

TEST REPORT

Report No.: **BCTC2309895492-5E**

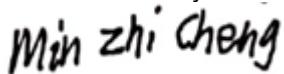
Applicant: **Modatec H&O SAS Zomac**

Product Name: **Tablet PC**

Model/Type
reference: **TBT-02**

Tested Date: **2023-10-11 to 2023-10-13**

Issued Date: **2023-10-24**


Shenzhen BCTC Testing Co., Ltd.

FCC ID: 2BC58-TBT-02

Product Name: Tablet PC
Trademark: WIT
Model/Type Ref.: TBT-02, TBT-01, TBT-03
Applicant: Modatec H&O SAS Zomac
Address: CRA 23 NRO. 22-19, GRANADA, Antioquia, Colombia, 054410.
Manufacturer: Shenzhen Great Asia Electronic Co.,Ltd.
Address: 5F, Block B, Rui Xiang Fa Industry Building, Shang Xue Technology Park, Long GangDistrict, Shenzhen, China
Prepared By: Shenzhen BCTC Testing Co., Ltd.
Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date: 2023-10-11
Sample tested Date: 2023-10-11 to 2023-10-13
Issue Date: 2023-10-24
SAR Max. Values is: 0.453 W/kg (1g) for Body
1.155 W/kg (1g) for Hotspot
Test Standards: IEEE Std C95.1, 2019/ IEEE Std 1528™-2013/FCC Part 2.1093
Test Results: PASS
Remark: This is SAR test report

Tested by:

Min Zhi Cheng/ Project Handler

Approved by:

Zero Zhou/ Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Table Of Content

Test Report Declaration	Page
1. Version	5
2. Test Standards	6
3. Test Summary	7
4. SAR Limits.....	8
5. Measurement Uncertainty	9
6. Product Information and Test Setup.....	10
6.1 Product Information	10
6.2 Test Setup Configuration.....	12
6.3 Support Equipment.....	12
6.4 Test Environment	12
7. Test Facility and Test Instrument Used	13
7.1 Test Facility	13
7.2 Test Instrument Used	14
8. Specific Absorption Rate (SAR)	15
8.1 Introduction.....	15
8.2 SAR Definition	15
9. SAR Measurement System	16
9.1 The Measurement System.....	16
9.2 Probe	16
9.3 Probe Calibration Process	18
9.4 Phantom	19
9.5 Device Holder	19
10. Tissue Simulating Liquids.....	20
10.1 Composition of Tissue Simulating Liquid	20
10.2 Limit.....	21
10.3 Tissue Calibration Result.....	22
11. System Check	23
11.1 Purpose of System Performance Check.....	23
11.2 System Setup	23
11.3 Validation Results.....	24
12. EUT Testing Position.....	25
12.1 Define Two Imaginary Lines on the Handset	25
12.2 Cheek Position	25
12.3 Tilted Position	26
12.4 Body Position.....	26
13. SAR Measurement Procedures	27
13.1 Measurement Procedures	27
13.2 Spatial Peak SAR Evaluation	27
13.3 Area & Zoom Scan Procedures	28
13.4 Volume Scan Procedures	29
13.5 SAR Averaged Methods	29
13.6 Power Drift Monitoring	29
14. SAR Test Result.....	30

14.1 Conducted RF Output Power.....	30
14.2 Transmit Antennas and SAR Measurement Position.....	36
14.3 Measured and Reported (Scaled) SAR Results	37
14.4 SAR Measurement Variability.....	41
14.5 Simultaneous Transmission Evaluation	42
15. Test Plots	43
15.2 SAR Test Graph Results	49
16. CALIBRATION CERTIFICATES.....	59
17. EUT Photographs.....	111
18. EUT Test Setup Photographs.....	112

(Note: N/A Means Not Applicable)

1. Version

Report No.	Issue Date	Description	Approved
BCTC2309895492-5E	2023-10-24	Original	Valid

2. Test Standards

IEEE Std C95.1-2019: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

IEEE Std 1528™-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices

KDB 447498 D01 General RF Exposure Guidance v06: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB 865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

KDB 248227 D01 802.11 Wi-Fi SAR v02r02: SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS

KDB 941225 D01 3G SAR Procedures: 3G SAR MEAUREMENT PROCEDURES

KDB 941225 D05 SAR for LTE Devices: SAR EVALUATION CONSIDERATIONS FOR LTE DEVICES

KDB 941225 D06 Hotspot Mode v02r01: SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH WIRELESS ROUTER CAPABILITIES

KDB 648474 D04 Handset SAR v01r03: SAR EVALUATION CONSIDERATIONS FOR WIRELESS HANDSETS

3. Test Summary

The maximum results of Specific Absorption Rate (SAR) have found during testing are as follows:

Frequency Band	Report SAR1g(W/kg)		SAR1g Limit (W/kg)
	Body (0mm Gap)	Hotspot (0mm Gap)	
GSM	0.392	1.155	1.6
WCDMA	0.453	1.037	1.6
WLAN 2.4G	0.177	0.272	1.6
Simultaneous Transmission	0.630	1.427	1.6

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2019, and had been tested in accordance with the measurement methods and procedure specified in IEEE 1528-2013.

4. SAR Limits

FCC Limit (1g Tissue)

EXPOSURE LIMITS	SAR (W/kg)	
	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average(averaged over the whole body)	0.08	0.4
Spatial Peak(averaged over any 1 g of tissue)	1.6	8.0
Spatial Peak(hands/wrists/feet/anklesaveraged over 10 g)	4.0	20.0

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is <3.75 W/kg. The expanded SAR measurement uncertainty must be $\leq 30\%$, for a confidence interval of $k=2$. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

6. Product Information and Test Setup

6.1 Product Information

Model/Type reference:	TBT-02, TBT-01, TBT-03
Model differences:	The following models of units we produce are identical in electrical, mechanical and physical structure; The difference is only in the model name, we finally have TBT-02 as test model
Hardware Version:	N/A
Software Version:	N/A
Ratings:	AC 100-240,50/60Hz
Adapter:	Input:100-240V,50/60Hz,0.3A Output :DC 5V,2A
Battery:	DC 3.7V 5000mAh
Operation Frequency:	Bluetooth: 2402-2480MHz
Type of Modulation:	Bluetooth: GFSK, π/ 4 DQPSK,8DPSK
Number Of Channel	79CH
Antenna installation:	Internal antenna,
Antenna Gain:	0.29dBi
Operation Frequency:	Bluetooth: 2402-2480MHz
Type of Modulation:	Bluetooth: GFSK,1Mbps,2Mbps
Number Of Channel:	40channel
Antenna installation:	Internal antenna,
Antenna Gain:	0.29dBi
IEEE 802.11 WLAN	802.11b
Mode Supported:	802.11g 802.11n(20MHz channel bandwidth) 802.11n(40MHz channel bandwidth)
Operation Frequency:	802.11b/g/n20:2412~2462 MHz 802.11n40:2422~2452 MHz
Type of Modulation:	DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;
Number Of Channel:	11 channels for 802.11b/g/n(HT20); 7 Channels for 802.11n(HT40);
Antenna installation:	Internal antenna
Antenna Gain:	0.29dBi

Operation Frequency: GSM 850: TX: 824~849MHz; RX: 869~894MHz;
GSM 1900: TX:1850~1910MHz; RX:1930~1990MHz;
WCDMA Band II: TX: 1852.40~1907.60MHz; Rx: 1932.60~1987.40MHz;
WCDMA Band V: TX: 826.40~846.60MHz; RX: 871.40~ 891.60MHz;

Max RF Output Power: GSM 850: 31.87 dBm,
GSM 1900: 28.55 dBm
WCDMA Band II: 22.61 dBm
WCDMA Band V: 22.74 dBm

Type of Modulation: GSM with GMSK Modulation
WCDMA Mode with BPSK Modulation

Type of Emission: GSM 850: 244KGXW
GSM 1900: 252KGXW
WCDMA Band II: 4M14F9W
WCDMA Band V: 4M15F9W

Antenna installation: Internal antenna

Antenna Gain: GSM850: -0.9dBi
GSM1900: 6.33 dBi
WCDMA Band II: 6.33 dBi
WCDMA Band V:-0.9dBi

6.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

6.3 Support Equipment

Cable of Product

No.	Cable Type	Quantity	Provider	Length (m)	Shielded	Note
1	--	--	Applicant	---	Yes/No	--
2	--	--	BCTC	--	Yes/No	--

No.	Device Type	Brand	Model	Series No.	Note
1.	---	---	---	---	---
2.	--	--	--	--	--

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

6.4 Test Environment

1. Normal Test Conditions:

Humidity(%):	35-75
Atmospheric Pressure(kPa):	95-105
Temperature(°C):	18-25

2. Extreme Test Conditions:

N/A

7. Test Facility and Test Instrument Used

7.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850
A2LA certificate registration number is: CN1212
ISED Registered No.: 23583
ISED CAB identifier: CN0017

7.2 Test Instrument Used

Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
PC	DELL	\	\	N/A	N/A
SAR Measurement system	SATIMO	\	\	N/A	N/A
Signal Generator	Keysight	83711B	US37100131	Aug. 29, 2023	Aug. 28, 2024
Multimeter	Keithley	1160271	\	Nov. 10, 2022	Nov 09, 2023
S-parameter Network Analyzer	R&S	ZVB 8	101353	Dec. 07, 2022	Dec. 06, 2023
Wideband Radio Communication Tester	R&S	CMW500	\	Nov. 10, 2022	Nov 09, 2023
E SAR PROBE 6GHz	MVG	SSE2	2623-EPGO-420	July 18, 2023	July 17, 2024
DIPOLE 835	SATIMO	SID 835	SN 47/21 DIP 0G835-621	Nov. 25, 2021	Nov. 24, 2024
DIPOLE 1900	SATIMO	SID 1900	SN 47/21 DIP 2G100-624	Nov. 25, 2021	Nov. 24, 2024
DIPOLE 2450	SATIMO	SID 2450	SN 47/21 DIP 2G450-627	Nov. 25, 2021	Nov. 24, 2024
COMOSAR OPENCoaxial Probe	SATIMO	\	\	Nov. 18, 2022	Nov. 17, 2023
SAR Locator	SATIMO	\	\	Nov. 18, 2022	Nov. 17, 2023
Communication Antenna	SATIMO	\	\	Nov. 18, 2022	Nov. 17, 2023
FEATURE PHONEPOSITIONING DEVICE	SATIMO	\	\	N/A	N/A
DUMMY PROBE	SATIMO	\	\	N/A	N/A
SAM Phantom	MVG	\	SN 13/09 SAM68	N/A	N/A
Liquid measurement Kit	HP	85033D	3423A08186	N/A	N/A
Power meter	Agilent	E4419	\	May 15, 2023	May 14, 2024
Power meter	Agilent	E4419	\	May 15, 2023	May 14, 2024
Power sensor	Agilent	E9300A	\	May 15, 2023	May 14, 2024
Power sensor	Agilent	E9300A	\	May 15, 2023	May 14, 2024
Directional Coupler	Krytar 158020	131467	\	Nov. 10, 2022	Nov 09, 2023

Note:

Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evaluate with following criteria at least on annual interval.

1. There is no physical damage on the dipole;
2. System check with specific dipole is within 10% of calibrated values;
3. The most recent return-loss results, measured at least annually, deviates by no more than 20% from the previous measurement;
4. The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the previous measurement.

Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

8. Specific Absorption Rate (SAR)

8.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field.

The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

8.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$\text{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\text{SAR} = C \left(\frac{\delta T}{\delta t} \right)$$

Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the

electrical field in the tissue by

$$\text{SAR} = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

9. SAR Measurement System

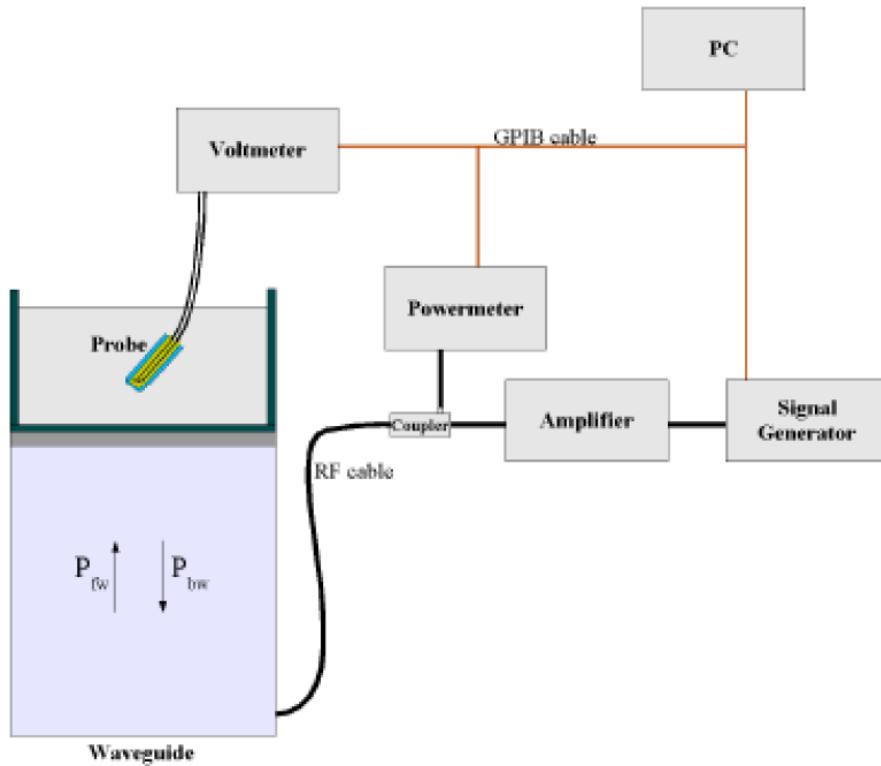
9.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.


9.2 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 46/21 EPGO362 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter : 5 mm
- Distance between probe tip and sensor center: 2.10mm
- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)
- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.50 dB
- Calibration range: 835 to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Probe calibration is realized, in compliance with EN 62209-1 and IEEE 1528 STD, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 62209-1 annex technique using reference guide at the five frequencies.

$$SAR = \frac{4(p_{fw} - p_{bw})}{ab\delta} \cos^2 \left(\pi \frac{y}{a} \right) e^{(2\pi/\delta)}$$

Where :

Pfw = Forward Power

Pbw = Backward Power

a and b = Waveguide dimensions

l = Skin depth

Keithley configuration:

Rate = Medium; Filter = ON; RDGS = 10; Filter type = Moving Average; Range auto after each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N) = SAR(N) / V_{lin}(N) \quad (N=1,2,3)$$

The linearised output voltage $V_{lin}(N)$ is obtained from the displayed output voltage $V(N)$ using

$$V_{lin}(N) = V(N) * (1 + V(N) / DCP(N)) \quad (N=1,2,3)$$

where DCP is the diode compression point in mV.

9.3 Probe Calibration Process

Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an with CALISAR, Antenna proprietary calibration system.

Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1mW/cm².

Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

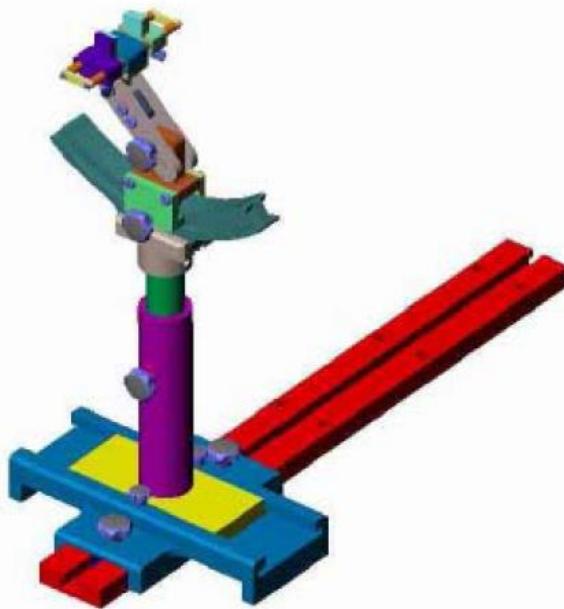
$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

Δt = exposure time (30 seconds),
 C = heat capacity of tissue (brain or muscle),
 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

$$\text{SAR} = \frac{|E|^2 \cdot \sigma}{\rho}$$

Where:


σ = simulated tissue conductivity,
 ρ = Tissue density (1.25 g/cm³ for brain tissue)

9.4 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

9.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

10. Tissue Simulating Liquids

10.1 Composition of Tissue Simulating Liquid

For the measurement of the field distribution inside the SAM phantom with SMTIMO, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. Please see the following photos for the liquid height.

Liquid Height for Body SAR

The Composition of Tissue Simulating Liquid

Frequency (MHz)	Water (%)	Salt (%)	1,2-Propane diol (%)	HEC (%)	Preventol (%)	DGBE (%)
Head/Body						
835	40.3	1.4	57.9	0.2	0.2	0
900	40.3	1.4	57.9	0.2	0.2	0
1800-2000	55.2	0.3	0	0	0	44.5
2450	55.0	0.1	0	0	0	44.9
2600	54.9	0.1	0	0	0	45.0

Frequency (MHz)	Water (%)	Hexyl Carbitol (%)	Triton X-100 (%)
Head/Body			
5000-6000	65.52	17.24	17.24