

# FCC RADIO TEST REPORT

**FCC ID: 2BC32ESK-180-4G**

**Sample :** Solar camera

**Trade Name :** EMENEC

**Main Model :** ESK-180 (4G)

**Additional Model :** ESK-200 (4G)

**Report No. :** 23102007ER-61

**Prepared for**

EMENEC LLC

74 E Glenwood Ave # 217, Smyrna, Delaware, 19977, United States

**Prepared by**

Global United Technology Services Co. Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

## TEST RESULT CERTIFICATION

**Applicant** .....: EMENEC LLC

Address .....: 74 E Glenwood Ave # 217, Smyrna, Delaware, 19977,  
United States

**Manufacturer** .....: Shenzhen Fuvision Electronics Co., Limited

Address .....: RM 235, 2/F, Block B, Huafeng Headquarters economic Building,  
No.288, Xixiang Ave., Bao'an District, Shenzhen, Guangdong,  
China 518102

### Product description

Product .....: Solar camera

Trade Name .....: EMENEC

Model Name .....: ESK-180 (4G), ESK-200 (4G)

**Test Methods** .....: FCC Part 22H & 24E& 27L Rules

This device described above has been tested by Global United Technology Services Co. Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval, this document may be altered or revised by Global United Technology Services Co. Ltd., personnel only, and shall be noted in the revision of the document.

**Date of Test** .....:

Date (s) of performance of tests .....: Oct. 23, 2023 ~ Dec. 08, 2023

Date of Issue .....: Dec. 08, 2023

Test Result .....: Pass

**Prepared By:**



**Date:**

2023-12-11

**Project Engineer**

**Check By:**



**Date:**

2023-12-11

**Reviewer**

| <b>Table of Contents</b>                                  | <b>Page</b> |
|-----------------------------------------------------------|-------------|
| <b>1 TEST SUMMARY</b>                                     | <b>5</b>    |
| 1.1 TEST PROCEDURES AND RESULTS                           | 5           |
| 1.2 TEST FACILITY                                         | 6           |
| 1.3 MEASUREMENT UNCERTAINTY                               | 7           |
| 1.4 ENVIRONMENTAL CONDITIONS                              | 7           |
| <b>2 GENERAL INFORMATION</b>                              | <b>8</b>    |
| 2.1 GENERAL DESCRIPTION OF EUT                            | 8           |
| 2.2 DESCRIPTION OF TEST MODES AND TEST FREQUENCY          | 9           |
| 2.3 DESCRIPTION OF THE TEST MODES                         | 11          |
| 2.4 TEST SETUP                                            | 11          |
| 2.5 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL        | 11          |
| 2.6 MEASUREMENT INSTRUMENTS LIST                          | 12          |
| <b>3 ERP AND EIRP</b>                                     | <b>14</b>   |
| 3.1 PROVISIONS APPLICABLE                                 | 14          |
| 3.2 TEST CONFIGURATION                                    | 14          |
| 3.3 TEST PROCEDURE                                        | 16          |
| 3.4 TEST RESULT                                           | 18          |
| <b>4 PEAK-TO-AVERAGE POWER RATIO</b>                      | <b>19</b>   |
| 4.1 PROVISIONS APPLICABLE                                 | 19          |
| 4.2 MEASUREMENT METHOD                                    | 19          |
| 4.3 MEASUREMENT SETUP                                     | 20          |
| 4.4 TEST RESULT                                           | 20          |
| <b>5 OCCUPY BANDWIDTH</b>                                 | <b>22</b>   |
| 5.1 PROVISIONS APPLICABLE                                 | 22          |
| 5.2 MEASUREMENT METHOD                                    | 22          |
| 5.3 MEASUREMENT SETUP                                     | 22          |
| 5.4 TEST RESULT                                           | 23          |
| <b>6 MODULATION CHARACTERISTIC</b>                        | <b>26</b>   |
| <b>7 BAND EDGE EMISSION AT ANTENNA TERMINALS</b>          | <b>27</b>   |
| 7.1 PROVISIONS APPLICABLE                                 | 27          |
| 7.2 MEASUREMENT METHOD                                    | 27          |
| 7.3 MEASUREMENT SETUP                                     | 28          |
| 7.4 TEST RESULT                                           | 28          |
| <b>8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT</b> | <b>30</b>   |

| <b>Table of Contents</b>                                  | <b>Page</b> |
|-----------------------------------------------------------|-------------|
| 8.1 PROVISIONS APPLICABLE                                 | 30          |
| 8.2 MEASUREMENT PROCEDURE                                 | 30          |
| 8.3 MEASUREMENT SETUP                                     | 32          |
| 8.4 TEST RESULT                                           | 33          |
| <b>9 FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT</b> | <b>39</b>   |
| 9.1 PROVISIONS APPLICABLE                                 | 39          |
| 9.2 MEASUREMENT METHOD                                    | 39          |
| 9.3 MEASUREMENT SETUP                                     | 40          |
| 9.4 TEST RESULT                                           | 41          |
| <b>10 FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT</b>    | <b>46</b>   |
| 10.1 MEASUREMENT SETUP                                    | 46          |
| 10.2 TEST PROCEDURE                                       | 46          |
| 10.3 TEST RESULT                                          | 46          |
| <b>12 PHOTO OF TEST</b>                                   | <b>53</b>   |

## 1 TEST SUMMARY

### 1.1 TEST PROCEDURES AND RESULTS

The tests were performed according to following standards:

**FCC Part 22** Public Mobile Services.

**FCC Part 24** Personal Communications Services.

**FCC Part 27** Miscellaneous Wireless Communications Services.

**FCC Part 90** Private Land Mobile Radio Services

**FCC Part 2** Frequency allocations and radio treaty matters, general rules and regulations.

**TIA/EIA 603 E: March 2016** Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

**ANSI-C63.26:2015** American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

**KDB971168 D01 v03r01** Measurement Guidance For Certification Of Licensed Digital Transmitters

| DESCRIPTION OF TEST                                             | STANDARD                                      | RESULT |
|-----------------------------------------------------------------|-----------------------------------------------|--------|
| Occupied Bandwidth                                              | §2.1049                                       | Pass   |
| Band Edge / Spurious and Harmonic Emissions at Antenna Terminal | §2.1051, §22.917(a), §24.238(a)<br>§27.53(h)  | Pass   |
| Conducted Output Power                                          | §2.1046                                       | Pass   |
| Frequency stability / variation of ambient temperature          | §2.1055, § 22.355, §24.235,<br>§27.54         | Pass   |
| Peak- to- Average Ratio                                         | §24.232(d), §27.50(d)(5)                      | Pass   |
| Effective Radiated Power                                        | §22.913(a)(5)                                 | Pass   |
| Equivalent Isotropic Radiated Power                             | §24.232(c), §27.50(d)(4)                      | Pass   |
| Radiated Spurious and Harmonic Emissions                        | §2.1053, §22.917(a), §24.238(a),<br>§27.53(h) | Pass   |

## 1.2 TEST FACILITY

Test Firm : Global United Technology Services Co. Ltd.  
Address : No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

The test facility is recognized, certified, or accredited by the following organizations:

- **FCC—Registration No.: 381383**

Designation Number: CN5029

Global United Technology Services Co. Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

- **IC —Registration No.: 9079A**

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co. Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

- **NVLAP (LAB CODE: 600179-0)**

Global United Technology Services Co. Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

### 1.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty  $U$  is based on a standard uncertainty multiplied by a coverage factor of  $k=2$ , providing a level of confidence of approximately 95 %.

#### A. Conducted Measurement:

| Test Site | Method | Measurement Frequency Range | U, (dB) |
|-----------|--------|-----------------------------|---------|
| UNI       | ANSI   | 9kHz ~ 150kHz               | 2.96    |
|           |        | 150kHz ~ 30MHz              | 2.44    |

#### B. Radiated Measurement:

| Test Site | Method | Measurement Frequency Range | U, (dB) |
|-----------|--------|-----------------------------|---------|
| UNI       | ANSI   | 9kHz ~ 30MHz                | 2.50    |
|           |        | 30MHz ~ 1000MHz             | 4.80    |
|           |        | Above 1000MHz               | 4.13    |

#### C. RF Conducted Method:

| Item                                         | Measurement Uncertainty |
|----------------------------------------------|-------------------------|
| Uncertainty of total RF power, conducted     | $U_c = \pm 0.8$ dB      |
| Uncertainty of RF power density, conducted   | $U_c = \pm 2.6$ dB      |
| Uncertainty of spurious emissions, conducted | $U_c = \pm 2$ %         |
| Uncertainty of Occupied Channel Bandwidth    | $U_c = \pm 2$ %         |

### 1.4 ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

|                    |              |
|--------------------|--------------|
| Temperature:       | 15~35 °C     |
| Relative Humidity: | 30~60 %      |
| Air Pressure:      | 950~1050 hPa |

## 2 GENERAL INFORMATION

### 2.1 GENERAL DESCRIPTION OF EUT

|                              |                                                                                                                                                                |                      |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|
| Product                      | Solar camera                                                                                                                                                   |                      |  |  |  |
| Trade Name                   | EMENEC                                                                                                                                                         |                      |  |  |  |
| Main Model                   | ESK-180 (4G)                                                                                                                                                   |                      |  |  |  |
| Additional Model             | ESK-200 (4G)                                                                                                                                                   |                      |  |  |  |
| Model Difference             | All model's the function, software and electric circuit are the same, only with a product color and model named different.<br>Test sample model: ESK-180 (4G). |                      |  |  |  |
| FCC ID                       | 2BC32ESK-180-4G                                                                                                                                                |                      |  |  |  |
| Antenna Type                 | External Antenna                                                                                                                                               |                      |  |  |  |
| Frequency Bands              | <input checked="" type="checkbox"/> FDD Band II <input checked="" type="checkbox"/> FDD Band IV <input checked="" type="checkbox"/> FDD Band V                 |                      |  |  |  |
| Transmission Frequency Range | <b>FDD Band II</b>                                                                                                                                             | 1852.4MHz-1907.6 MHz |  |  |  |
|                              | <b>FDD Band IV</b>                                                                                                                                             | 1712.4-1752.6 MHz    |  |  |  |
|                              | <b>FDD Band V</b>                                                                                                                                              | 826.4-846.6 MHz      |  |  |  |
| Support Networks             | WCDMA, HSDPA, HSUPA                                                                                                                                            |                      |  |  |  |
| Type of Modulation           | WCDMA                                                                                                                                                          |                      |  |  |  |
| Antenna gain                 | Band II: 2.67dBi    Band IV: 2.67dBi    Band V: 3dBi                                                                                                           |                      |  |  |  |
| Single Card                  | WCDMA/LTE Card Slot                                                                                                                                            |                      |  |  |  |
| Battery                      | DC 3.7V                                                                                                                                                        |                      |  |  |  |
| Power Source                 | DC 3.7V by battery or DC 5V by adapter                                                                                                                         |                      |  |  |  |
| Adapter                      | N/A                                                                                                                                                            |                      |  |  |  |

## 2.2 DESCRIPTION OF TEST MODES AND TEST FREQUENCY

The EUT has been tested under typical operating condition. The CMW500 used to control the EUT staying in continuous transmitting and receiving mode for testing.

| Bands        | Tx/Rx Frequency           | RF Channel   |              |              |
|--------------|---------------------------|--------------|--------------|--------------|
|              |                           | Low(L)       | Middle(M)    | High(H)      |
| WCDMA band V | TX<br>(824 MHz ~ 849 MHz) | Channel 4132 | Channel 4182 | Channel 4233 |
|              |                           | 826.4 MHz    | 836.4 MHz    | 846.6 MHz    |

| Bands         | Tx/Rx Frequency           | RF Channel   |              |              |
|---------------|---------------------------|--------------|--------------|--------------|
|               |                           | Low(L)       | Middle(M)    | High(H)      |
| WCDMA Band II | TX<br>(1850 MHz-1910 MHz) | Channel 9262 | Channel 9400 | Channel 9538 |
|               |                           | 1852.4 MHz   | 1880.0 MHz   | 1907.6 MHz   |

| Bands         | Tx/Rx Frequency           | RF Channel   |              |              |
|---------------|---------------------------|--------------|--------------|--------------|
|               |                           | Low(L)       | Middle(M)    | High(H)      |
| WCDMA Band IV | TX<br>(1710 MHz-1755 MHz) | Channel 1312 | Channel 1412 | Channel 1513 |
|               |                           | 1712.4 MHz   | 1732.4 MHz   | 1752.6 MHz   |

Pre-scan all bandwidth and RB, find worse case mode are chosen to the report, the worse mode applicability and tested channel detail as below:

| Band               | Radiated          | Conducted         |
|--------------------|-------------------|-------------------|
| WCDMA Band II/IV/V | RMC 12.2kbps Link | RMC 12.2kbps Link |

### ACCORDING TO 3GPP 25.101 SUB-CLAUSE 6.2.2 , THE MAXIMUM OUTPUT POWER IS ALLOWED TO BE REDUCED BY FOLLOWING THE TABLE.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

| UE Transmit Channel Configuration                                                                                                                                                              | CM(db)    | MPR(db)     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|
| For all combinations of ,DPDCH,DPCCH<br>HS-DPDCH,E-DPDCH and E-DPCCH                                                                                                                           | 0≤ CM≤3.5 | MAX(CM-1,0) |
| Note: CM=1 for $\beta_d/\beta_d=12/15$ , $\beta_{hs}/\beta_c=24/15$ .For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference. |           |             |

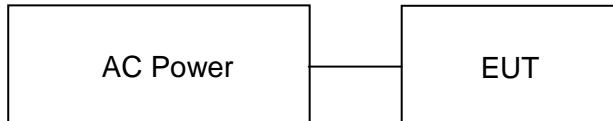
The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done .However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensate for the power back-off by increasing the gain of TX in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

### 2.3 DESCRIPTION OF THE TEST MODES


During the measurement the environmental conditions were within the listed ranges:

|         |                    |          |
|---------|--------------------|----------|
| Voltage | Normal Voltage     | DC 3.7V  |
|         | High Voltage       | DC 4.07V |
|         | Low Voltage        | DC 3.33V |
| Other   | Normal Temperature | 24°C     |
|         | Relative Humidity  | 55 %     |
|         | Air Pressure       | 989 hPa  |

Note: All modes were test at Normal Voltage, High Voltage, and Low Voltage, only the worst results of Normal Voltage was reported in the test report.

### 2.4 TEST SETUP

Operation of EUT during Conducted and Radiation testing:



### 2.5 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment    | Model No.    | Cable Length(cm) | Remark |
|------|--------------|--------------|------------------|--------|
| 1    | Solar camera | ESK-180 (4G) | --               | EUT    |
| 2    |              |              |                  | AE     |

Note:

1. The support equipment was authorized by Declaration of Confirmation.
2. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

## 2.6 MEASUREMENT INSTRUMENTS LIST

| Radiated Emission: |                                     |                                |                        |               |                     |                         |
|--------------------|-------------------------------------|--------------------------------|------------------------|---------------|---------------------|-------------------------|
| Item               | Test Equipment                      | Manufacturer                   | Model No.              | Inventory No. | Cal.Date (mm-dd-yy) | Cal.Due date (mm-dd-yy) |
| 1                  | 3m Semi- Anechoic Chamber           | ZhongYu Electron               | 9.2(L)*6.2(W)* 6.4(H)  | GTS250        | June 23, 2021       | June 22, 2024           |
| 2                  | Control Room                        | ZhongYu Electron               | 6.2(L)*2.5(W)* 2.4(H)  | GTS251        | N/A                 | N/A                     |
| 3                  | EMI Test Receiver                   | Rohde & Schwarz                | ESU26                  | GTS203        | April 14, 2023      | April 13, 2024          |
| 4                  | BiConiLog Antenna                   | SCHWARZBECK<br>MESS-ELEKTRONIK | VULB9168               | GTS640        | March 19, 2023      | March 18, 2025          |
| 5                  | Double -ridged waveguide horn       | SCHWARZBECK<br>MESS-ELEKTRONIK | BBHA 9120 D            | GTS208        | April 17, 2023      | April 16, 2025          |
| 6                  | EMI Test Software                   | AUDIX                          | E3                     | N/A           | N/A                 | N/A                     |
| 7                  | Wideband Radio Communication Tester | Rohde & Schwarz                | CMW500                 | GTS575        | April 14, 2023      | April 13, 2024          |
| 8                  | Loop Antenna                        | ZHINAN                         | ZN30900A               | GTS534        | Nov. 29, 2022       | Nov. 28, 2024           |
| 9                  | Broadband Preamplifier              | SCHWARZBECK                    | BBV9718                | GTS535        | April 14, 2023      | April 13, 2024          |
| 10                 | Amplifier(1GHz-26.5GHz)             | HP                             | 8449B                  | GTS601        | April 14, 2023      | April 13, 2024          |
| 11                 | Horn Antenna (18-26.5GHz)           | /                              | UG-598A/U              | GTS664        | Oct. 29, 2023       | Oct. 28, 2024           |
| 12                 | Horn Antenna (26.5-40GHz)           | A.H Systems                    | SAS-573                | GTS665        | Oct. 29, 2023       | Oct. 28, 2024           |
| 13                 | FSV-Signal Analyzer (10Hz-40GHz)    | Keysight                       | FSV-40-N               | GTS666        | March 13, 2023      | March 12, 2024          |
| 14                 | Amplifier                           | /                              | LNA-1000-30S           | GTS650        | April 14, 2023      | April 13, 2024          |
| 15                 | CDNE M2+M3-16A                      | HCT                            | 30MHz-300MHz           | GTS668        | Dec. 20, 2022       | Dec.19, 2024            |
| 16                 | Wideband Amplifier                  | /                              | WDA-01004000-15P3<br>5 | GTS602        | April 14, 2023      | April 13, 2024          |
| 17                 | Thermo meter                        | JINCHUANG                      | GSP-8A                 | GTS643        | April 19, 2023      | April 18, 2024          |
| 18                 | RE cable 1                          | GTS                            | N/A                    | GTS675        | July 31. 2023       | July 30. 2024           |
| 19                 | RE cable 2                          | GTS                            | N/A                    | GTS676        | July 31. 2023       | July 30. 2024           |
| 20                 | RE cable 3                          | GTS                            | N/A                    | GTS677        | July 31. 2023       | July 30. 2024           |
| 21                 | RE cable 4                          | GTS                            | N/A                    | GTS678        | July 31. 2023       | July 30. 2024           |
| 22                 | RE cable 5                          | GTS                            | N/A                    | GTS679        | July 31. 2023       | July 30. 2024           |
| 23                 | RE cable 6                          | GTS                            | N/A                    | GTS680        | July 31. 2023       | July 30. 2024           |
| 24                 | RE cable 7                          | GTS                            | N/A                    | GTS681        | July 31. 2023       | July 30. 2024           |
| 25                 | RE cable 8                          | GTS                            | N/A                    | GTS682        | July 31. 2023       | July 30. 2024           |

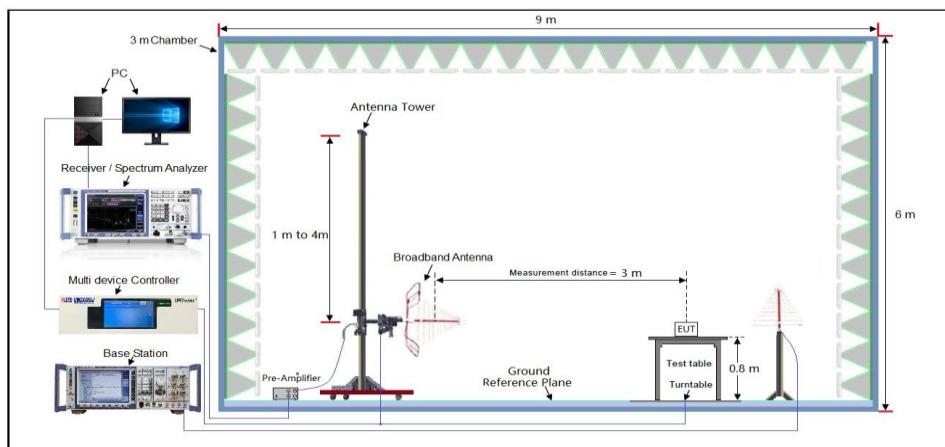
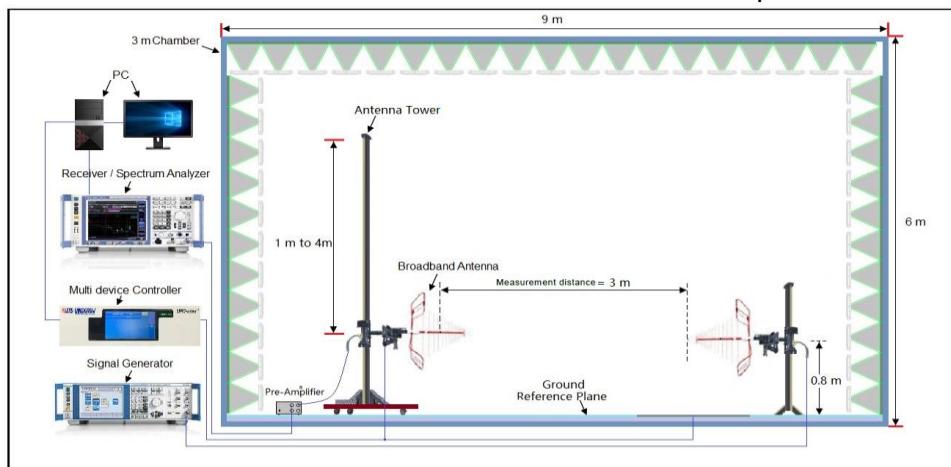
| Conducted Emission |                      |                         |                      |               |                     |                         |
|--------------------|----------------------|-------------------------|----------------------|---------------|---------------------|-------------------------|
| Item               | Test Equipment       | Manufacturer            | Model No.            | Inventory No. | Cal.Date (mm-dd-yy) | Cal.Due date (mm-dd-yy) |
| 1                  | Shielding Room       | ZhongYu Electron        | 7.3(L)x3.1(W)x2.9(H) | GTS252        | July 12, 2022       | July 11, 2027           |
| 2                  | EMI Test Receiver    | R&S                     | ESCI 7               | GTS552        | April 14, 2023      | April 13, 2024          |
| 3                  | LISN                 | ROHDE & SCHWARZ         | ENV216               | GTS226        | April 14, 2023      | April 13, 2024          |
| 4                  | Coaxial Cable        | GTS                     | N/A                  | GTS227        | N/A                 | N/A                     |
| 5                  | EMI Test Software    | AUDIX                   | E3                   | N/A           | N/A                 | N/A                     |
| 6                  | Thermo meter         | JINCHUANG               | GSP-8A               | GTS642        | April 19, 2023      | April 18, 2024          |
| 7                  | Absorbing clamp      | Elektronik-Feinmechanik | MDS21                | GTS229        | April 14, 2023      | April 13, 2024          |
| 8                  | ISN                  | SCHWARZBECK             | NTFM 8158            | GTS565        | April 14, 2023      | April 13, 2024          |
| 9                  | High voltage probe   | SCHWARZBECK             | TK9420               | GTS537        | April 14, 2023      | April 13, 2024          |
| 10                 | Antenna end assembly | Weinschel               | 1870A                | GTS560        | April 14, 2023      | April 13, 2024          |

| RF Conducted Test: |                                                |              |                  |            |                     |                         |
|--------------------|------------------------------------------------|--------------|------------------|------------|---------------------|-------------------------|
| Item               | Test Equipment                                 | Manufacturer | Model No.        | Serial No. | Cal.Date (mm-dd-yy) | Cal.Due date (mm-dd-yy) |
| 1                  | MXA Signal Analyzer                            | Agilent      | N9020A           | GTS566     | April 14, 2023      | April 13, 2024          |
| 2                  | EMI Test Receiver                              | R&S          | ESCI 7           | GTS552     | April 14, 2023      | April 13, 2024          |
| 3                  | PSA Series Spectrum Analyzer                   | Agilent      | E4440A           | GTS536     | April 14, 2023      | April 13, 2024          |
| 4                  | MXG vector Signal Generator                    | Agilent      | N5182A           | GTS567     | April 14, 2023      | April 13, 2024          |
| 5                  | ESG Analog Signal Generator                    | Agilent      | E4428C           | GTS568     | April 14, 2023      | April 13, 2024          |
| 6                  | USB RF Power Sensor                            | DARE         | RPR3006W         | GTS569     | April 14, 2023      | April 13, 2024          |
| 7                  | RF Switch Box                                  | Shongyi      | RFSW3003328      | GTS571     | April 14, 2023      | April 13, 2024          |
| 8                  | Programmable Constant Temp & Humi Test Chamber | WEWON        | WHTH-150L-40-880 | GTS572     | April 14, 2023      | April 13, 2024          |
| 9                  | Thermo meter                                   | JINCHUANG    | GSP-8A           | GTS641     | April 19, 2023      | April 18, 2024          |

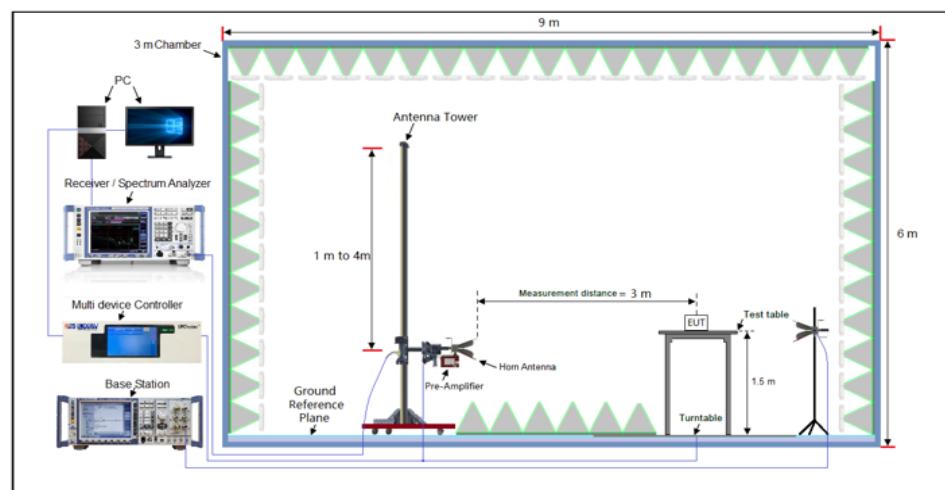
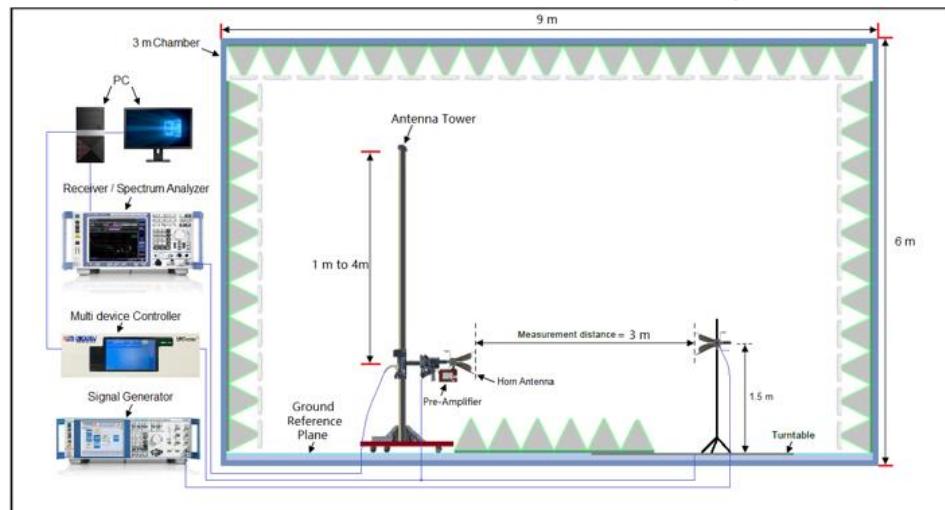
### 3 ERP AND EIRP

#### 3.1 PROVISIONS APPLICABLE

The radiation test is carried out in a semi-anechoic chamber.



According to the test, put the device under test on a non-conductive platform 3 meters away from the receiving antenna (ANSI/TIA-603-E-2016 Article 2.2.17).

The following rules are for the maximum radiated power limit requirements of the product:



| Mode          | Nominal Peak Power            |
|---------------|-------------------------------|
| WCDMA Band II | < 2 Watts max. EIRP (33dBm)   |
| WCDMA Band IV | < 1 Watts max. EIRP (30dBm)   |
| WCDMA Band V  | < 7 Watts max. ERP (38.45dBm) |

#### 3.2 TEST CONFIGURATION

Radiated Power 30MHz to 1GHz Test setup



## Radiated Power Above 1GHz Test setup



## Conducted Power Test setup



### 3.3 TEST PROCEDURE

#### Radiated Test:

1. Place the EUT in the center of the turntable.
  - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
  - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
4. Receiver or Spectrum set as follow:

Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto

Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto
5. Each emission under consideration shall be evaluated:
  - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
  - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
  - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
  - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
  - e) Record the measured emission amplitude level and frequency
6. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
7. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
8. For each emission that was detected and measured in the initial test
  - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
  - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.

c) Record the output power level of the signal generator when equivalence is achieved in step b).

11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.

12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

$$Pe = Ps(\text{dBm}) - \text{cable loss (dB)} + \text{antenna gain (dBd)}$$

where

Pe = equivalent emission power in dBm

Ps = source (signal generator) power in dBm

*NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.*

13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from:

$$\text{gain (dBd)} = \text{gain (dBi)} - 2.15 \text{ dB}.$$

If necessary, the antenna gain can be calculated from calibrated antenna factor information

14. Provide the complete measurement results as a part of the test report.

**Conducted Test:**

The EUT is coupled to the SS with attenuator through power splitter; the RF load attached to EUT antenna terminal is 50ohm, the path loss as the factor is calibrated to correct the reading. A system simulator was used to establish communication with the EUT. Its parameters were set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported. The measurements were performed on all modes at 3 typical channels(the Top Channel, the Middle Channel and the Bottom Channel) for each band.

1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
2. RBW = 1 – 5% of the expected OBW, not to exceed 1MHz
3. VBW  $\geq 3 \times \text{RBW}$
4. Span = 1.5 times the OBW
5. No. of sweep points  $> 2 \times \text{span} / \text{RBW}$
6. Detector = RMS
7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
9. Trace mode = trace averaging (RMS) over 100 sweeps
10. The trace was allowed to stabilize.

### 3.4 TEST RESULT

| Mode     | Ch./ Freq. |                | Substitute<br>LEVEL<br>(dBm) | Ant.<br>Gain<br>(dBD) | C.L  | Pol. | Limit  | ERP   |              |
|----------|------------|----------------|------------------------------|-----------------------|------|------|--------|-------|--------------|
|          | channel    | Freq.<br>(MHz) |                              |                       |      |      | W      | W     | dBm          |
| WCDMA850 | 4132       | 826.4          | 27.32                        | 3                     | 2.67 | H    | < 7.00 | 0.028 | <b>27.65</b> |
|          | 4183       | 836.4          | 26.61                        | 3                     | 2.67 | H    |        | 0.027 | 26.94        |
|          | 4233       | 846.6          | 26.53                        | 3                     | 2.67 | H    |        | 0.027 | 26.86        |
| HSPA     | 4132       | 826.4          | 24.32                        | 3                     | 2.67 | H    | < 7.00 | 0.025 | 24.65        |
|          | 4183       | 836.4          | 24.77                        | 3                     | 2.67 | H    |        | 0.025 | 25.1         |
|          | 4233       | 846.6          | 24.65                        | 3                     | 2.67 | H    |        | 0.025 | 24.98        |

| Mode          | Ch./ Freq. |                | Substitute<br>LEVEL<br>(dBm) | Ant.<br>Gain<br>(dBi) | C.L  | Pol. | Limit  | EIRP  |              |
|---------------|------------|----------------|------------------------------|-----------------------|------|------|--------|-------|--------------|
|               | channel    | Freq.<br>(MHz) |                              |                       |      |      | W      | W     | dBm          |
| WCDMA<br>1900 | 9262       | 1852.4         | 27.57                        | 2.67                  | 2.67 | H    | < 2.00 | 0.028 | <b>27.57</b> |
|               | 9400       | 1880.0         | 27.54                        | 2.67                  | 2.67 | H    |        | 0.028 | 27.54        |
|               | 9538       | 1907.6         | 27.31                        | 2.67                  | 2.67 | H    |        | 0.027 | 27.31        |
| HSPA          | 9262       | 1852.4         | 25.23                        | 2.67                  | 2.67 | H    | < 2.00 | 0.025 | 25.23        |
|               | 9400       | 1880.0         | 25.04                        | 2.67                  | 2.67 | H    |        | 0.025 | 25.04        |
|               | 9538       | 1907.6         | 25.65                        | 2.67                  | 2.67 | H    |        | 0.026 | 25.65        |
| WCDMA<br>1700 | 1312       | 1712.4         | 27.94                        | 2.67                  | 3    | H    | < 1.00 | 0.028 | <b>27.61</b> |
|               | 1412       | 1732.4         | 27.82                        | 2.67                  | 3    | H    |        | 0.027 | 27.49        |
|               | 1513       | 1752.6         | 27.76                        | 2.67                  | 3    | H    |        | 0.027 | 27.43        |
| HSPA          | 1312       | 1712.4         | 24.40                        | 2.67                  | 3    | H    | < 1.00 | 0.024 | 24.07        |
|               | 1412       | 1732.4         | 24.43                        | 2.67                  | 3    | H    |        | 0.024 | 24.1         |
|               | 1513       | 1752.6         | 24.47                        | 2.67                  | 3    | H    |        | 0.024 | 24.14        |

Note:1. EIRP/ERP = Substitute LEVEL (dBm) + Ant. Gain - C.L (Cable Loss),

2. All polarizations and modes have been tested, only the worst mode is recorded in the report

## 4 PEAK-TO-AVERAGE POWER RATIO

### 4.1 PROVISIONS APPLICABLE

This is the test for the Peak-to-Average Ratio from the EUT.

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

### 4.2 MEASUREMENT METHOD

#### ① CCDF Procedure for PAPR :

1. Set resolution/measurement bandwidth  $\geq$  signal's occupied bandwidth;
2. Set the number of counts to a value that stabilizes the measured CCDF curve;
3. Set the measurement interval as follows:
  - for continuous transmissions, set to 1 ms,
  - or burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
4. Record the maximum PAPR level associated with a probability of 0.1%.

#### ② Alternate Procedure for PAPR:

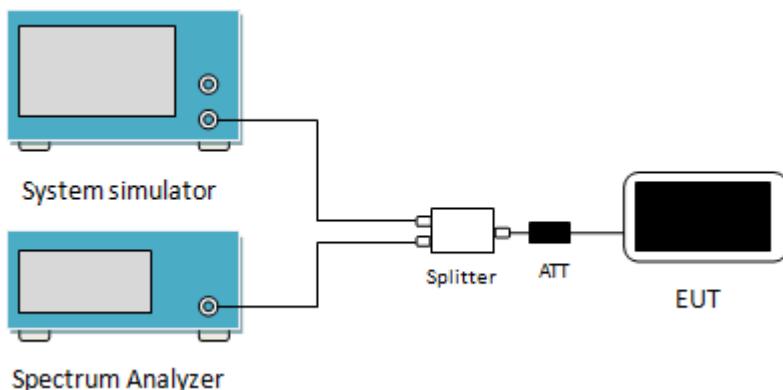
Use one of the procedures presented in 5.2(ANSI C63.26-2015) to measure the total peak power and record as PPk. Use one of the applicable procedures presented 5.2(ANSI C63.26-2015) to measure the total average power and record as PAvg. Determine the P.A.R. from:

$$\text{P.A.R(dB)} = \text{PPk (dBm)} - \text{PAvg (dBm)} \quad (\text{PAvg} = \text{Average Power} + \text{Duty cycle Factor})$$

Allow trace to fully stabilize.

Use the peak marker function to determine the peak amplitude level.

#### Test Settings(Peak Power):


The measurement instrument must have a RBW that is greater than or equal to the OBW of the signal to be measured and a VBW  $\geq 3 \times$  RBW.

1. Set the RBW  $\geq$  OBW.
2. Set VBW  $\geq 3 \times$  RBW.
3. Set span  $\geq 2 \times$  OBW.
4. Sweep time  $\geq 10 \times$  (number of points in sweep)  $\times$  (transmission symbol period).
5. Detector = peak.
6. Trace mode = max hold.
7. Allow trace to fully stabilize.
8. Use the peak marker function to determine the peak amplitude level.

### Test Settings(Average Power)

1. Set span to  $2 \times$  to  $3 \times$  the OBW.
2. Set RBW  $\geq$  OBW.
3. Set VBW  $\geq 3 \times$  RBW.
4. Set number of measurement points in sweep  $\geq 2 \times$  span / RBW.
5. Sweep time: Set  $\geq [10 \times (\text{number of points in sweep}) \times (\text{transmission period})]$  for single sweep (automation-compatible) measurement. The transmission period is the (on + off) time.
6. Detector = power averaging (rms).
7. Set sweep trigger to “free run.”
8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. (To accurately determine the average power over the on and off period of the transmitter, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.)
9. Use the peak marker function to determine the maximum amplitude level.
10. Add  $[10 \log (1/\text{duty cycle})]$  to the measured maximum power level to compute the average power during continuous transmission. For example, add  $[10 \log (1/0.25)] = 6 \text{ dB}$  if the duty cycle is a constant 25%.

### 4.3 MEASUREMENT SETUP



### 4.4 TEST RESULT

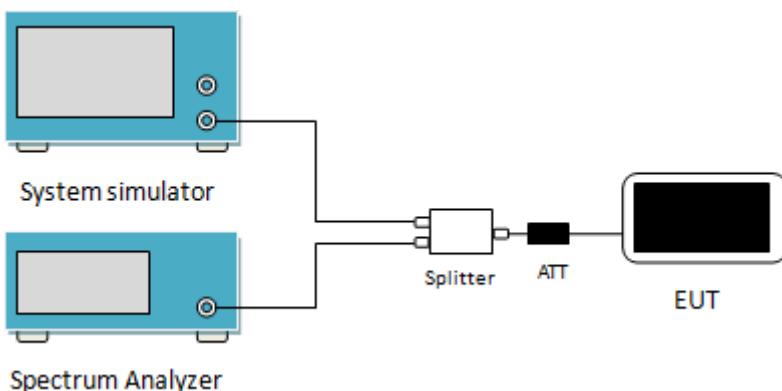
| Bands         | Modulation      | Peak-to-average ratio (dB) |        |         | Limit | Result |
|---------------|-----------------|----------------------------|--------|---------|-------|--------|
|               |                 | Lowest                     | Middle | Highest | (dB)  |        |
| WCDMA Band II | RMC<br>12.2kbps | 2.65                       | 2.72   | 2.72    | 13    | Pass   |
| WCDMA Band II | HSUPA           | 2.83                       | 5.16   | 2.88    | 13    | Pass   |
| WCDMA Band II | HSDPA           | 5.04                       | 3.35   | 5.17    | 13    | Pass   |
| WCDMA Band IV | RMC<br>12.2kbps | 4.32                       | 4.62   | 4.68    | 13    | Pass   |
| WCDMA Band IV | HSUPA           | 5.23                       | 5.04   | 5.19    | 13    | Pass   |
| WCDMA Band IV | HSDPA           | 6.04                       | 3.91   | 3.65    | 13    | Pass   |
| WCDMA Band V  | RMC<br>12.2kbps | 2.76                       | 2.72   | 2.76    | 13    | Pass   |
| WCDMA Band V  | HSUPA           | 2.72                       | 2.83   | 2.44    | 13    | Pass   |
| WCDMA Band V  | HSDPA           | 4.87                       | 5.56   | 4.31    | 13    | Pass   |

## 5 OCCUPY BANDWIDTH

### 5.1 PROVISIONS APPLICABLE

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

The EUT makes a call to the communication simulator.

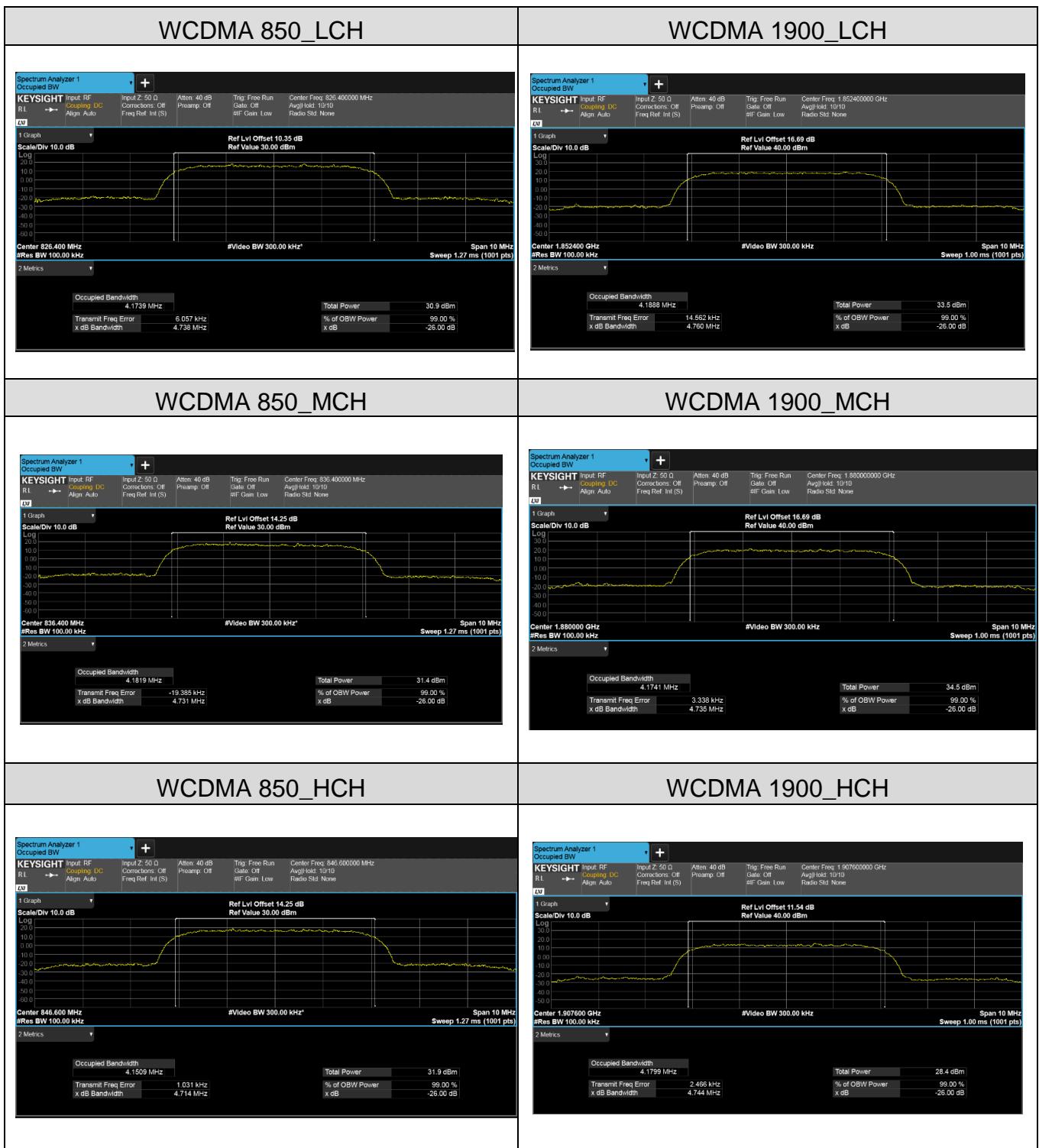

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

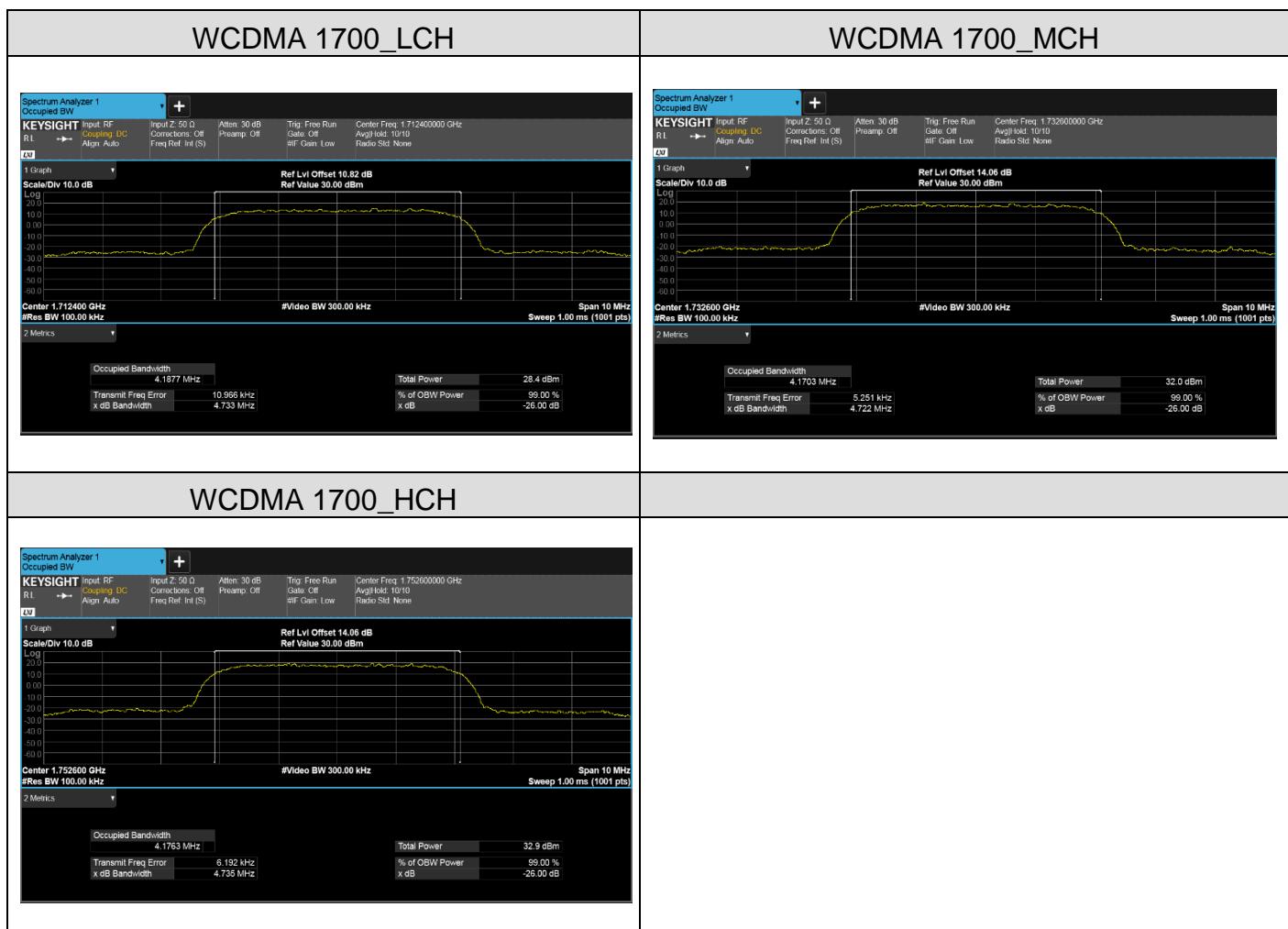
The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth

### 5.2 MEASUREMENT METHOD

1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
2. RBW = 1 – 5% of the expected OBW
3. VBW  $\geq$  3 x RBW
4. Detector = Peak
5. Trace mode = max hold
6. Sweep = auto couple
7. The trace was allowed to stabilize
8. If necessary, steps 2 – 7 were repeated after changing the RBW such that it would be within 1-5% of the 99% occupied bandwidth observed in Step 7

### 5.3 MEASUREMENT SETUP





#### 5.4 TEST RESULT

| Test Band | Test Mode | Test Channel | Occupied Bandwidth (KHz) | Emission Bandwidth (KHz) | Verdict |
|-----------|-----------|--------------|--------------------------|--------------------------|---------|
| WCDMA 850 | UMTS      | LCH          | 4173.9                   | 4738                     | PASS    |
|           |           | MCH          | 4181.9                   | 4731                     | PASS    |
|           |           | HCH          | 4150.9                   | 4714                     | PASS    |

| Test Band  | Test Mode | Test Channel | Occupied Bandwidth (KHz) | Emission Bandwidth (KHz) | Verdict |
|------------|-----------|--------------|--------------------------|--------------------------|---------|
| WCDMA 1900 | UMTS      | LCH          | 4188.8                   | 4760                     | PASS    |
|            |           | MCH          | 4174.1                   | 4735                     | PASS    |
|            |           | HCH          | 4179.9                   | 4744                     | PASS    |

| Test Band  | Test Mode | Test Channel | Occupied Bandwidth (KHz) | Emission Bandwidth (KHz) | Verdict |
|------------|-----------|--------------|--------------------------|--------------------------|---------|
| WCDMA 1700 | UMTS      | LCH          | 4187.7                   | 4733                     | PASS    |
|            |           | MCH          | 4170.3                   | 4722                     | PASS    |
|            |           | HCH          | 4176.3                   | 4735                     | PASS    |





## 6 MODULATION CHARACTERISTIC

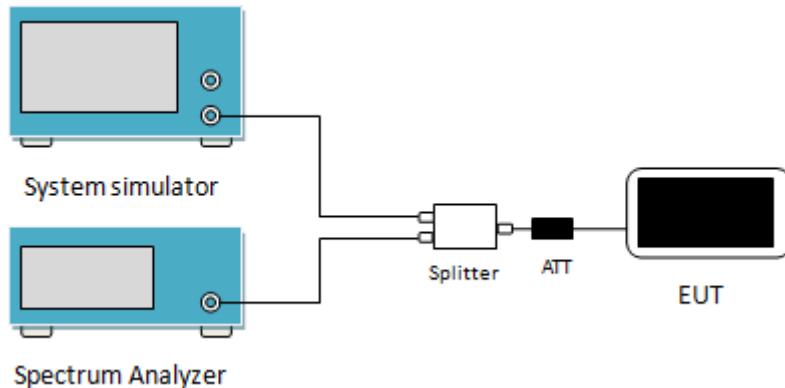
According to FCC § 2.1047(d), Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

## 7 BAND EDGE EMISSION AT ANTENNA TERMINALS

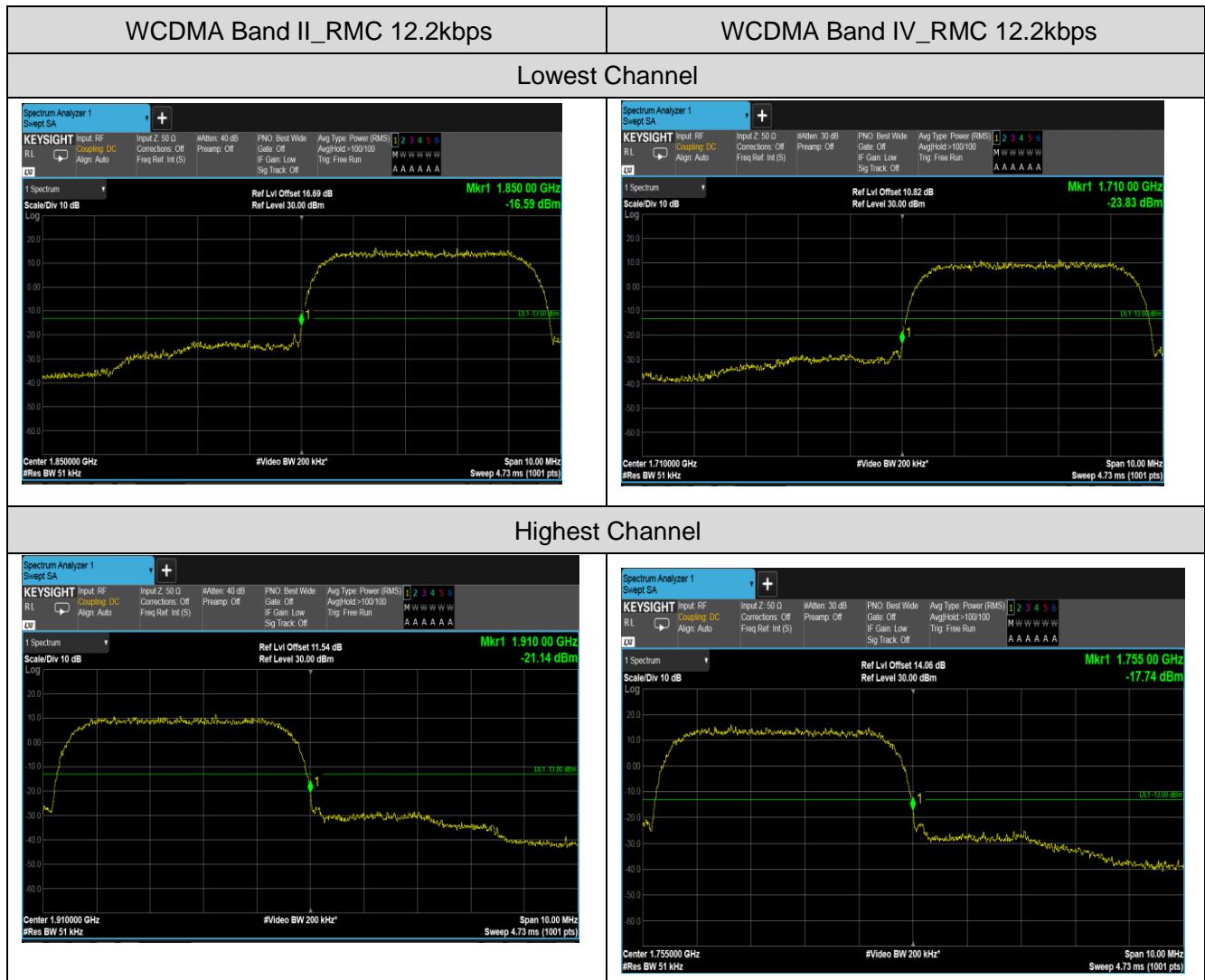
### 7.1 PROVISIONS APPLICABLE

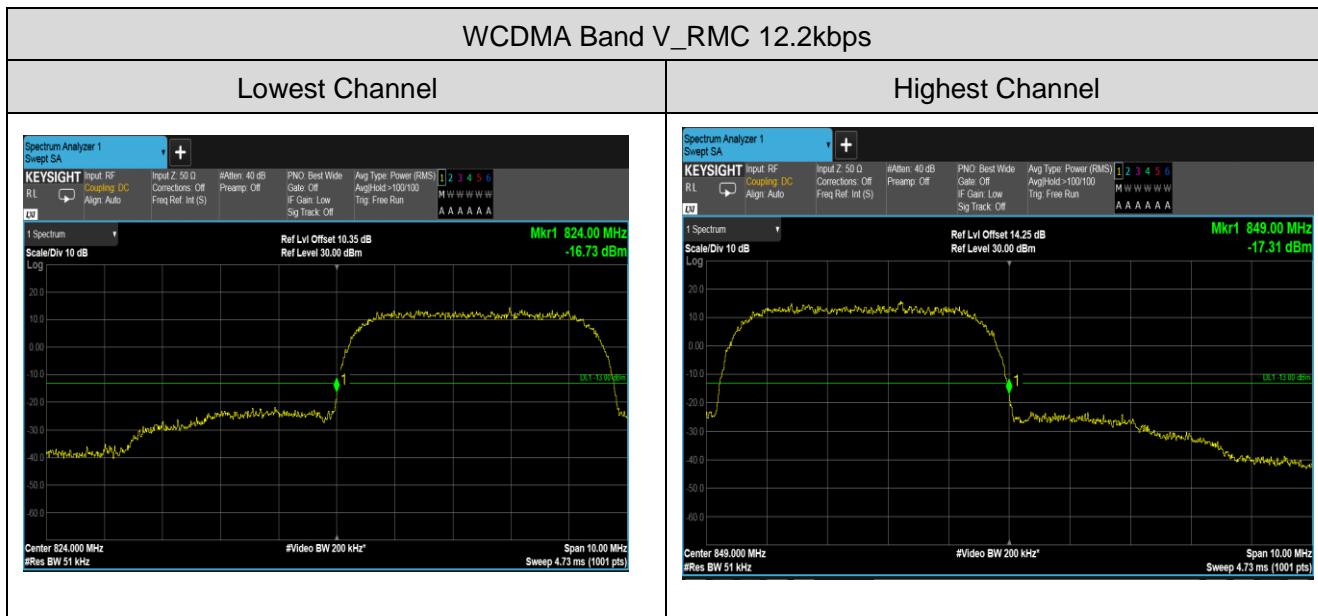
All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

### 7.2 MEASUREMENT METHOD


1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
2. Span was set large enough so as to capture all out of band emissions near the band edge
3. RBW > 1% of the emission bandwidth
4. VBW > 3 x RBW
5. Detector = RMS
6. Number of sweep points  $\geq 2 \times \text{Span}/\text{RBW}$
7. Trace mode = trace average
8. Sweep time = auto couple
9. The trace was allowed to stabilize

### TEST NOTE


According to FCC 22.917, 24.238, 27.53 specified that power of any emission outside of The authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P)$  dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. All measurements were done at 2 channels (low and high operational frequency range.)


The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

### 7.3 MEASUREMENT SETUP



### 7.4 TEST RESULT





## 8 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

### 8.1 PROVISIONS APPLICABLE

(A) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least  $43 + 10\log(P)$  dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least  $43 + 10 \log (P)$  dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm.

At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

(B) For specific criteria, please refer to the description in section 9.2 of the report for corresponding evaluation.

### 8.2 MEASUREMENT PROCEDURE

1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions

which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.

9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High - Low scan is not required in this case.

11. For spurious emissions above 1GHz, a horn antenna is substituted in place of the EUT.

The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The spurious emissions is calculated by the following formula;

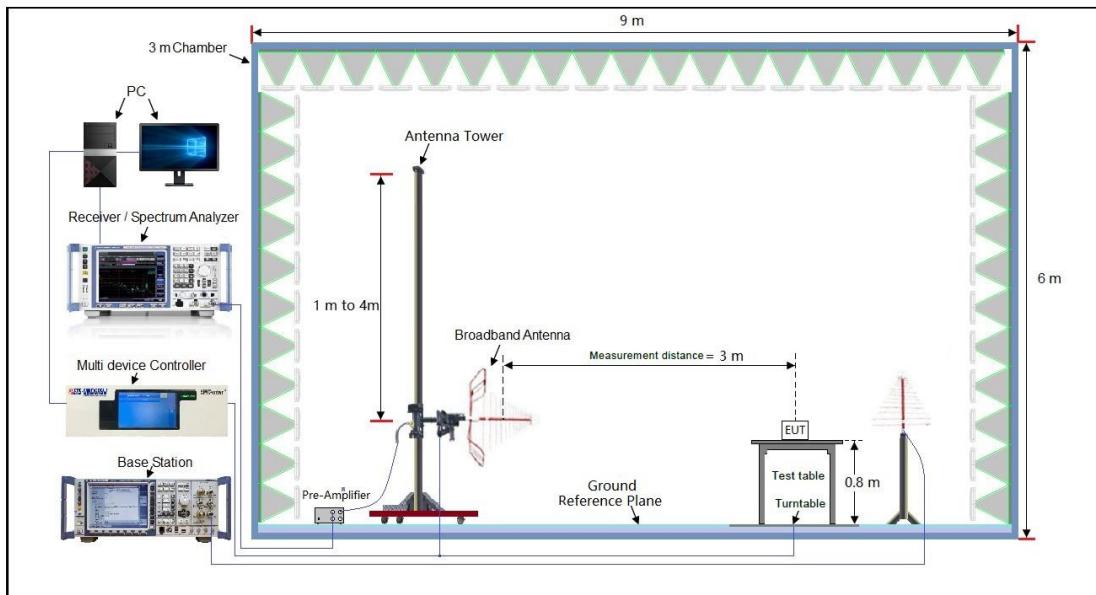
$$\text{Result(dBm)} = \text{Pg(dBm)} + \text{Factor(dB)}$$

$$\text{Factor(dB)} = \text{Ant Gain(dB)} - \text{Cable Loss(dB)} + \text{Power Splitter(dB)} \text{ (Above 1GHz)}$$

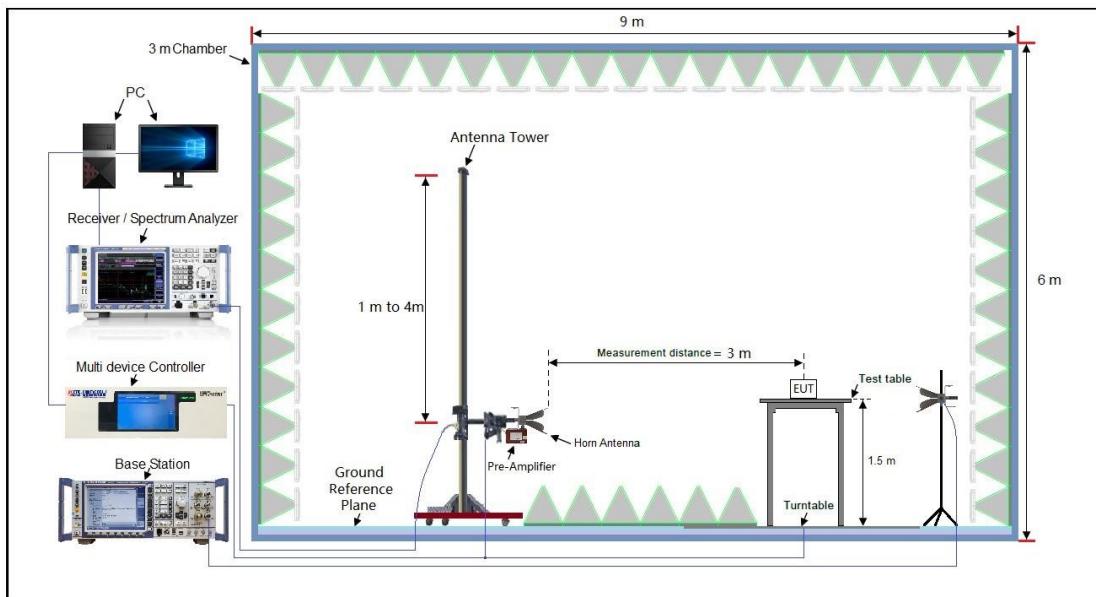
$$\text{Factor(dB)} = \text{Ant Gain(dB)} - \text{Cable Loss(dB)} \text{ (Below 1GHz)}$$

Where: Pg is the generator output power into the substitution antenna.

If the fundamental frequency is below 1GHz, RF output power has been converted to EIRP.


$$\text{EIRP(dBm)} = \text{ERP(dBm)} + 2.15$$

12. Examples of Factor parameters for testing radiation spurious:


| Frequency Range(MHz) | Factor(dB) |
|----------------------|------------|
| 30-500               | 6.18       |
| 500-1000             | 9.37       |
| 1000-1500            | 27.56      |
| 1500-2000            | 28.27      |
| 2000-3000            | 29.45      |
| 3000-5000            | 30.15      |
| 5000-10000           | 31.26      |
| 10000-15000          | 32.78      |
| 15000-20000          | 33.99      |
| Above 20GHz          | 35.04      |

## 8.3 MEASUREMENT SETUP

### Radiated Emissions 30MHz to 1GHz Test setup



### Radiated Emissions Above 1GHz Test setup



## 8.4 TEST RESULT

The measurement Below 1GHz data as follows:

| WCDMA Band II                        |           |            |                   |             |        |        |            |
|--------------------------------------|-----------|------------|-------------------|-------------|--------|--------|------------|
| No.                                  | Frequency | SA Reading | Correction factor | EIRP Result | Limit  | Margin | Ant. Pol.  |
|                                      | (MHz)     | (dBm)      | (dB/m)            | (dBm)       | (dBm)  | (dB)   |            |
| <b>RMC 12.2kbps_ Lowest Channel</b>  |           |            |                   |             |        |        |            |
| 1                                    | 159.76    | -66.16     | 15.52             | -50.64      | -13.00 | -37.64 | Horizontal |
| 2                                    | 240.14    | -62.85     | 16.75             | -46.1       | -13.00 | -33.1  | Horizontal |
| 3                                    | 754.96    | -59.38     | 19.35             | -40.03      | -13.00 | -27.03 | Horizontal |
| 4                                    | 46.71     | -64.75     | 10.44             | -54.31      | -13.00 | -41.31 | Vertical   |
| 5                                    | 433.34    | -61.16     | 17.75             | -43.41      | -13.00 | -30.41 | Vertical   |
| 6                                    | 502.25    | -59.22     | 18.66             | -40.56      | -13.00 | -27.56 | Vertical   |
| <b>RMC 12.2kbps_ Middle Channel</b>  |           |            |                   |             |        |        |            |
| 1                                    | 31.74     | -62.94     | 9.78              | -53.16      | -13.00 | -40.16 | Horizontal |
| 2                                    | 159.76    | -63.95     | 13.75             | -50.2       | -13.00 | -37.2  | Horizontal |
| 3                                    | 240.14    | -61.58     | 16.75             | -44.83      | -13.00 | -31.83 | Horizontal |
| 4                                    | 43.23     | -63.76     | 10.23             | -53.53      | -13.00 | -40.53 | Vertical   |
| 5                                    | 433.34    | -62.97     | 17.75             | -45.22      | -13.00 | -32.22 | Vertical   |
| 6                                    | 498.73    | -58.64     | 18.02             | -40.62      | -13.00 | -27.62 | Vertical   |
| <b>RMC 12.2kbps_ Highest Channel</b> |           |            |                   |             |        |        |            |
| 1                                    | 159.76    | -63.76     | 13.75             | -50.01      | -13.00 | -37.01 | Horizontal |
| 2                                    | 240.14    | -62.55     | 16.75             | -45.8       | -13.00 | -32.8  | Horizontal |
| 3                                    | 679.44    | -59.38     | 19.01             | -40.37      | -13.00 | -27.37 | Horizontal |
| 4                                    | 43.23     | -63.66     | 10.23             | -53.43      | -13.00 | -40.43 | Vertical   |
| 5                                    | 433.34    | -62.04     | 17.75             | -44.29      | -13.00 | -31.29 | Vertical   |
| 6                                    | 498.73    | -58.81     | 18.02             | -40.79      | -13.00 | -27.79 | Vertical   |

| WCDMA Band IV                        |           |            |                   |             |        |        |            |
|--------------------------------------|-----------|------------|-------------------|-------------|--------|--------|------------|
| No.                                  | Frequency | SA Reading | Correction factor | EIRP Result | Limit  | Margin | Ant. Pol.  |
|                                      | (MHz)     | (dBm)      | (dB/m)            | (dBm)       | (dBm)  | (dB)   |            |
| <b>RMC 12.2kbps_ Lowest Channel</b>  |           |            |                   |             |        |        |            |
| 1                                    | 159.759   | -65.67     | 15.52             | -50.15      | -13.00 | -37.15 | Horizontal |
| 2                                    | 240.144   | -62.76     | 16.75             | -46.01      | -13.00 | -33.01 | Horizontal |
| 3                                    | 754.963   | -59.13     | 19.35             | -39.78      | -13.00 | -26.78 | Horizontal |
| 4                                    | 46.708    | -65.05     | 10.44             | -54.61      | -13.00 | -41.61 | Vertical   |
| 5                                    | 433.340   | -61.17     | 17.75             | -43.42      | -13.00 | -30.42 | Vertical   |
| 6                                    | 502.247   | -59.25     | 18.66             | -40.59      | -13.00 | -27.59 | Vertical   |
| <b>RMC 12.2kbps_ Middle Channel</b>  |           |            |                   |             |        |        |            |
| 1                                    | 31.735    | -63.24     | 9.78              | -53.46      | -13.00 | -40.46 | Horizontal |
| 2                                    | 159.759   | -63.36     | 13.75             | -49.61      | -13.00 | -36.61 | Horizontal |
| 3                                    | 240.144   | -61.25     | 16.75             | -44.5       | -13.00 | -31.5  | Horizontal |
| 4                                    | 43.233    | -63.23     | 10.23             | -53         | -13.00 | -40    | Vertical   |
| 5                                    | 433.340   | -62.94     | 17.75             | -45.19      | -13.00 | -32.19 | Vertical   |
| 6                                    | 498.730   | -58.77     | 18.02             | -40.75      | -13.00 | -27.75 | Vertical   |
| <b>RMC 12.2kbps_ Highest Channel</b> |           |            |                   |             |        |        |            |
| 1                                    | 159.759   | -63.65     | 13.75             | -49.9       | -13.00 | -36.9  | Horizontal |
| 2                                    | 240.144   | -62.28     | 16.75             | -45.53      | -13.00 | -32.53 | Horizontal |
| 3                                    | 679.435   | -59.72     | 19.01             | -40.71      | -13.00 | -27.71 | Horizontal |
| 4                                    | 43.233    | -63.75     | 10.23             | -53.52      | -13.00 | -40.52 | Vertical   |
| 5                                    | 433.340   | -61.77     | 17.75             | -44.02      | -13.00 | -31.02 | Vertical   |
| 6                                    | 498.730   | -59.03     | 18.02             | -41.01      | -13.00 | -28.01 | Vertical   |

| WCDMA Band V                  |           |            |                   |             |        |        |            |
|-------------------------------|-----------|------------|-------------------|-------------|--------|--------|------------|
| No.                           | Frequency | SA Reading | Correction factor | EIRP Result | Limit  | Margin | Ant. Pol.  |
|                               | (MHz)     | (dBm)      | (dB/m)            | (dBm)       | (dBm)  | (dB)   |            |
| RMC 12.2kbps_ Lowest Channel  |           |            |                   |             |        |        |            |
| 1                             | 159.759   | -65.43     | 15.52             | -49.91      | -13.00 | -36.91 | Horizontal |
| 2                             | 240.144   | -62.68     | 16.75             | -45.93      | -13.00 | -32.93 | Horizontal |
| 3                             | 754.963   | -59.34     | 19.35             | -39.99      | -13.00 | -26.99 | Horizontal |
| 4                             | 46.708    | -64.77     | 10.44             | -54.33      | -13.00 | -41.33 | Vertical   |
| 5                             | 433.340   | -61.25     | 17.75             | -43.5       | -13.00 | -30.5  | Vertical   |
| 6                             | 502.247   | -58.96     | 18.66             | -40.3       | -13.00 | -27.3  | Vertical   |
| RMC 12.2kbps_ Middle Channel  |           |            |                   |             |        |        |            |
| 1                             | 31.735    | -63.03     | 9.78              | -53.25      | -13.00 | -40.25 | Horizontal |
| 2                             | 159.759   | -63.88     | 13.75             | -50.13      | -13.00 | -37.13 | Horizontal |
| 3                             | 240.144   | -61.44     | 16.75             | -44.69      | -13.00 | -31.69 | Horizontal |
| 4                             | 43.233    | -63.56     | 10.23             | -53.33      | -13.00 | -40.33 | Vertical   |
| 5                             | 433.340   | -63.02     | 17.75             | -45.27      | -13.00 | -32.27 | Vertical   |
| 6                             | 498.730   | -58.93     | 18.02             | -40.91      | -13.00 | -27.91 | Vertical   |
| RMC 12.2kbps_ Highest Channel |           |            |                   |             |        |        |            |
| 1                             | 159.759   | -63.55     | 13.75             | -49.8       | -13.00 | -36.8  | Horizontal |
| 2                             | 240.144   | -62.24     | 16.75             | -45.49      | -13.00 | -32.49 | Horizontal |
| 3                             | 679.435   | -59.75     | 19.01             | -40.74      | -13.00 | -27.74 | Horizontal |
| 4                             | 43.233    | -63.58     | 10.23             | -53.35      | -13.00 | -40.35 | Vertical   |
| 5                             | 433.340   | -61.36     | 17.75             | -43.61      | -13.00 | -30.61 | Vertical   |
| 6                             | 498.730   | -59.47     | 18.02             | -41.45      | -13.00 | -28.45 | Vertical   |

The measurement Above 1GHz data as follows:

| WCDMA Band II                        |           |            |                   |             |        |        |            |
|--------------------------------------|-----------|------------|-------------------|-------------|--------|--------|------------|
| No.                                  | Frequency | SA Reading | Correction factor | EIRP Result | Limit  | Margin | Ant. Pol.  |
|                                      | (MHz)     | (dBm)      | (dB/m)            | (dBm)       | (dBm)  | (dB)   |            |
| <b>RMC 12.2kbps_ Lowest Channel</b>  |           |            |                   |             |        |        |            |
| 1                                    | 3704.800  | -83.03     | 31.09             | -51.94      | -13.00 | -38.94 | Horizontal |
| 2                                    | 5557.200  | -89.25     | 34.14             | -55.11      | -13.00 | -42.11 | Horizontal |
| 3                                    | 3704.800  | -81.07     | 33.13             | -47.94      | -13.00 | -34.94 | Vertical   |
| 4                                    | 5557.200  | -85.64     | 32.66             | -52.98      | -13.00 | -39.98 | Vertical   |
| <b>RMC 12.2kbps_ Middle Channel</b>  |           |            |                   |             |        |        |            |
| 1                                    | 3760.000  | -79.54     | 31.09             | -48.45      | -13.00 | -35.45 | Horizontal |
| 2                                    | 5640.000  | -88.08     | 34.14             | -53.94      | -13.00 | -40.94 | Horizontal |
| 3                                    | 3760.000  | -79.75     | 33.13             | -46.62      | -13.00 | -33.62 | Vertical   |
| 4                                    | 5640.000  | -84.43     | 32.66             | -51.77      | -13.00 | -38.77 | Vertical   |
| <b>RMC 12.2kbps_ Highest Channel</b> |           |            |                   |             |        |        |            |
| 1                                    | 3815.200  | -82.71     | 31.09             | -51.62      | -13.00 | -38.62 | Horizontal |
| 2                                    | 5722.800  | -85.87     | 34.14             | -51.73      | -13.00 | -38.73 | Horizontal |
| 3                                    | 3815.200  | -82.55     | 33.13             | -49.42      | -13.00 | -36.42 | Vertical   |
| 4                                    | 5722.800  | -83.28     | 32.66             | -50.62      | -13.00 | -37.62 | Vertical   |

| WCDMA Band IV                        |           |            |                   |             |        |        |            |
|--------------------------------------|-----------|------------|-------------------|-------------|--------|--------|------------|
| No.                                  | Frequency | SA Reading | Correction factor | EIRP Result | Limit  | Margin | Ant. Pol.  |
|                                      | (MHz)     | (dBm)      | (dB/m)            | (dBm)       | (dBm)  | (dB)   |            |
| <b>RMC 12.2kbps_ Lowest Channel</b>  |           |            |                   |             |        |        |            |
| 1                                    | 3424.800  | -89.97     | 32.11             | -57.86      | -13.00 | -44.86 | Horizontal |
| 2                                    | 5137.200  | -87.75     | 33.21             | -54.54      | -13.00 | -41.54 | Horizontal |
| 3                                    | 3424.800  | -90.36     | 32.09             | -58.27      | -13.00 | -45.27 | Vertical   |
| 4                                    | 5137.200  | -87.42     | 34.03             | -53.39      | -13.00 | -40.39 | Vertical   |
| <b>RMC 12.2kbps_ Middle Channel</b>  |           |            |                   |             |        |        |            |
| 1                                    | 3464.800  | -89.23     | 32.11             | -57.12      | -13.00 | -44.12 | Horizontal |
| 2                                    | 5197.200  | -86.74     | 33.21             | -53.53      | -13.00 | -40.53 | Horizontal |
| 3                                    | 3464.800  | -90.01     | 32.09             | -57.92      | -13.00 | -44.92 | Vertical   |
| 4                                    | 5197.200  | -86.45     | 34.03             | -52.42      | -13.00 | -39.42 | Vertical   |
| <b>RMC 12.2kbps_ Highest Channel</b> |           |            |                   |             |        |        |            |
| 1                                    | 3505.200  | -89.53     | 32.11             | -57.42      | -13.00 | -44.42 | Horizontal |
| 2                                    | 5257.800  | -86.45     | 33.21             | -53.24      | -13.00 | -40.24 | Horizontal |
| 3                                    | 3505.200  | -89.37     | 32.09             | -57.28      | -13.00 | -44.28 | Vertical   |
| 4                                    | 5257.800  | -85.78     | 34.03             | -51.75      | -13.00 | -38.75 | Vertical   |

| WCDMA Band V                         |           |            |                   |             |        |        |            |
|--------------------------------------|-----------|------------|-------------------|-------------|--------|--------|------------|
| No.                                  | Frequency | SA Reading | Correction factor | EIRP Result | Limit  | Margin | Ant. Pol.  |
|                                      | (MHz)     | (dBm)      | (dB/m)            | (dBm)       | (dBm)  | (dB)   |            |
| <b>RMC 12.2kbps_ Lowest Channel</b>  |           |            |                   |             |        |        |            |
| 1                                    | 1652.800  | -83.85     | 23.12             | -60.73      | -13.00 | -47.73 | Horizontal |
| 2                                    | 2479.200  | -85.96     | 28.47             | -57.49      | -13.00 | -44.49 | Horizontal |
| 3                                    | 1652.800  | -83.24     | 23.12             | -60.12      | -13.00 | -47.12 | Vertical   |
| 4                                    | 2479.200  | -83.17     | 28.47             | -54.7       | -13.00 | -41.7  | Vertical   |
| <b>RMC 12.2kbps_ Middle Channel</b>  |           |            |                   |             |        |        |            |
| 1                                    | 1672.800  | -81.63     | 23.12             | -58.51      | -13.00 | -45.51 | Horizontal |
| 2                                    | 2509.200  | -83.62     | 28.47             | -55.15      | -13.00 | -42.15 | Horizontal |
| 3                                    | 1672.800  | -83.28     | 23.12             | -60.16      | -13.00 | -47.16 | Vertical   |
| 4                                    | 2509.200  | -81.54     | 28.47             | -53.07      | -13.00 | -40.07 | Vertical   |
| <b>RMC 12.2kbps_ Highest Channel</b> |           |            |                   |             |        |        |            |
| 1                                    | 1693.200  | -80.68     | 23.12             | -57.56      | -13.00 | -44.56 | Horizontal |
| 2                                    | 2539.800  | -82.05     | 28.47             | -53.58      | -13.00 | -40.58 | Horizontal |
| 3                                    | 1693.200  | -80.96     | 23.12             | -57.84      | -13.00 | -44.84 | Vertical   |
| 4                                    | 2539.800  | -80.74     | 28.47             | -52.27      | -13.00 | -39.27 | Vertical   |

**Note:**

1. Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain, the value was added to Original Receiver Reading by the software automatically.
2. Result = Reading + Correct Factor.
3. Margin = Result – Limit
4. The device is investigated from 30MHz to 10 times of fundamental signal for radiated spurious emission test. Subsequently, only the worst case emissions are reported.

## 9 FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT

### 9.1 PROVISIONS APPLICABLE

#### 9.1.1 For Hand carried battery powered equipment

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016.

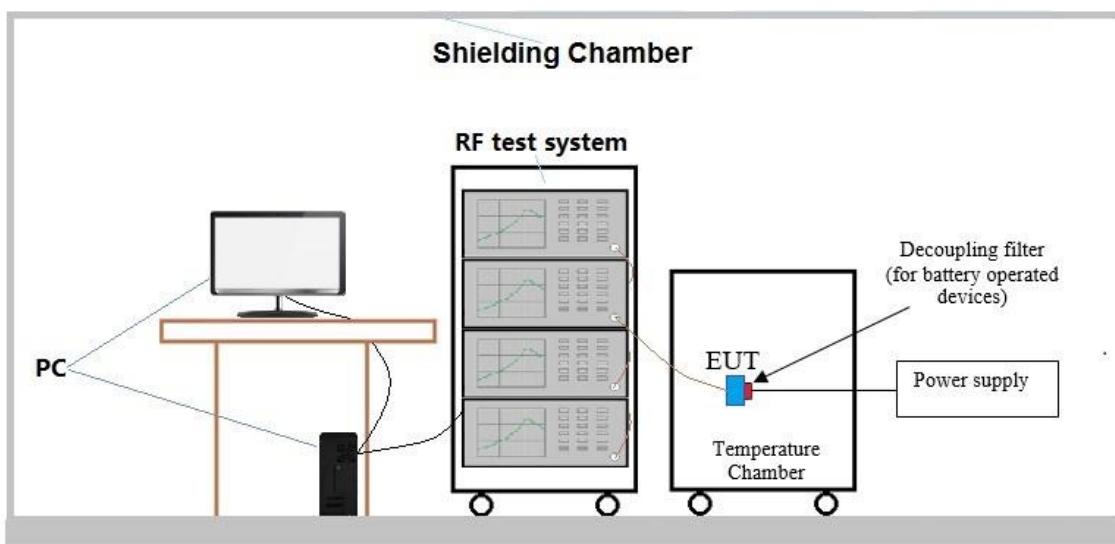
The frequency stability of the transmitter is measured by:

- a.) Temperature: The temperature is varied from -10°C to +40°C in 10°C increments using an environmental chamber.
- b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried,battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22, the frequency stability of the transmitter shall be maintained within  $\pm 0.00025\%$  ( $\pm 2.5$  ppm) of the center frequency. For Part 24 and Part 27, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

#### 9.1.2 For equipment powered by primary supply voltage

1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
2. The equipment is turned on in a “standby” condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
3. Frequency measurements are made at 10°C intervals ranging from -10°C to +40°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.


### 9.2 MEASUREMENT METHOD

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a “call mode”. This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.
2. Subject the EUT to overnight soak at -10°C. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on channel 20175 for LTE band 4 measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
3. Repeat the above measurements at 10°C increments from -10°C to +40°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
4. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1 Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.

5. Subject the EUT to overnight soak at +50°C.
6. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
7. Repeat the above measurements at 10°C increments from +50°C to -20°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
8. At all temperature levels hold the temperature to +/- 0.5°C during the measurement procedure.

### 9.3 MEASUREMENT SETUP



## 9.4 TEST RESULT

### Frequency Error vs. Voltage:

| Test Band | Test Mode | Test Channel | Test Temp. | Test Volt.(V) | Freq.Error (Hz) | Freq.vs.rated (ppm) | Limit (ppm) | Verdict |
|-----------|-----------|--------------|------------|---------------|-----------------|---------------------|-------------|---------|
| WCDMA850  | UMTS      | LCH          | TN         | VL            | -7.05           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | TN         | VN            | -13.78          | 0.02                | $\pm 2.5$   | PASS    |
|           |           |              | TN         | VH            | -9.83           | 0.01                | $\pm 2.5$   | PASS    |
|           |           | MCH          | TN         | VL            | -13.44          | 0.02                | $\pm 2.5$   | PASS    |
|           |           |              | TN         | VN            | -3.03           | 0.00                | $\pm 2.5$   | PASS    |
|           |           |              | TN         | VH            | -17.54          | 0.02                | $\pm 2.5$   | PASS    |
|           |           | HCH          | TN         | VL            | -7.85           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | TN         | VN            | -9.97           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | TN         | VH            | -3.98           | 0.00                | $\pm 2.5$   | PASS    |

| Test Band | Test Mode | Test Channel | Test Temp. | Test Volt.(V) | Freq.Error (Hz) | Freq.vs.rated (ppm) | Verdict |
|-----------|-----------|--------------|------------|---------------|-----------------|---------------------|---------|
| WCDMA1700 | UMTS      | LCH          | TN         | VL            | -14.73          | 0.01                | PASS    |
|           |           |              | TN         | VN            | -22.57          | 0.01                | PASS    |
|           |           |              | TN         | VH            | -16.76          | 0.01                | PASS    |
|           |           | MCH          | TN         | VL            | -19.98          | 0.01                | PASS    |
|           |           |              | TN         | VN            | -20.62          | 0.01                | PASS    |
|           |           |              | TN         | VH            | -19.07          | 0.01                | PASS    |
|           |           | HCH          | TN         | VL            | -22.65          | 0.01                | PASS    |
|           |           |              | TN         | VN            | -13.20          | 0.01                | PASS    |
|           |           |              | TN         | VH            | -9.71           | 0.01                | PASS    |

Note: Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

| Test Band | Test Mode | Test Channel | Test Temp. | Test Volt.(V) | Freq.Error (Hz) | Freq.vs.rated (ppm) | Verdict |
|-----------|-----------|--------------|------------|---------------|-----------------|---------------------|---------|
| WCDMA1900 | UMTS      | LCH          | TN         | VL            | -23.14          | 0.01                | PASS    |
|           |           |              | TN         | VN            | -15.13          | 0.01                | PASS    |
|           |           |              | TN         | VH            | -19.21          | 0.01                | PASS    |
|           |           | MCH          | TN         | VL            | -14.67          | 0.01                | PASS    |
|           |           |              | TN         | VN            | -20.35          | 0.01                | PASS    |
|           |           |              | TN         | VH            | -14.78          | 0.01                | PASS    |
|           |           | HCH          | TN         | VL            | -14.65          | 0.01                | PASS    |
|           |           |              | TN         | VN            | -16.33          | 0.01                | PASS    |
|           |           |              | TN         | VH            | -15.62          | 0.01                | PASS    |

Note: Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

**Frequency Error vs. Temperature:**

| Test Band | Test Mode | Test Channel | Test Volt. | Test Temp | Freq.Error (Hz) | Freq.vs.rated (ppm) | Limit (ppm) | Verdict |
|-----------|-----------|--------------|------------|-----------|-----------------|---------------------|-------------|---------|
| WCDMA850  | TM1       | LCH          | VN         | -30       | -7.35           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | -20       | -10.52          | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | -10       | -10.23          | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 0         | -7.95           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 10        | -8.41           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 20        | -6.47           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 30        | -11.25          | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 40        | -11.55          | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 50        | -10.71          | 0.01                | $\pm 2.5$   | PASS    |
| WCDMA850  | TM1       | MCH          | VN         | -30       | -11.09          | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | -20       | -7.16           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | -10       | -8.64           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 0         | -12.32          | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 10        | -11.08          | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 20        | -9.38           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 30        | -7.82           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 40        | -10.11          | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 50        | -12.05          | 0.01                | $\pm 2.5$   | PASS    |
| WCDMA850  | TM1       | HCH          | VN         | -30       | -8.79           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | -20       | -6.91           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | -10       | -9.45           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 0         | -8.96           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 10        | -4.63           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 20        | -7.48           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 30        | -12.76          | 0.02                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 40        | -9.83           | 0.01                | $\pm 2.5$   | PASS    |
|           |           |              | VN         | 50        | -12.31          | 0.01                | $\pm 2.5$   | PASS    |

| Test Band  | Test Mode | Test Channel | Test Volt. | Test Temp. | Freq.Error (Hz) | Freq.vs.rated (ppm) | Limit (ppm) | Verdict |
|------------|-----------|--------------|------------|------------|-----------------|---------------------|-------------|---------|
| WCDMA 1700 | TM1       | LCH          | VN         | -30        | -14.45          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | -20        | -21.26          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | -10        | -21.24          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 0          | -13.82          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 10         | -21.61          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 20         | -16.95          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 30         | -16.59          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 40         | -11.53          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 50         | -19.54          | 0.01                | $\pm 2.5$   | PASS    |
| WCDMA 1700 | TM1       | MCH          | VN         | -30        | -22.58          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | -20        | -18.73          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | -10        | -24.95          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 0          | -17.77          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 10         | -17.15          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 20         | -14.97          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 30         | -19.75          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 40         | -18.01          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 50         | -13.21          | 0.01                | $\pm 2.5$   | PASS    |
| WCDMA 1700 | TM1       | HCH          | VN         | -30        | -19.79          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | -20        | -9.74           | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | -10        | -16.83          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 0          | -9.45           | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 10         | -21.21          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 20         | -16.26          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 30         | -16.35          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 40         | -12.92          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 50         | -15.77          | 0.01                | $\pm 2.5$   | PASS    |

Note: Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

| Test Band  | Test Mode | Test Channel | Test Volt. | Test Temp. | Freq.Error (Hz) | Freq.vs.rated (ppm) | Limit (ppm) | Verdict |
|------------|-----------|--------------|------------|------------|-----------------|---------------------|-------------|---------|
| WCDMA 1900 | TM1       | LCH          | VN         | -30        | -16.18          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | -20        | -14.22          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | -10        | -14.94          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 0          | -14.45          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 10         | -22.80          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 20         | -14.67          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 30         | -20.68          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 40         | -15.83          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 50         | -14.64          | 0.01                | $\pm 2.5$   | PASS    |
| WCDMA 1900 | TM1       | MCH          | VN         | -30        | -15.15          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | -20        | -12.87          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | -10        | -16.05          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 0          | -18.08          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 10         | -18.06          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 20         | -11.73          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 30         | -14.62          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 40         | -15.87          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 50         | -15.38          | 0.01                | $\pm 2.5$   | PASS    |
| WCDMA 1900 | TM1       | HCH          | VN         | -30        | -15.54          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | -20        | -7.45           | 0.00                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | -10        | -19.77          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 0          | -17.15          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 10         | -20.83          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 20         | -27.12          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 30         | -19.58          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 40         | -19.56          | 0.01                | $\pm 2.5$   | PASS    |
|            |           |              | VN         | 50         | -21.71          | 0.01                | $\pm 2.5$   | PASS    |

Note: Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

## 10 FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT

### 10.1 MEASUREMENT SETUP

Refer to 9.3

### 10.2 TEST PROCEDURE

1. Set chamber temperature to 25°C. Use a variable DC power source to power the EUT and set the voltage to rated voltage.
2. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency. Reduce the input voltage to specify extreme voltage variation (+/- 15%) and endpoint, record the maximum frequency change.

### 10.3 TEST RESULT

Refer to 9.4

## 11. SPURIOUS EMISSIONS AT ANTENNA TERMINAL

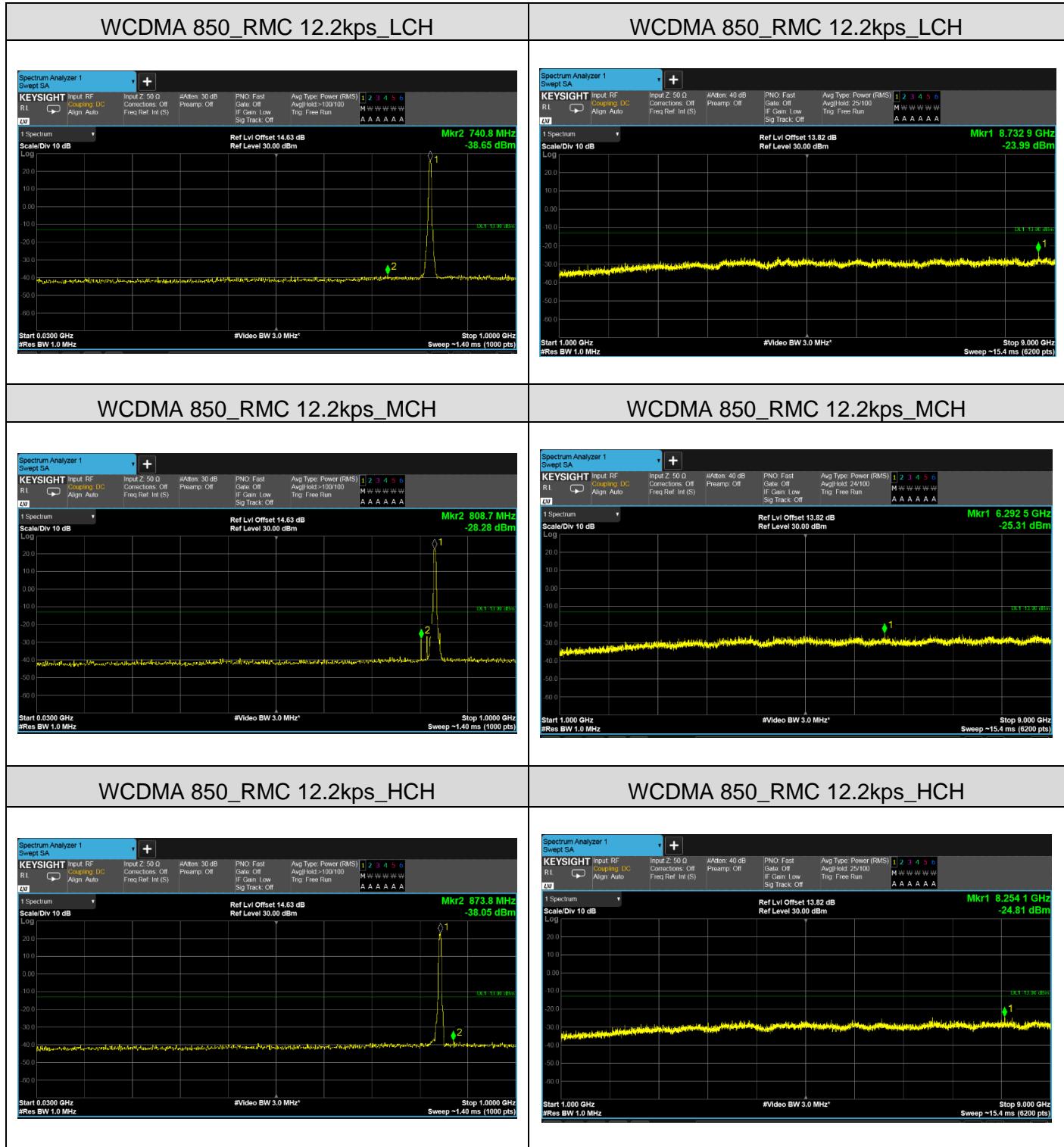
### 11.1 PROVISIONS APPLICABLE

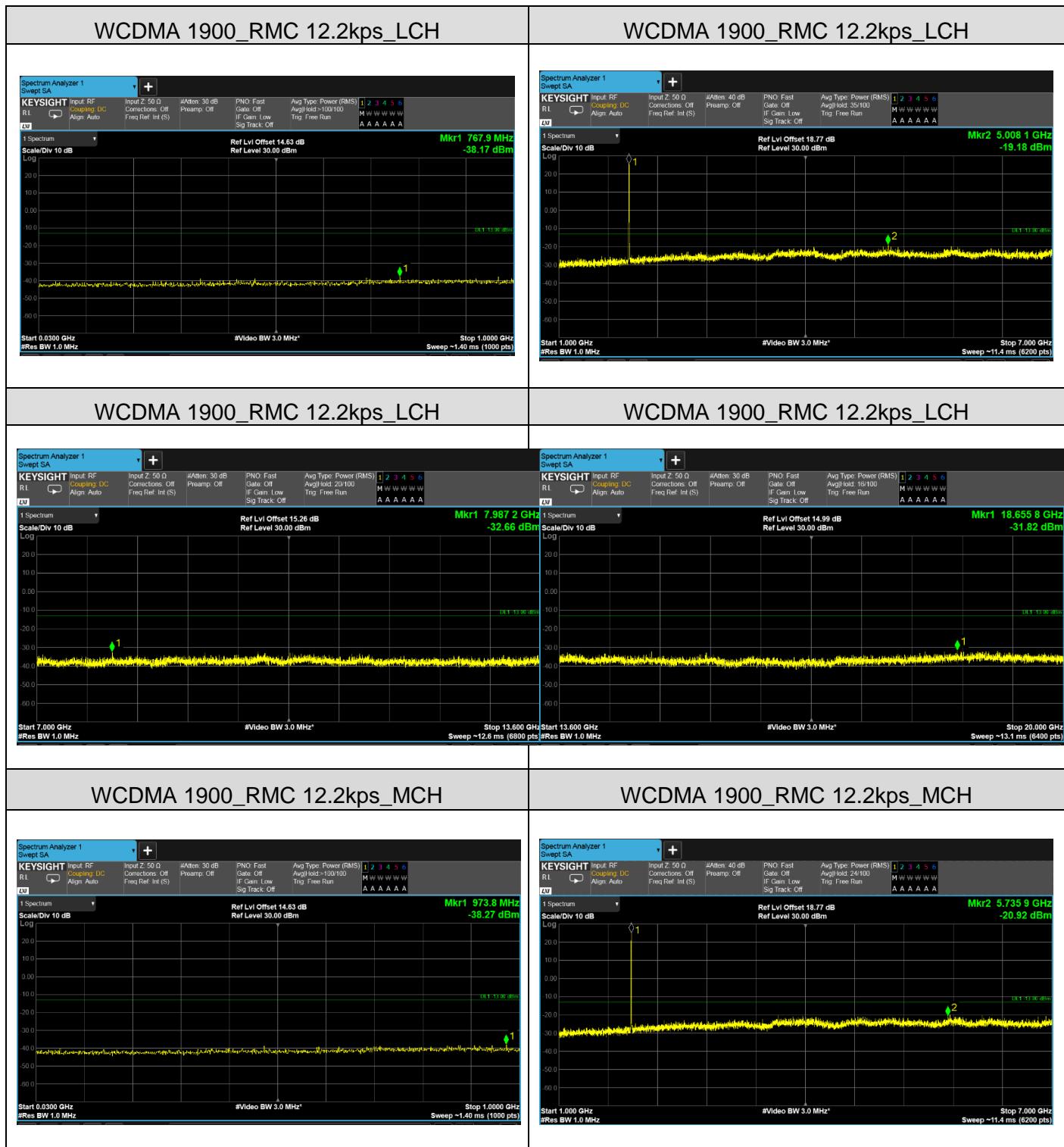
The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

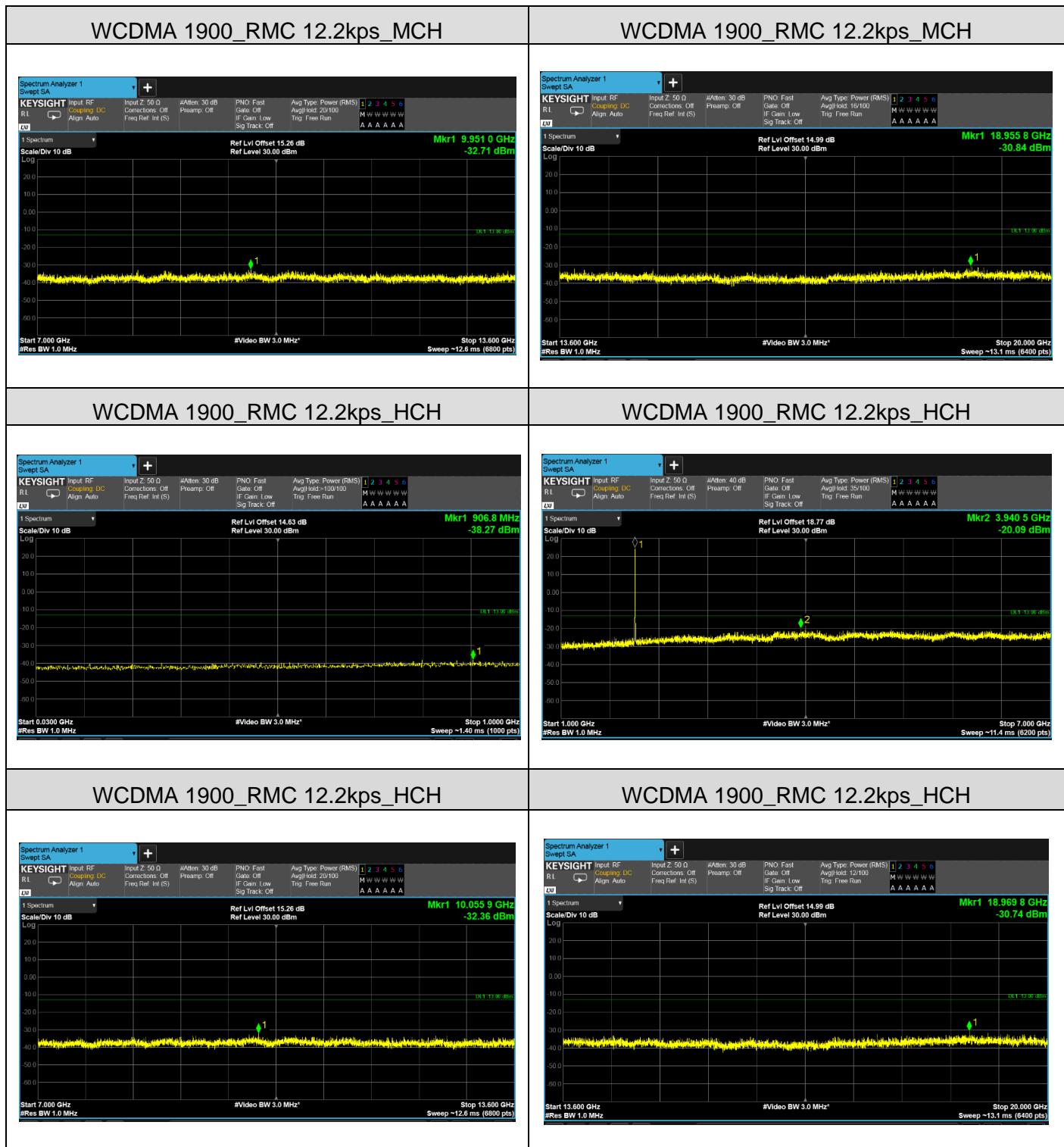
### 11.2 MEASUREMENT METHOD

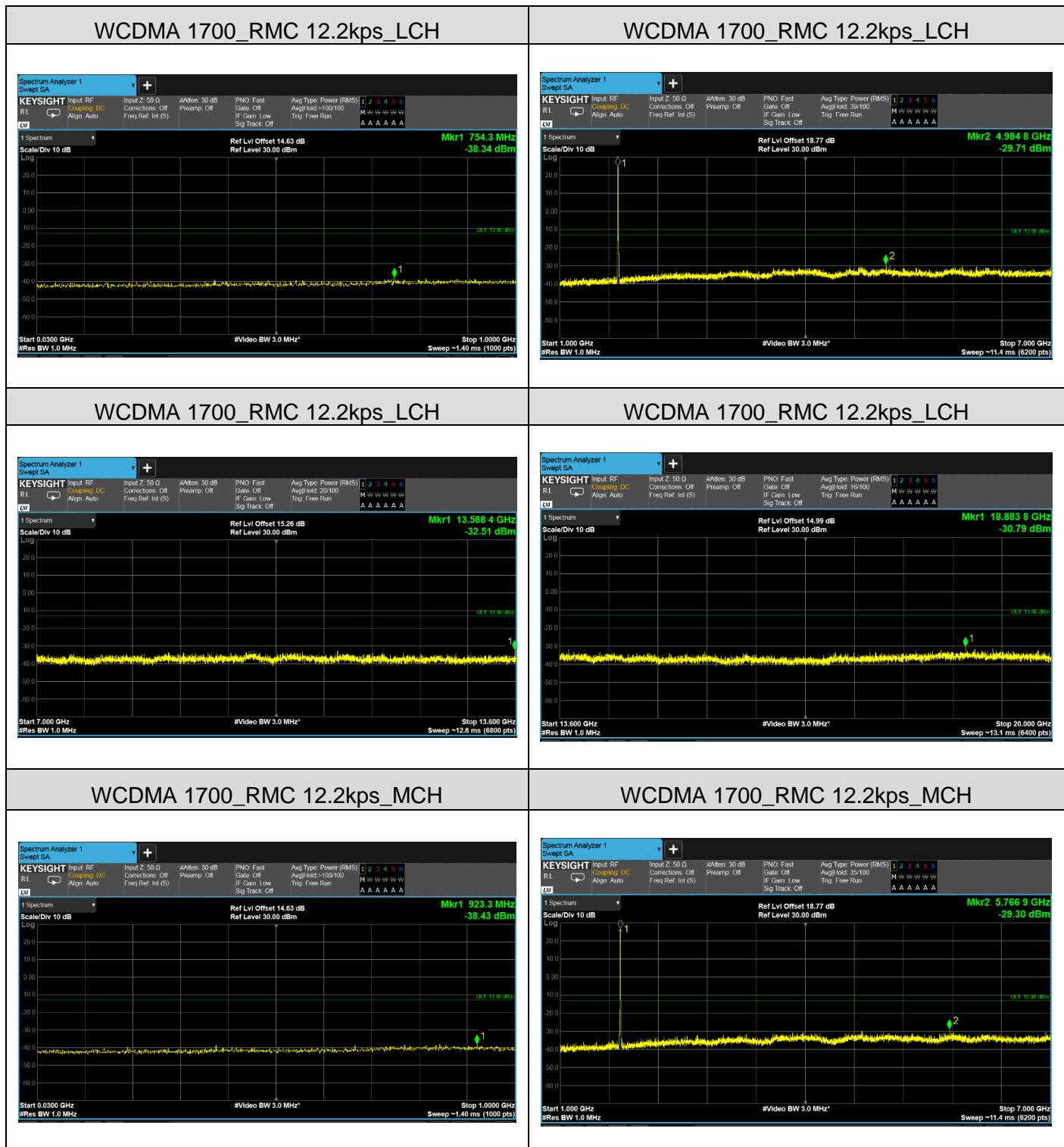

#### Test Settings (GSM)

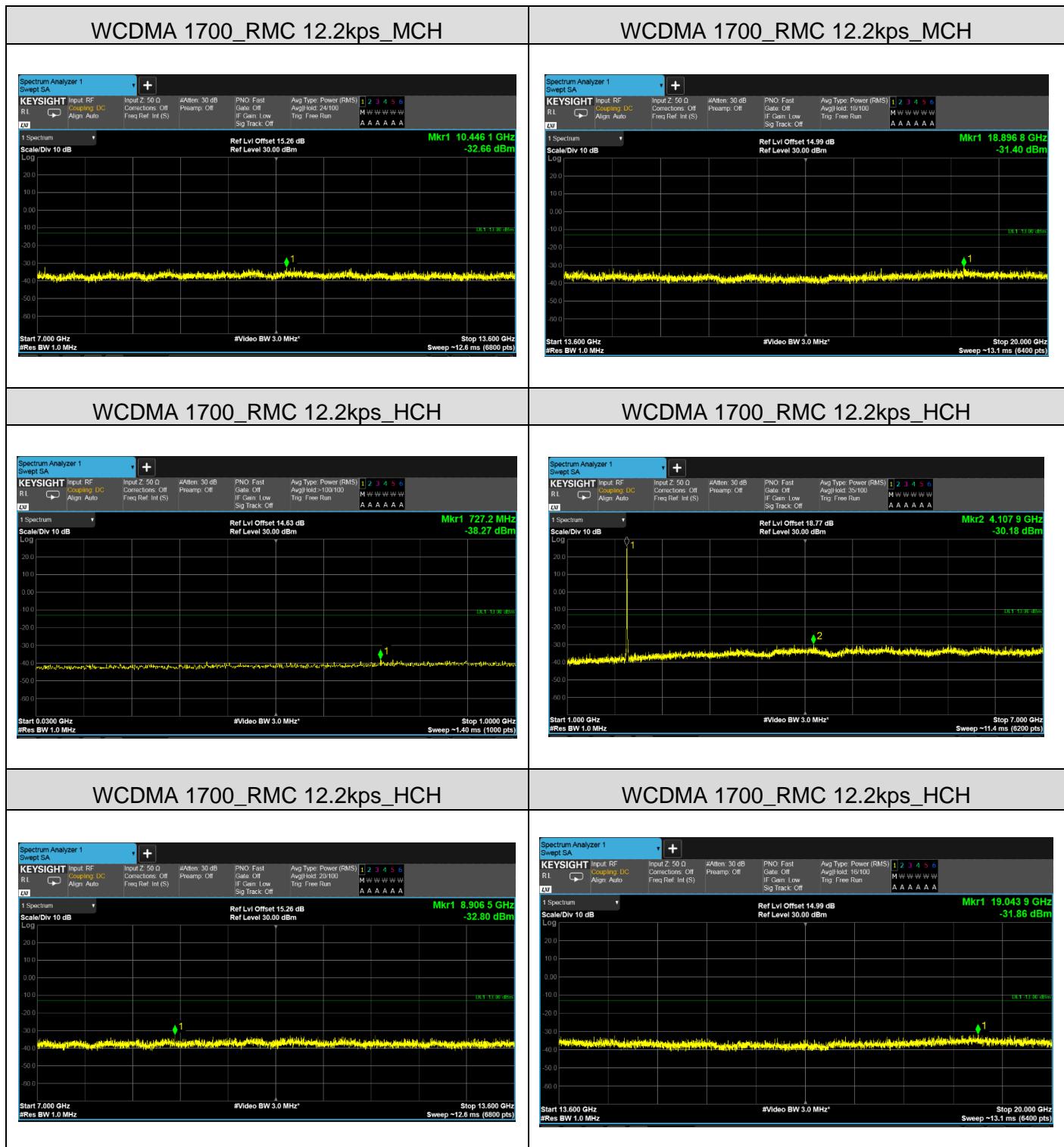
1. RBW = 1 MHz
2. VBW  $\geq$  3 MHz
3. Detector = Peak
4. Trace Mode = max hold
5. Sweep time = auto
6. Number of points in sweep  $\geq$  2 x Span / RBW


#### Test Settings (WCDMA)


1. RBW = 1 MHz
2. VBW  $\geq$  3 MHz
3. Detector = RMS
4. Trace Mode = trace average
5. Sweep time = auto
6. Number of points in sweep  $\geq$  2 x Span / RBW


### 11.3 MEASUREMENT SETUP

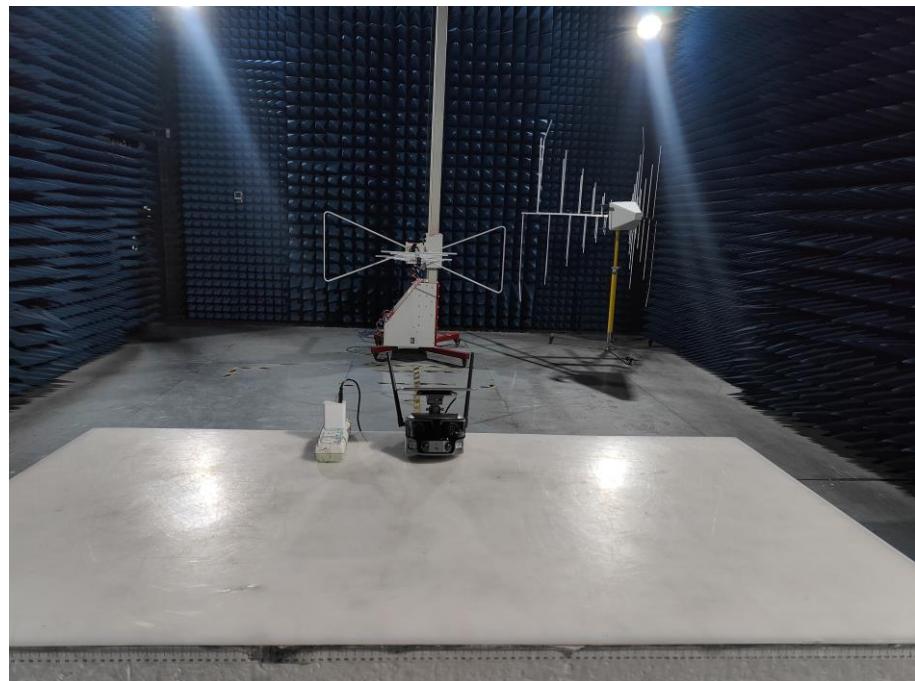




### 11.4 TEST RESULT

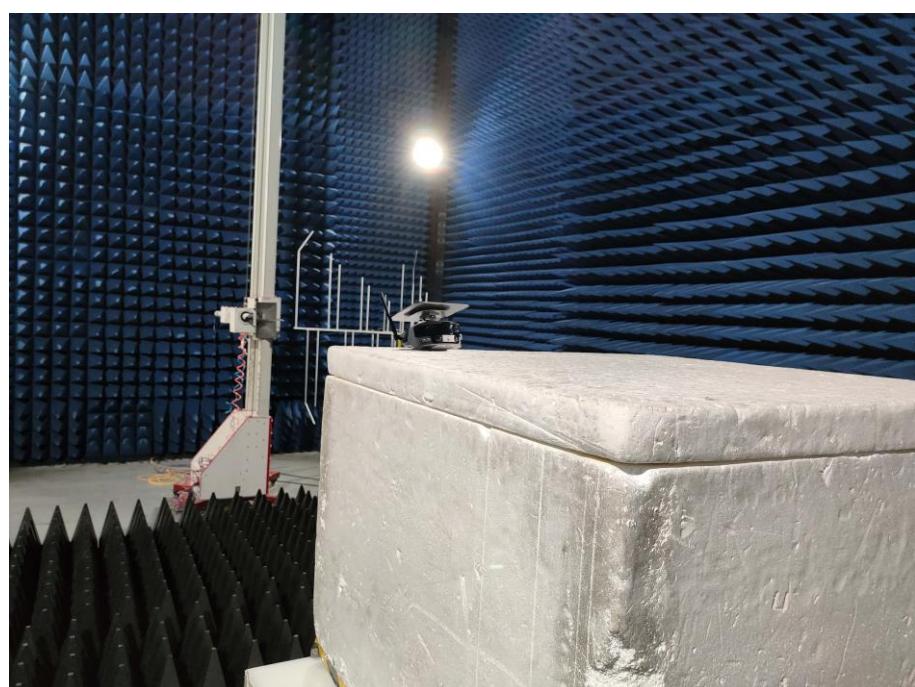












**Note:** 1. Below 30MHz no Spurious found and Above is the worst mode data.  
 2. As no emission found in standby or receive mode, no recording in this report.

## 12 PHOTO OF TEST

### RADIATED EMISSION



30MHz-1000MHz



Above 1GHz

**RF Conducted**

\*\*\*End of Report\*\*\*