

RF TEST REPORT

Product Name: USB3.0 wifi6 Adapter

Model Name: WF-B122, WF-B120, WF-B146

FCC ID: 2BC33WF-B122

Issued For : Shenzhen Yuchengde Technology Co. , Ltd.

Room 301 Office Building of Liyin Electronic Co. , Ltd, No. 49
Jinkang Road, Jinsha community, Kengzi Street, Pingshan
District, Shenzhen City

Issued By : Shenzhen LGT Test Service Co., Ltd.

Room 205, Building 13, Zone B, Zhenxiong Industrial Park,
No.177, Renmin West Road, Jinsha, Kengzi Street, Pingshan
District, Shenzhen, Guangdong, China

Report Number: LGT23I008RF02

Sample Received Date: Sep. 07, 2023

Date of Test: Sep. 07, 2023 – Sep. 28, 2023

Date of Issue: Sep. 28, 2023

The test report is effective only with both signature and specialized stamp. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report only apply to the tested sample.

TEST REPORT CERTIFICATION

Applicant: Shenzhen Yuchengde Technology Co. , Ltd.
Address: Room 301 Office Building of Liyin Electronic Co. , Ltd, No. 49
Jinkang Road, Jinsha community, Kengzi Street, Pingshan District, Shenzhen City

Manufacturer: Shenzhen Yuchengde Technology Co. , Ltd.
Address: Room 301 Office Building of Liyin Electronic Co. , Ltd, No. 49
Jinkang Road, Jinsha community, Kengzi Street, Pingshan District, Shenzhen City

Product Name: USB3.0 wifi6 Adapter

Trademark: N/A

Model Name: WF-B122, WF-B120, WF-B146

Sample Status: Normal

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC Part 15.407, Subpart E ANSI C63.10-2013	PASS

Prepared by:

Zane Shan

Zane Shan
Engineer

Approved by:

Vita Li

Vita Li
Technical Director

Table of Contents

	Page
1 . SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2 . GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF TEST MODES	10
2.3 TEST SOFTWARE AND POWER LEVEL	11
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	12
3 . EMC EMISSION TEST	13
3.1 CONDUCTED EMISSION MEASUREMENT	13
3.2 RADIATED EMISSION AND (BANDEdge) MEASUREMENT	17
4. POWER SPECTRAL DENSITY TEST	28
4.1 LIMIT	28
4.2 TEST PROCEDURE	28
4.3 DEVIATION FROM STANDARD	28
4.4 TEST SETUP	29
4.5 EUT OPERATION CONDITIONS	29
4.6 TEST RESULTS	29
5. BANDWIDTH MEASUREMENT	30
5.1 EMISSION BANDWIDTH (EBW) 26 BANDWID PROCEDURES / LIMIT	30
5.2 OCCUPIED BANDWIDTH (99%) TEST APPLIED PROCEDURES / LIMIT	31
5.3 MINIMUM EMISSION BANDWIDTH(6 DB) PROCEDURES / LIMIT	32
6. MAXIMUM CONDUCTED OUTPUT POWER	33
6.1 LIMIT	33
6.2 TEST PROCEDURE	33
6.3 DEVIATION FROM STANDARD	33
6.4 TEST SETUP	33
6.5 EUT OPERATION CONDITIONS	33
6.6 TEST RESULTS	33
7. AUTOMATICALLY DISCONTINUE TRANSMISSION	34
7.1 LIMIT OF AUTOMATICALLY DISCONTINUE TRANSMISSION	34
7.2 TEST RESULT OF AUTOMATICALLY DISCONTINUE TRANSMISSION	34
8. ANTENNA REQUIREMENT	35

Table of Contents

	Page
8.1 STANDARD REQUIREMENT	35
8.2 EUT ANTENNA	35
APPENDIX I: TEST RESULTS	36
DUTY CYCLE	36
MAXIMUM CONDUCTED OUTPUT POWER	56
-26DB BANDWIDTH	58
OCCUPIED CHANNEL BANDWIDTH	66
MAXIMUM POWER SPECTRAL DENSITY LEVEL	81
-6DB BANDWIDTH	106

Revision History

Rev.	Issue Date	Contents
00	Sep. 28, 2023	Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

Part 15.407, KDB 789033 D02 General U-NII Test Procedures New Rules v02r01

FCC Part 15.407		
FCC standard	Test Item	Results
15.207	AC Conducted Emission	PASS
15.407 (a) /15.407 (e)	26dB/6dB &99% Bandwidth	PASS
15.407(a)	Maximum Conducted Output Power	PASS
15.407(b)/15.205/15.209	Radiated Emission And (bandedge Emissions) Measurement	PASS
15.407(a)	Power Spectral Density	PASS
15.407(c)	Automatically Discontinue Transmission	PASS
15.203/15.204	Antenna Requirement	PASS
15.207/S15.407(b) (6)	Conducted Emission	PASS
15.407(g)	Frequency Stability	PASS

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report.

(2) All tests are according to ANSI C63.10-2013.

1.1 TEST FACTORY

Company Name:	Shenzhen LGT Test Service Co., Ltd.
Address:	Room 205, Building 13, Zone B, Zhenxiong Industrial Park, No.177, Renmin West Road, Jinsha, Kengzi Street, Pingshan District, Shenzhen, Guangdong, China
Accreditation Certificate:	A2LA Certificate No.: 6727.01
	FCC Registration No.: 746540
	CAB ID: CN0136

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately **95 %**.

No.	Item	Uncertainty
1	RF output power, conducted	$\pm 0.68\text{dB}$
2	Unwanted Emissions, conducted	$\pm 2.988\text{dB}$
3	All emissions, radiated 9K-30MHz	$\pm 2.84\text{dB}$
4	All emissions, radiated 30M-1GHz	$\pm 4.39\text{dB}$
5	All emissions, radiated 1G-6GHz	$\pm 5.10\text{dB}$
6	All emissions, radiated>6G	$\pm 5.48\text{dB}$
7	Conducted Emission (9KHz-150KHz)	$\pm 2.79\text{dB}$
8	Conducted Emission (150KHz-30MHz)	$\pm 2.80\text{dB}$

Note: The measurement uncertainty is not included in the test result.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name:	USB3.0 wifi6 Adapter
Trademark:	N/A
Model Name:	WF-B122
Series Model:	WF-B120, WF-B146
Model Difference:	Only different is mode name.
Product Description:	Operation Frequency: IEEE 802.11a/n(HT20)/ac/ax(VHT20): 5.180GHz-5.240GHz IEEE 802.11n(HT40)/ac/ax(HT40): 5.190GHz-5.230GHz IEEE 802.11ac/ax(VHT80): 5.210GHz IEEE 802.11a/n(HT20)/ac/ax(VHT20): 5.745GHz-5.825GHz IEEE 802.11a/n(HT40)/ac/ax(VHT40): 5.755GHz-5.795GHz IEEE 802.11ac/ax(VHT80): 5.775GHz
	Modulation Type: 802.11a(OFDM): BPSK,QPSK,16-QAM,64-QAM 802.11n(OFDM): BPSK,QPSK,16-QAM,64-QAM 802.11ac(OFDM): BPSK,QPSK,16-QAM,64-QAM,256-QAM 802.11ax(OFDM):BPSK,QPSK,16-QAM,64-QAM,256-QAM, 1024-QAM
	Antenna Designation: Ant 1: 1 External antenna Ant 2: 1 PCB antenna
	Antenna Gain(dBi) Ant 1: -1.5 Ant 2: -1.5 MIMO: 1.51 (According to KDB662911, Ant 1 & Ant 2 Directional gain=GANT +10log(N)dbi =1.51dbi)
	More details of EUT technical specification, please refer to the User Manual.
Test Channel:	Please refer to the Note 3.
Rating:	Input: DC 5V
Hardware Version:	V2.0
Software Version:	V5.0
Connecting I/O Port(s):	Please refer to the Note 1.

Note

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
2. The antenna information refers to the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

Operation Frequency of channel			
5.180GHz-5.240GHz		5.745GHz-5.825GHz	
Channel	Frequency	Channel	Channel
36	5180	149	149
38	5190	151	151
40	5200	153	153
42	5210	157	157
44	5220	159	159
46	5230	161	161
48	5240	165	165

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Carrier Frequency Channel

Channel List for 802.11a/n/ac/ax(20MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	149	5745	--	--	--	--
40	5200	157	5785	--	--	--	--
48	5240	165	5825	--	--	--	--

Channel List for 802.11n/ac/ax(40MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
38	5190	151	5755	--	--	--	--
46	5230	159	5795	--	--	--	--
134	5670	--	--	--	--	--	--

Channel List for 802.11ac/ax(80MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
42	5210	155	5775	--	--	--	--
122	5610	--	--	--	--	--	--

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Data Rate
Mode 1	TX IEEE 802.11a HT20 CH36&CH40&CH48	6 Mbps
Mode 2	TX IEEE 802.11a HT20 CH149&CH157&CH165	6 Mbps
Mode 3	TX IEEE 802.11n HT20 ax HE40CH36&CH40&CH48	MCS 0
Mode 4	TX IEEE 802.11ac VHT20 ax HE40CH36&CH40&CH48	NSS1 MCS0
Mode 5	TX IEEE 802.11n HT20 ax HE40 CH149&CH157&CH165	MCS 0
Mode 6	TX IEEE 802.11ac VHT20/ ax HE 20CH149&CH157&CH165	NSS1 MCS0
Mode 7	TX IEEE 802.11n HT40 CH38&CH46	MCS 0
Mode 8	TX IEEE 802.11 ax HE40 CH38&CH46	NSS1 MCS0
Mode 9	TX IEEE 802.11 ax HE40 CH151&CH159	MCS 0
Mode 10	TX IEEE 802.11ax HE40 CH151&CH159	NSS1 MCS0
Mode 11	TX IEEE 802.11ac VHT80 /ax HE80 CH42	NSS1 MCS0
Mode 12	TX IEEE 802.11ac VHT80 /ax HE80 CH155	NSS1 MCS0

Note: (1) The measurements are performed at the highest, middle, lowest available channels.

(2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

(3) We have be tested for all avaible U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation.

(4) The battery is fully-charged during the radited and RF conducted test.

AC Conducted Emission

Test Case	
AC Conducted Emission	Mode 13: TX Mode

2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test software Version		Test program: 5G WIFI B1		
DRTU	Mode Or Modulation type	SISO Power setting	MIMO Power setting	
	a	7	-	
	n20	7	5	
	n40	7	5	
	ac80	7	5	
	ax80	6	4	
Test software Version		Test program: 5G WIFI B4		
DRTU	Mode Or Modulation type	SISO Power setting	MIMO Power setting	
	a	7	-	
	n20	7	5	
	n40	7	5	
	ac80	7	5	
	ax80	6	4	

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Accessories Equipment

Description	Manufacturer	Model	S/N	Rating

Auxiliary Equipment

Description	Manufacturer	Model	S/N	Rating
Personal Computer	AOC	00331-10000-00001-AA575	N/A	N/A
Power cord	N/A	N/A	N/A	1.8m

Note:

- (1) For detachable type I/O cable should be specified the length in cm in «Length» column.

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Conducted Emission					
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until
EMI Test Receiver	R&S	ESU8	100372	2023.04.13	2024.04.12
LISN	COM-POWER	LI-115	02032	2023.04.07	2024.04.06
LISN	SCHWARZBECK	NNLK 8121	00847	2023.04.07	2024.04.06
LISN	SCHWARZBECK	NNLK 8122	00160	2023.04.07	2024.04.06
Transient Limiter	CYBERTEK	EM5010A	E2250100049	2023.04.07	2024.04.06
Temperature & Humidity	KTJ	TA218B	N.A	2023.04.24	2024.04.23
Testing Software	EMC-I_V1.4.0.3_SKET				

Radiated Test equipment					
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until
EMI Test Receiver	R&S	ESU8	100372	2023.04.13	2024.04.12
Active loop Antenna	ETS	6502	00049544	2022.06.02	2025.06.01
Spectrum Analyzer	Keysight	N9010B	MY60242508	2023.04.10	2024.04.09
Bilog Antenna(30M-1G)	SCHWARZBECK	VULB 9168	2705	2022.06.05	2025.06.04
Horn Antenna(1-18G)	SCHWARZBECK	3115	10SL0060	2022.06.02	2025.06.01
Horn Antenna(18-40G)	A-INFO	LB-180400-KF	J211060273	2022.06.08	2025.06.07
Pre-amplifier(30M-1G)	EMtrace	RP01A	02019	2023.04.07	2024.04.06
Pre-amplifier(1-26.5G)	Agilent	8449B	3008A4722	2023.04.07	2024.04.06
Pre-amplifier(18-40G)	com-mw	LNPA_18-40-01	18050003	2023.04.07	2024.04.06
Wireless Communications Test Set	R&S	CMW 500	137737	2023.04.13	2024.04.12
Temperature & Humidity	KTJ	TA218B	N.A	2023.04.24	2024.04.23
Testing Software	EMC-I_V1.4.0.3_SKET				

Conducted Test equipment					
Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Until
Signal Analyzer	Keysight	N9010B	MY60242508	2023.04.10	2024.04.09
Wireless Communications Test Set	R&S	CMW 500	137737	2023.04.13	2024.04.12
MXG Vector Signal Generator	Keysight	N5182B	MY59100717	2023.04.07	2024.04.06
Power Sensor	MW	MW100-RFCB	MW220324L G-33	2023.04.13	2024.04.12
Temperature & Humidity	KTJ	TA218B	N.A	2023.04.24	2024.04.23
Temperature& Humidity test chamber	AISRY	LX-1000L	171200018	2023.05.10	2024.05.09
Attenuator	eastsheep	90db	N.A	2023.04.10	2024.04.09
Testing Software	MTS8200_V2.0.0.0_MW				

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Class B (dBuV)		Standard
	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	56.00	46.00	CISPR
5.0 -30.0	60.00	50.00	CISPR

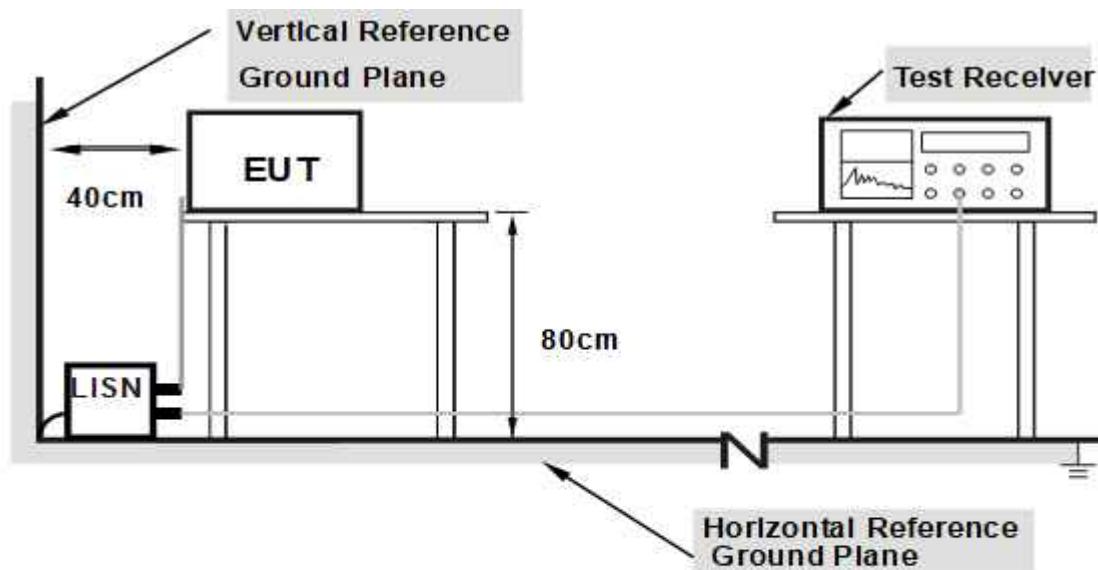
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of “ * ” marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


3.1.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

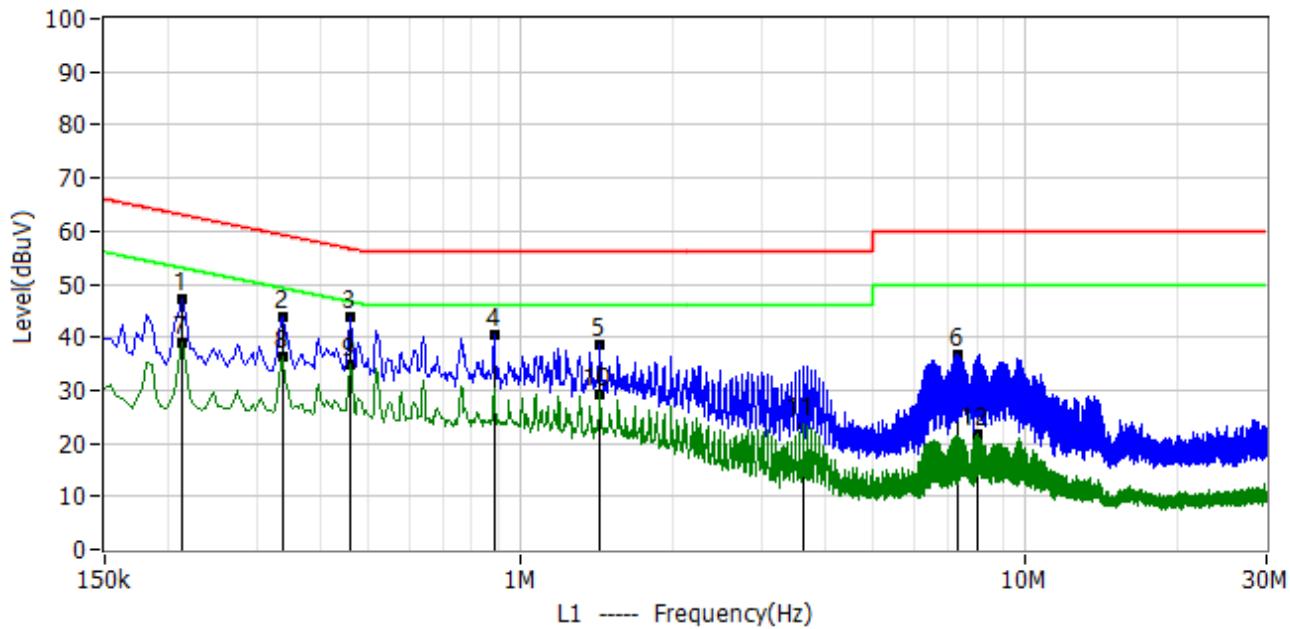
3.1.3 DEVIATION FROM TEST STANDARD

No deviation

3.1.4 TEST SETUP

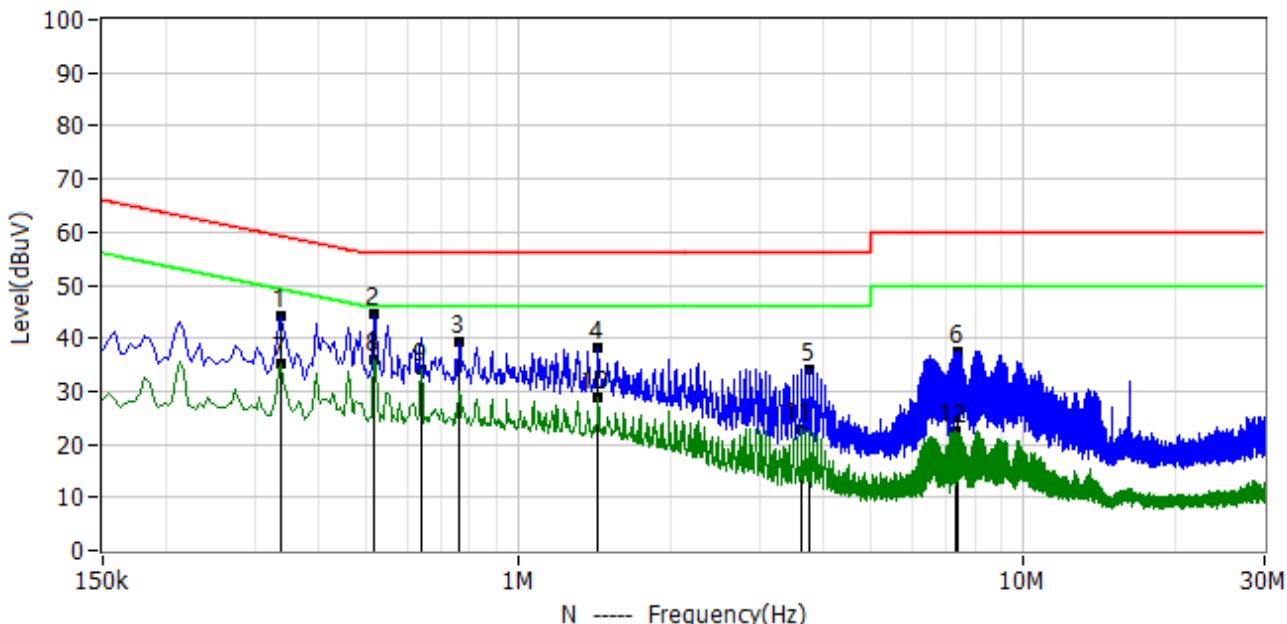
Note:

1. Support units were connected to second LISN.
2. Both of LISNs (A MN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.


3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.6 TEST RESULTS


Project: LGT23I008	Test Engineer: LiuH
EUT: USB3.0 wifi6 Adapter	Temperature: 27.6°C
M/N: WF-B122	Humidity: 56%RH
Test Voltage: DC 5V	Test Data: 2023-09-08
Test Mode: TX 802.11a 5180	
Note:	

No.	Frequency MHz	Reading dBuV	Factor dB	Level dBuV	Limit dBuV	Margin dB	Detector	Polar
1*	0.214	36.58	10.60	47.18	63.05	-15.87	QP	L1
2*	0.338	33.31	10.59	43.90	59.25	-15.36	QP	L1
3*	0.458	33.32	10.58	43.90	56.73	-12.83	QP	L1
4*	0.886	29.69	10.58	40.27	56.00	-15.73	QP	L1
5*	1.434	27.90	10.66	38.56	56.00	-17.44	QP	L1
6*	7.346	26.09	10.77	36.86	60.00	-23.14	QP	L1
7*	0.214	28.17	10.60	38.77	53.05	-14.28	AV	L1
8*	0.338	25.90	10.59	36.49	49.25	-12.76	AV	L1
9*	0.458	24.13	10.58	34.71	46.73	-12.02	AV	L1
10*	1.434	18.74	10.66	29.40	46.00	-16.60	AV	L1
11*	3.634	13.03	10.72	23.75	46.00	-22.25	AV	L1
12*	8.038	10.88	10.79	21.67	50.00	-28.33	AV	L1

Project: LGT23I008	Test Engineer: LiuH
EUT: USB3.0 wifi6 Adapter	Temperature: 27.6°C
M/N: WF-B122	Humidity: 56%RH
Test Voltage: DC 5V	Test Data: 2023-09-08
Test Mode: TX 802.11a 5180	
Note:	

No.	Frequency MHz	Reading dBuV	Factor dB	Level dBuV	Limit dBuV	Margin dB	Detector	Polar
1*	0.338	33.61	10.59	44.20	59.25	-15.05	QP	N
2*	0.518	33.87	10.58	44.45	56.00	-11.55	QP	N
3*	0.762	28.85	10.58	39.43	56.00	-16.57	QP	N
4*	1.438	27.40	10.66	38.06	56.00	-17.94	QP	N
5*	3.770	23.54	10.72	34.26	56.00	-21.74	QP	N
6*	7.410	26.78	10.78	37.56	60.00	-22.44	QP	N
7*	0.338	24.48	10.59	35.07	49.25	-14.18	AV	N
8*	0.518	25.41	10.58	35.99	46.00	-10.01	AV	N
9*	0.642	23.46	10.58	34.04	46.00	-11.96	AV	N
10*	1.438	18.00	10.66	28.66	46.00	-17.34	AV	N
11*	3.634	12.00	10.72	22.72	46.00	-23.28	AV	N
12*	7.338	11.81	10.78	22.59	50.00	-27.41	AV	N

3.2 RADIATED EMISSION AND (BANDEDGE) MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

In case the emission fall within the restricted band specified on 15.407(b)7&15.205/209(a), then the limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class B (dBuV/m) (at 3M)	
	PEAK	AVERAGE
Above 1000	68.2	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15E.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Note: In case the emission radiated emission above 1000MHz fall within the restricted band the restricted frequency bands, the peak limit is 74 dBuV/m.

LIMITS OF EMISSIONS OUTSIDE OF THE FREQUENCY BANDS

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
 - (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Note: dBuV/m(at 3M) = EIRP(dBm) + 95.3.

Peak Limit = -27dBm/MHz + 95.3 = 68.3 dBuV/m.

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier harmonic (Peak/AV)
RB / VB (emission in restricted band)	1 MHz / 1 MHz, AV=1 MHz /3 MHz

For Band edge

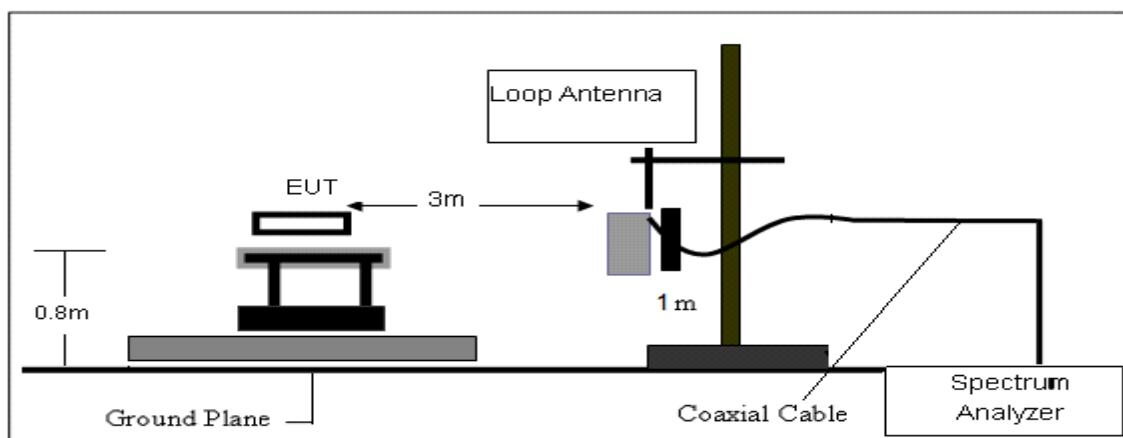
Spectrum Parameter	Setting
Detector	Peak
RB / VB (emission in restricted band)	1 MHz / 1 MHz, AV=1 MHz /3 MHz

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2 TEST PROCEDURE

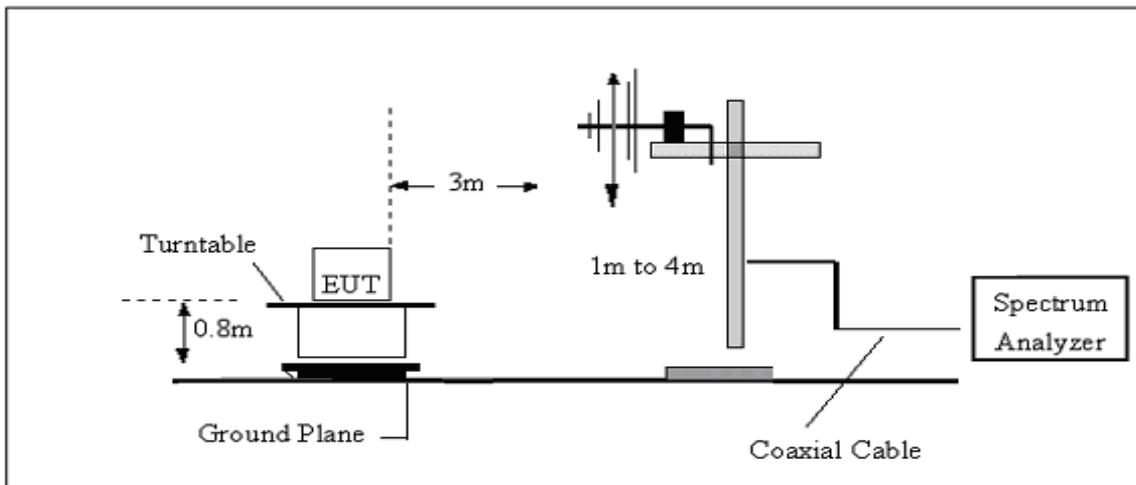
- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

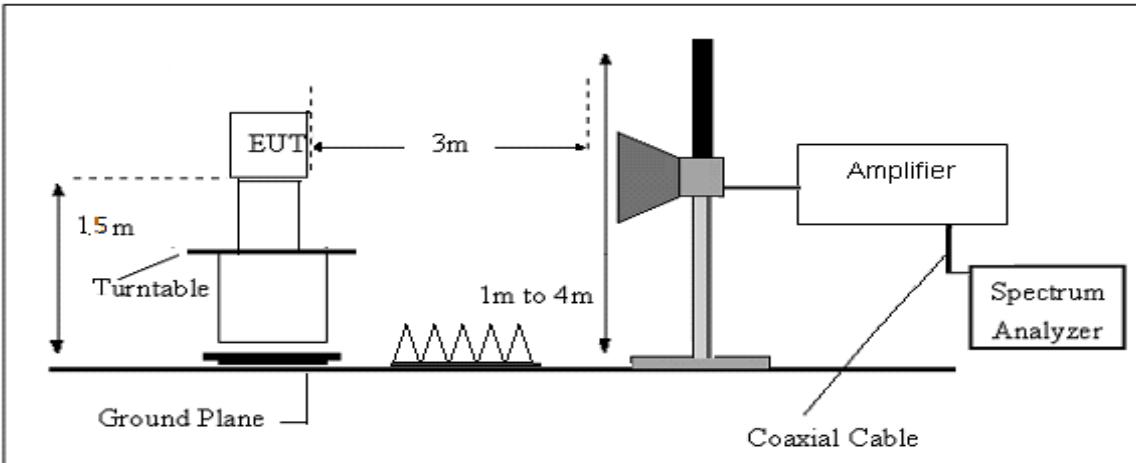

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

3.2.2 DEVIATION FROM TEST STANDARD

No deviation


3.2.3 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency (MHz)	FS (dB μ V/m)	RA (dB μ V/m)	AF (dB)	CL (dB)	AG (dB)	Factor (dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

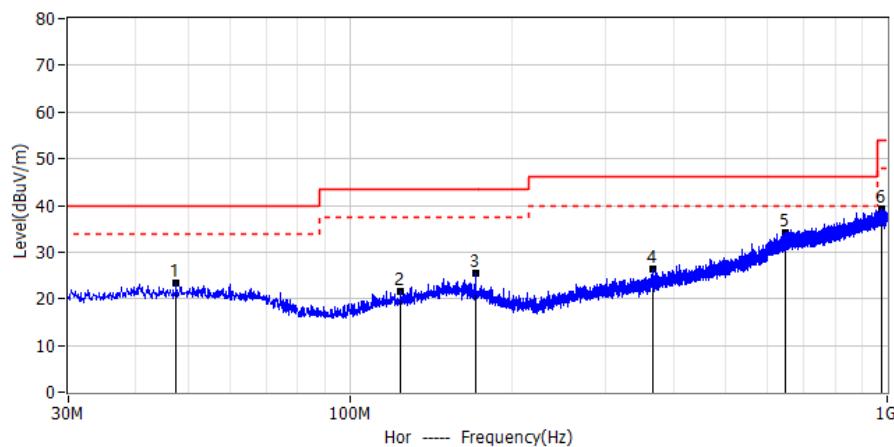
3.2.6 TEST RESULTS

Results of Radiated Emissions (9 KHz~30MHz)

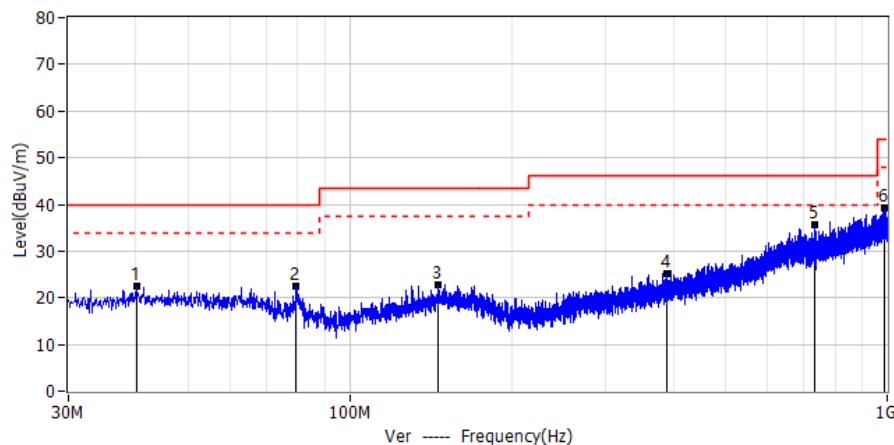
No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Remark
1*	-	-	-	-	-	-	-	See Note

Note:

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and the permissible value has no need to be reported.


Distance extrapolation factor = $40 \log (\text{specific distance} / \text{test distance})$ (dB);

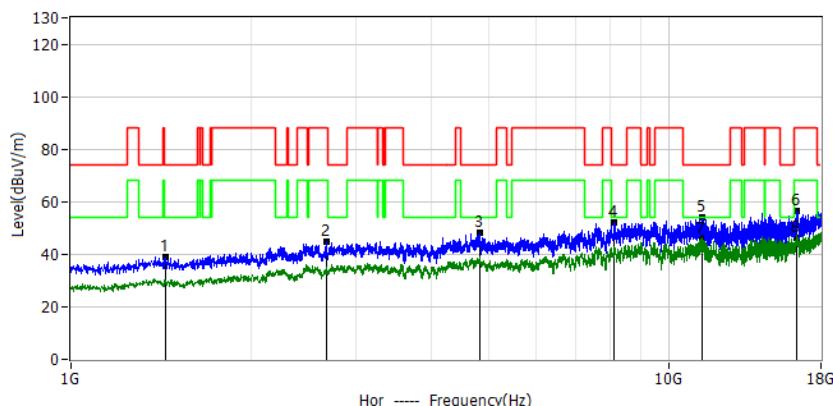
Limit line = specific limits (dBuV) + distance extrapolation factor.

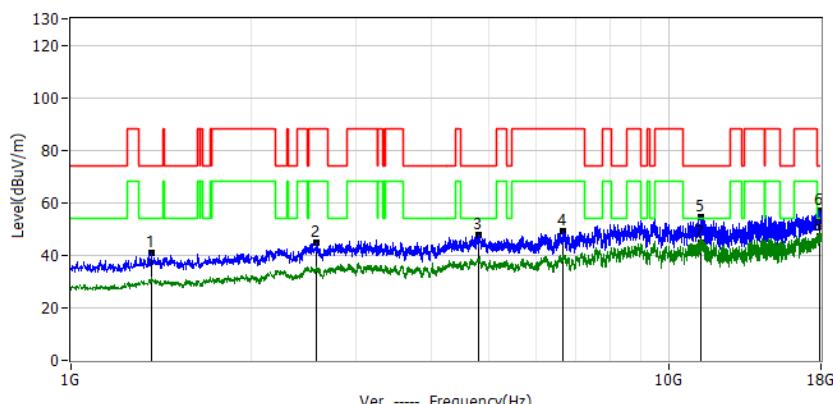


Results of Radiated Emissions (30MHz~1000MHz)

Project: LGT23I008	Test Engineer: Xiangdong Ma
EUT: USB3.0 wifi6 Adapter	Temperature: 29.4°C
M/N: WF-B122	Humidity: 46%RH
Test Voltage: DC 5V	Test Data: 2023-09-25
Test Mode: TX 802.11a 5180	
Note:	

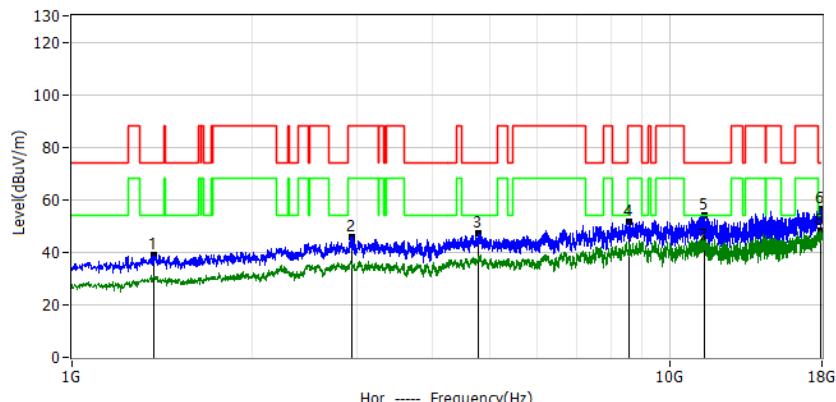
No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	47.581MHz	4.07	19.29	23.36	40.00	-16.64	PK	Hor
2*	124.211MHz	3.66	18.00	21.66	43.50	-21.84	PK	Hor
3*	171.256MHz	5.79	19.66	25.45	43.50	-18.05	PK	Hor
4*	366.469MHz	4.45	21.77	26.22	46.00	-19.78	PK	Hor
5*	645.465MHz	5.15	29.13	34.28	46.00	-11.72	PK	Hor
6*	976.720MHz	4.94	34.46	39.40	54.00	-14.60	PK	Hor

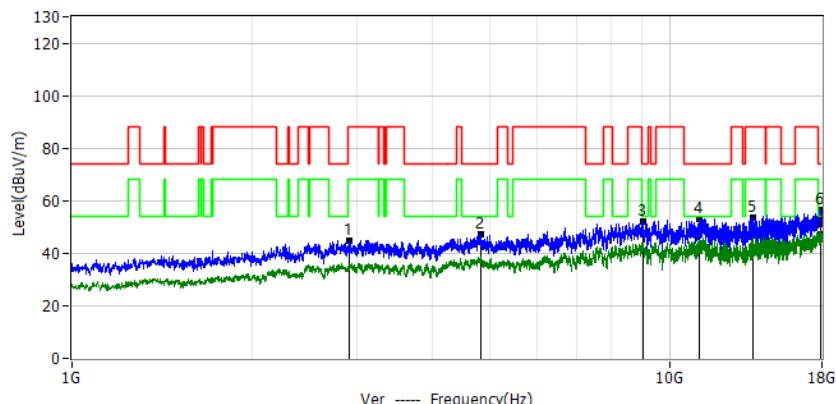

No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	40.185MHz	3.21	19.37	22.58	40.00	-17.42	PK	Ver
2*	79.470MHz	7.19	15.35	22.54	40.00	-17.46	PK	Ver
3*	146.521MHz	3.21	19.66	22.87	43.50	-20.63	PK	Ver
4*	388.051MHz	2.72	22.48	25.20	46.00	-20.80	PK	Ver
5*	734.826MHz	5.50	30.24	35.74	46.00	-10.26	PK	Ver
6*	986.056MHz	4.79	34.51	39.30	54.00	-14.70	PK	Ver


Results of Radiated Emissions (Above 1000MHz)

Note: All the modes have been tested, found worst case at IEEE 802.11ac80, recorded the worst case results in this report.

Project: LGT23I008	Test Engineer: Xiangdong Ma
EUT: USB3.0 wifi6 Adapter	Temperature: 28°C
M/N: WF-B122	Humidity: 57%RH
Test Voltage: DC 5V	Test Data: 2023-09-24
Test Mode: 802.11ac80 5210	
Note:	


No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	1439.9000	60.14	-21.17	38.97	74.00	-35.03	PK	Hor
2*	2672.4000	55.03	-10.07	44.96	88.20	-43.24	PK	Hor
3*	4825.0000	54.26	-6.01	48.25	74.00	-25.75	PK	Hor
4*	8123.0000	55.86	-3.65	52.21	74.00	-21.79	PK	Hor
5*	11372.1000	52.39	1.85	54.24	74.00	-19.76	PK	Hor
6*	16370.1000	49.60	6.84	56.44	88.20	-31.76	PK	Hor
7*	11372.1000	43.95	1.85	45.80	54.00	-8.20	AV	Hor
8*	16370.1000	39.36	6.84	46.20	68.20	-22.00	AV	Hor

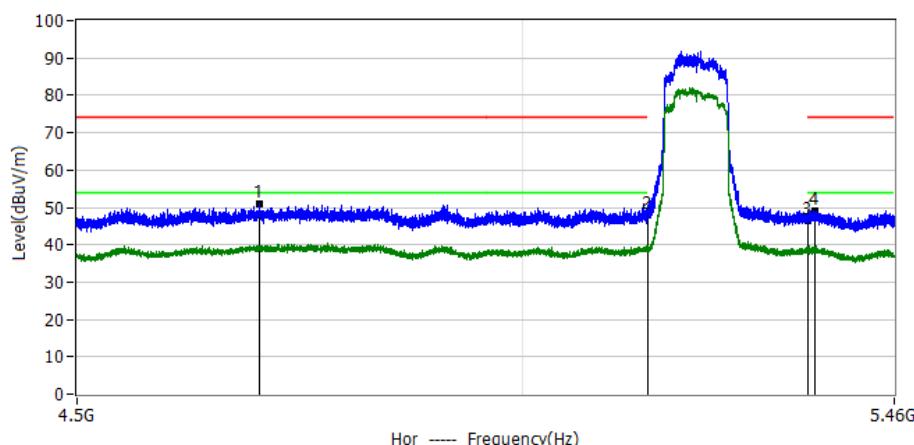

No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	1363.4000	62.74	-21.67	41.07	74.00	-32.93	PK	Ver
2*	2574.6000	55.41	-10.59	44.82	88.20	-43.38	PK	Ver
3*	4818.6000	53.49	-6.00	47.49	74.00	-26.51	PK	Ver
4*	6661.0000	55.34	-6.28	49.06	88.20	-39.14	PK	Ver
5*	11344.5000	52.77	1.83	54.60	74.00	-19.40	PK	Ver
6*	17940.5000	48.66	8.48	57.14	74.00	-16.86	PK	Ver
7*	11344.5000	43.07	1.83	44.90	54.00	-9.10	AV	Ver
8*	17940.5000	38.52	8.48	47.00	54.00	-7.00	AV	Ver

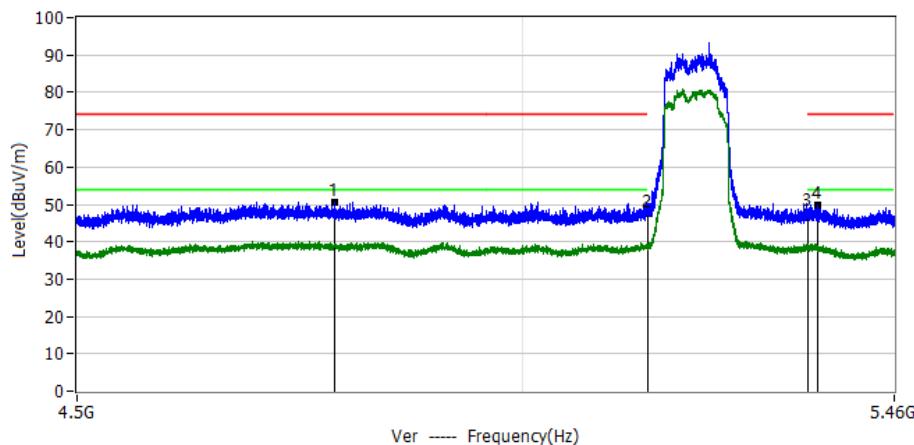
Project: LGT23I008	Test Engineer: Xiangdong Ma
EUT: USB3.0 wifi6 Adapter	Temperature: 28°C
M/N: WF-B122	Humidity: 57%RH
Test Voltage: DC 5V	Test Data: 2023-09-24
Test Mode: 802.11ac80 5775	
Note:	

No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	1367.6000	60.66	-21.64	39.02	74.00	-34.98	PK	Hor
2*	2946.5000	54.59	-8.62	45.97	88.20	-42.23	PK	Hor
3*	4776.1000	52.96	-5.97	46.99	74.00	-27.01	PK	Hor
4*	8571.4000	53.78	-2.38	51.40	88.20	-36.80	PK	Hor
5*	11448.6000	52.17	1.89	54.06	74.00	-19.94	PK	Hor
6*	17944.7000	48.00	8.48	56.48	74.00	-17.52	PK	Hor
7*	11448.6000	40.71	1.89	42.60	54.00	-11.40	AV	Hor
8*	17944.7000	39.82	8.48	48.30	54.00	-5.70	AV	Hor

No.	Frequency MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	2916.7000	53.79	-8.78	45.01	88.20	-43.19	PK	Ver
2*	4837.7000	53.46	-6.02	47.44	74.00	-26.56	PK	Ver
3*	9028.2000	53.44	-1.17	52.27	74.00	-21.73	PK	Ver
4*	11246.7000	51.27	1.78	53.05	74.00	-20.95	PK	Ver
5*	13803.1000	48.15	5.19	53.34	88.20	-34.86	PK	Ver
6*	17949.0000	47.81	8.48	56.29	74.00	-17.71	PK	Ver
7*	17949.0000	38.72	8.48	47.20	54.00	-6.80	AV	Ver

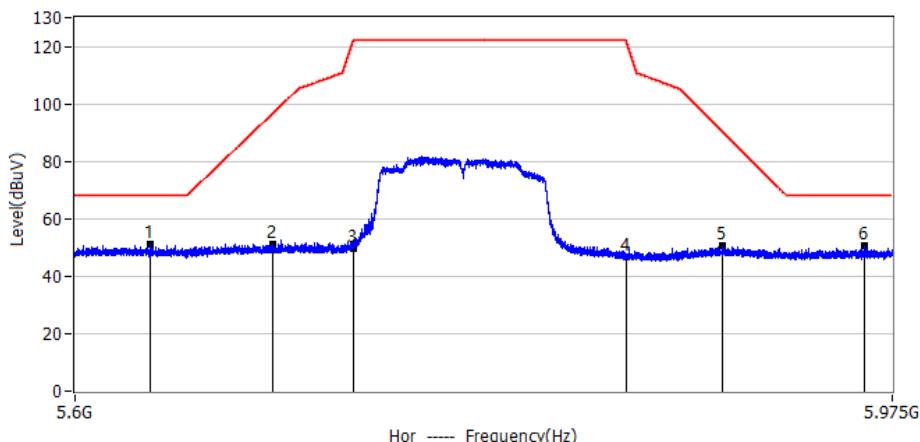
Remark:

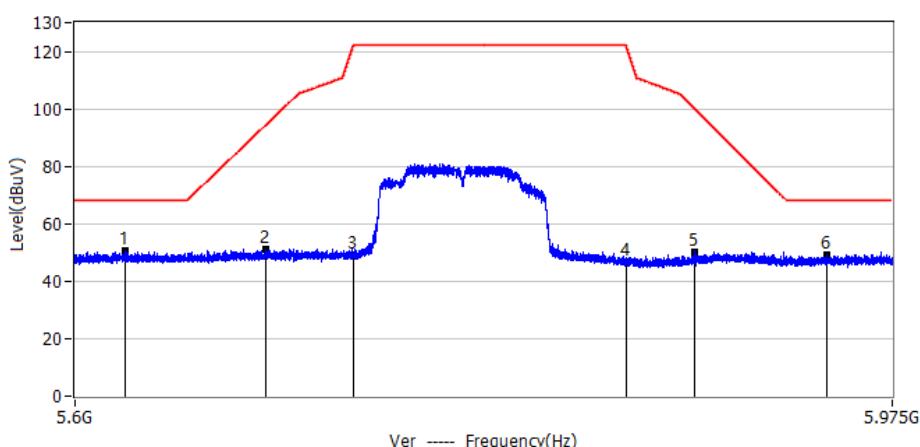

In frequency ranges 18~40GHz no any other harmonic emissions detected which are tested to compliance with the limit. No recording in the test report. No any other emissions level which are attenuated less than 20dB below the limit. No recording in the test report.


3.2.7 TEST RESULTS(Band edge Requirements)

Note: All the modes have been tested, found worst case at IEEE 802.11ax80, recorded the worst case results in this report.

Project: LGT23I008	Test Engineer: Xiangdong Ma
EUT: USB3.0 wifi6 Adapter	Temperature: 28°C
M/N: WF-B122	Humidity: 57%RH
Test Voltage: DC 5V	Test Data: 2023-09-24
Test Mode: 802.11ax80 5210	
Note:	


No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	4.6990GHz	56.83	-5.91	50.92	74.00	-23.08	PK	Hor
2*	5.1500GHz	54.42	-6.62	47.80	74.00	-26.20	PK	Hor
3*	5.3500GHz	53.76	-7.26	46.50	74.00	-27.50	PK	Hor
4*	5.3593GHz	56.44	-7.29	49.15	74.00	-24.85	PK	Hor


No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Detector	Polar
1*	4.7832GHz	56.63	-5.97	50.66	74.00	-23.34	PK	Ver
2*	5.1500GHz	54.22	-6.62	47.60	74.00	-26.40	PK	Ver
3*	5.3500GHz	55.36	-7.26	48.10	74.00	-25.90	PK	Ver
4*	5.3624GHz	57.06	-7.30	49.76	74.00	-24.24	PK	Ver

Project: LGT23I008	Test Engineer: Xiangdong Ma
EUT: USB3.0 wifi6 Adapter	Temperature: 28°C
M/N: WF-B122	Humidity: 57%RH
Test Voltage: DC 5V	Test Data: 2023-09-24
Test Mode: 802.11ax80 5775	
Note:	

No.	Frequency	Reading dBuV	Factor dB	Level dBuV	Limit dBuV	Margin dB	Detector	Polar
1*	5.6335GHz	58.94	-7.69	51.25	68.20	-16.95	PK	Hor
2*	5.6883GHz	58.86	-7.66	51.20	96.55	-45.35	PK	Hor
3*	5.7250GHz	57.55	-7.65	49.90	122.20	-72.30	PK	Hor
4*	5.8500GHz	54.50	-7.60	46.90	122.20	-75.20	PK	Hor
5*	5.8949GHz	58.12	-7.58	50.54	90.44	-39.90	PK	Hor
6*	5.9618GHz	57.98	-7.56	50.42	68.20	-17.78	PK	Hor

No.	Frequency	Reading dBuV	Factor dB	Level dBuV	Limit dBuV	Margin dB	Detector	Polar
1*	5.6225GHz	58.15	-7.69	50.46	68.20	-17.74	PK	Ver
2*	5.6851GHz	58.75	-7.67	51.08	94.23	-43.14	PK	Ver
3*	5.7250GHz	56.65	-7.65	49.00	122.20	-73.20	PK	Ver
4*	5.8500GHz	54.10	-7.60	46.50	122.20	-75.70	PK	Ver
5*	5.8821GHz	57.98	-7.59	50.39	99.93	-49.54	PK	Ver
6*	5.9443GHz	56.85	-7.56	49.29	68.20	-18.91	PK	Ver

4. POWER SPECTRAL DENSITY TEST

4.1 LIMIT

1. For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
3. For the band 5.725-5.850 GHz, the peak power spectral density shall not exceed 30 dBm in any 500kHz band. If transmitting antenna directional gain is greater than 6 dBi, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.2 TEST PROCEDURE

1. The setting follows Method SA-1 of FCC KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.

For devices operating in the band, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (*i.e.*, 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:

- a) Set RBW $\geq 1/T$, where T is defined in section II.B.I.a).
- b) Set VBW ≥ 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add $10 \log (500\text{kHz}/\text{RBW})$ to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add $10 \log (1\text{MHz}/\text{RBW})$ to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 kHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

4.3 DEVIATION FROM STANDARD

No deviation.

4.4 TEST SETUP

4.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

4.6 TEST RESULTS

For the measurement records, refer to the appendix I.

5. BANDWIDTH MEASUREMENT

5.1 EMISSION BANDWIDTH (EBW) 26 BANDWID PROCEDURES / LIMIT

The following procedure shall be used for measuring 26 bandwidth.

5.1.1 TEST PROCEDURE

1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
2. Set RBW = approximately 1% of the emission bandwidth.
3. Set the VBW > =RBW.
4. Detector = Peak.
5. Trace mode = max hold.
6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5 TEST RESULTS

For the measurement records, refer to the appendix I.

5.2 OCCUPIED BANDWIDTH (99%) TEST APPLIED PROCEDURES / LIMIT

The following procedure shall be used for measuring (99 %) power bandwidth.

5.2.1 TEST PROCEDURE

1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures v02r01. The following procedure shall be used for measuring (99 %) power bandwidth:
 1. Set center frequency to the nominal EUT channel center frequency.
 2. Set span = 1.5 times to 5.0 times the OBW.
 3. Set RBW = 1 % to 5 % of the OBW
 4. Set VBW $\geq 3 \cdot \text{RBW}$
 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
 6. Use the 99 % power bandwidth function of the instrument (if available).
 7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

5.2.2 DEVIATION FROM STANDARD

No deviation.

5.2.3 TEST SETUP

5.2.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.2.5 TEST RESULTS

For the measurement records, refer to the appendix I.

5.3 MINIMUM EMISSION BANDWIDTH(6 DB) PROCEDURES / LIMIT

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.725-5.85 GHz. The following procedure shall be used for measuring this bandwidth.

5.3.1 TEST PROCEDURE

1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures v02r01.
 - a) Set RBW = 100 kHz.
 - b) Set the video bandwidth (VBW) $\geq 3 \times$ RBW.
 - c) Detector = Peak.
 - d) Trace mode = max hold.
 - e) Sweep = auto couple.
 - f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.3.2 DEVIATION FROM STANDARD

No deviation.

5.3.3 TEST SETUP

5.3.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.3.5 TEST RESULTS

For the measurement records, refer to the appendix I.

6. MAXIMUM CONDUCTED OUTPUT POWER

6.1 LIMIT

For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used.

FCC Part15 (15.407) , Subpart E				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.407(a) (1) (iv)	Peak Output Power	0.25 watt	5150-5250	PASS
		The lesser of 250 mW or $11 \text{ dBm} + 10 \log (26 \text{ dB emission bandwidth})$	5250-5350 5470-5725	
		1 watt	5725-5825	


6.2 TEST PROCEDURE

The EUT was directly connected to the Power Sensor&PC

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 5 Unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

For the measurement records, refer to the appendix I.

7. AUTOMATICALLY DISCONTINUE TRANSMISSION

7.1 LIMIT OF AUTOMATICALLY DISCONTINUE TRANSMISSION

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

7.2 TEST RESULT OF AUTOMATICALLY DISCONTINUE TRANSMISSION

During no any information transmission, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission

8. ANTENNA REQUIREMENT

8.1 STANDARD REQUIREMENT

Part 15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

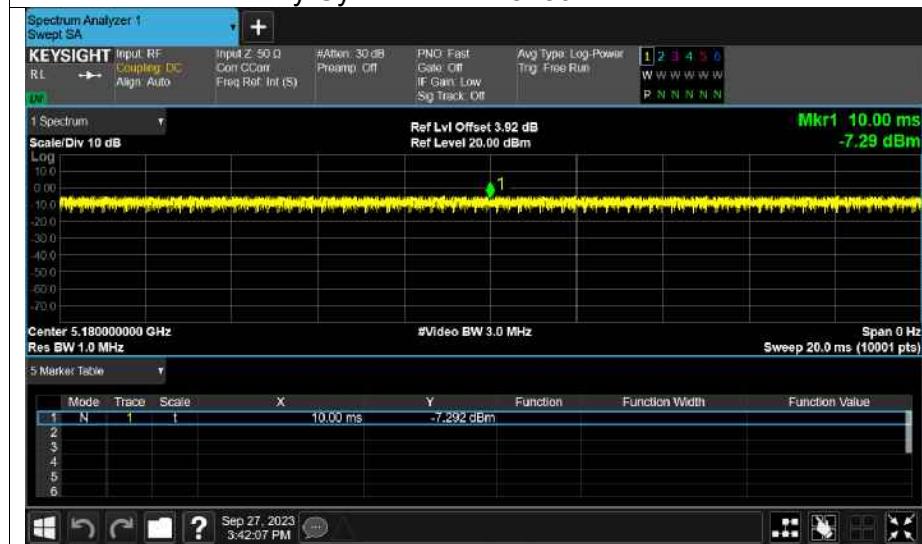
8.2 EUT ANTENNA

The EUT antenna is External Antenna and PCB Antenna. It comply with the standard requirement.

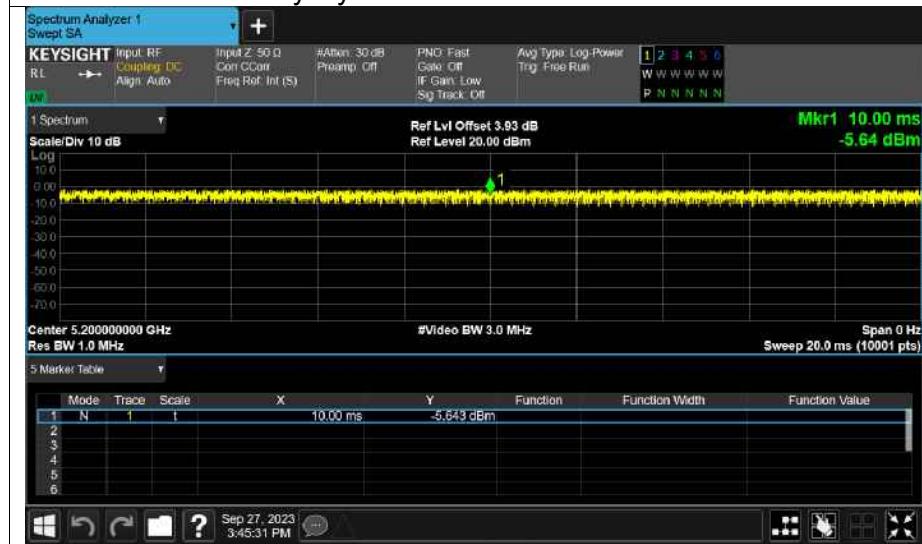
APPENDIX I: TEST RESULTS

Duty Cycle

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	a	5180	Ant1	100	0	0.01
NVNT	a	5200	Ant1	100	0	0.01
NVNT	a	5240	Ant1	100	0	0.01
NVNT	a	5745	Ant1	100	0	0.01
NVNT	a	5785	Ant1	100	0	0.01
NVNT	a	5825	Ant1	100	0	0.01
NVNT	a	5180	Ant2	100	0	0.01
NVNT	a	5200	Ant2	100	0	0.01
NVNT	a	5240	Ant2	100	0	0.01
NVNT	a	5745	Ant2	100	0	0.01
NVNT	a	5785	Ant2	100	0	0.01
NVNT	a	5825	Ant2	100	0	0.01
NVNT	n20	5180	Ant1	100	0	0.01
NVNT	n20	5200	Ant1	100	0	0.01
NVNT	n20	5240	Ant1	100	0	0.01
NVNT	n20	5745	Ant1	100	0	0.01
NVNT	n20	5785	Ant1	100	0	0.01
NVNT	n20	5825	Ant1	100	0	0.01
NVNT	n20	5180	Ant2	100	0	0.01
NVNT	n20	5200	Ant2	100	0	0.01
NVNT	n20	5240	Ant2	100	0	0.01
NVNT	n20	5745	Ant2	100	0	0.01
NVNT	n20	5785	Ant2	100	0	0.01
NVNT	n20	5825	Ant2	100	0	0.01
NVNT	n20	5180	Sum	99.99	0	0.01
NVNT	n20	5200	Sum	99.99	0	0.01
NVNT	n20	5240	Sum	99.99	0	0.01
NVNT	n20	5745	Sum	100	0	0.01
NVNT	n20	5785	Sum	100	0	0.01
NVNT	n20	5825	Sum	100	0	0.01
NVNT	n40	5190	Ant1	100	0	0.01
NVNT	n40	5230	Ant1	100	0	0.01
NVNT	n40	5755	Ant1	99.99	0	0.01
NVNT	n40	5795	Ant1	100	0	0.01
NVNT	n40	5190	Ant2	100	0	0.01
NVNT	n40	5230	Ant2	100	0	0.01
NVNT	n40	5755	Ant2	100	0	0.01
NVNT	n40	5795	Ant2	100	0	0.01
NVNT	n40	5190	Sum	99.88	0	0.58
NVNT	n40	5230	Sum	99.66	0	1.69
NVNT	n40	5755	Sum	99.74	0	1.3
NVNT	n40	5795	Sum	99.96	0	0.18
NVNT	ac80	5210	Ant1	99.95	0	0.25
NVNT	ac80	5775	Ant1	99.97	0	0.16
NVNT	ac80	5210	Ant2	99.82	0	0.9
NVNT	ac80	5775	Ant2	99.26	0	3.73
NVNT	ac80	5210	Sum	100	0	0.01
NVNT	ac80	5775	Sum	100	0	0.01
NVNT	ax80	5210	Ant1	99.85	0	0.73
NVNT	ax80	5775	Ant1	99.61	0	1.94



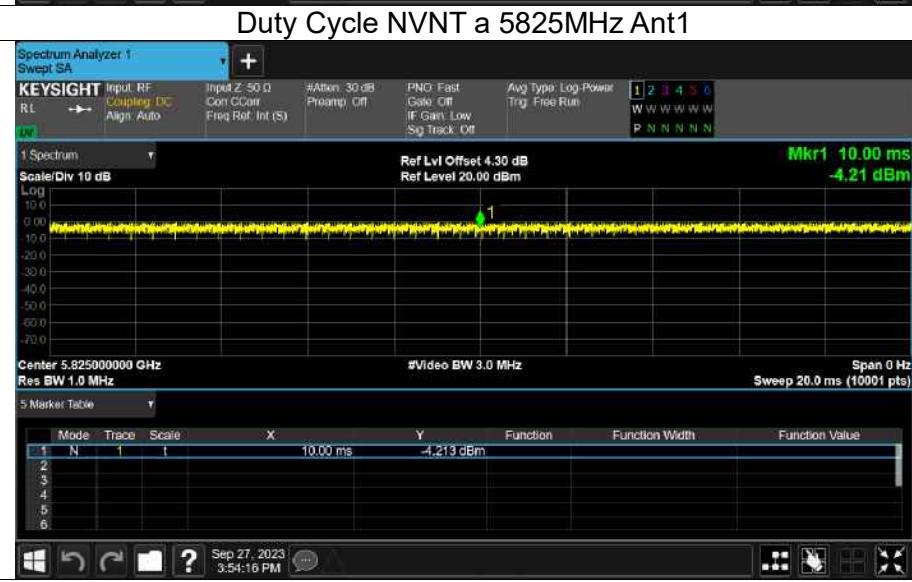
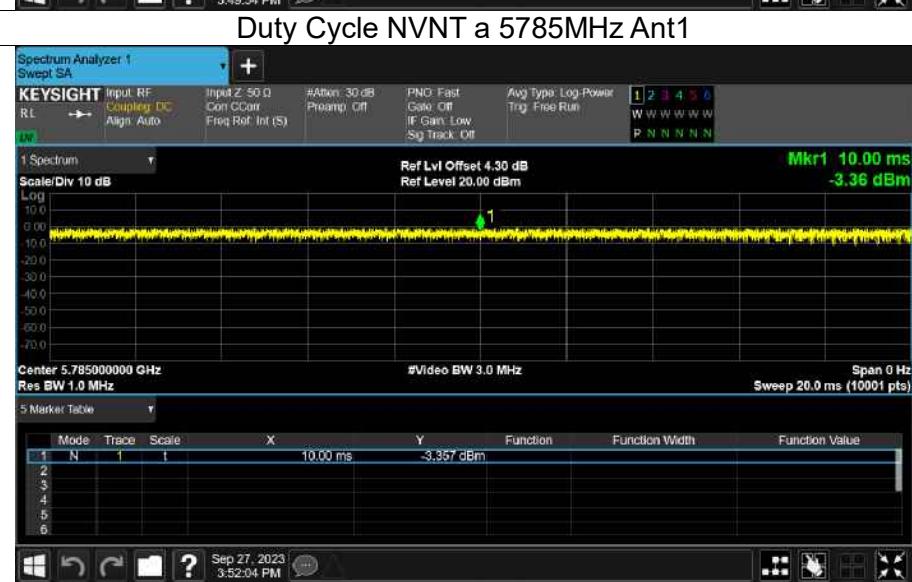
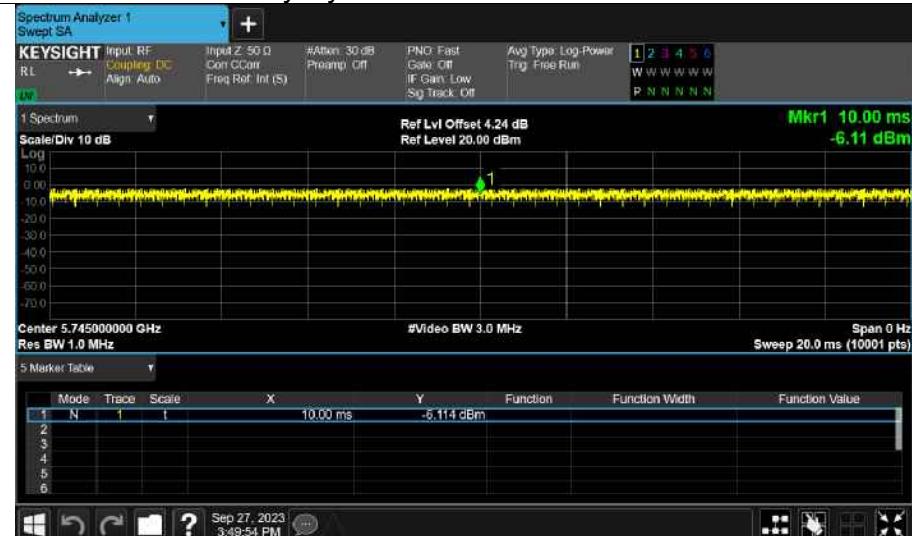
NVNT	ax80	5210	Ant2	99.95	0	0.26
NVNT	ax80	5775	Ant2	99.69	0	1.57
NVNT	ax80	5210	Sum	98.91	0	5.49
NVNT	ax80	5775	Sum	100	0	0.01



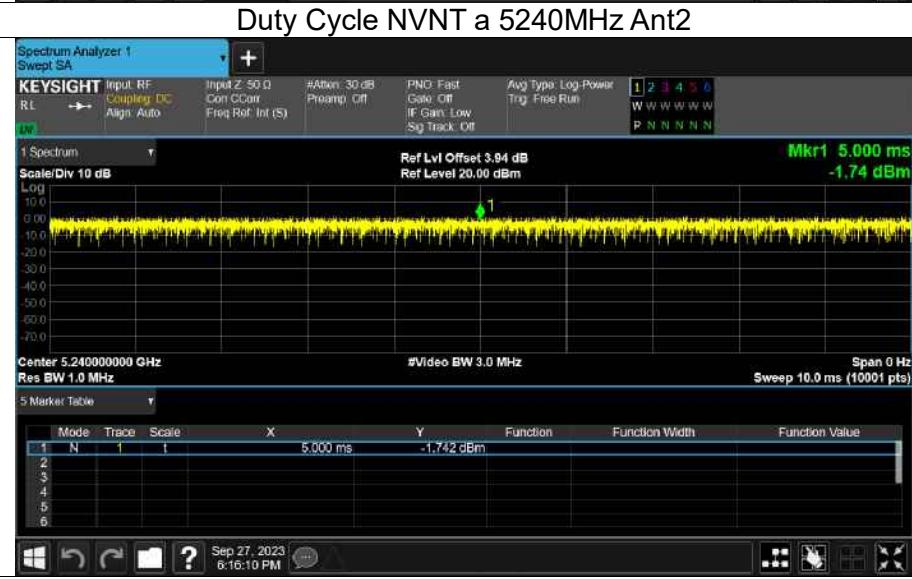
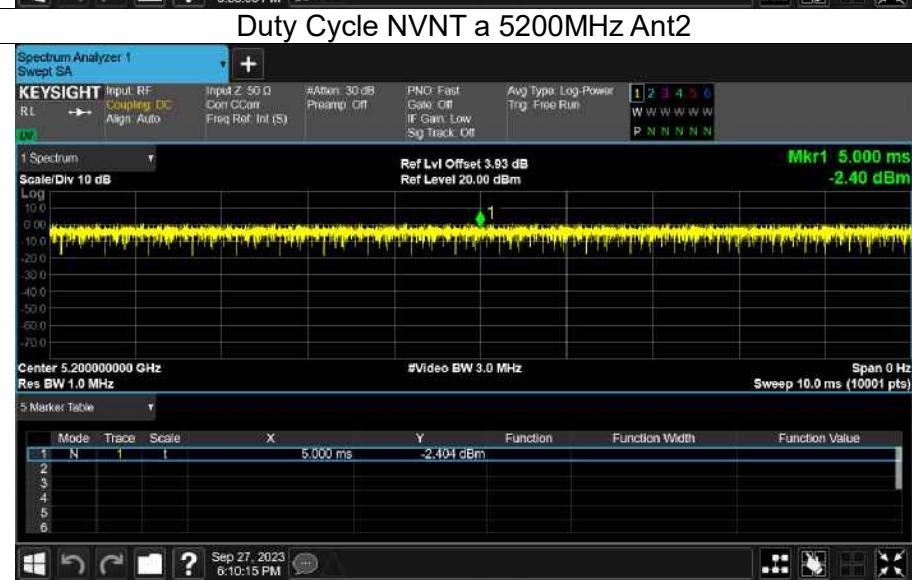
Test Graphs

Duty Cycle NVNT a 5180MHz Ant1

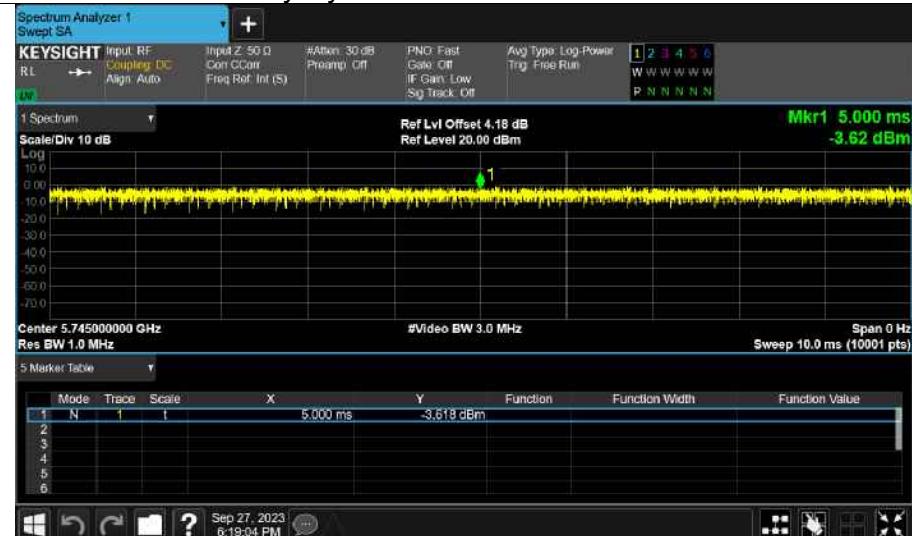
Duty Cycle NVNT a 5200MHz Ant1

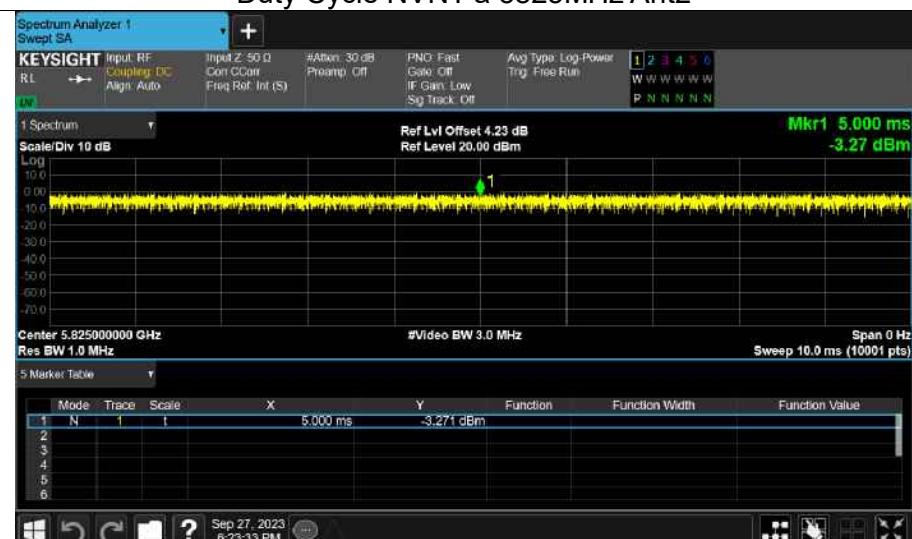
Duty Cycle NVNT a 5240MHz Ant1

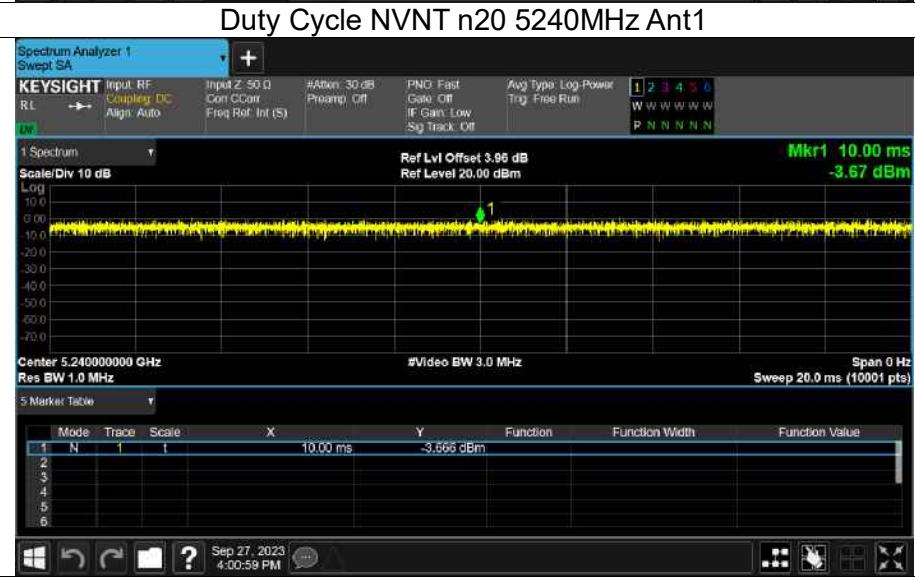
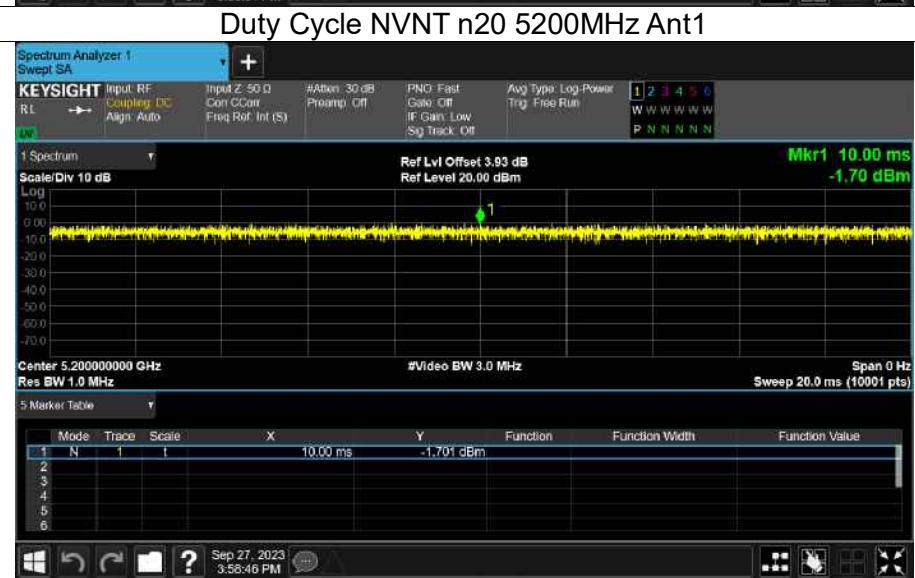
Duty Cycle NVNT a 5745MHz Ant1



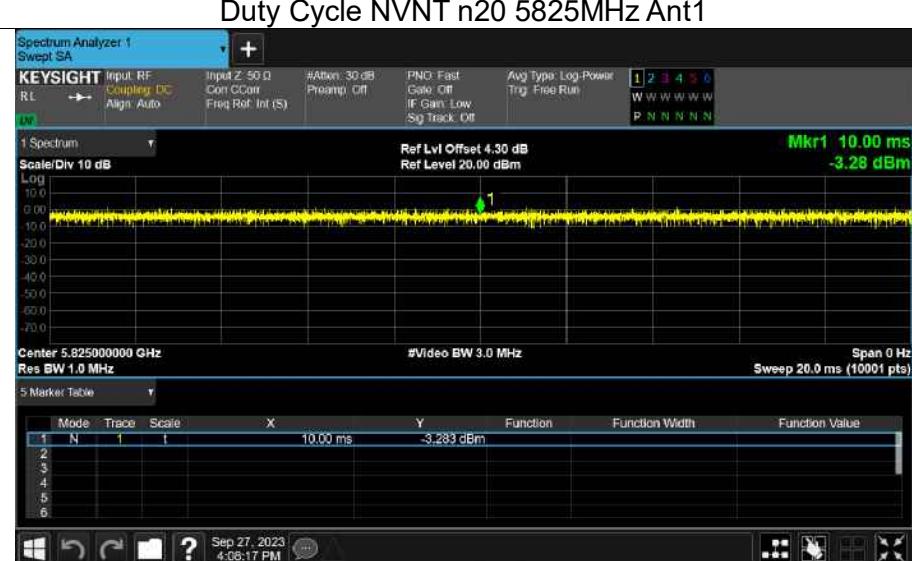
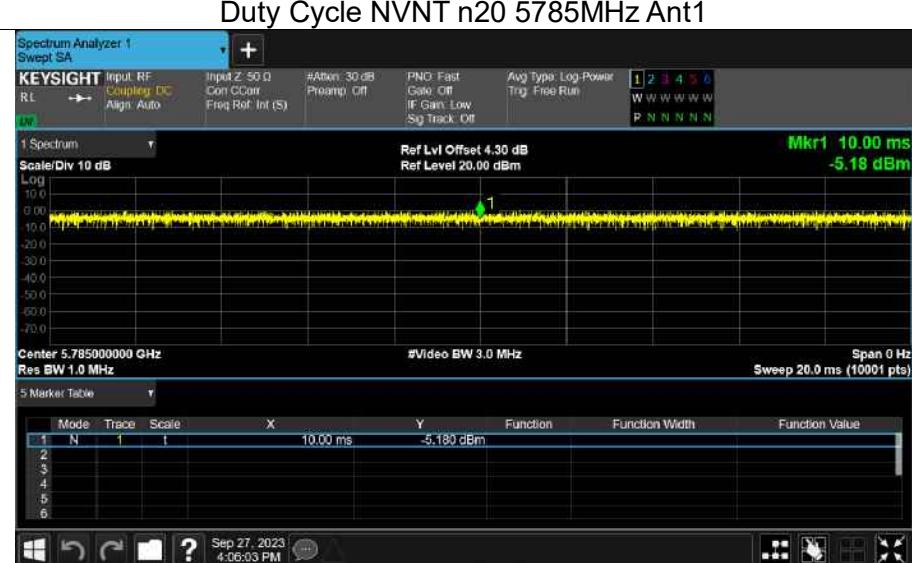
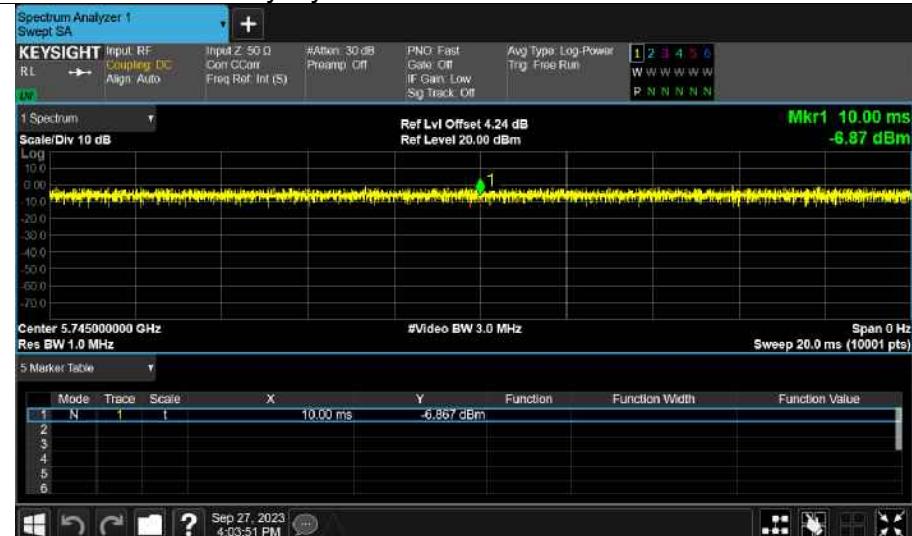
Duty Cycle NVNT a 5180MHz Ant2


Duty Cycle NVNT a 5745MHz Ant2

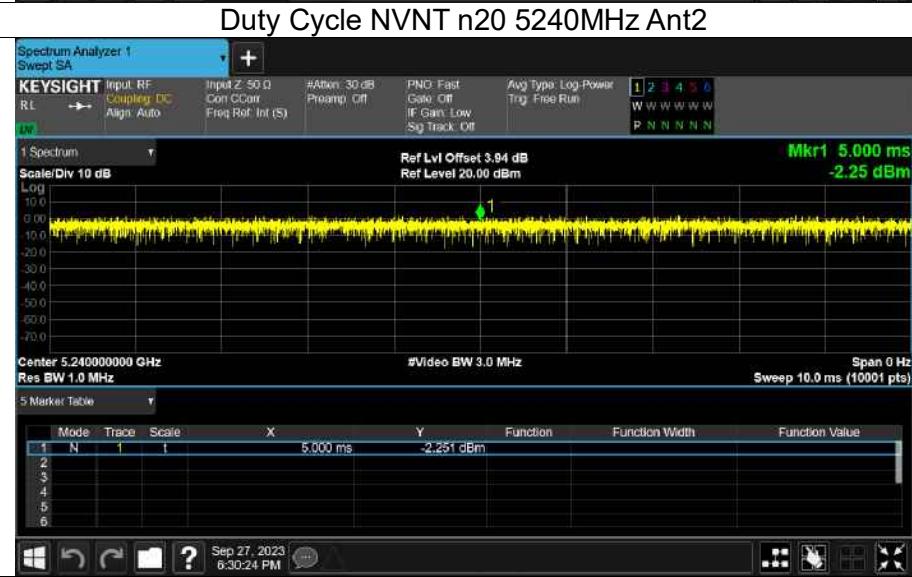
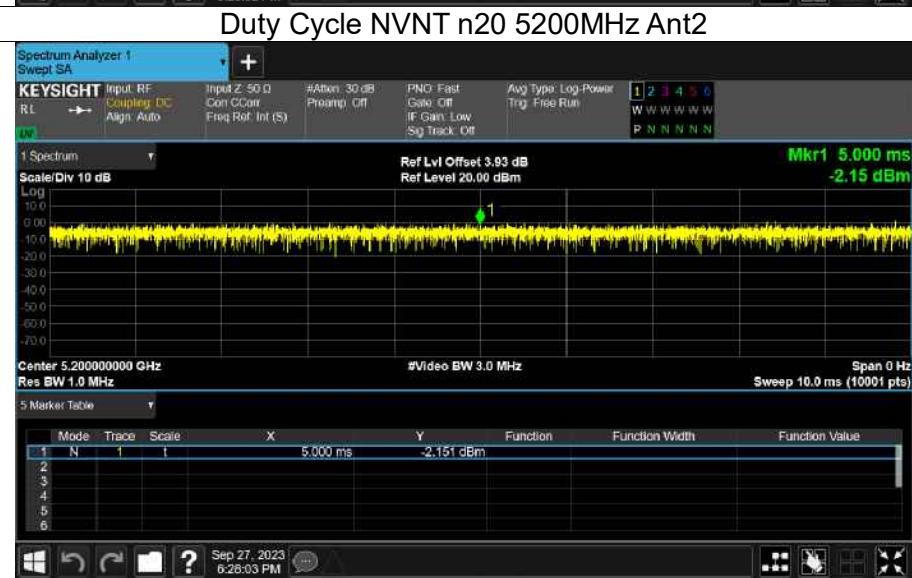
Duty Cycle NVNT a 5785MHz Ant2

Duty Cycle NVNT a 5825MHz Ant2

Duty Cycle NVNT n20 5180MHz Ant1

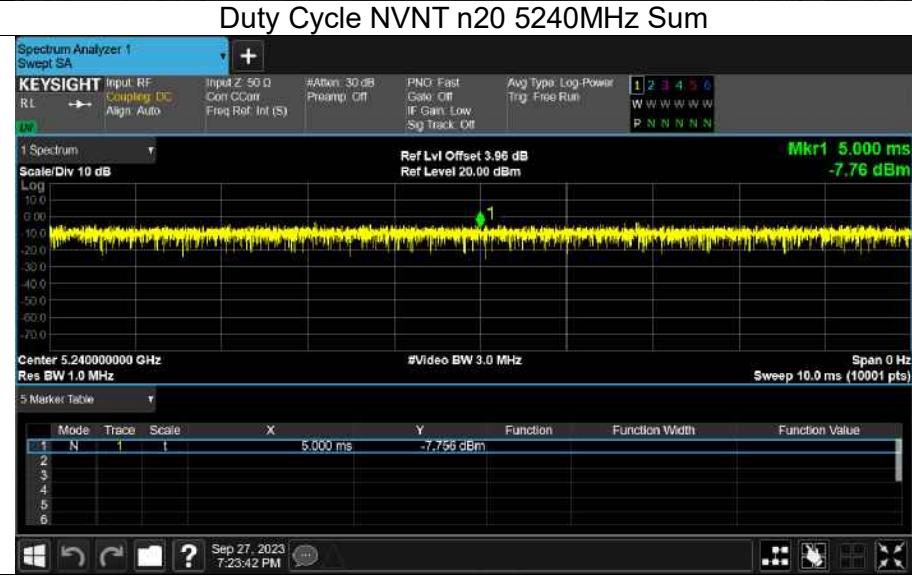
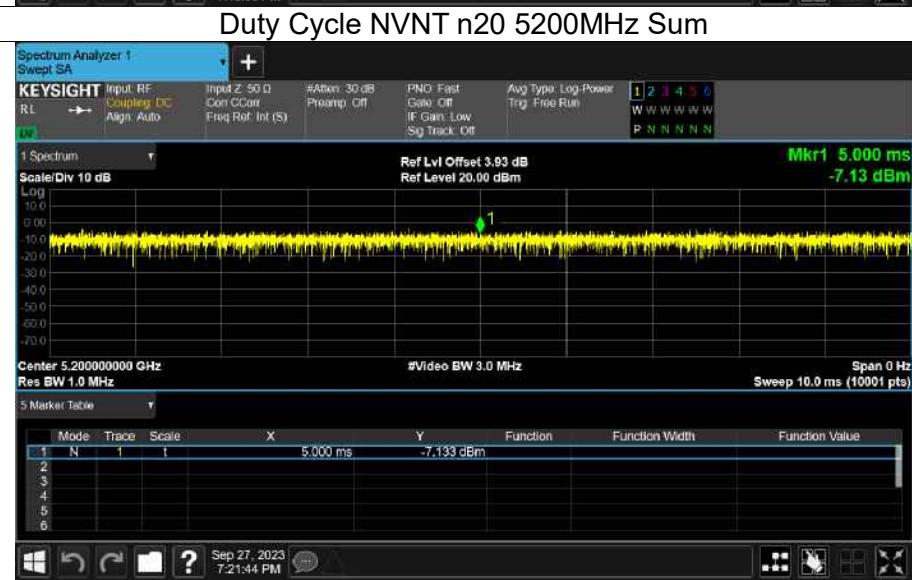



Duty Cycle NVNT n20 5745MHz Ant1

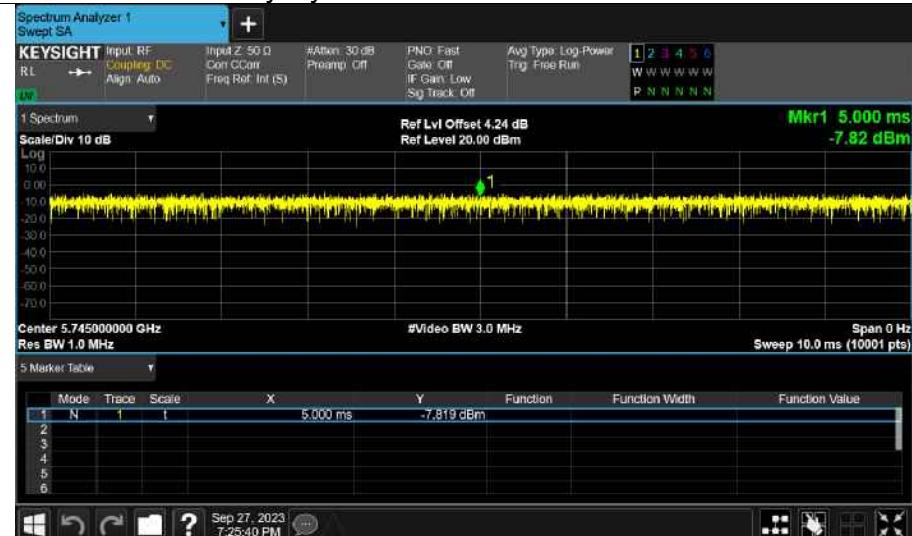
Duty Cycle NVNT n20 5180MHz Ant2

Duty Cycle NVNT n20 5745MHz Ant2

Duty Cycle NVNT n20 5785MHz Ant2

Duty Cycle NVNT n20 5825MHz Ant2



Duty Cycle NVNT n20 5180MHz Sum

Duty Cycle NVNT n20 5745MHz Sum

Duty Cycle NVNT n20 5785MHz Sum

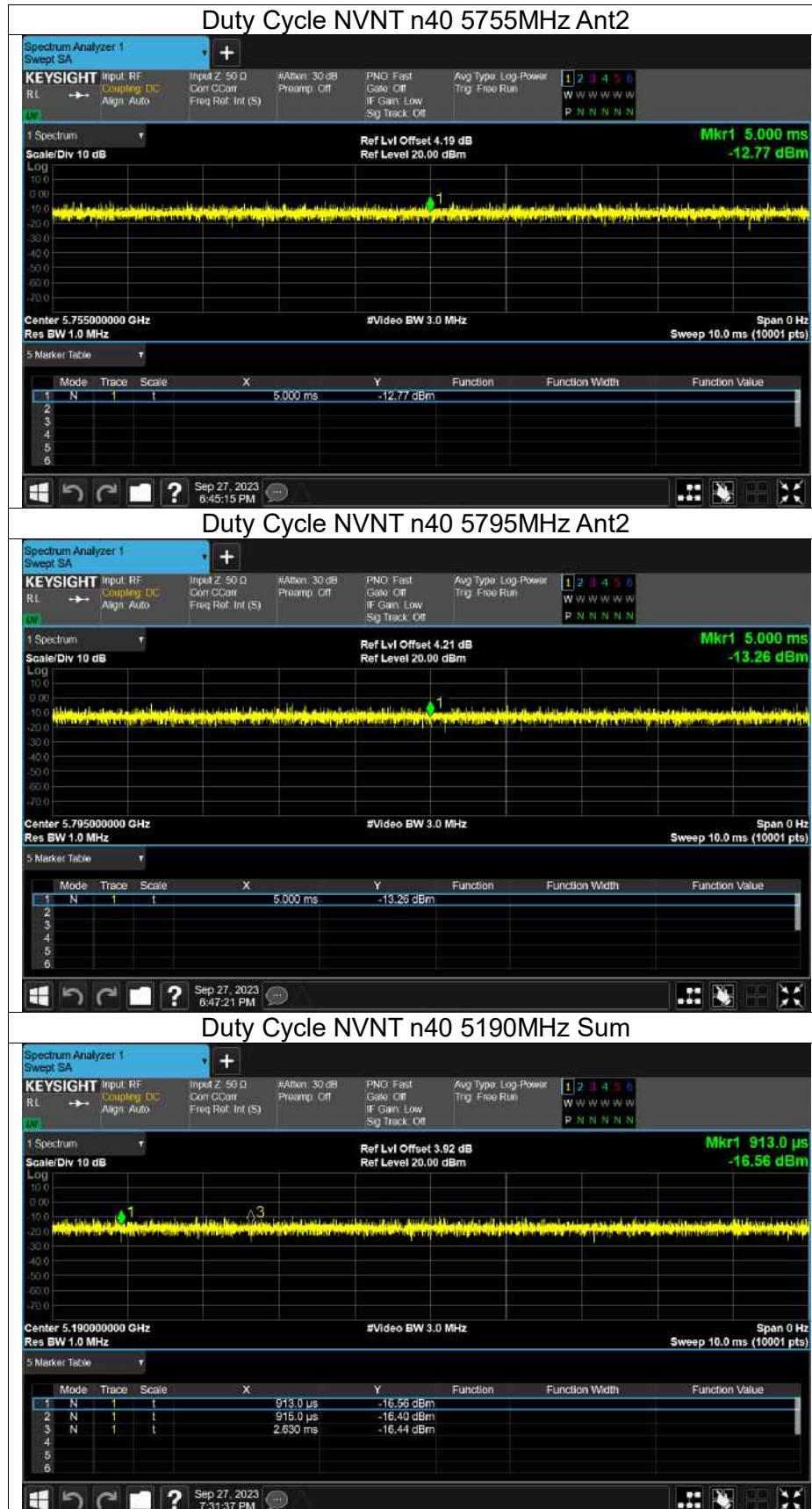
Duty Cycle NVNT n20 5825MHz Sum

Duty Cycle NVNT n40 5190MHz Ant1

Duty Cycle NVNT n40 5230MHz Ant1

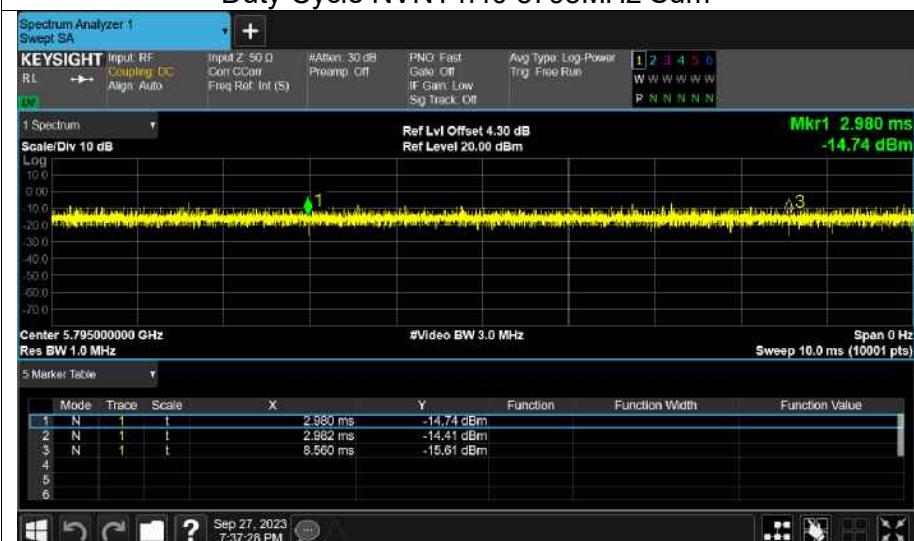
Duty Cycle NVNT n40 5755MHz Ant1

Duty Cycle NVNT n40 5795MHz Ant1



Duty Cycle NVNT n40 5190MHz Ant2

Duty Cycle NVNT n40 5230MHz Ant2


Duty Cycle NVNT n40 5230MHz Sum

Duty Cycle NVNT n40 5755MHz Sum

Duty Cycle NVNT n40 5795MHz Sum

Duty Cycle NVNT ac80 5210MHz Ant1

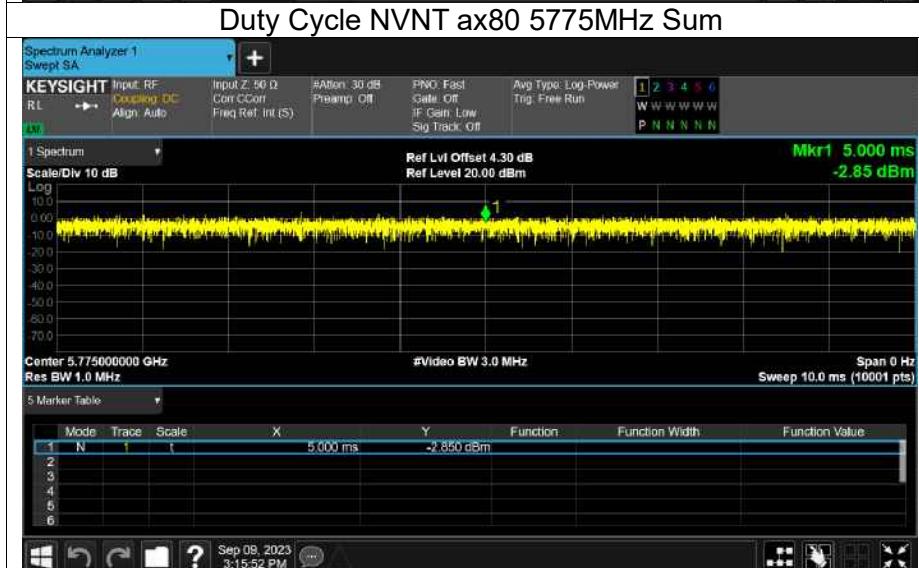
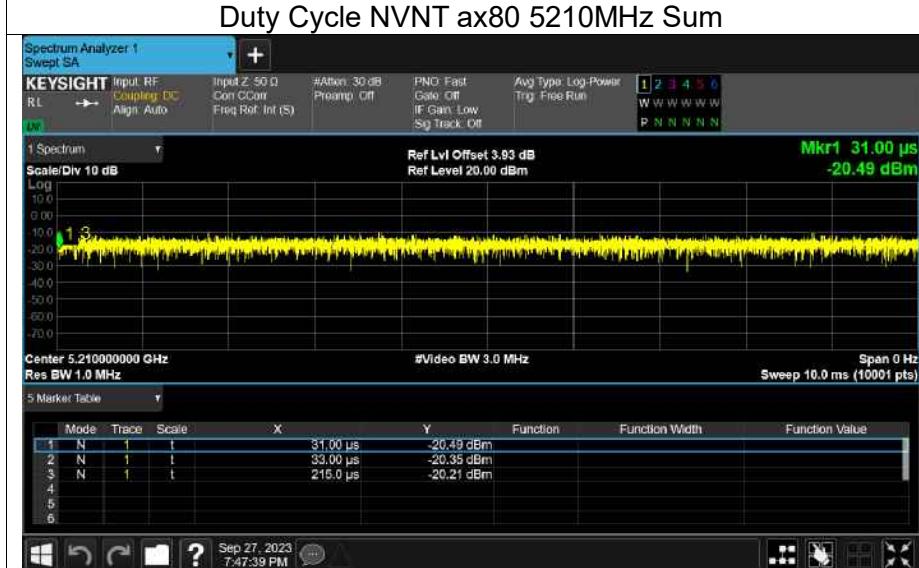
Duty Cycle NVNT ac80 5775MHz Ant1

Duty Cycle NVNT ac80 5210MHz Ant2

Duty Cycle NVNT ac80 5775MHz Ant2

Duty Cycle NVNT ac80 5210MHz Sum

Duty Cycle NVNT ac80 5775MHz Sum

Duty Cycle NVNT ax80 5210MHz Ant1

Duty Cycle NVNT ax80 5775MHz Ant2

Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	a	5180	Ant1	3.35	0	3.35	24	Pass
NVNT	a	5200	Ant1	3.53	0	3.53	24	Pass
NVNT	a	5240	Ant1	3.94	0	3.94	24	Pass
NVNT	a	5745	Ant1	3.78	0	3.78	30	Pass
NVNT	a	5785	Ant1	5.07	0	5.07	30	Pass
NVNT	a	5825	Ant1	5.51	0	5.51	30	Pass
NVNT	a	5180	Ant2	5.97	0	5.97	24	Pass
NVNT	a	5200	Ant2	5.15	0	5.15	24	Pass
NVNT	a	5240	Ant2	5.62	0	5.62	24	Pass
NVNT	a	5745	Ant2	5.11	0	5.11	30	Pass
NVNT	a	5785	Ant2	5.36	0	5.36	30	Pass
NVNT	a	5825	Ant2	5.16	0	5.16	30	Pass
NVNT	n20	5180	Ant1	3.27	0	3.27	24	Pass
NVNT	n20	5200	Ant1	3.48	0	3.48	24	Pass
NVNT	n20	5240	Ant1	3.87	0	3.87	24	Pass
NVNT	n20	5745	Ant1	3.71	0	3.71	30	Pass
NVNT	n20	5785	Ant1	5	0	5	30	Pass
NVNT	n20	5825	Ant1	5.44	0	5.44	30	Pass
NVNT	n20	5180	Ant2	4.63	0	4.63	24	Pass
NVNT	n20	5200	Ant2	4.96	0	4.96	24	Pass
NVNT	n20	5240	Ant2	5.51	0	5.51	24	Pass
NVNT	n20	5745	Ant2	5.01	0	5.01	30	Pass
NVNT	n20	5785	Ant2	5.3	0	5.3	30	Pass
NVNT	n20	5825	Ant2	5.07	0	5.07	30	Pass
NVNT	n20	5180	Ant1	0.48	0	0.48	24	Pass
NVNT	n20	5180	Ant2	1.72	0	1.72	24	Pass
NVNT	n20	5180	Sum	4.15	0	4.15	24	Pass
NVNT	n20	5200	Ant1	0.55	0	0.55	24	Pass
NVNT	n20	5200	Ant2	1.92	0	1.92	24	Pass
NVNT	n20	5200	Sum	4.3	0	4.3	24	Pass
NVNT	n20	5240	Ant1	0.81	0	0.81	24	Pass
NVNT	n20	5240	Ant2	2.45	0	2.45	24	Pass
NVNT	n20	5240	Sum	4.72	0	4.72	24	Pass
NVNT	n20	5745	Ant1	0.78	0	0.78	30	Pass
NVNT	n20	5745	Ant2	2.04	0	2.04	30	Pass
NVNT	n20	5745	Sum	4.47	0	4.47	30	Pass
NVNT	n20	5785	Ant1	2.04	0	2.04	30	Pass
NVNT	n20	5785	Ant2	2.34	0	2.34	30	Pass
NVNT	n20	5785	Sum	5.2	0	5.2	30	Pass
NVNT	n20	5825	Ant1	2.35	0	2.35	30	Pass
NVNT	n20	5825	Ant2	2.14	0	2.14	30	Pass
NVNT	n20	5825	Sum	5.26	0	5.26	30	Pass
NVNT	n40	5190	Ant1	3.32	0	3.32	24	Pass
NVNT	n40	5230	Ant1	3.59	0	3.59	24	Pass
NVNT	n40	5755	Ant1	3.96	0	3.96	30	Pass
NVNT	n40	5795	Ant1	4.98	0	4.98	30	Pass
NVNT	n40	5190	Ant2	4.8	0	4.8	24	Pass
NVNT	n40	5230	Ant2	5.26	0	5.26	24	Pass
NVNT	n40	5755	Ant2	4.97	0	4.97	30	Pass
NVNT	n40	5795	Ant2	5.16	0	5.16	30	Pass
NVNT	n40	5190	Ant1	0.39	0	0.39	24	Pass

NVNT	n40	5190	Ant2	1.75	0	1.75	24	Pass
NVNT	n40	5190	Sum	4.13	0	4.13	24	Pass
NVNT	n40	5230	Ant1	0.49	0	0.49	24	Pass
NVNT	n40	5230	Ant2	2.18	0	2.18	24	Pass
NVNT	n40	5230	Sum	4.43	0	4.43	24	Pass
NVNT	n40	5755	Ant1	1.04	0	1.04	30	Pass
NVNT	n40	5755	Ant2	2.03	0	2.03	30	Pass
NVNT	n40	5755	Sum	4.57	0	4.57	30	Pass
NVNT	n40	5795	Ant1	1.91	0	1.91	30	Pass
NVNT	n40	5795	Ant2	2.25	0	2.25	30	Pass
NVNT	n40	5795	Sum	5.09	0	5.09	30	Pass
NVNT	ac80	5210	Ant1	2.97	0	2.97	24	Pass
NVNT	ac80	5775	Ant1	4.15	0	4.15	30	Pass
NVNT	ac80	5210	Ant2	4.53	0	4.53	24	Pass
NVNT	ac80	5775	Ant2	4.61	0	4.61	30	Pass
NVNT	ac80	5210	Ant1	-0.05	0.62	0.57	24	Pass
NVNT	ac80	5210	Ant2	1.43	0.62	2.05	24	Pass
NVNT	ac80	5210	Sum	3.76	0.62	4.38	24	Pass
NVNT	ac80	5775	Ant1	1.12	0.51	1.63	30	Pass
NVNT	ac80	5775	Ant2	1.64	0.51	2.15	30	Pass
NVNT	ac80	5775	Sum	4.4	0.51	4.91	30	Pass
NVNT	ax80	5210	Ant1	5.96	0	5.96	24	Pass
NVNT	ax80	5775	Ant1	4.74	0	4.74	30	Pass
NVNT	ax80	5210	Ant2	5.13	0	5.13	24	Pass
NVNT	ax80	5775	Ant2	5.25	0	5.25	30	Pass
NVNT	ax80	5210	Ant1	0.48	0	0.48	24	Pass
NVNT	ax80	5210	Ant2	2.08	0	2.08	24	Pass
NVNT	ax80	5210	Sum	4.36	0	4.36	24	Pass
NVNT	ax80	5775	Ant1	1.67	0.15	1.82	30	Pass
NVNT	ax80	5775	Ant2	2.24	0.15	2.39	30	Pass
NVNT	ax80	5775	Sum	4.97	0.15	5.12	30	Pass

-26dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-26 dB Bandwidth (MHz)	Verdict
NVNT	a	5180	Ant1	22.206	Pass
NVNT	a	5200	Ant1	21.897	Pass
NVNT	a	5240	Ant1	22.427	Pass
NVNT	a	5180	Ant2	22.033	Pass
NVNT	a	5200	Ant2	21.953	Pass
NVNT	a	5240	Ant2	22.064	Pass
NVNT	n20	5180	Ant1	23.473	Pass
NVNT	n20	5200	Ant1	22.922	Pass
NVNT	n20	5240	Ant1	23.37	Pass
NVNT	n20	5180	Ant2	23.771	Pass
NVNT	n20	5200	Ant2	23.417	Pass
NVNT	n20	5240	Ant2	22.955	Pass
NVNT	n40	5190	Ant1	42.683	Pass
NVNT	n40	5230	Ant1	42.638	Pass
NVNT	n40	5190	Ant2	43.215	Pass
NVNT	n40	5230	Ant2	42.681	Pass
NVNT	ac80	5210	Ant1	79.738	Pass
NVNT	ac80	5210	Ant2	80.096	Pass
NVNT	ax80	5210	Ant1	79.788	Pass
NVNT	ax80	5210	Ant2	79.286	Pass

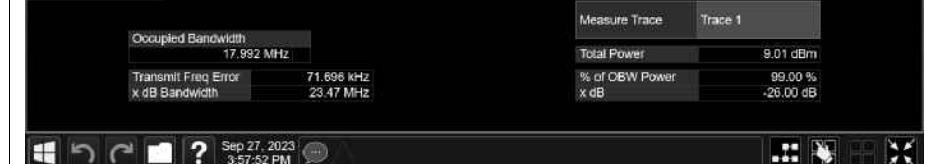
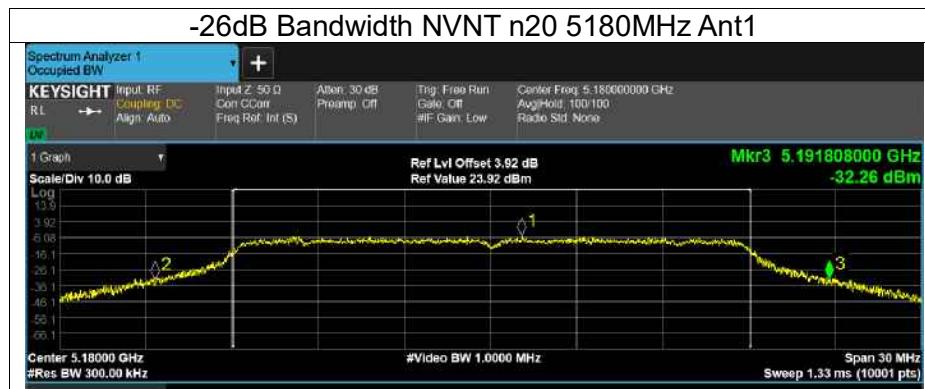
Test Graphs

-26dB Bandwidth NVNT a 5180MHz Ant1

-26dB Bandwidth NVNT a 5200MHz Ant1

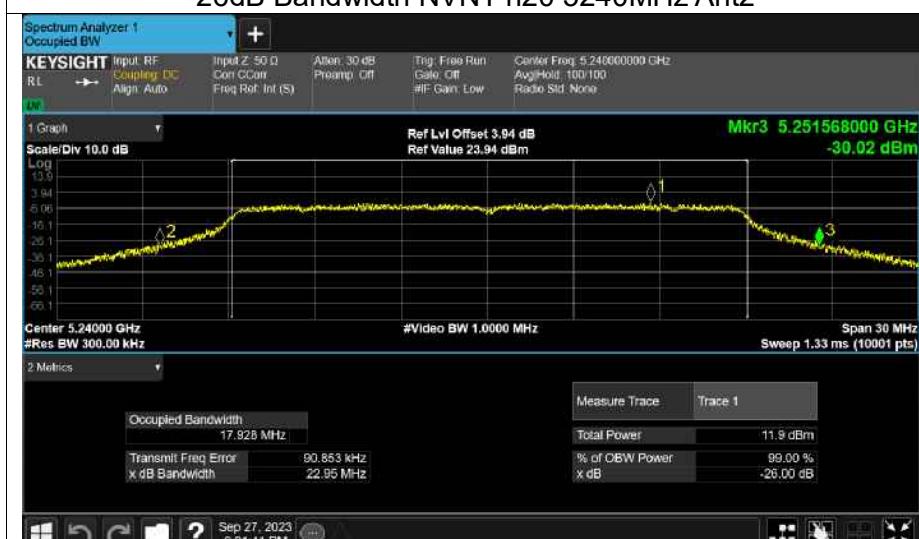
-26dB Bandwidth NVNT a 5240MHz Ant1

-26dB Bandwidth NVNT a 5180MHz Ant2

-26dB Bandwidth NVNT a 5200MHz Ant2

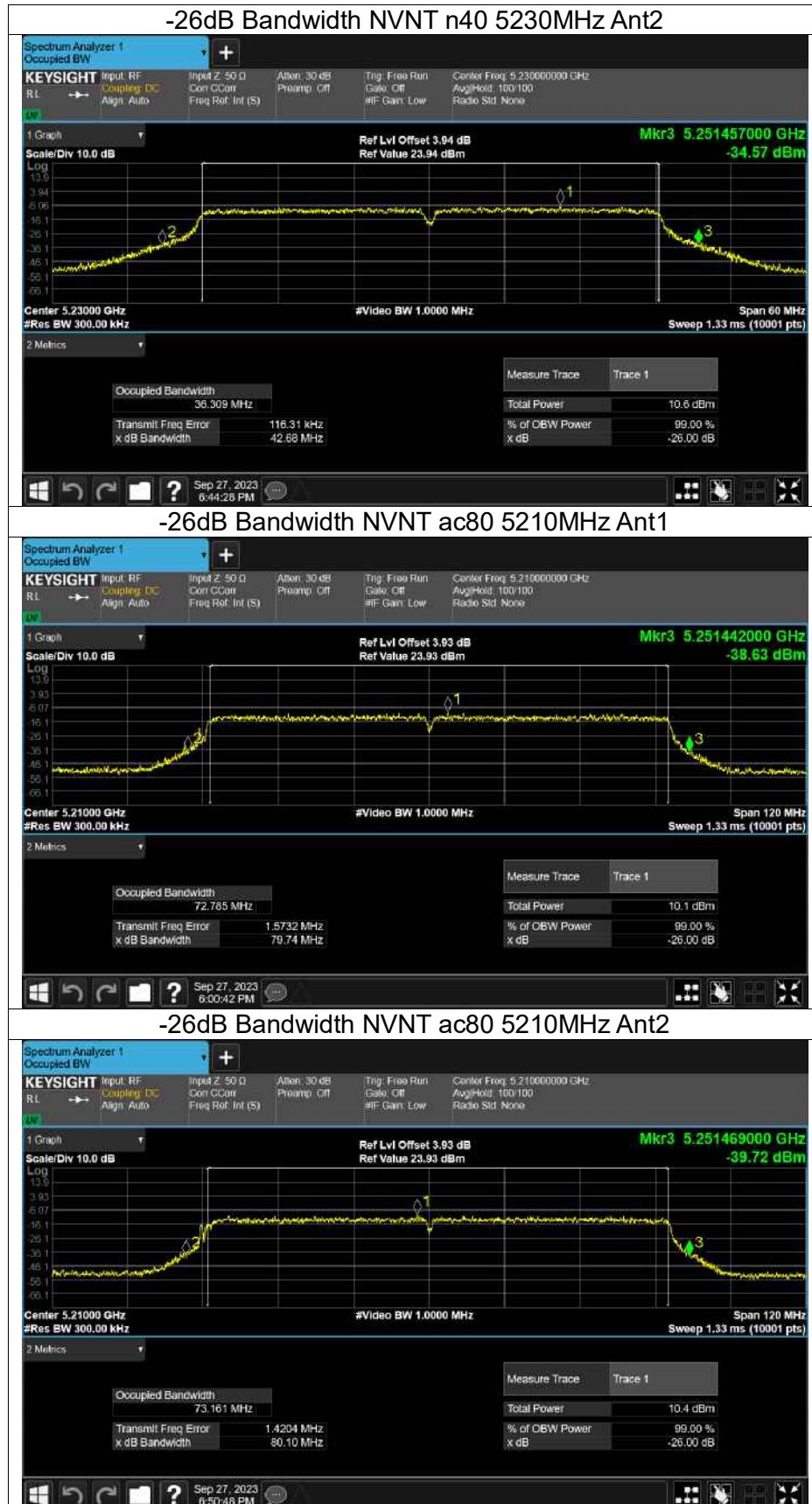
-26dB Bandwidth NVNT a 5240MHz Ant2

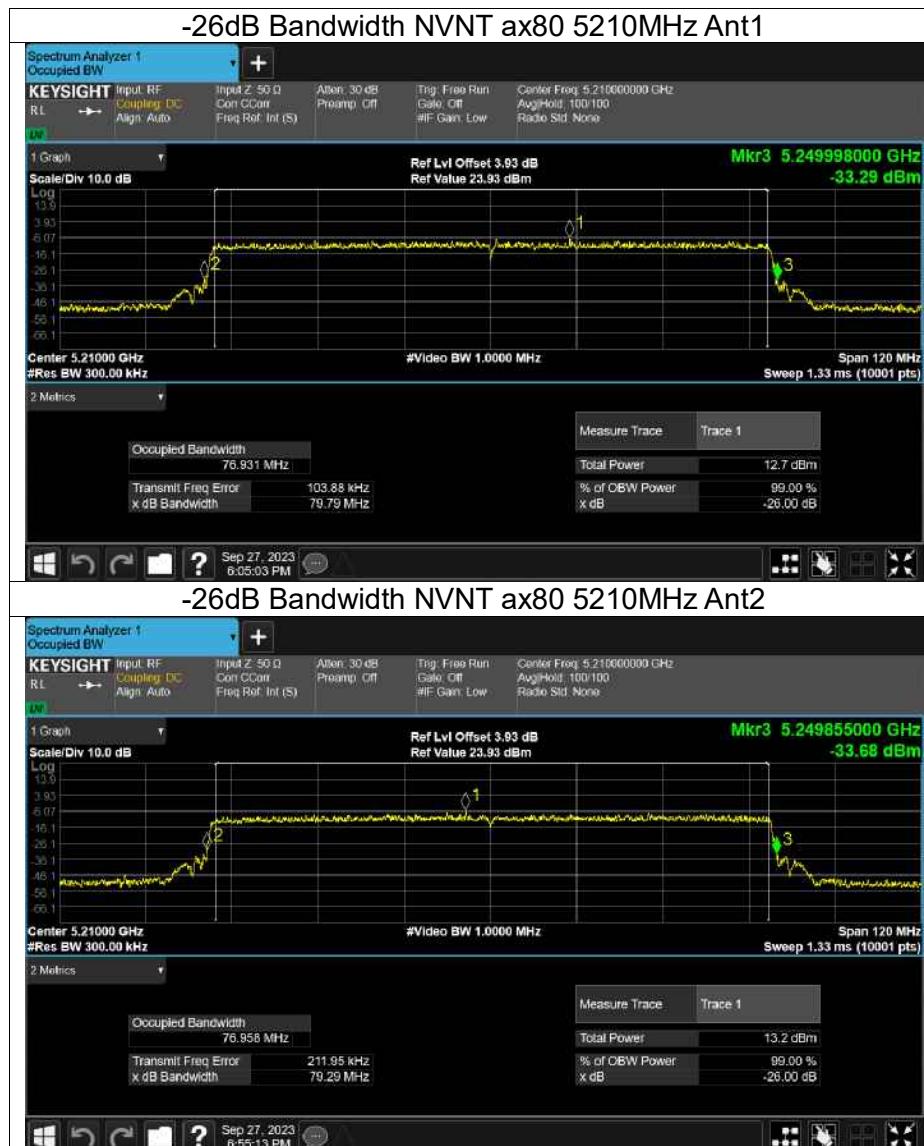

-26dB Bandwidth NVNT n20 5180MHz Ant2

-26dB Bandwidth NVNT n20 5200MHz Ant2

-26dB Bandwidth NVNT n20 5240MHz Ant2

-26dB Bandwidth NVNT n40 5190MHz Ant1




-26dB Bandwidth NVNT n40 5230MHz Ant1

-26dB Bandwidth NVNT n40 5190MHz Ant2

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	a	5180	Ant1	16.599
NVNT	a	5200	Ant1	16.574
NVNT	a	5240	Ant1	16.546
NVNT	a	5745	Ant1	16.553
NVNT	a	5785	Ant1	16.522
NVNT	a	5825	Ant1	16.582
NVNT	a	5180	Ant2	16.605
NVNT	a	5200	Ant2	16.554
NVNT	a	5240	Ant2	16.572
NVNT	a	5745	Ant2	16.57
NVNT	a	5785	Ant2	16.572
NVNT	a	5825	Ant2	16.543
NVNT	n20	5180	Ant1	17.827
NVNT	n20	5200	Ant1	17.815
NVNT	n20	5240	Ant1	17.802
NVNT	n20	5745	Ant1	17.813
NVNT	n20	5785	Ant1	17.781
NVNT	n20	5825	Ant1	17.781
NVNT	n20	5180	Ant2	17.806
NVNT	n20	5200	Ant2	17.803
NVNT	n20	5240	Ant2	17.75
NVNT	n20	5745	Ant2	17.809
NVNT	n20	5785	Ant2	17.802
NVNT	n20	5825	Ant2	17.789
NVNT	n40	5190	Ant1	36.432
NVNT	n40	5230	Ant1	36.473
NVNT	n40	5755	Ant1	36.398
NVNT	n40	5795	Ant1	36.41
NVNT	n40	5190	Ant2	36.468
NVNT	n40	5230	Ant2	36.445
NVNT	n40	5755	Ant2	36.37
NVNT	n40	5795	Ant2	36.387
NVNT	ac80	5210	Ant1	72.982
NVNT	ac80	5775	Ant1	72.701
NVNT	ac80	5210	Ant2	73.01
NVNT	ac80	5775	Ant2	72.916
NVNT	ax80	5210	Ant1	77.023
NVNT	ax80	5775	Ant1	76.635
NVNT	ax80	5210	Ant2	76.883
NVNT	ax80	5775	Ant2	76.835

Test Graphs

OBW NVNT a 5180MHz Ant1

OBW NVNT a 5180MHz Ant2

