0.8\text{W/Kg}$.
2. Per KDB 865664 D01V01, if the ratio of largest to smallest SAR for the original and first repeated measurement is ≤ 1.2 and the measured SAR $< 1.45\text{W/Kg}$, only one repeated measurement is required.
3. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is $\geq 1.45\text{W/Kg}$.
4. The ratio is the difference in percentage between original and repeated measured SAR.

10.6 Simultaneous Transmission Analysis

10.8.1 Introduction

Application Simultaneous Transmission information:

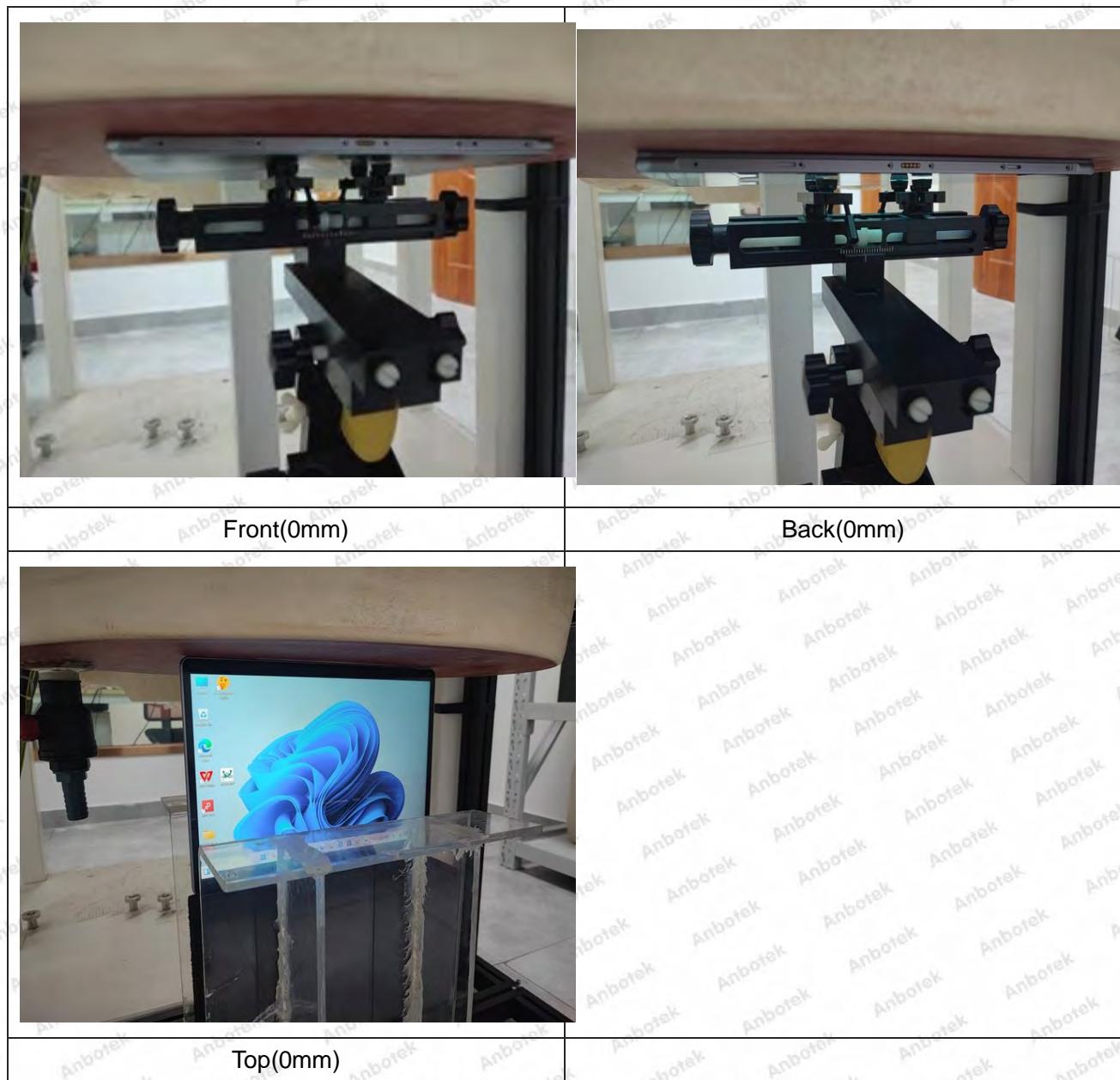
No.	Simultaneous Transmission Configurations	Body
1	2.4GHz WLAN Ant 1 + 2.4GHz WLAN Ant 2	Yes
2	5GHz WLAN Ant 1 + 5GHz WLAN Ant 2 + Bluetooth Ant 1	Yes

10.8.2 Evaluation of Simultaneous SAR

Simultaneous transmission SAR

Exposure Position	1	2	3	4	5	1+2 Summed 1g SAR (W/kg)	3+4+5 Summed 1g SAR (W/kg)	SPLSR
	2.4GHz WLAN Ant 1	2.4GHz WLAN Ant 2	5GHz WLAN Ant 1	5GHz WLAN Ant 2	Bluetooth Ant 2			
	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)			
Front Side	0.325	0.313	0.277	0.279	0.165	0.638	0.721	N/A
Rear Side	0.405	0.380	0.405	0.394	0.165	0.785	0.964	N/A
Top Edge	0.393	0.395	0.424	0.443	0.165	0.788	1.032	N/A

MAX. Σ SAR_{1g} = **1.032** W/kg<1.6 W/kg, so the Simultaneous transmission SAR with volume scan are not required.


11 Measurement Uncertainty

NO	Source	Uncert. ai (%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	Stand.Uncert. ui (1g)	Stand.Uncert. ui (10g)	Veff
1	Repeat	0.4	N	1	1	1	0.4	0.4	9
Instrument									
2	Probe calibration	7	N	2	1	1	3.5	3.5	∞
3	Axial isotropy	4.7	R	$\bar{3}$	0.7	0.7	1.9	1.9	∞
4	Hemispherical isotropy	9.4	R	$\bar{3}$	0.7	0.7	3.9	3.9	∞
5	Boundary effect	1.0	R	$\bar{3}$	1	1	0.6	0.6	∞
6	Linearity	4.7	R	$\bar{3}$	1	1	2.7	2.7	∞
7	Detection limits	1.0	R	$\bar{3}$	1	1	0.6	0.6	∞
8	Readout electronics	0.3	N	1	1	1	0.3	0.3	∞
9	Response time	0.8	R	$\bar{3}$	1	1	0.5	0.5	∞
10	Integration time	2.6	R	$\bar{3}$	1	1	1.5	1.5	∞
11	Ambient noise	3.0	R	$\bar{3}$	1	1	1.7	1.7	∞
12	Ambient reflections	3.0	R	$\bar{3}$	1	1	1.7	1.7	∞
13	Probe positioner mech. restrictions	0.4	R	$\bar{3}$	1	1	0.2	0.2	∞
14	Probe positioning with respect to phantom shell	2.9	R	$\bar{3}$	1	1	1.7	1.7	∞
15	Max.SAR evaluation	1.0	R	$\bar{3}$	1	1	0.6	0.6	∞

Test sample related									
16	Device positioning	3.8	N	1	1	1	3.8	3.8	99
17	Device holder	5.1	N	1	1	1	5.1	5.1	5
18	Drift of output power	5.0	R	$\bar{3}$	1	1	2.9	2.9	∞
Phantom and set-up									
19	Phantom uncertainty	4.0	R	$\bar{3}$	1	1	2.3	2.3	∞
20	Liquid conductivity (target)	5.0	R	$\bar{3}$	0.64	0.43	1.8	1.2	∞
21	Liquid conductivity (meas)	2.5	N	1	0.64	0.43	1.6	1.2	∞
22	Liquid Permittivity (target)	5.0	R	$\bar{3}$	0.6	0.49	1.7	1.5	∞
23	Liquid Permittivity (meas)	2.5	N	1	0.6	0.49	1.5	1.2	∞
Combined standard		RSS		$U_c = \sqrt{\sum_{i=1}^n C_i^2 U_i^2}$			11.4%	11.3%	236
Expanded uncertainty(P=95%)		$U = kU_c$		$, k=2$			22.8%	22.6%	

Appendix A. EUT Photos and Test Setup Photos

Appendix B. Plots of SAR System Check

2450MHz System Check

Date: 10/17/2023

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 910

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2450$ MHz; $\sigma = 1.983$ S/m; $\epsilon_r = 53.596$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 – SN7396; ConvF(7.53, 7.53, 7.53); Calibrated: 05.06.2023;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn428; Calibrated: Aug.30.2023;
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (81x81x1): Interpolated grid: $dx=1.200$ mm, $dy=1.200$ mm

Maximum value of SAR (interpolated) = 14.8 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 81.84 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 13.74 W/kg; SAR(10 g) = 6.15 W/kg

Maximum value of SAR (measured) = 20.3 W/kg

Report No.:18220WC30223201

FCC ID: 2BC8L-LEBOOKIV

Page 47 of 90

5250MHz System Check

Date: 10/18/2023

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1160

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 5250$ MHz; $\sigma = 5.358$ S/m; $\epsilon_r = 48.880$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 – SN7396; ConvF(4.93, 4.93, 4.93); Calibrated: 05.06.2023;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn428; Calibrated: Aug.30.2023
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 19.50 W/kg

Zoom Scan (7x7x13)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 29.26 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 38.1 W/kg

SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 20.8 W/kg

System Performance Check 5250MHz 100mW

Shenzhen Anbotek Compliance Laboratory LimitedAddress: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
Tel: (86) 0755-26066440 Fax: (86) 0755-26014772 Email: service@anbotek.com

Code:AB-RF-05-b

Hotline
400-003-0500
www.anbotek.com.cn

Report No.:18220WC30223201

FCC ID: 2BC8L-LEBOOKIV

Page 48 of 90

5750MHz System Check

Date: 10/19/2023

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: 1160

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 5750$ MHz; $\sigma = 5.850$ S/m; $\epsilon_r = 47.566$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 – SN7396; ConvF(4.52, 4.52, 4.52); Calibrated: 05.06.2023;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn428; Calibrated: Aug.30.2023
- Phantom: SAM; Type: QD000P40CD; Serial: TP:1670
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 18.4 W/kg

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value =31.32 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 40.4 W/kg

SAR(1 g) = 8.35 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 20.2 W/kg

System Performance Check 5750MHz 100mW

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community,
Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
Tel: (86) 0755-26066440 Fax: (86) 0755-26014772 Email: service@anbotek.com

Code:AB-RF-05-b

Hotline
400-003-0500
www.anbotek.com.cn

Appendix C. Plots of SAR Test Data

#1

Date: 10/17/2023

WLAN 802.11b_Body_Back_CH 07_0mm_Ant1

Communication System: UID 0, Generic LTE (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2437$ MHz; $\sigma = 1.899$ S/m; $\epsilon_r = 53.478$; $\rho = 1000$ kg/m³

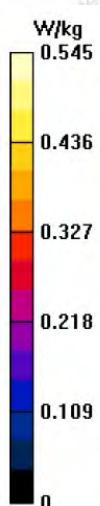
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN7396; ConvF(7.53, 7.53, 7.53); Calibrated: 05.06.2023;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;
- Phantom: SAM 1; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (171x251x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.545 W/Kg



Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.724 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.881 W/kg

SAR(1 g) = 0.334 W/Kg; SAR(10 g) = 0.125 W/Kg

Maximum value of SAR (measured) = 0.618 W/Kg

WLAN 802.11a 5.2G_Top side_CH 36_0mm_Ant2

Communication System: UID 0, Generic LTE (0); Frequency: 5180 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 5180$ MHz; $\sigma = 5.332$ S/m; $\epsilon_r = 48.769$; $\rho = 1000$ kg/m³

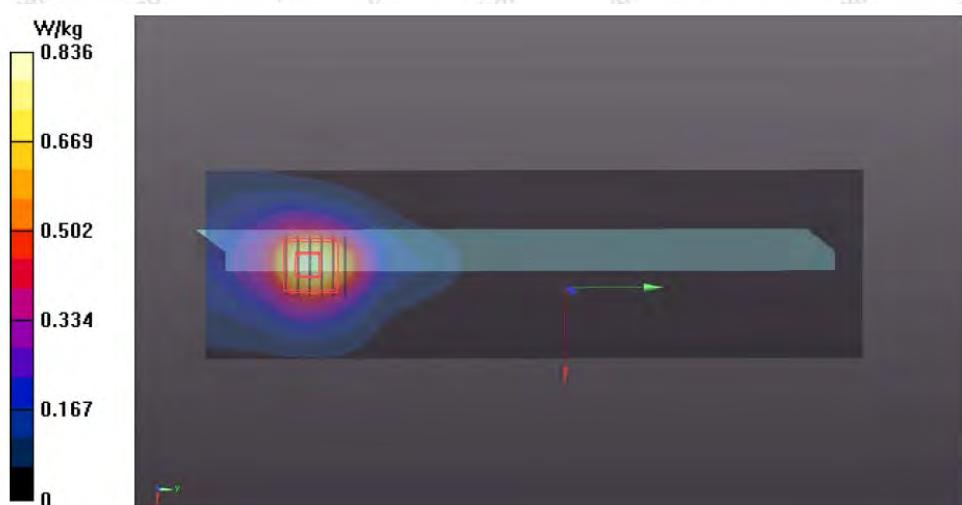
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN7396; ConvF(4.93, 4.93, 4.93); Calibrated: 05.06.2023;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;
- Phantom: SAM 1; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (81x281x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.836 W/Kg


Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm

Reference Value = 13.74 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.355 W/Kg; SAR(10 g) = 0.159 W/Kg

Maximum value of SAR (measured) = 0.774 W/Kg

WLAN 802.11a 5.8G_Top side_CH 165_0mm_Ant2

Communication System: UID 0, Generic LTE (0); Frequency: 5825 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 5825$ MHz; $\sigma = 5.985$ S/m; $\epsilon_r = 48.710$; $\rho = 1000$ kg/m³

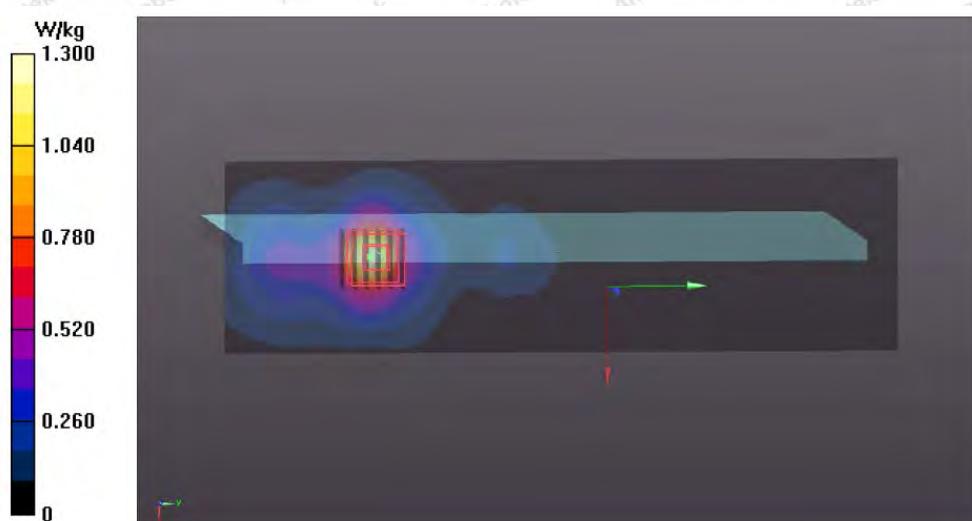
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN7396; ConvF(4.52, 4.52, 4.52); Calibrated: 05.06.2023;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn428; Calibrated: Aug.30,2023;
- Phantom: SAM 1; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164)

Area Scan (81x281x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.895 W/Kg


Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm

Reference Value = 14.21 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 0.361 W/Kg; SAR(10 g) = 0.164 W/Kg

Maximum value of SAR (measured) = 1.31 W/Kg

Appendix D. DASY System Calibration Certificate

In Collaboration with
s p e a g
 CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
 E-mail: ctll@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

中国认可
 国际互认
 校准
 CALIBRATION
 CNAS L0570

Client

Anbotek (Auden)

Certificate No: Z23-98671

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:7396

Calibration Procedure(s) FF-Z12-006-08
 Calibration Procedures for Dosimetric E-field Probes

Calibration date: May 06, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	20-Jun-22 (CTTL, No.J22X07447)	Jun-21
Power sensor NRP-Z91	101547	20-Jun-22 (CTTL, No.J22X07447)	Jun-21
Power sensor NRP-Z91	101548	20-Jun-22 (CTTL, No.J22X07447)	Jun-21
Reference10dBAttenuator	18N50W-10dB	13-Mar-23(CTTL, No.J23X01547)	Mar-22
Reference20dBAttenuator	18N50W-20dB	13-Mar-23(CTTL, No.J23X01548)	Mar-22
Reference Probe EX3DV4	SN 7433	26-Sep-22(SPEAG, No.EX3-7433_Sep22)	Sep-21
DAE4	SN 549	13-Dec-22(SPEAG, No.DAE4-549_Dec22)	Dec-21
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	27-Jun-22 (CTTL, No.J22X04776)	Jun-21
Network Analyzer E5071C	MY46110673	13-Jan-23 (CTTL, No.J23X00285)	Jan-22

	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	
Reviewed by:	Lin Hao	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: May 06, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z23-98671

Page 1 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community,
 Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
 Tel: (86) 0755-26066440 Fax: (86) 0755-26014772 Email: service@anbotek.com

Code:AB-RF-05-b

Hotline
 400-003-0500
www.anbotek.com.cn

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
 E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta=0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- $NORM_{x,y,z}$: Assessed for E-field polarization $\theta=0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: waveguide). $NORM_{x,y,z}$ are only intermediate values, i.e., the uncertainties of $NORM_{x,y,z}$ does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORM_{x,y,z} * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- $A_x,y,z; B_x,y,z; C_x,y,z; VR_x,y,z; A,B,C$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle*: The angle is assessed using the information gained by determining the $NORM_x$ (no uncertainty required).

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Probe EX3DV4

SN: 7396

Calibrated: May 06, 2023

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z23-98671

Page 3 of 11

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community,
Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
Tel: (86) 0755-26066440 Fax: (86) 0755-26014772 Email: service@anbotek.com

Code:AB-RF-05-b

Hotline
400-003-0500
www.anbotek.com.cn

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
 E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(μ V/(V/m) ²) ^A	0.54	0.53	0.50	\pm 10.0%
DCP(mV) ^B	97.8	104.5	102.5	

Modulation Calibration Parameters

UID	Communication System Name	A dB	B dB/ μ V	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	199.9
		Y	0.0	0.0	1.0		203.3
		Z	0.0	0.0	1.0		195.0

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
 E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ^g	Depth ^g (mm)	Unct. (k=2)
750	41.9	0.89	9.82	9.82	9.82	0.30	0.85	± 12.1%
835	41.5	0.90	9.71	9.71	9.71	0.15	1.36	± 12.1%
900	41.5	0.97	9.87	9.87	9.87	0.16	1.37	± 12.1%
1750	40.1	1.37	8.61	8.61	8.61	0.25	1.04	± 12.1%
1900	40.0	1.40	8.13	8.13	8.13	0.24	1.01	± 12.1%
2100	39.8	1.49	8.14	8.14	8.14	0.24	1.04	± 12.1%
2300	39.5	1.67	7.85	7.85	7.85	0.40	0.75	± 12.1%
2450	39.2	1.80	7.57	7.57	7.57	0.50	0.75	± 12.1%
2600	39.0	1.96	7.38	7.38	7.38	0.64	0.68	± 12.1%
5250	35.9	4.71	5.33	5.33	5.33	0.45	1.30	± 13.3%
5600	35.5	5.07	4.89	4.89	4.89	0.45	1.35	± 13.3%
5750	35.4	5.22	4.92	4.92	4.92	0.45	1.45	± 13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^f At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^g Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z23-98671

Page 5 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
 E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Calibration Parameter Determined in Body Tissue Simulating Media

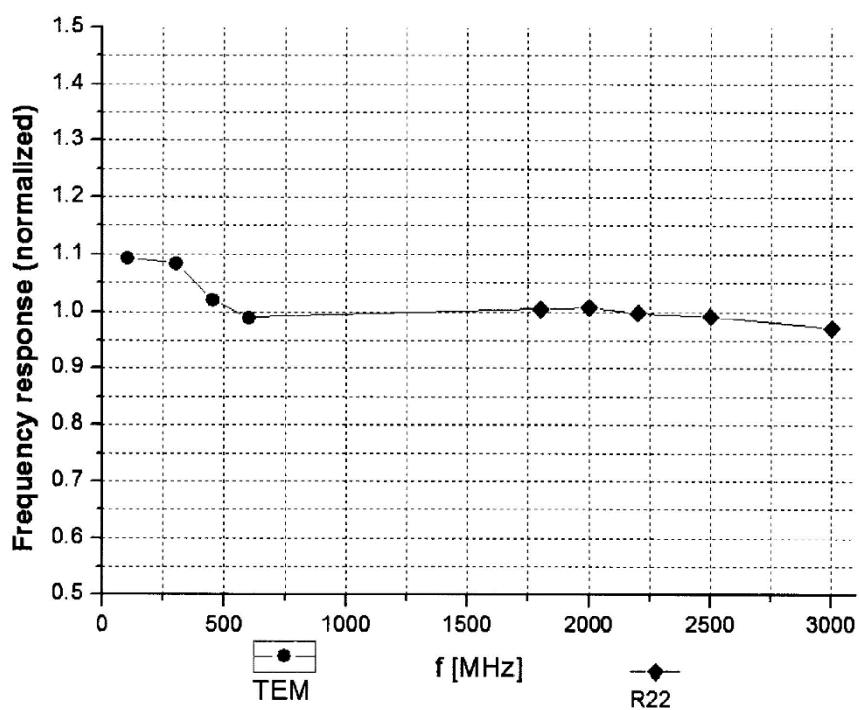
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.09	10.09	10.09	0.30	0.90	± 12.1%
835	55.2	0.97	9.88	9.88	9.88	0.19	1.32	± 12.1%
900	55.0	1.05	9.82	9.82	9.82	0.23	1.15	± 12.1%
1750	53.4	1.49	8.24	8.24	8.24	0.24	1.06	± 12.1%
1900	53.3	1.52	7.97	7.97	7.97	0.19	1.24	± 12.1%
2100	53.2	1.62	8.18	8.18	8.18	0.19	1.39	± 12.1%
2300	52.9	1.81	7.88	7.88	7.88	0.55	0.80	± 12.1%
2450	52.7	1.95	7.53	7.53	7.53	0.46	0.89	± 12.1%
2600	52.5	2.16	7.38	7.38	7.38	0.52	0.80	± 12.1%
5250	48.9	5.36	4.93	4.93	4.93	0.45	1.80	± 13.3%
5600	48.5	5.77	4.19	4.19	4.19	0.48	1.90	± 13.3%
5750	48.3	5.94	4.52	4.52	4.52	0.48	1.95	± 13.3%

^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

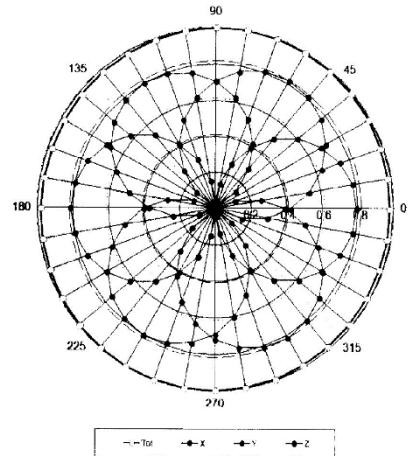
Certificate No: Z23-98671

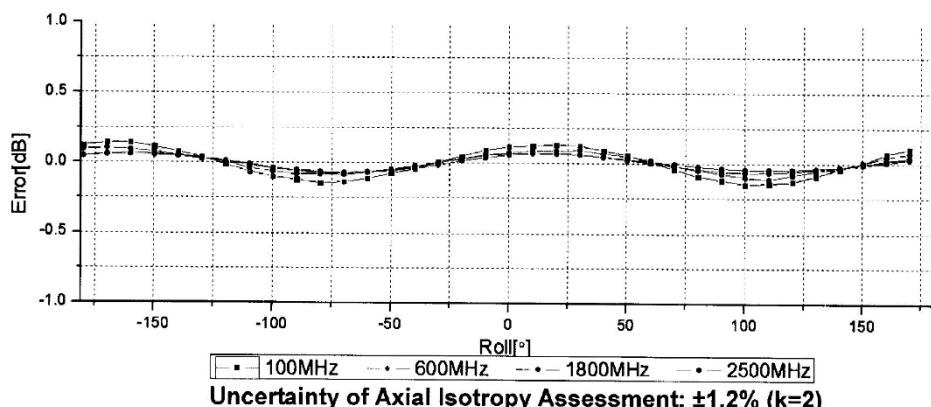
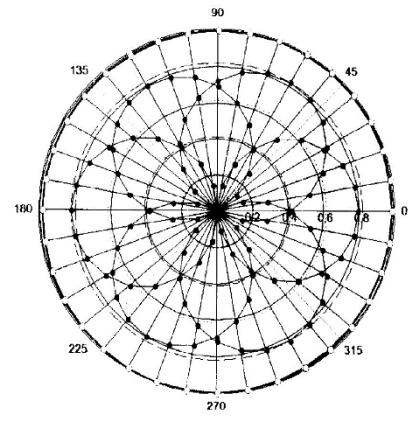

Page 6 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

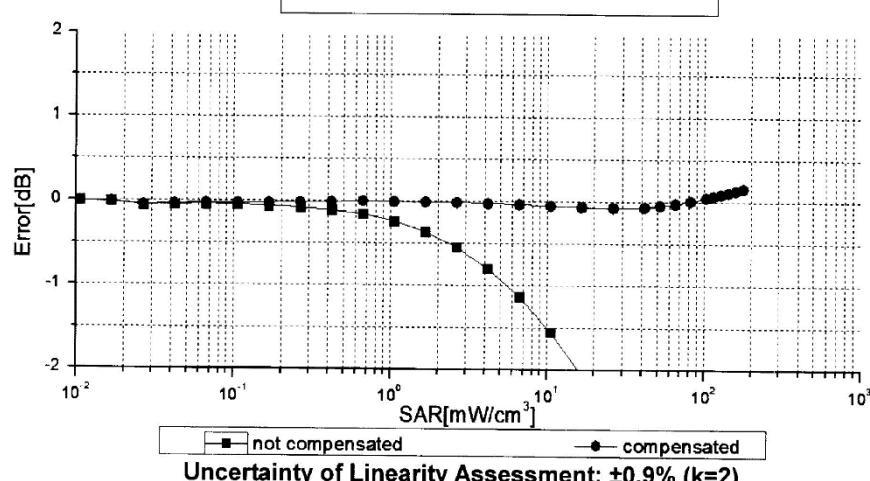
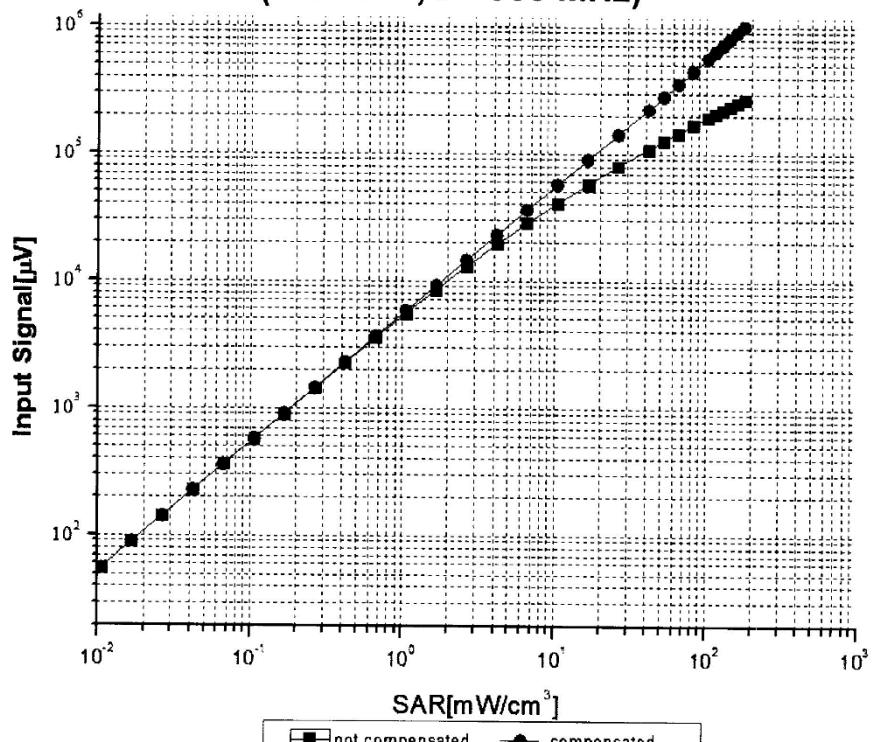
Uncertainty of Frequency Response of E-field: $\pm 7.4\%$ ($k=2$)





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
 E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Receiving Pattern (Φ), $\theta=0^\circ$

f=600 MHz, TEM



f=1800 MHz, R22

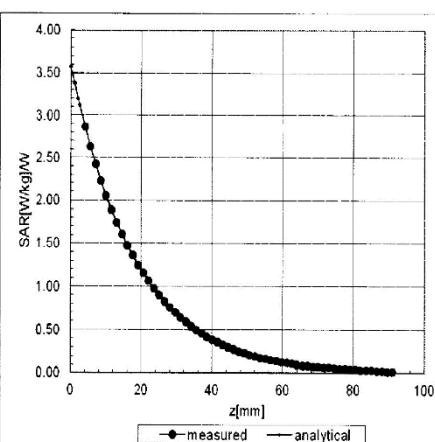
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
 E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

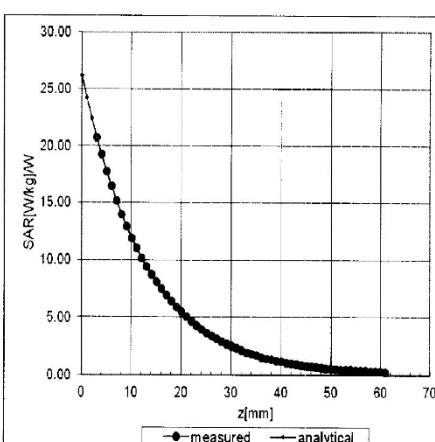
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: $\pm 0.9\%$ ($k=2$)

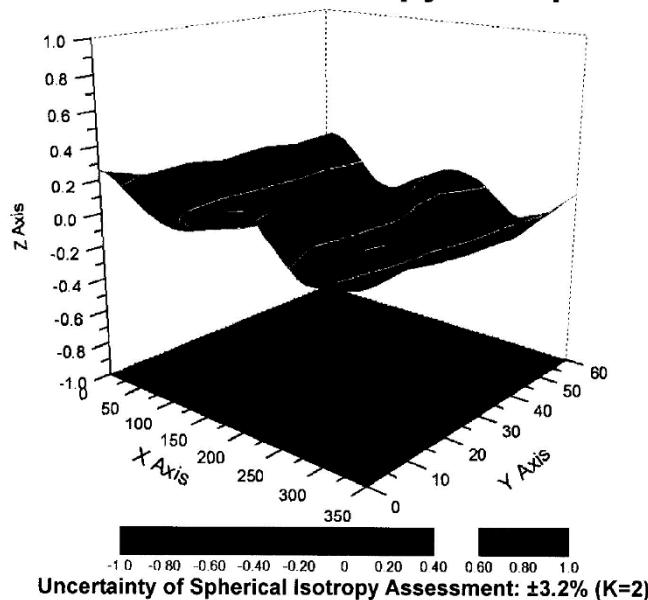
Certificate No: Z23-98671

Page 9 of 11




Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
 E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Conversion Factor Assessment


f=900 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
 E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	156.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland
Phone +41 44 245 9700, Fax +41 44 245 8779
info@speag.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MΩ is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11.12.2009

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2117
 E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Certificate No: J23Z60391

Client : CTA

CALIBRATION CERTIFICATE

Object DAE3 - SN: 428

Calibration Procedure(s) FF-Z11-002-01
 Calibration Procedure for the Data Acquisition Electronics (DAEx)

Calibration date: August 30, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	12-Jun-23 (CTTL, No.J23X05436)	Jun-24

Calibrated by:	Name Yu Zongying	Function SAR Test Engineer	Signature
Reviewed by:	Name Lin Hao	Function SAR Test Engineer	
Approved by:	Name Qi Dianyuan	Function SAR Project Leader	

Issued: September 06, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J23Z60391

Page 1 of 3

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Glossary:

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- **DC Voltage Measurement:** Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- **Connector angle:** The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: J23Z60391

Page 2 of 3

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1 μ V, full range = -100...+300 mV

Low Range: 1LSB = 61nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$404.468 \pm 0.15\% (k=2)$	$404.804 \pm 0.15\% (k=2)$	$404.579 \pm 0.15\% (k=2)$
Low Range	$3.95934 \pm 0.7\% (k=2)$	$3.95437 \pm 0.7\% (k=2)$	$3.91875 \pm 0.7\% (k=2)$

Connector Angle

Connector Angle to be used in DASY system	$258.5^\circ \pm 1^\circ$
---	---------------------------

In Collaboration with

s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
 E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

中国认可
国际互认
校准
CALIBRATION
CNAS L0570

Client

Anbotek (Auden)

Certificate No: Z21-97091

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 910

 Calibration Procedure(s) FD-Z21-2-003-01
 Calibration Procedures for dipole validation kits

Calibration date: Jun 15, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-20 (CTTL, No.J20X04256)	Jun-21
Power sensor NRP-Z91	101547	01-Jul-20 (CTTL, No.J20X04256)	Jun-21
Reference Probe EX3DV4	SN 7307	19-Feb-21(SPEAG, No.EX3-7307_Feb21)	Feb-22
DAE4	SN 771	02-Feb-21(CTTL-SPEAG, No.Z21-97011)	Feb-22
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J18X00893)	Jan-22
Network Analyzer E5071C	MY46110673	26-Jan-21 (CTTL, No.J18X00894)	Jan-22

Calibrated by:	Name	Function	Signature
	Zhao Jing	SAR Test Engineer	
Reviewed by:	Qi Dianyuan	SAR Project Leader	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	

Issued: Jun 17, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-97091

Page 1 of 8

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community,
 Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
 Tel: (86) 0755-26066440 Fax: (86) 0755-26014772 Email: service@anbotek.com

Code:AB-RF-05-b

Hotline
 400-003-0500
www.anbotek.com.cn

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with
s p e a g
 CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
 E-mail: ctll@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.77 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.4 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.06 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.3 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.97 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.8 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.18 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.7 mW /g ± 20.4 % (k=2)

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.6Ω+ 2.77jΩ
Return Loss	- 25.8dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.7Ω+ 4.28jΩ
Return Loss	- 27.3dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.263 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

In Collaboration with
s p e a g
 CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
 E-mail: ctll@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 06.15.2021

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 910

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

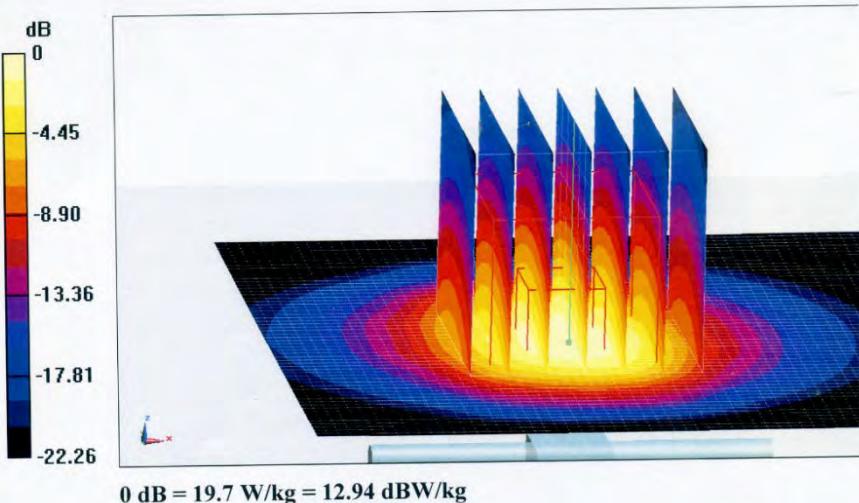
Medium parameters used: $f = 2450$ MHz; $\sigma = 1.767$ S/m; $\epsilon_r = 39.01$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN7307; ConvF(7.36, 7.36, 7.36); Calibrated: 2/19/2021;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2021-02-02
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

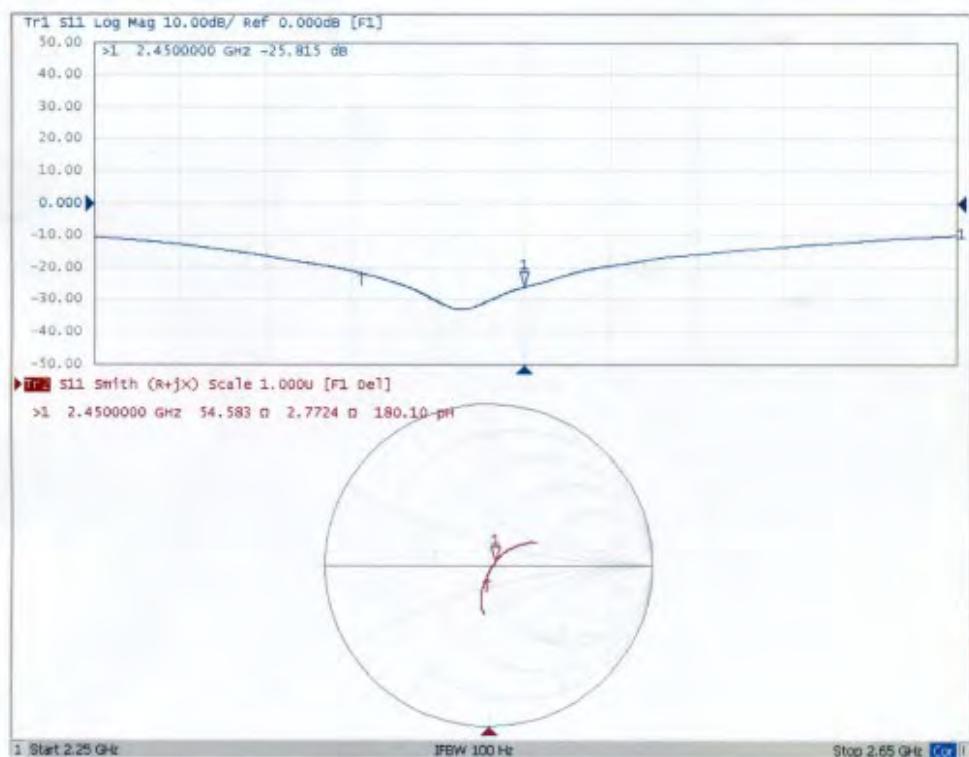
Reference Value = 106.5 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 26.7 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.06 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

Certificate No: Z21-97091


Page 5 of 8

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Certificate No: Z18-97091

Page 6 of 8

In Collaboration with
s p e a g
 CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
 E-mail: ttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 06.15.2021

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 910

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

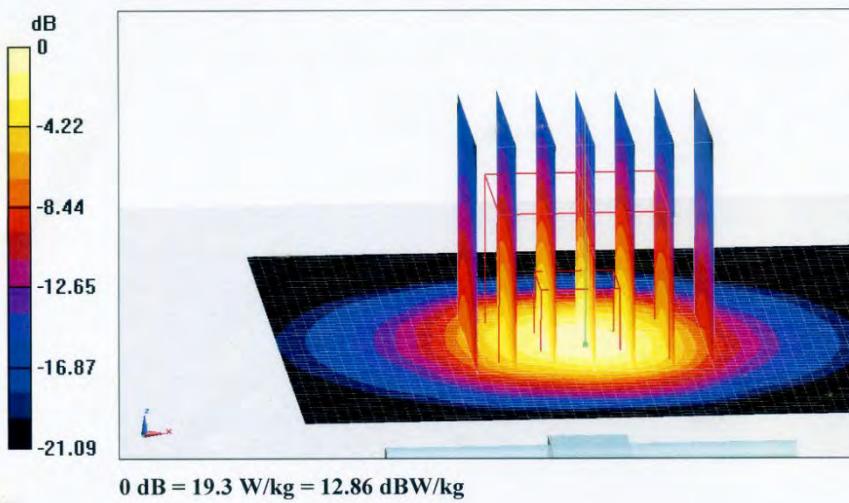
Medium parameters used: $f = 2450$ MHz; $\sigma = 1.972$ S/m; $\epsilon_r = 52.92$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN7307; ConvF(7.22, 7.22, 7.22); Calibrated: 2/19/2021;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2021-02-02
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

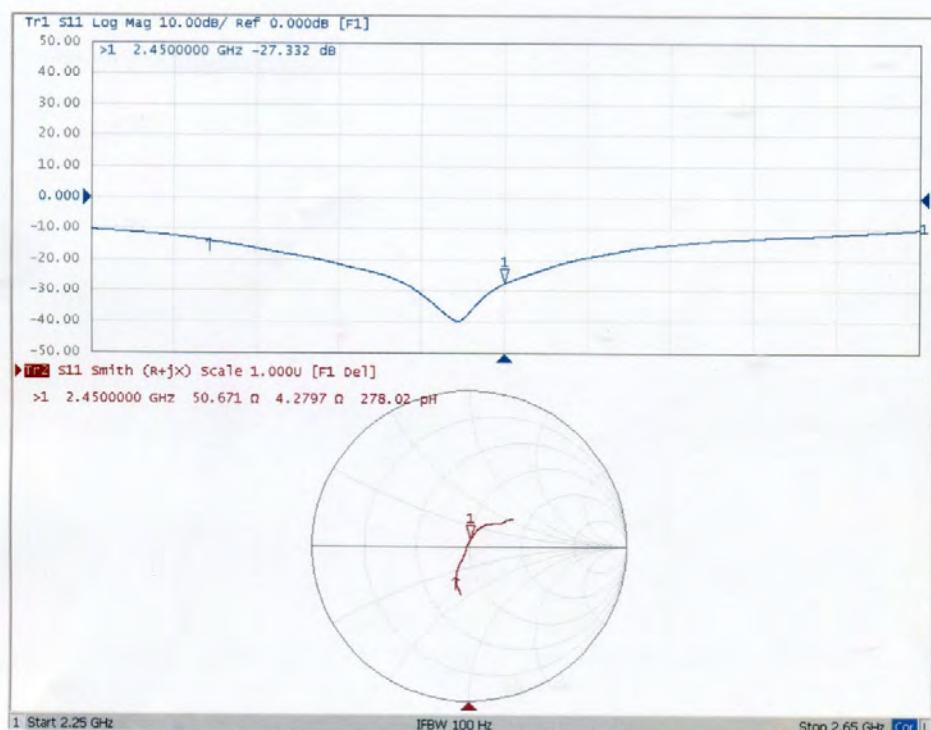
Reference Value = 98.89 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 25.6 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.18 W/kg

Maximum value of SAR (measured) = 19.3 W/kg

Certificate No: Z21-97091


Page 7 of 8

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Impedance Measurement Plot for Body TSL

Certificate No: Z21-97091

Page 8 of 8

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S
C
S

Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **Anbotek (Auden)**

Certificate No: **D5GHzV2-1160_Oct11**

CALIBRATION CERTIFICATE

Object **D5GHzV2 - SN: 1160**

Calibration procedure(s) **QA CAL-22.v2**
 Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date: **October 02, 2021**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-17 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-20 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-20 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-21 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-21 (No. 217-02134)	Mar-16
Reference Probe EX3DV4	SN: 3503	30-Dec-20 (No. EX3-3503 Dec14)	Dec-16
DAE4	SN: 601	17-Aug-21 (No. DAE4-601_Aug15)	Aug-16

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100972	18-Jun-21 (in house check Jun-15)	In house check: Jun-18
Network Analyzer HP 8753E	US37390585 S4206	15-Oct-20 (in house check Oct-14)	In house check: Oct-15

Calibrated by:	Name Leif Klysner	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	

Issued: October 6, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: **D5GHzV2-1160_Oct11**

Page 1 of 15

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.4 ± 6 %	4.57 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.68 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.7 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	5.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.69 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	87.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	5.26 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	---	---

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.9 ± 6 %	5.35 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	—	—

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.81 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.8 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.7 ± 6 %	5.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	—	—

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.88 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.4 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.7 ± 6 %	5.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	81.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.4 ± 6 %	6.27 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.88 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.20 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.8 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)**Antenna Parameters with Head TSL at 5200 MHz**

Impedance, transformed to feed point	48.1 Ω - 8.5 $j\Omega$
Return Loss	-21.0 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	50.2 Ω - 5.2 $j\Omega$
Return Loss	-25.7 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.8 Ω - 2.5 $j\Omega$
Return Loss	-25.7 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	53.0 Ω - 3.0 $j\Omega$
Return Loss	-27.7 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	48.6 Ω - 6.8 $j\Omega$
Return Loss	-23.0 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	49.0 Ω - 4.2 $j\Omega$
Return Loss	-27.1 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.2 Ω - 0.7 $j\Omega$
Return Loss	-24.6 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	55.9 Ω - 1.7 $j\Omega$
Return Loss	-24.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 06, 2013

DASY5 Validation Report for Head TSL

Date: 24.09.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1160

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: $f = 5200 \text{ MHz}$; $\sigma = 4.57 \text{ S/m}$; $\epsilon_r = 36.4$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: $f = 5300 \text{ MHz}$; $\sigma = 4.68 \text{ S/m}$; $\epsilon_r = 36.2$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: $f = 5600 \text{ MHz}$; $\sigma = 5.03 \text{ S/m}$; $\epsilon_r = 35.7$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: $f = 5800 \text{ MHz}$; $\sigma = 5.26 \text{ S/m}$; $\epsilon_r = 35.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2021, ConvF(5.21, 5.21, 5.21); Calibrated: 30.12.2021, ConvF(4.92, 4.92, 4.92); Calibrated: 30.12.2021, ConvF(4.9, 4.9, 4.9); Calibrated: 30.12.2021,
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2021
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0:Measurement grid: $dx=4\text{mm}$, $dy=4\text{mm}$, $dz=1.4\text{mm}$

Reference Value = 64.41 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 29.3 W/kg

SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.31 W/kg

Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0:Measurement grid: $dx=4\text{mm}$, $dy=4\text{mm}$, $dz=1.4\text{mm}$

Reference Value = 65.31 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 8.26 W/kg; SAR(10 g) = 2.39 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0:Measurement grid: $dx=4\text{mm}$, $dy=4\text{mm}$, $dz=1.4\text{mm}$

Reference Value = 65.34 V/m; Power Drift = 0.03 dB

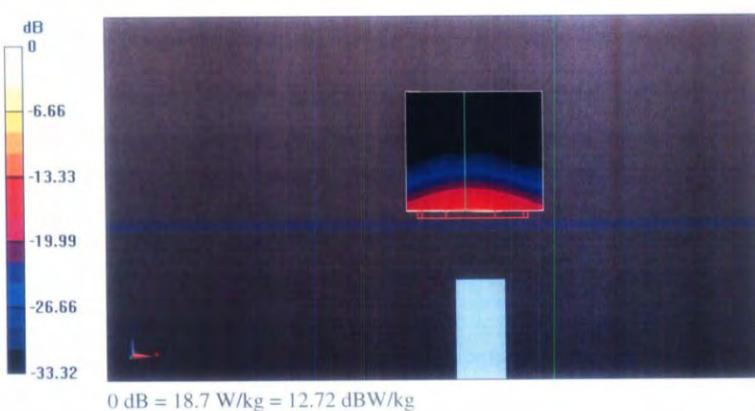
Peak SAR (extrapolated) = 34.7 W/kg

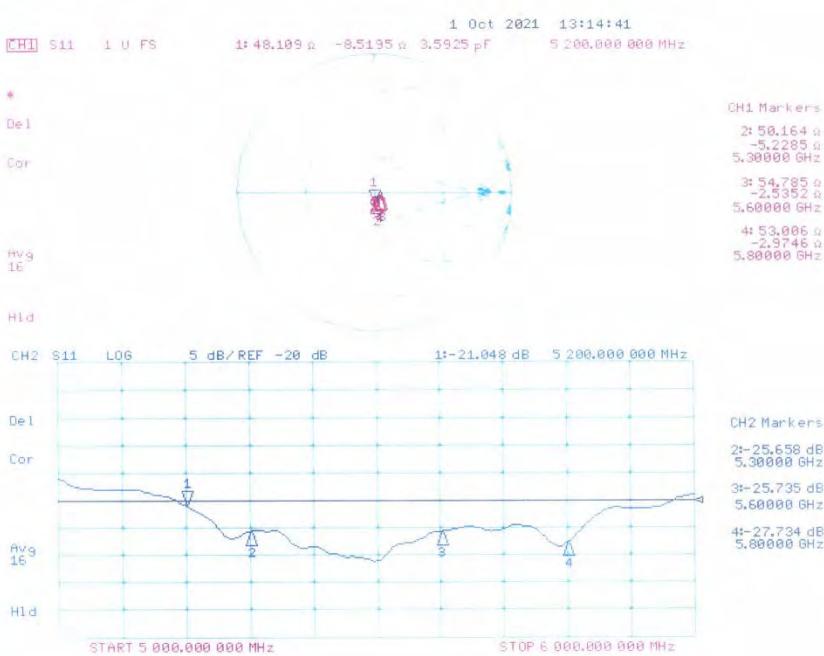
SAR(1 g) = 8.69 W/kg; SAR(10 g) = 2.47 W/kg

Maximum value of SAR (measured) = 21.0 W/kg

Certificate No: D5GHzV2-1160_Oct11

Page 10 of 15


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,**dist=1.4mm (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 62.41 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 34.5 W/kg

SAR(1 g) = 8.2 W/kg; SAR(10 g) = 2.31 W/kg

Maximum value of SAR (measured) = 20.5 W/kg

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1160_Oct11

Page 12 of 15

Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community,
Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
Tel: (86) 0755-26066440 Fax: (86) 0755-26014772 Email: service@anbotek.com

Code:AB-RF-05-b

Hotline
400-003-0500
www.anbotek.com.cn

DASY5 Validation Report for Body TSL

Date: 05.10.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1160

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: $f = 5200 \text{ MHz}$; $\sigma = 5.35 \text{ S/m}$; $\epsilon_r = 47.9$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: $f = 5300 \text{ MHz}$; $\sigma = 5.49 \text{ S/m}$; $\epsilon_r = 47.7$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: $f = 5600 \text{ MHz}$; $\sigma = 5.99 \text{ S/m}$; $\epsilon_r = 46.7$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: $f = 5800 \text{ MHz}$; $\sigma = 6.27 \text{ S/m}$; $\epsilon_r = 46.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(4.95, 4.95, 4.95); Calibrated: 30.12.2021, ConvF(4.78, 4.78, 4.78); Calibrated: 30.12.2021; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2021, ConvF(4.32, 4.32, 4.32); Calibrated: 30.12.2021;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 17.08.2021
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0:Measurement grid: $dx=4\text{mm}$, $dy=4\text{mm}$, $dz=1.4\text{mm}$

Reference Value = 67.32 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 30.4 W/kg

SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0:Measurement grid: $dx=4\text{mm}$, $dy=4\text{mm}$, $dz=1.4\text{mm}$

Reference Value = 67.22 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.2 W/kg

Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0:Measurement grid: $dx=4\text{mm}$, $dy=4\text{mm}$, $dz=1.4\text{mm}$

Reference Value = 67.36 V/m; Power Drift = -0.03 dB

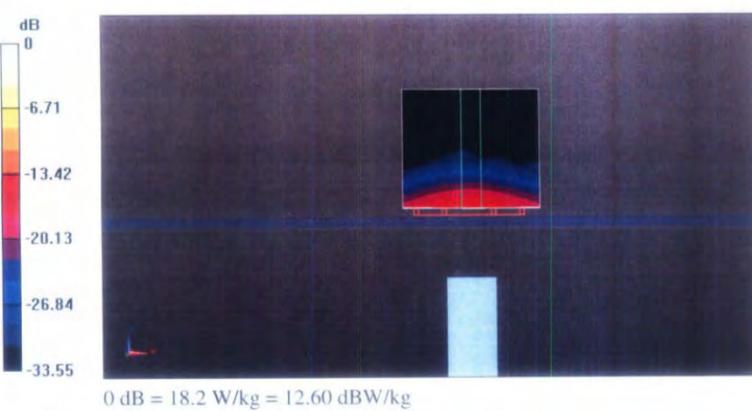
Peak SAR (extrapolated) = 36.6 W/kg

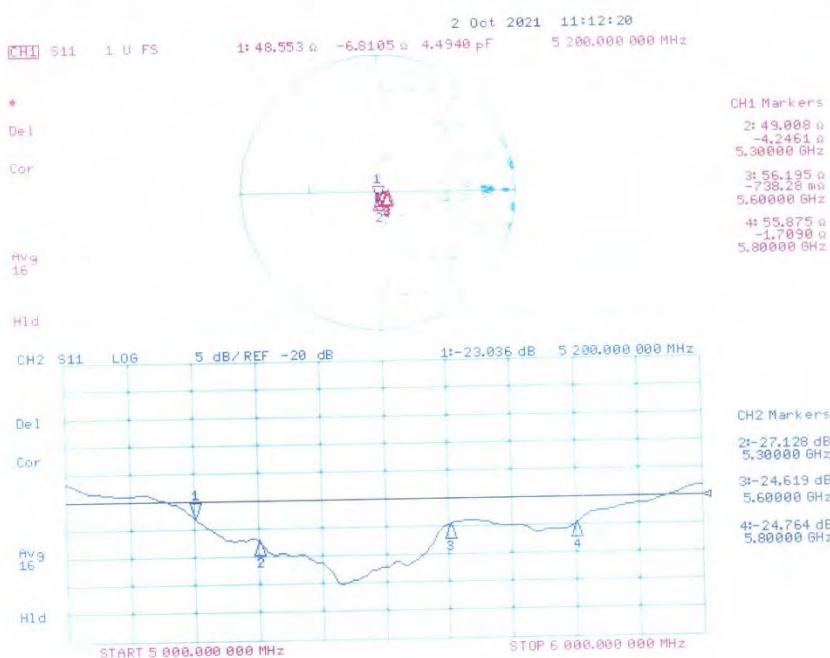
SAR(1 g) = 8.2 W/kg; SAR(10 g) = 2.3 W/kg

Maximum value of SAR (measured) = 20.2 W/kg

Certificate No: D5GHzV2-1160_Oct11

Page 13 of 15


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 65.22 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 37.1 W/kg

SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.2 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

Impedance Measurement Plot for Body TSL

Extended calibration intervals check for Dipoles

Justification of Extended Calibration SAR Dipole D2450V2– serial no. 910

Head						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2021-06-15	-25.815	/	54.583	/	2.77	/
2022-06-14	-26.10	1.10%	54.293	-0.29	3.39	-0.62
2323-06-13	-26.18	1.40%	54.403	-0.18	3.05	-0.28

Body						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2021-06-15	-27.332	/	50.671	/	4.28	/
2022-06-14	-27.39	0.20%	50.511	-0.16	4.51	-0.23
2323-06-13	-27.63	1.10%	49.971	-0.7	4.41	-0.13

Justification of Extended Calibration SAR Dipole D5GV2– serial no. 1160

Head						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2021-10-02	-21.048	/	48.109	/	-8.51	/
2022-09-30	-20.88	-0.80%	48.019	-0.09	-8.17	-0.34
2023-09-29	-20.86	-0.90%	47.819	-0.29	-7.98	-0.53

Body						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (johm)	Delta (johm)
2021-10-02	-23.036	/	48.553	/	-6.81	/
2022-09-30	-22.76	-1.20%	48.183	-0.37	-6.40	-0.41
2023-09-29	-23.20	0.70%	48.413	-0.14	-6.68	-0.13

The Return-Loss is <-20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the value result should support extended.

*****END OF REPORT*****

