

TEST REPORT

Applicant: JAKA Robotics Co., Ltd

Address: 6B, No646, Jianchuan, Minhang, Shanghai, China

Product Name: Wifi module

FCC ID: 2BBXW-RTL8822CE

47 CFR Part 15, Subpart C (15.247)

Standard(s): ANSI C63.10-2020

KDB 558074 D01 15.247 Meas Guidance v05r02

Report Number: 2502S54931E-RF-00A

Report Date: 2025/8/12

The above device has been tested and found compliant with the requirement of the relevant standards by Bay Area Compliance Laboratories Corp. (Dongguan).

Reviewed By: Pedro Yun

Peobo Ywn

Approved By: Gavin Xu

Gowin Xu

Title: Project Engineer

Title: RF Supervisor

Bay Area Compliance Laboratories Corp. (Dongguan)

No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China

Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: The information marked \blacktriangle is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with \star . This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. Each test item follows the test standard(s) without deviation.

CONTENTS

DOCUMENT REVISION HISTORY	
1. GENERAL INFORMATION ······	
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) ····································	5
1.2 ACCESSORY INFORMATION·····	
1.3 ANTENNA INFORMATION DETAIL▲ · · · · · · · · · · · · · · · · · · ·	
1.4 EQUIPMENT MODIFICATIONS ······	5
2. SUMMARY OF TEST RESULTS ·····	6
3. DESCRIPTION OF TEST CONFIGURATION	7
3.1 OPERATION FREQUENCY DETAIL ·····	7
3.2 EUT OPERATION CONDITION	7
3.3 SUPPORT EQUIPMENT LIST AND DETAILS	
3.4 SUPPORT CABLE LIST AND DETAILS	8
3.5 BLOCK DIAGRAM OF TEST SETUP ·····	8
3.6 TEST FACILITY	10
3.7 MEASUREMENT UNCERTAINTY	10
4. REQUIREMENTS AND TEST PROCEDURES ······	11
4.1 AC LINE CONDUCTED EMISSIONS ······	11
4.1.1 Applicable Standard·····	11
4.1.2 EUT Setup	12
4.1.3 EMI Test Receiver Setup 4.1.4 Test Procedure	12
4.1.4 Test Procedure 4.1.5 Corrected Amplitude & Margin Calculation	
4.1.6 Test Result······	13
4.2 RADIATION SPURIOUS EMISSIONS	13
4.2.1 Applicable Standard 4.2.2 EUT Setup	14
4.2.2 EUT Setup·····	14
4.2.3 EMI Test Receiver & Spectrum Analyzer Setup	16
4.2.4 Test Procedure 4.2.5 Corrected Result& Margin Calculation	
4.2.6 Test Result······	16
4.3 MINIMUM 6 DB EMISSION BANDWIDTH	17
4.3.1 Applicable Standard·····	17
4.3.2 EUT Setup · · · · · · · · · · · · · · · · · · ·	17
4.3.3 Test Procedure	
4.3.4 Test Result 4.4 99% OCCUPIED BANDWIDTH	
4.4.1 EUT Setup	18
4.4.2 Test Procedure 4.4.3 Test Result	
4.4.3 Test Result 4.5 MAXIMUM CONDUCTED OUTPUT POWER	
4.5.1 Applicable Standard 4.5.2 EUT Setup 4.5.2 EUT Setup	19
4.5.3 Test Procedure	19

4.5.4 Test Result 4.6 MAXIMUM POWER SPECTRAL DENSITY	····· 19
4.6.1 Applicable Standard 4.6.2 EUT Setup	20
4.6.3 Test Procedure	
4.6.4 Test Result · · · · · · · · · · · · · · · · · · ·	
4.7 CONDUCTED SPURIOUS EMISSION	20
4.7.1 Applicable Standard·····	21
4.7.2 EUT Setup	21
4.7.3 Test Procedure · · · · · · · · · · · · · · · · · · ·	21
4.7.4 Test Result·····	
4.8 DUTY CYCLE ····	
4.8.1 EUT Setup	22
4.8.2 Test Procedure	
4.8.3 Judgment	22
4.9 ANTENNA REQUIREMENT	
4.9.1 Applicable Standard·····	23
4.9.2 Judgment ·····	23
5. TEST DATA AND RESULTS ······	24
5.1 AC LINE CONDUCTED EMISSIONS ·····	
5.2 RADIATION SPURIOUS EMISSIONS	27
5.3 6DB EMISSION BANDWIDTH · · · · · · · · · · · · · · · · · · ·	58
5.4 99% OCCUPIED BANDWIDTH ·····	63
5.5 MAXIMUM CONDUCTED OUTPUT POWER ·····	
5.6 POWER SPECTRAL DENSITY······	
5.7 CONDUCTED SPURIOUS EMISSION ······	
5.8 DUTY CYCLE ·····	
EXHIBIT A - EUT PHOTOGRAPHS······	94
EXHIBIT B - TEST SETUP PHOTOGRAPHS ······	95
EXHIBIT C - RF EXPOSURE EVALUATION	96
MAXIMUM PERMISSIBLE EXPOSURE (MPE) ······	96

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	2502S54931E-RF-00A	Original Report	2025/8/12

Report Template Version: FCC-Wi-Fi-V2.2 Page 4 of 96

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	Wifi module
Trade Name:	JAKA
EUT Model:	RTL8822CE
Operation Frequency:	2412-2462MHz (802.11b/g/n ht20) 2422-2452MHz (802.11n ht40)
Maximum Peak Output Power (Conducted):	802.11b: 25.65dBm 802.11g: 23.87dBm 802.11n ht20: 25.96dBm 802.11n ht40: 26.18dBm
Modulation Type:	802.11b: DSSS-DBPSK, DQPSK, CCK 802.11g/n: OFDM-BPSK, QPSK, 16QAM, 64QAM
Rated Input Voltage:	3.3Vdc
Serial Number:	31QP-1
EUT Received Date:	2025/4/22
EUT Received Status:	Good

1.2 Accessory Information

Accessory Description	Manufacturer	Model	Parameters
WIFI Antenna	GLEAD	WIFI_PM2458YSO_SD270MM	/

1.3 Antenna Information Detail ▲

Antenna	Antenna Type	Input Impedance (Ohm)	Frequency Range	Antenna Gain	
Antenna 1 (Chain 0)	PCB	50	2.4GHz~2.5GHz	8.2 dBi	
Antenna 2 (Chain 1)	PCB 50 2.4GHz~2.5GHz 8.2 dBi				
The design of compliance with §15.203:					
Unit uses a permanently attached antenna.					
Unit uses a unique coupling to the intentional radiator.					
Unit was professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.					

1.4 Equipment Modifications

No modifications are made to the EUT during all test items.

2. SUMMARY OF TEST RESULTS

Standard(s) Section	Test Items	Result
§15.207(a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Radiated Spurious Emissions	Compliant
§15.247 (a)(2)	Minimum 6 dB Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	Conducted Spurious Emission	Compliant
§15.247(e)	Power Spectral Density	Compliant
§15.203	Antenna Requirement	Compliant
§15.247 (i) & §1.1310 & §2.1091	Maximum Permissible Exposure (MPE)	Compliant

Note 1: For AC line conducted emissions, the maximum output power mode and channel was tested.

Note 2: For Radiated Spurious Emissions 9kHz~ 1GHz and 18GHz-25GHz, the maximum output power mode and channel was tested.

3. DESCRIPTION OF TEST CONFIGURATION

3.1 Operation Frequency Detail

For 802.11b/g/n ht20:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

For 802.11n ht40:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	7	2442
4	2427	8	2447
5	2432	9	2452
6	2437	/	/

Note: The above frequencies in bold were performed the test.

3.2 EUT Operation Condition

The EUT was configured for testing in Engineering Mode, which was provided by the manufacturer. The EUT configuration as below:

EUT Operation Mode:	The system was configured for testing in Engineering Mode, which was provided by the manufacturer.
Equipment Modifications:	
EUT Exercise Software:	RTL8822CE MP Diagnostic Program

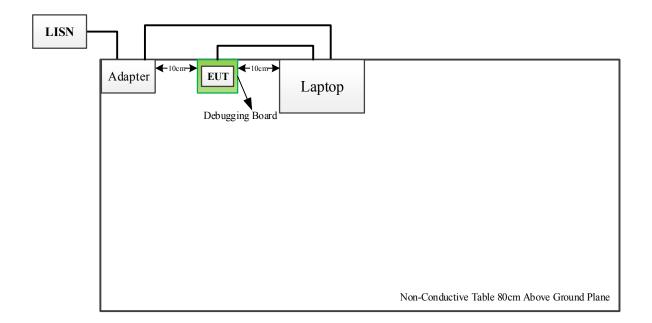
The software was provided by manufacturer. The maximum power was configured as below, that was provided by the manufacturer \triangle :

Test Modes	Test Frequency	Data Rate	Power Lo	evel Setting
1 est Modes	(MHz)	Data Kate	Chain 0	Chain 1
	2412	1Mbps	105	107
802.11b	2437	1Mbps	114	107
	2462	1Mbps	114	107
	2412	6Mbps	71	85
802.11g	2437	6Mbps	71	85
	2462	6Mbps	71	85
	2412	MCS0	77	77
802.11n ht20	2437	MCS0	77	77
	2462	MCS0	77	77
	2422	MCS0	65	65
802.11n ht40	2437	MCS0	65	65
	2452	MCS0	65	65

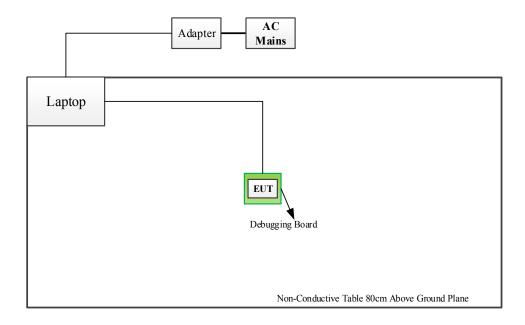
Note:

- 1. The above are the worst-case data rates, which are determined for each mode based upon investigations by measuring the power and PSD across all data rates, bandwidths, and modulations.
- 2. The device supports SISO in all modes and MIMO in 802.11n modes, per pretest, MIMO mode was the worst mode and reported for 802.11n modes.

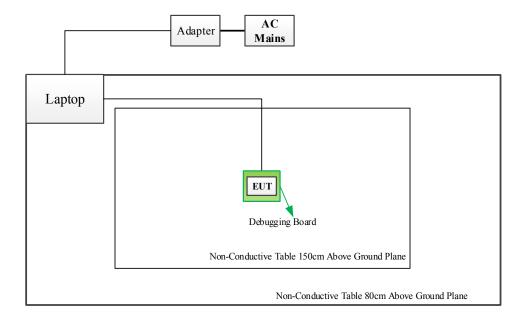
3.3 Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Lenovo	Laptop	G510	CB30920865
Lenovo	Adapter	ADLX45YCC3A	8SSA10E75843C1SG982GDCE
JAKA	Debugging Board	23C1AUMS20014	Unknown

3.4 Support Cable List and Details


Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
AC Power Cable	No	No	1.5	Adapter	LISN/AC Mains
Adapter Power Cable	No	No	1.5	Adapter	Laptop
USB Cable	No	No	1.5	Laptop	Debugging Board

3.5 Block Diagram of Test Setup


For AC Line Conducted Emissions:

For Radiation Spurious Emissions Below 1GHz:

For Radiation Spurious Emissions Above 1GHz:

3.6 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

Report No.: 2502S54931E-RF-00A

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 829273, the FCC Designation No.: CN5044.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0022.

3.7 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	9kHz~30MHz: 3.3dB, 30MHz~200MHz: 4.55 dB,200MHz~1GHz: 5.92 dB,1GHz~6GHz: 4.98 dB, 6GHz~18GHz: 5.89 dB, 18GHz~26.5GHz:5.47 dB, 26.5GHz~40GHz:5.63 dB
Unwanted Emissions, conducted	±2.47 dB
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±0.4%
Duty Cycle	1%
AC Power Lines Conducted Emission	3.11 dB (150 kHz to 30 MHz)

Report Template Version: FCC-Wi-Fi-V2.2

4. REQUIREMENTS AND TEST PROCEDURES

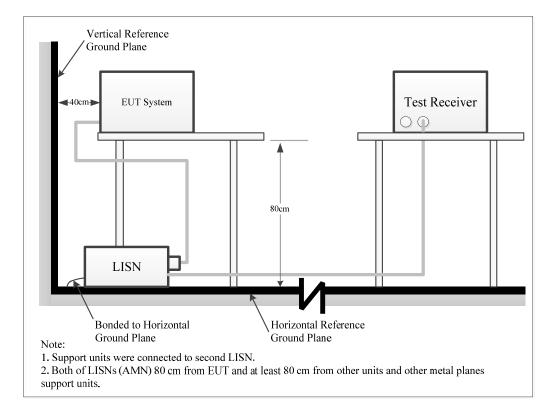
4.1 AC Line Conducted Emissions

4.1.1 Applicable Standard

FCC§15.207(a).

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \,\mu\text{H}/50$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Report No.: 2502S54931E-RF-00A


	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

- (b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:
- (1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.
- (2) For all other carrier current systems: $1000 \,\mu\text{V}$ within the frequency band 535-1705 kHz, as measured using a 50 $\mu\text{H}/50$ ohms LISN.
- (3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate.
- (c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

Report Template Version: FCC-Wi-Fi-V2.2 Page 11 of 96

4.1.2 EUT Setup

The setup of EUT is according with per ANSI C63.10-2020 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10cm.

The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source.

4.1.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

4.1.4 Test Procedure

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors.

4.1.5 Corrected Amplitude & Margin Calculation

The basic equation is as follows:

Result = Reading + Factor Factor=attenuation caused by cable loss + voltage division factor of AMN

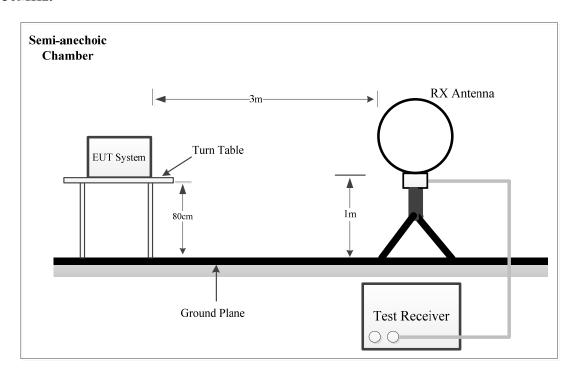
The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

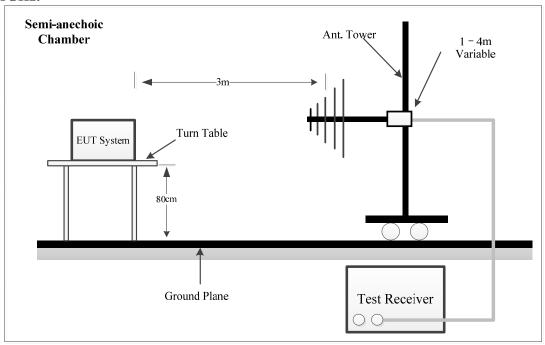
4.1.6 Test Result

Please refer to section 5.1

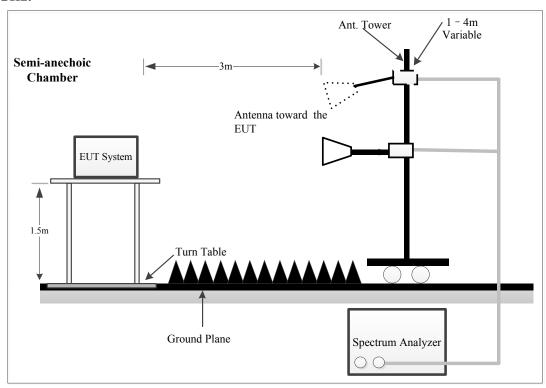
4.2 Radiation Spurious Emissions


4.2.1 Applicable Standard

FCC §15.247 (d);


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in§15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

4.2.2 EUT Setup


9kHz~30MHz:

30MHz~1GHz:

Above 1GHz:

The radiated emissions were performed in the 3 meters distance, using the setup accordance with the ANSI C63.10-2020. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40cm long in the middle.

For 9kHz-30MHz test, the lowest height of the magnetic antenna shall be 1 m above the ground and three antenna orientations (parallel, perpendicular, and ground-parallel) shall be measured.

4.2.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9kHz-1000MHz:

Frequency Range	Measurement	RBW	Video B/W	IF B/W	Detector
9 kHz – 150 kHz	QP/AV	300Hz	1 kHz	200 Hz	QP/AV
150 kHz – 30 MHz	QP/AV	10 kHz	30 kHz	9 kHz	QP/AV
30MHz – 1000 MHz	PK	100 kHz	300 kHz	/	PK
30MHZ - 1000 MHZ	QP	/	/	120kHz	QP

1GHz-25GHz:

Pre-scan:

Frequency Range	Measurement	RBW	Video B/W	Detector
Above 1 GHz	Peak	1MHz	3 MHz	PK
Above I Gnz	AV	1MHz	5kHz	PK

Final measurement for emission identified during the pre-scan:

Measurement	Detector	Duty cycle	RBW	Video B/W
PK	PK	Any	1MHz	3 MHz
Ave.	PK	>98%	1MHz	10 Hz
	PK.	<98%	1MHz	≥1/T

Note: T is minimum transmission duration

4.2.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 9 kHz -1 GHz, except 9-90 kHz, 110-490 kHz, employing an average detector, peak and Average detection modes for frequencies above 1 GHz.

If the maximized peak measured value is under the QP/Average limit by more than 6dB, then it is unnecessary to perform an QP/Average measurement.

4.2.5 Corrected Result& Margin Calculation

The basic equation is as follows:

Result = Reading + Factor

Factor= Antenna Factor + Cable Loss- Amplifier Gain

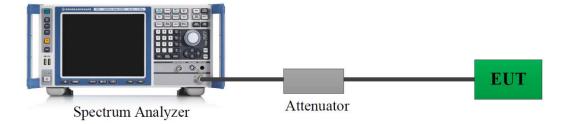
The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows:

Margin = Limit - Result

4.2.6 Test Result

Please refer to section 5.2.

Report No.: 2502S54931E-RF-00A


4.3 Minimum 6 dB Emission Bandwidth

4.3.1 Applicable Standard

FCC §15.247 (a)(2)

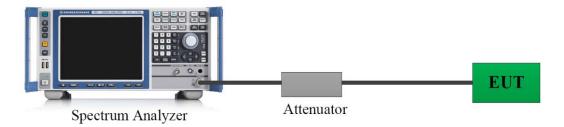
Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

4.3.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The cable loss of this RF cable was offset into the setting of test equipment, which was provided by manufacturer.

4.3.3 Test Procedure

According to ANSI C63.10-2020 Section 11.8


- a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz.
- b) Set the VBW \geq [3 \times RBW].
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = No faster than coupled (auto) time.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value.

4.3.4 Test Result

Please refer to section 5.3.

4.4 99% Occupied Bandwidth

4.4.1 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The cable loss of this RF cable was offset into the setting of test equipment, which was provided by manufacturer.

4.4.2 Test Procedure

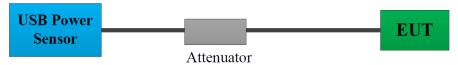
According to ANSI C63.10-2020 Section 6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.6.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

4.4.3 Test Result

Please refer to section 5.4.


4.5 Maximum Conducted Output Power

4.5.1 Applicable Standard

FCC §15.247 (b)(3)

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

4.5.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The cable loss of this RF cable was offset into the setting of test equipment, which was provided by manufacturer.

4.5.3 Test Procedure

According to ANSI C63.10-2020 Section 11.9.1.2

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

- a) Set the EUT in transmitting mode.
- b) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to test equipment.
- c) Add a correction factor to the display.
- d) Set the power meter to test peak output power, record the result.

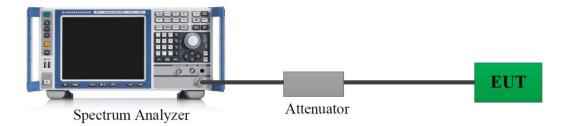
According to ANSI C63.10-2020 Section 11.9.2.3.2

Method AVGPM-G is a measurement using a gated RF average power meter.

Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

4.5.4 Test Result

Please refer to section 5.5.


4.6 Maximum Power Spectral Density

4.6.1 Applicable Standard

FCC §15.247 (e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

4.6.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The cable loss of this RF cable was offset into the setting of test equipment, which was provided by manufacturer.

4.6.3 Test Procedure

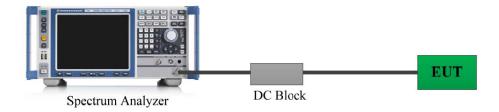
According to ANSI C63.10-2020 Section 11.10.2

The following procedure shall be used if maximum peak conducted output power was used to determine compliance:

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span >1.5 times the DTS bandwidth.
- c) Set RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d) Set VBW \geq [3× RBW].
- e) Detector = peak.
- f) Sweep time = No faster than coupled (auto) time.
- g) Trace mode = \max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

4.6.4 Test Result

Please refer to section 5.6.


4.7 Conducted Spurious Emission

4.7.1 Applicable Standard

FCC §15.247 (d);

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in§15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

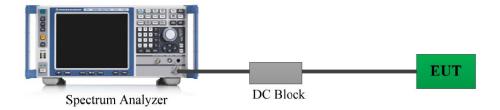
4.7.2 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The insert loss of this RF cable/attenuator was offset into the setting of test equipment.

4.7.3 Test Procedure

According to ANSI C63.10-2020 Section 11.11

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 \times RBW].
- d) Detector = peak.
- e) Sweep time = No faster than coupled (auto) time.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.


Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

4.7.4 Test Result

Please refer to section 5.8.

4.8 Duty Cycle

4.8.1 EUT Setup

A short RF cable with low cable loss connected to the EUT antenna port, which was provided by manufacturer. The cable loss of this RF cable was offset into the setting of test equipment, which was provided by manufacturer.

4.8.2 Test Procedure

According to ANSI C63.10-2020 Section 11.6

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

- 1) Set the center frequency of the instrument to the center frequency of the transmission.
- 2) Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value.
- 3) Set $VBW \ge RBW$. Set detector = peak or average.
- 4) The zero-span measurement method shall not be used unless both RBW and VBW are> 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \le 16.7 \,\mu s$.)

4.8.3 Judgment

Report Only. Please refer to section 5.7.

4.9 Antenna Requirement

4.9.1 Applicable Standard

FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or§15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Report No.: 2502S54931E-RF-00A

4.9.2 Judgment

Compliant. Please refer to the Antenna Information detail in Section 1.3.

Report Template Version: FCC-Wi-Fi-V2.2 Page 23 of 96

5.1 AC Line Conducted Emissions

Serial Number:	31QP-1	Test Date:	2025/5/8
Test Site:	CE	Test Mode:	Transmitting
Tester:	Yukin Qiu	Test Result:	Pass

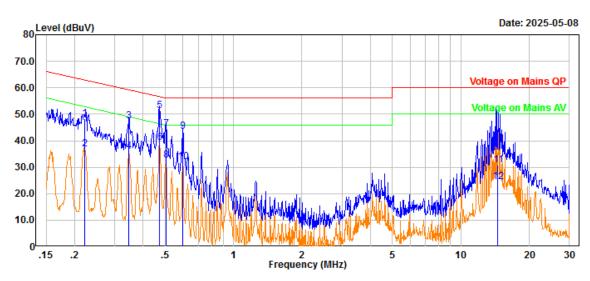
Report No.: 2502S54931E-RF-00A

Environmental Conditions:			
Temperature: (°C) 25.8	Relative Humidity: (%) 68	ATM Pressure: (kPa) 100.9	

Test Equipment List and Details:								
Manufacturer	Description	Model	Serial	Calibration	Calibration Due			
Manufacturer	Description	Wiodei	Number	Date	Date			
R&S	LISN	ENV216	101614	2024/9/5	2025/9/4			
Unknown	Coaxial Cable	RG 142	C-0200-05	2025/5/6	2026/5/5			
R&S	EMI Test Receiver	ESCI	101121	2024/9/5	2025/9/4			
Audix	Test Software	E3	191218 V9	N/A	N/A			

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

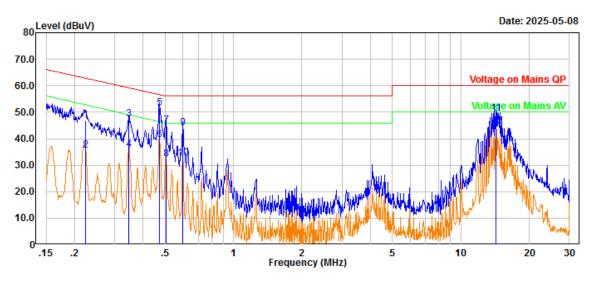
Test Data:


Please refer to the below table and plots.

Note: Maximum Output Power Mode and Channel: 802.11n ht40 MIMO mode Lowest Channel was tested.

Report Template Version: FCC-Wi-Fi-V2.2

Project No.: 2502S54931E-RF Port: Line Test Mode: Transmitting IF B/W 9KHz PK/AV Serial No.: 31QP-1 Tester: Yukin Qiu


Note:

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB)	Result (dBμV)	Limit (dBμV)	Margin (dB)	Measurement
1	0.222	37.32	10.84	48.16	62.76	14.60	QP
2	0.222	25.88	10.84	36.72	52.76	16.04	Average
3	0.347	36.68	10.83	47.51	59.03	11.52	QP
4	0.347	25.17	10.83	36.00	49.03	13.03	Average
5	0.474	40.44	10.84	51.28	56.45	5.17	QP
6	0.474	28.37	10.84	39.21	46.45	7.24	Average
7	0.505	33.69	10.84	44.53	56.00	11.47	QP
8	0.505	21.73	10.84	32.57	46.00	13.43	Average
9	0.599	32.64	10.82	43.46	56.00	12.54	QP
10	0.599	21.10	10.82	31.92	46.00	14.08	Average
11	14.559	20.07	10.85	30.92	60.00	29.08	QP
12	14.559	13.70	10.85	24.55	50.00	25.45	Average

Project No.: 2502554931E-RF Port: neutral Test Mode: Transmitting IF B/W 9KHz PK/AV Serial No.: 31QP-1 Tester: Yukin Qiu

Note:

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB)	Result (dBμV)	Limit (dBμV)	Margin (dB)	Measurement
1	0.223	36.05	10.83	46.88	62.70	15.82	QP
2	0.223	24.83	10.83	35.66	52.70	17.04	Average
3	0.346	36.69	10.78	47.47	59.05	11.58	QP
4	0.346	25.05	10.78	35.83	49.05	13.22	Average
5	0.474	40.77	10.75	51.52	56.45	4.93	QP
6	0.474	28.81	10.75	39.56	46.45	6.89	Average
7	0.504	34.15	10.74	44.89	56.00	11.11	QP
8	0.504	21.58	10.74	32.32	46.00	13.68	Average
9	0.599	33.27	10.72	43.99	56.00	12.01	QP
10	0.599	21.85	10.72	32.57	46.00	13.43	Average
11	14.244	38.73	10.86	49.59	60.00	10.41	QP
12	14.244	33.69	10.86	44.55	50.00	5.45	Average

5.2 Radiation Spurious Emissions

1)9kHz - 1GHz

Serial Number:	31QP-1	Test Date:	2025/5/8
Test Site:	Chamber10m	Test Mode:	Transmitting
Tester:	Zoo Zou	Test Result:	Pass

Report No.: 2502S54931E-RF-00A

Environmental Conditions:							
Temperature: (°C) 25.4	Relative Humidity: (%) 56	ATM Pressure: (kPa) 100.9					

Test Equipment List and Details:							
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
EMCO	Passive Loop Antenna	6512	9706-1206	2023/10/25	2026/10/24		
Sunol Sciences	Hybrid Antenna	JB3	A060611-1	2023/9/6	2026/9/5		
Narda	Coaxial Attenuator	779-6dB	04269	2023/9/6	2026/9/5		
Unknown	Coaxial Cable	C-NJNJ-50	C-1000-01	2024/7/1	2025/6/30		
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-04	2024/7/1	2025/6/30		
Unknown	Coaxial Cable	C-NJNJ-50	C-0530-01	2024/7/1	2025/6/30		
Sonoma	Amplifier	310N	185914	2024/8/26	2025/8/25		
R&S	EMI Test Receiver	ESCI	100224	2024/8/26	2025/8/25		
Audix	Test Software	E3	191218 V9	N/A	N/A		

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Please refer to the below table and plots.

After pre-scan in the X, Y and Z axes of orientation, the worst case is referred to table and plots.

Note: Maximum Output Power Mode and Channel: 802.11n ht40 MIMO mode Lowest Channel was tested.

Report Template Version: FCC-Wi-Fi-V2.2 Page 27 of 96

58.73

59.64

Peak

Peak

9kHz~30MHz

5

6

0.063

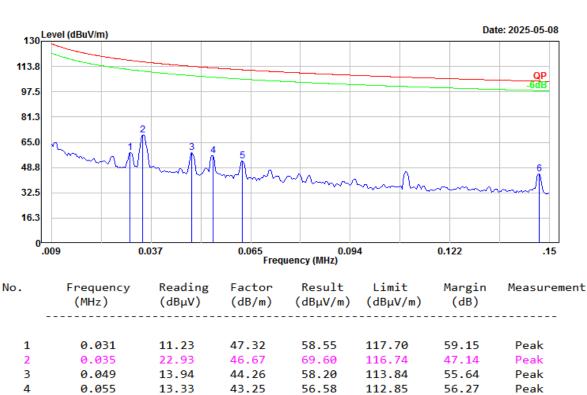
0.147

Three antenna orientations (parallel, perpendicular, and ground-parallel) were measured, the worst orientations were below:

Project No.: 2502S54931E-RF Serial No.: 31QP-1
Polarization: Parallel Tester: Zoo Zou

Test Mode: Transmitting

Note:


RBW:300Hz VBW:1kHz

11.08

11.80

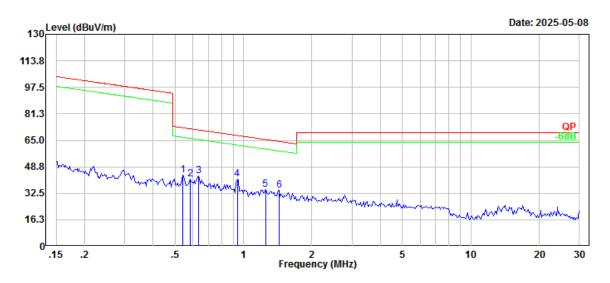
41.79

32.82

52.87

44.62

111.60


104.26

Project No.: 2502S54931E-RF Polarization: Parallel

Test Mode: Transmitting

Note:

RBW:10kHz VBW:30kHz

Serial No.: 31QP-1 Tester: Zoo Zou

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Measurement
1	0.541	20.55	23.10	43.65	72.93	29.28	Peak
2	0.582	18.59	22.65	41.24	72.27	31.03	Peak
3	0.634	21.28	22.13	43.41	71.52	28.11	Peak
4	0.938	23.39	17.80	41.19	68.04	26.85	Peak
5	1.249	19.31	15.45	34.76	65.50	30.74	Peak
6	1.433	19.56	14.64	34.20	64.28	30.08	Peak

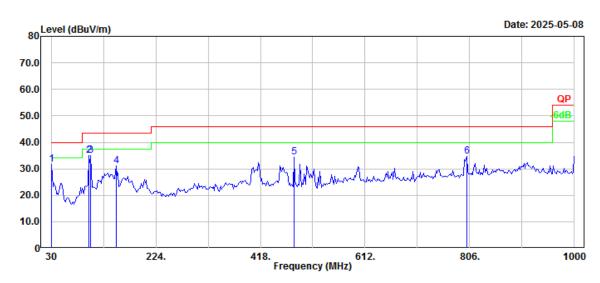

30MHz-1GHz

Project No.: 2502S54931E-RF Serial No.: 31QP-1
Polarization: Horizontal Tester: Zoo Zou

Test Mode: Transmitting

Note:

RBW:100kHz VBW:300kHz


No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Margin (dB)	Measurement
1	99.84	49.61	-14.43	35.18	43.50	8.32	Peak
2	103.72	48.10	-13.27	34.83	43.50	8.67	Peak
3	480.08	44.31	-4.71	39.60	46.00	6.40	Peak
4	491.72	41.82	-4.46	37.36	46.00	8.64	Peak
5	503.36	41.22	-4.22	37.00	46.00	9.00	Peak
6	796.30	36.94	0.40	37.34	46.00	8.66	Peak

Project No.: 2502S54931E-RF Serial No.: 31QP-1
Polarization: Vertical Tester: Zoo Zou

Test Mode: Transmitting

Note:

RBW:100kHz VBW:300kHz

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBµV/m)	Limit (dBμV/m)	Margin (dB)	Measurement
1	30.00	35.40	-3.80	31.60	40.00	8.40	Peak
2	99.84	49.58	-14.43	35.15	43.50	8.35	Peak
3	103.72	48.23	-13.27	34.96	43.50	8.54	Peak
4	150.28	42.17	-11.06	31.11	43.50	12.39	Peak
5	480.08	39.12	-4.71	34.41	46.00	11.59	Peak
6	800.18	34.16	0.46	34.62	46.00	11.38	Peak

2) 1-25GHz:

Serial Number:	31QP-1	Test Date:	2025/6/13
Test Site:	Chamber B	Test Mode:	Transmitting
Tester:	Leo Xiao	Test Result:	Pass

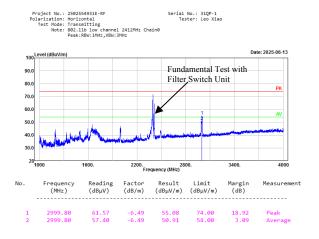
Report No.: 2502S54931E-RF-00A

Environmental Conditions:							
Temperature: (°C) 26	Relative Humidity: (%) 40	ATM Pressure: (kPa) 100.6					

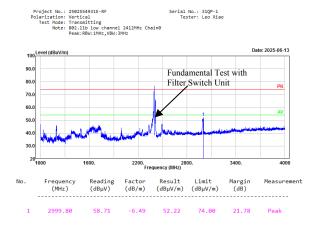
Test Equipment List and Details:

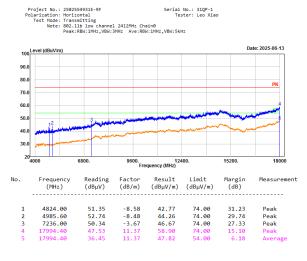
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
ETS-Lindgren	Horn Antenna	3115	000 527 35	2023/9/7	2026/9/6
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726-02 1304	2023/2/22	2026/2/21
Xinhang Macrowave	Coaxial Cable	XH750A-N/J-SMA/J- 10M	20231117004 #0001	2024/11/17	2025/11/16
Xinhang Macrowave	Coaxial Cable	XH360A-2.92/J- 2.92/J-6M-A	20231208001 #0001	2024/12/9	2025/12/8
AH	Preamplifier	PAM-0118P	469	2025/4/11	2026/4/10
AH	Preamplifier	PAM-1840VH	191	2024/9/5	2025/9/4
R&S	Spectrum Analyzer	FSV40	101944	2024/9/6	2025/9/5
Audix	Test Software	E3	191218 V9	N/A	N/A
Decentest	Multiplex Switch Test Control Set & Filter Switch Unit	DT7220SCU & DT7220FCU	DC79902 & DC79905	2024/8/27	2025/8/26

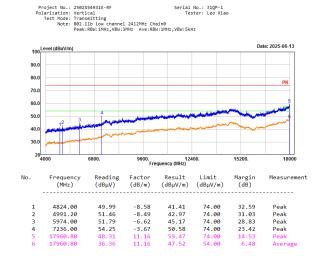
^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

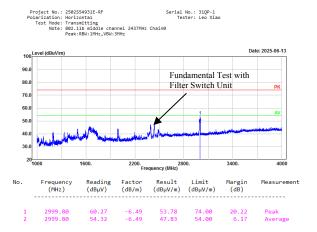

Please refer to the below table and plots.

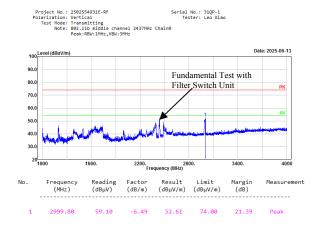
After pre-scan in the X, Y and Z axes of orientation, the worst case is referred to table and plots.

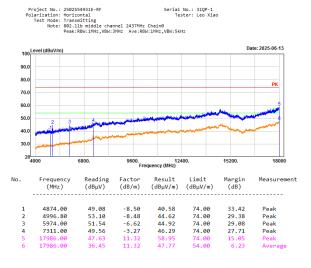

Report Template Version: FCC-Wi-Fi-V2.2


1-18GHz:

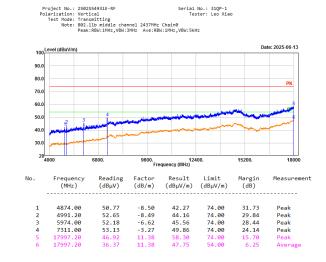

802.11b low channel Chain0 Horizontal


802.11b low channel Chain0 Vertical

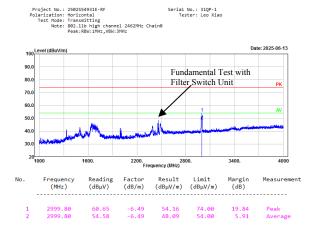


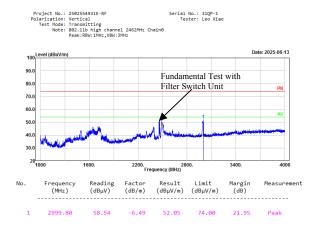


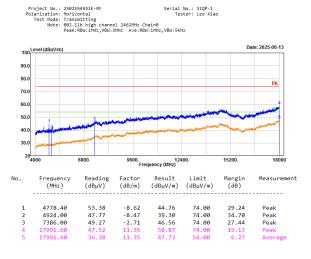
802.11b middle channel Chain0 Horizontal

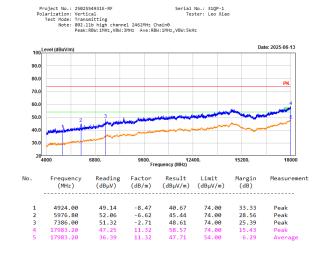


802.11b middle channel Chain0 Vertical

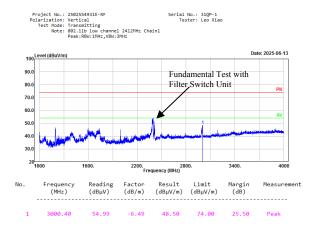


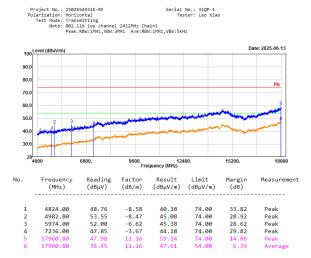

Serial No.: 31QP-1 Tester: Leo Xiao



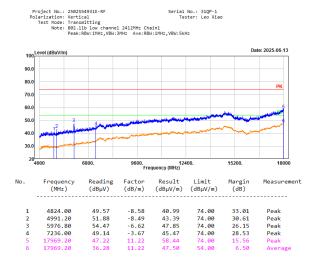

802.11b high channel Chain0 Horizontal

802.11b high channel Chain0 Vertical

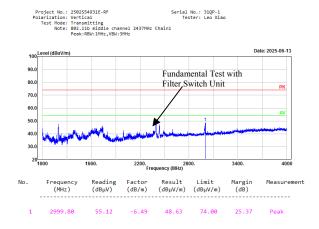


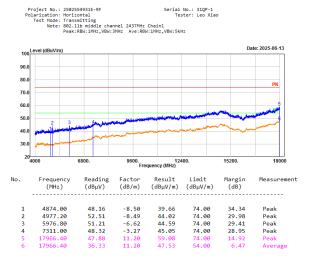


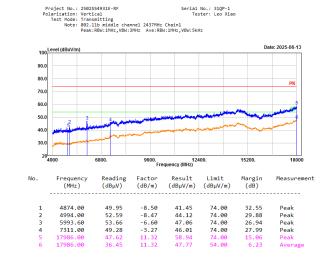
802.11b low channel Chain1 Horizontal


Project No.: 2502554931E-RF Polarization: Horizontal Test Mode: Transmitting Note: 802.11b low channel 2412MHz Chain1 Peak:RBN:1MHz,VBN:3MHz Fundamental Test with 80.0 Filter Switch Unit 60.0 40.0 2200. 2800 Frequency (MHz) Reading Result (dBμV/m) Limit (dBμV/m) Factor (dB/m) Margin (dB) $(dB\mu V)$

802.11b low channel Chain1 Vertical

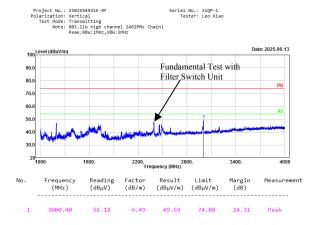

Serial No.: 31QP-1 Tester: Leo Xiao

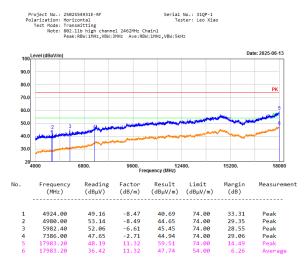


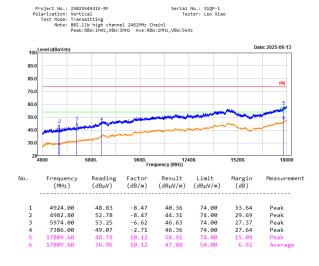

802.11b middle channel Chain1 Horizontal

Project No.: 2502554931E-RF Serial No.: 310P-1 Tester: Leo Xiao Tester: Borizortal Tester: Leo Xiao Tester: Leo Xiao

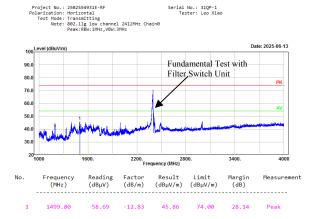
802.11b middle channel Chain1 Vertical

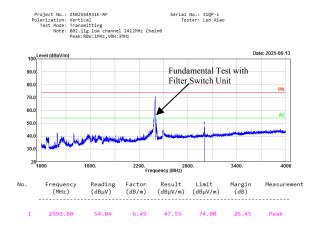


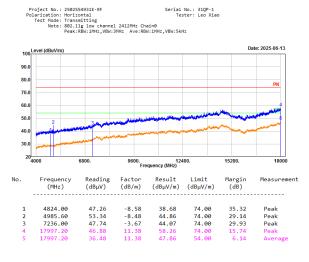


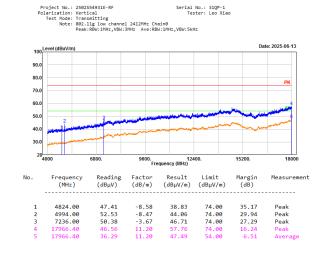

802.11b high channel Chain1 Horizontal

| Polarization: Horizontal | Test Polarization: Horizontal |

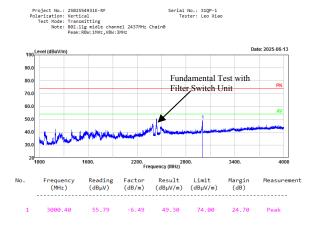

802.11b high channel Chain1 Vertical



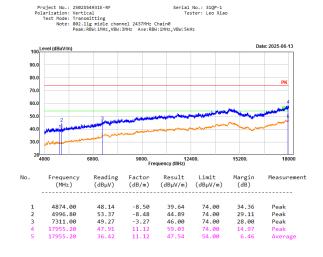



802.11g low channel Chain0 Horizontal

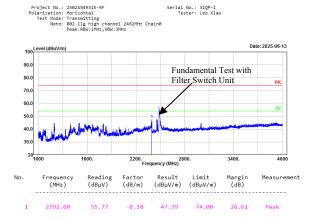
802.11g low channel Chain0 Vertical

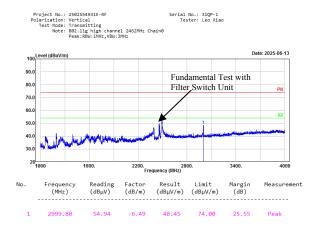


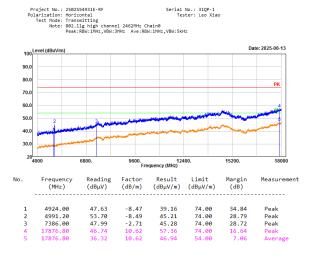


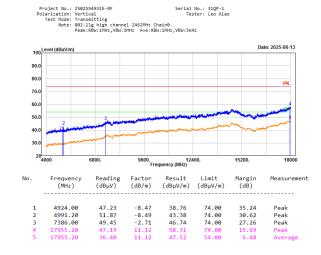

802.11g middle channel Chain0 Horizontal

| Project No.: 33025583215-RF | Serial No.: 3109-1 | Project Note: Note

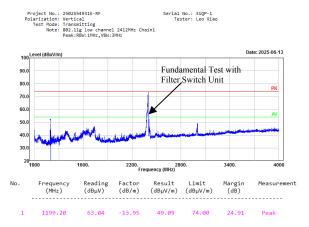

802.11g middle channel Chain0 Vertical

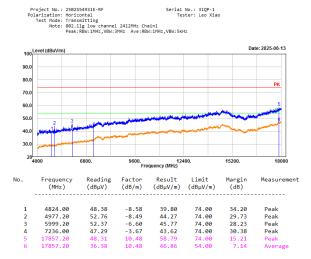




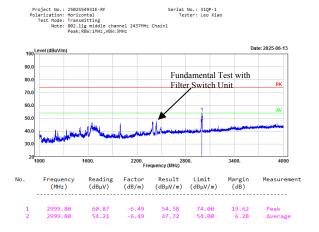

802.11g high channel Chain0 Horizontal

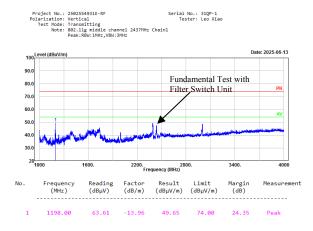
802.11g high channel Chain0 Vertical

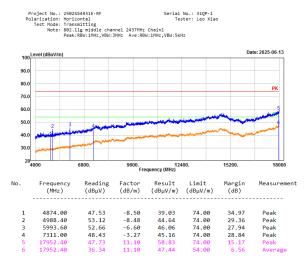


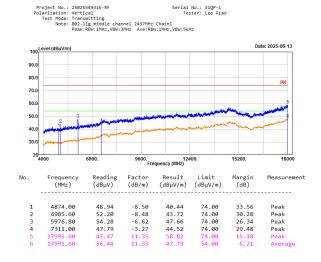


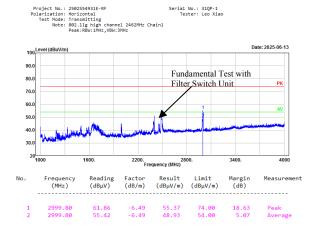
802.11g low channel Chain1 Horizontal

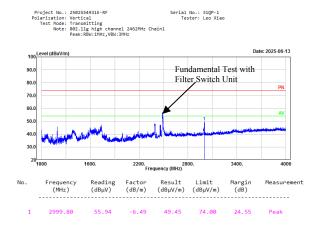

802.11g low channel Chain1 Vertical

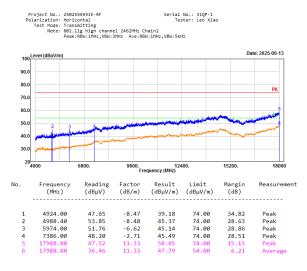


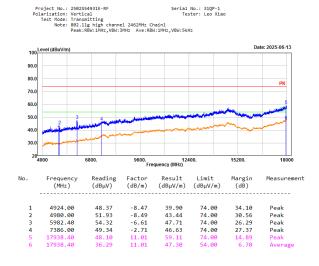


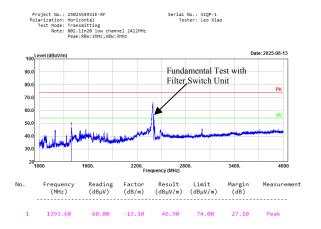

802.11g middle channel Chain1 Horizontal

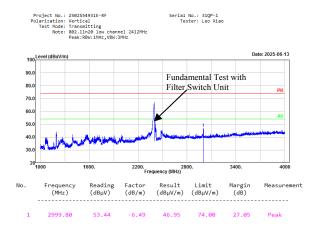

802.11g middle channel Chain1 Vertical

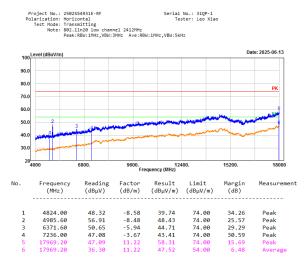


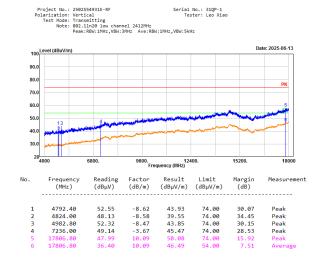



802.11g high channel Chain1 Horizontal

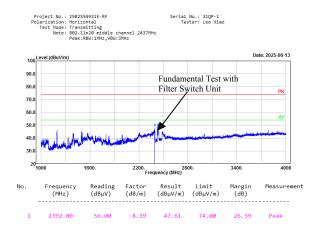

802.11g high channel Chain1 Vertical



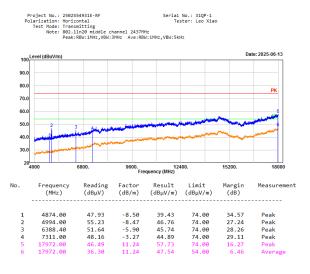


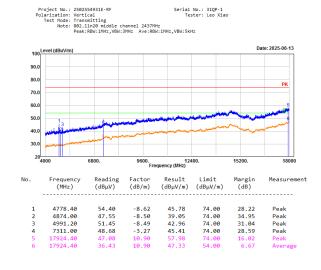

802.11n ht20 Chain 0+1 low channel Horizontal

802.11n ht20 Chain 0+1 low channel Vertical

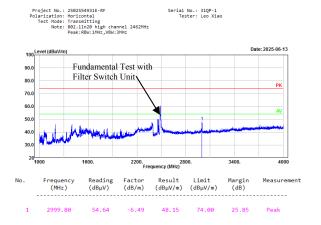


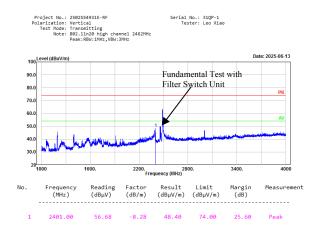


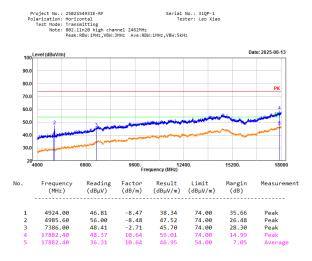


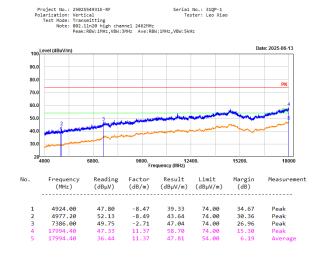

802.11n ht20 Chain 0+1 middle channel Horizontal

802.11n ht20 Chain 0+1 middle channel Vertical

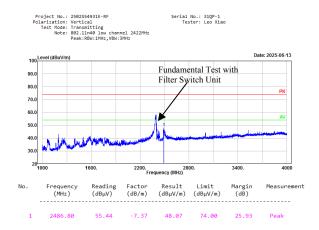


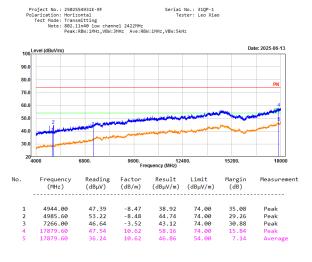


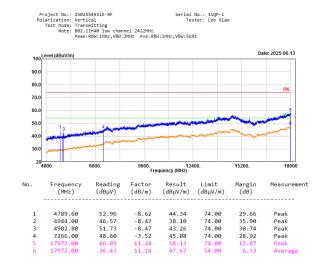



802.11n ht20 high Chain 0+1 channel Horizontal

802.11n ht20 Chain 0+1 high channel Vertical

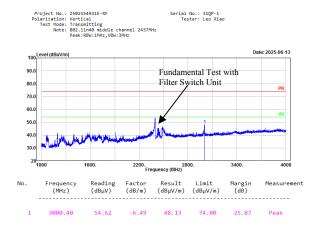


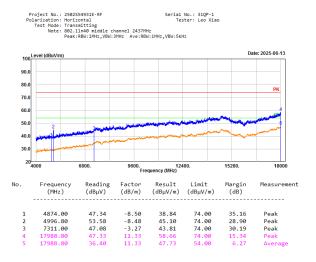


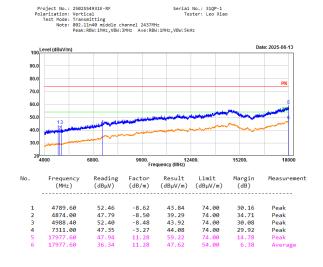

802.11n ht40 Chain 0+1 low channel Horizontal

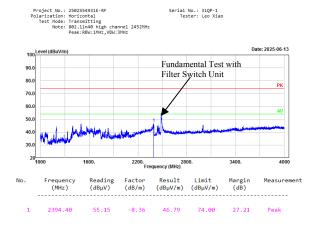
Project No.: 280254893E-RF Serial No.: 310P-1 Tester: Leo Xiao Tester: Le

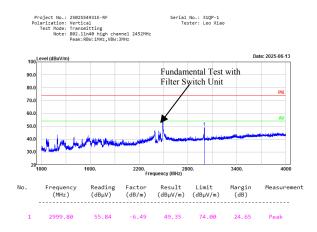
802.11n ht40 Chain 0+1 low channel Vertical

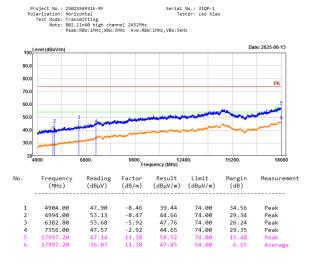


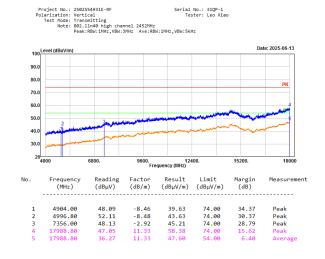



802.11n ht40 Chain 0+1 middle channel Horizontal


802.11n ht40 Chain 0+1 middle channel Vertical

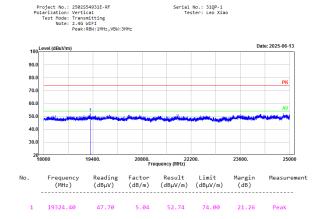





802.11n ht40 Chain 0+1 high channel Horizontal

802.11n ht40 Chain 0+1 high channel Vertical

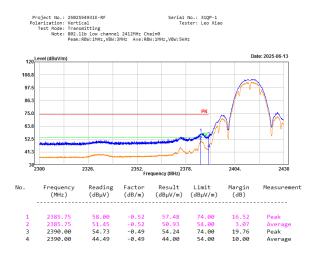


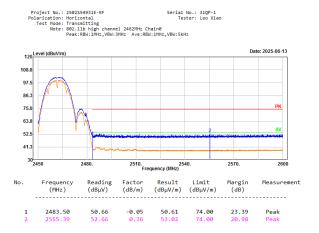

18-25GHz:

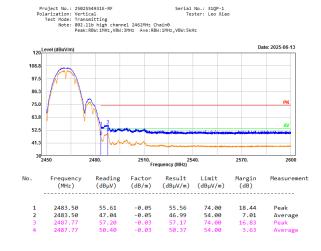
No Emission was detected in the range 18-25GHz, the maximum output power mode and channel: 802.11n ht40 MIMO mode Lowest Channel was tested.

Horizontal

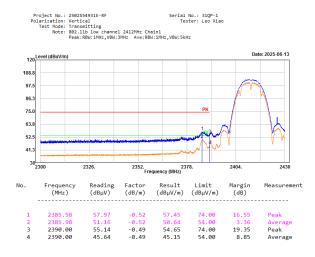
Vertical

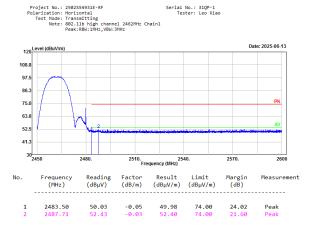


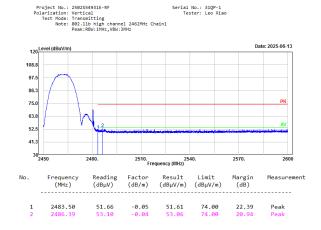

Bandedge:


802.11b Chain0 Bandedge Horizontal

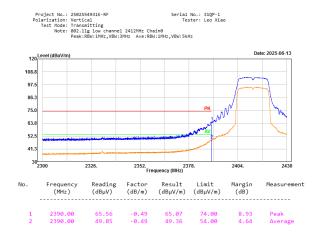
802.11b Chain0 Bandedge Vertical

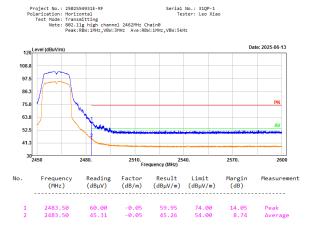


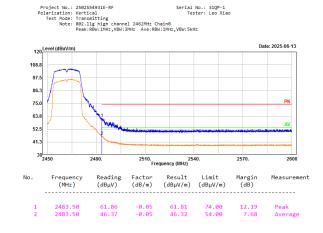



802.11b Chain1 Bandedge Horizontal

802.11b Chain1 Bandedge Vertical

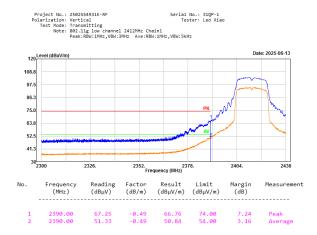


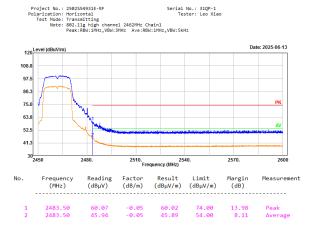


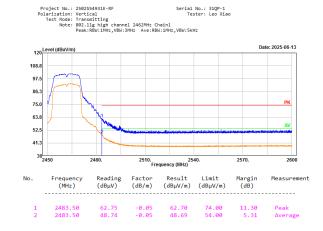

802.11g Chain0 Bandedge Horizontal

Project No.: 2502554931E-RF Serial No.: 310P-1 Tester: Leo Xiao Tester: Le

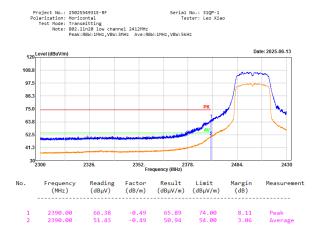
802.11g Chain0 Bandedge Vertical

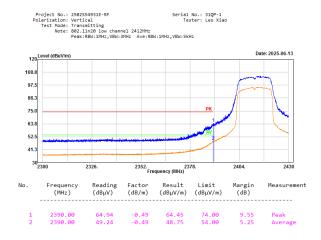


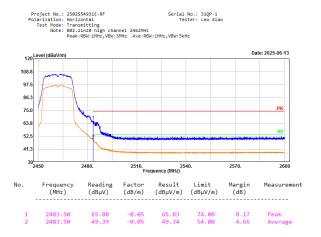


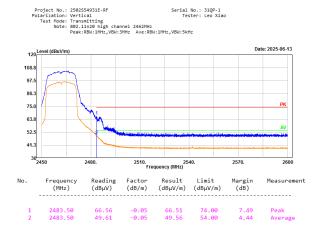

802.11g Chain1 Bandedge Horizontal

Project No.: 25025549318-RF Serial No.: 3109-1 Tester: Leo Xiao Tester: Leo Xiao Tester: Leo Xiao Tester: Leo Xiao Note: 802.11g Jone Channel 2412PMt Chaini Peak:RBH:1PMt, VBM:3MHz Ave:RBH:1PMt, VBM:5KHz 100_Level (dBuVim) 100.8 97.5 63.8 97.5 63.8 97.5 63.8 97.5 64.3 65.30 Carrier of the All Company (MHz) Date: 2025-06-13 Date: 2025-06-1

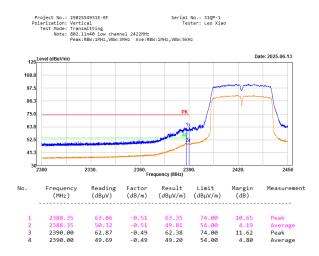

802.11g Chain1 Bandedge Vertical

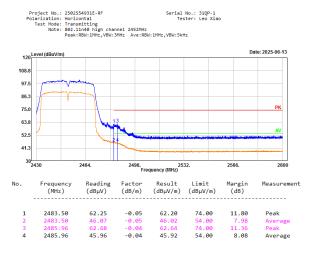


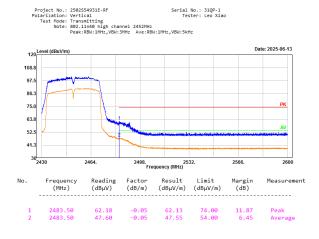



802.11n ht20 Chain 0+1 Bandedge Horizontal

802.11n ht20 Chain 0+1 Bandedge Vertical






802.11n ht40 Chain 0+1 Bandedge Horizontal

802.11n ht40 Chain 0+1 Bandedge Vertical

5.3 6dB Emission Bandwidth

Test Information:

Serial No.:	31QP-1	Test Date:	2025/06/05
Test Site:	RF	Test Mode:	Transmitting
Tester:	Conor Fu	Test Result:	Pass

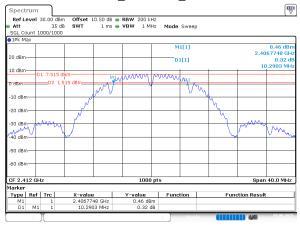
Report No.: 2502S54931E-RF-00A

Environmental Conditions:

Temperature:	25.9	Relative Humidity:	64	ATM Pressure:	100.9
(°C)		(%)		(kPa)	

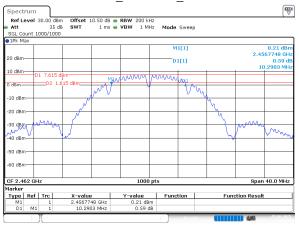
Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Narda	Coaxial Attenuator	773-10	F-08-EM511	2024/06/07	2025/06/06
R&S	Spectrum Analyzer	FSV40	101461	2024/09/05	2025/09/04

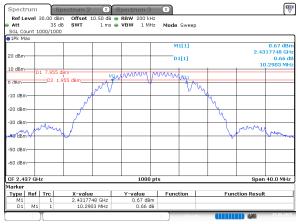

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

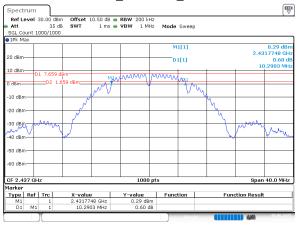
Mode	Antenna	Test Frequency (MHz)	Result (MHz)	Limit (MHz)	Verdict
		2412	10.290	≥0.5	Pass
	Chain 0	2437	10.290	≥0.5	Pass
802.11b		2462	10.290	≥0.5	Pass
802.110		2412	10.290	≥0.5	Pass
	Chain 1	2437	10.290	≥0.5	Pass
		2462	10.290	≥0.5	Pass
		2412	16.416	≥0.5	Pass
	Chain 0	2437	16.416	≥0.5	Pass
802.11g		2462	16.416	≥0.5	Pass
602.11g	Chain 1	2412	16.416	≥0.5	Pass
		2437	16.416	≥0.5	Pass
		2462	16.416	≥0.5	Pass
		2412	17.698	≥0.5	Pass
	Chain 0	2437	17.658	≥0.5	Pass
802.11n ht20		2462	17.618	≥0.5	Pass
802.111111120		2412	17.738	≥0.5	Pass
	Chain 1	2437	17.738	≥0.5	Pass
		2462	17.738	≥0.5	Pass
		2422	35.956	≥0.5	Pass
	Chain 0	2437	36.116	≥0.5	Pass
802.11n ht40		2452	35.796	≥0.5	Pass
502.1111 III. 4 0		2422	35.796	≥0.5	Pass
	Chain 1	2437	35.796	≥0.5	Pass
		2452	35.796	≥0.5	Pass


Report Template Version: FCC-Wi-Fi-V2.2

802.11b 2412MHz Chain 0

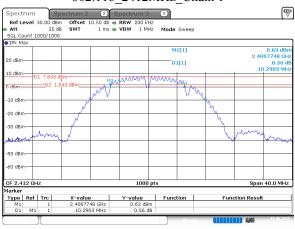

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 00:37:52

802.11b 2462MHz Chain 0

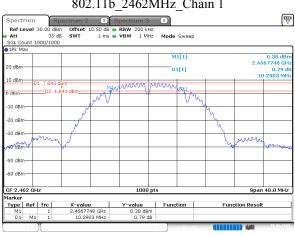

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 00:42:59

802.11b 2437MHz Chain 1

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:28:58

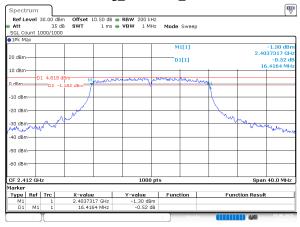

802.11b 2437MHz Chain 0

ProjectNo.:2502S54931E-RF Tester:Conor F0 Date: 5.JUN.2025 00:41:17

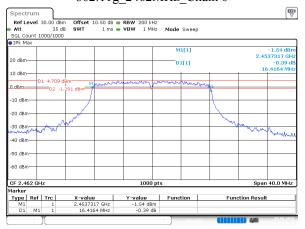

Chain 1

802.11b 2412MHz Chain 1

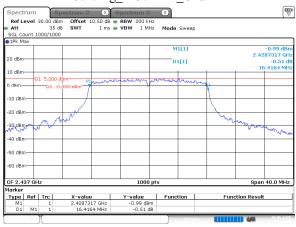
ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:26:56


802.11b_2462MHz Chain 1

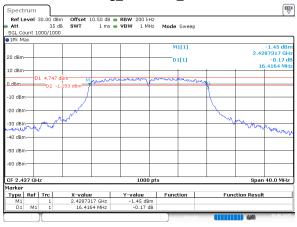
ProjectNo.:2502S54931E-RF Tester:Conor Fu


Date: 5.JUN.2025 20:30:58

802.11g_2412MHz_Chain 0

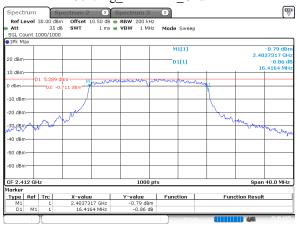

ProjectNo.:2502S54931E-RF Tester:Conor F0 Date: 5.JUN.2025 00:45:18

802.11g 2462MHz Chain 0


ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 00:49:18

802.11g_2437MHz_Chain 1

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:36:29

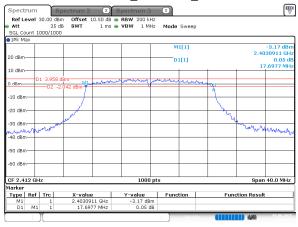

802.11g_2437MHz_Chain 0

ProjectNo.:2502S54931E-RF Tester:Conor F0 Date: 5.JUN.2025 00:47:26

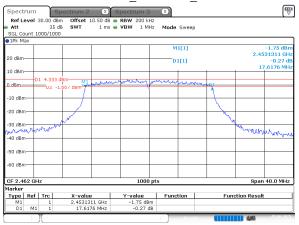
Chain 1

802.11g 2412MHz Chain 1

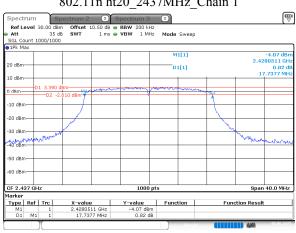
ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:33:22


802.11g_2462MHz_Chain 1

ProjectNo.:2502S54931E-RF Tester:Conor Fu

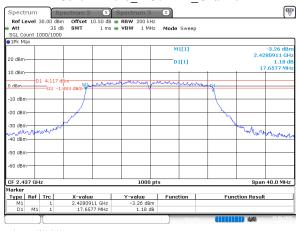

Date: 5.JUN.2025 20:38:42

802.11n ht20 2412MHz Chain 0



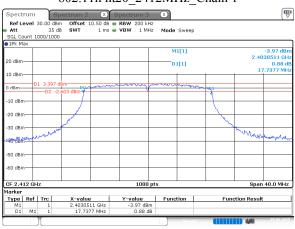
ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:08:20

802.11n ht20 2462MHz Chain 0



802.11n ht20 2437MHz Chain 1

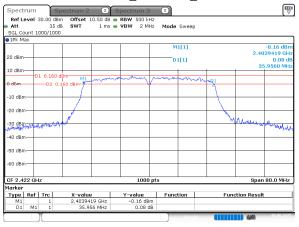
Date: 5.JUN.2025 20:45:12


802.11n ht20 2437MHz Chain 0

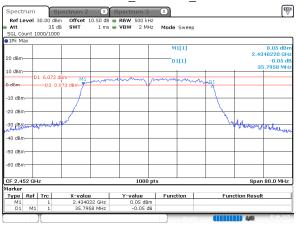
ProjectNo.:2502S54931E-RF Tester:Conor F0 Date: 5.JUN.2025 20:11:18

Chain 1

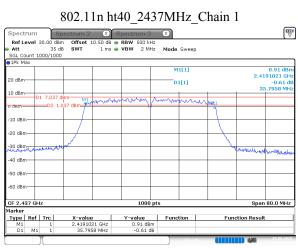
802.11n ht20 2412MHz Chain 1


DrojectNo +2502S54931E-BE Tester+Conor E Date: 5.JUN.2025 20:42:41

802.11n ht20 2462MHz Chain 1

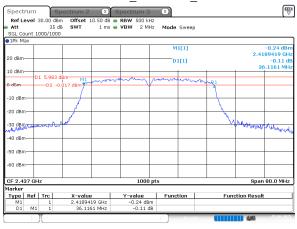

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:47:31

802.11n ht40 2422MHz Chain 0



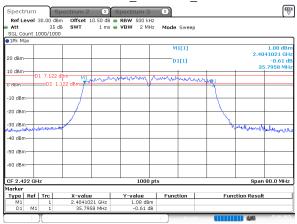
ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:16:05

802.11n ht40 2452MHz Chain 0



802.11n ht40 2437MHz Chain 1

Date: 5.JUN.2025 20:53:17


802.11n ht40 2437MHz Chain 0

ProjectNo.:2502S54931E-RF Tester:Conor F0 Date: 5.JUN.2025 20:18:51

Chain 1

802.11n ht40 2422MHz Chain 1

DrojectNo +2502S54931E-BE Tester+Conor E Date: 5.JUN.2025 20:50:23

802.11n ht40 2452MHz Chain 1

ProjectNo.:2502S54931E-RF Tester:Conor Fu

Date: 5.JUN.2025 20:56:08

5.4 99% Occupied Bandwidth

Test Information:

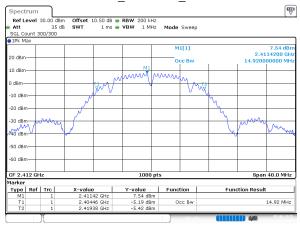
Serial No.:	31QP-1	Test Date:	2025/06/05
Test Site:	RF	Test Mode:	Transmitting
Tester:	Conor Fu	Test Result:	N/A

Report No.: 2502S54931E-RF-00A

Environmental Conditions:

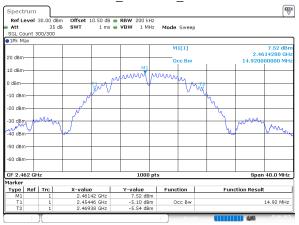
Temperature: (°C)	25.9	Relative Humidity: (%)	64	ATM Pressure: (kPa)	100.9
-------------------	------	------------------------------	----	---------------------	-------

Test Equipment List and Details:

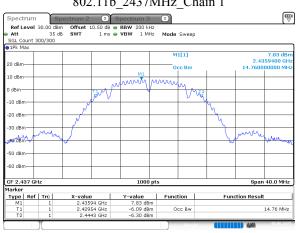

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Narda	Coaxial Attenuator	773-10	F-08-EM511	2024/06/07	2025/06/06
R&S	Spectrum Analyzer	FSV40	101461	2024/09/05	2025/09/04

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

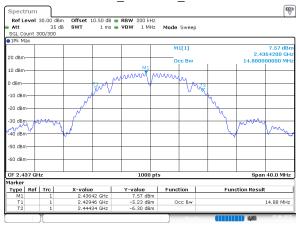
Test Data:


Mode	Antenna	Test Frequency (MHz)	99% OBW (MHz)
		2412	14.920
	Chain 0	2437	14.880
802.11b		2462	14.920
802.110		2412	14.760
	Chain 1	2437	14.760
		2462	14.760
		2412	16.440
	Chain 0	2437	16.440
802.11g		2462	16.400
802.11g	Chain 1	2412	16.440
		2437	16.440
		2462	16.440
	Chain 0	2412	17.640
		2437	17.640
802.11n ht20		2462	17.640
802.111111120		2412	17.600
	Chain 1	2437	17.600
		2462	17.560
		2422	36.240
	Chain 0	2437	36.240
802.11n ht40		2452	36.240
802.111111140		2422	36.080
	Chain 1	2437	36.080
		2452	36.080

802.11b 2412MHz Chain 0

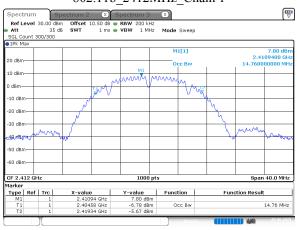

Date: 5.JUN.2025 00:38:06

802.11b 2462MHz Chain 0


DrojectNo :2502554931E-BE Tester:Conor E Date: 5.JUN.2025 00:43:12

802.11b_2437MHz_Chain 1

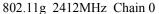
ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:29:14

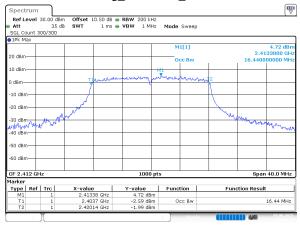

802.11b 2437MHz Chain 0

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 00:41:30

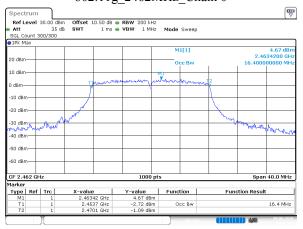
Chain 1

802.11b 2412MHz Chain 1



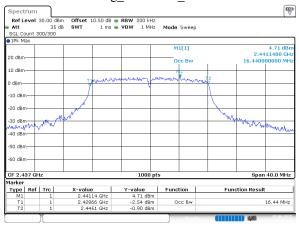

DrojectNo +2502S54931E-BE Tester+Conor E Date: 5.JUN.2025 20:27:13

802.11b_2462MHz Chain 1


ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:31:14

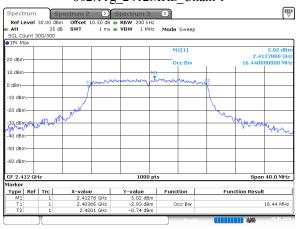

Date: 5.JUN.2025 00:45:33

802.11g 2462MHz Chain 0

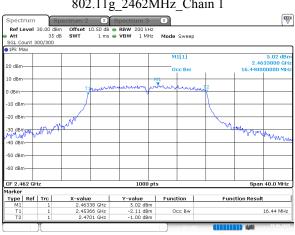

ProjectNo .2502554931E-RE Tester.Conor Eu Date: 5.JUN.2025 00:49:33

802.11g_2437MHz_Chain 1

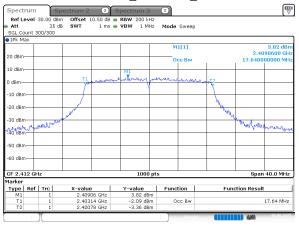
ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:36:45


802.11g 2437MHz Chain 0

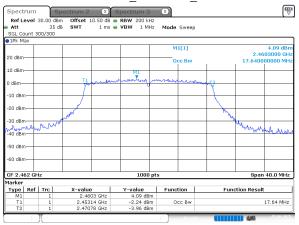
ProjectNo.:2502S54931E-RF Tester:Conor F0 Date: 5.JUN.2025 00:47:41


Chain 1

802.11g 2412MHz Chain 1


ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:33:39

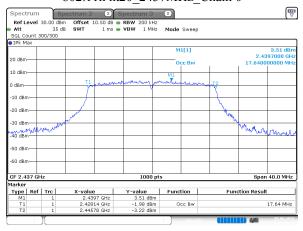
802.11g_2462MHz_Chain 1


ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:38:57

802.11n ht20 2412MHz Chain 0

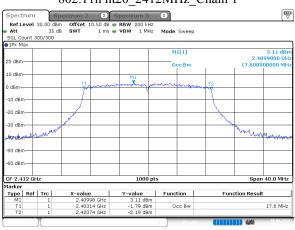
Date: 5.JUN.2025 20:08:36

802.11n ht20 2462MHz Chain 0



802.11n ht20 2437MHz Chain 1

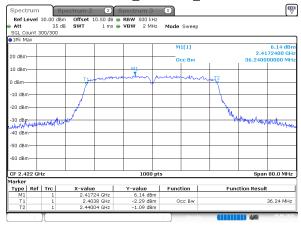
ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:45:27


802.11n ht20 2437MHz Chain 0

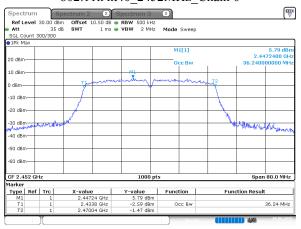
ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:11:31

Chain 1

802.11n ht20 2412MHz Chain 1


DrojectNo +2502S54931E-BE Tester+Conor E Date: 5.JUN.2025 20:42:56

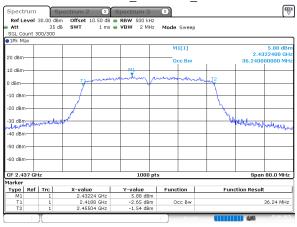
802.11n ht20 2462MHz Chain 1


ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:47:47

802.11n ht40 2422MHz Chain 0

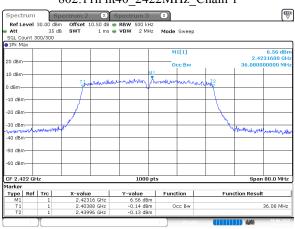
Date: 5.JUN.2025 20:16:14

802.11n ht40 2452MHz Chain 0



802.11n ht40_2437MHz_Chain 1

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:53:29


802.11n ht40 2437MHz Chain 0

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:19:02

Chain 1

802.11n ht40 2422MHz Chain 1

DrojectNo +2502S54931E-BE Tester+Conor E Date: 5.JUN.2025 20:50:36

802.11n ht40 2452MHz Chain 1

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:56:21

5.5 Maximum Conducted Output Power

Test Information:

Serial No.:	31QP-1	Test Date:	2025/06/05
Test Site:	RF	Test Mode:	Transmitting
Tester:	Conor Fu	Test Result:	Pass

Report No.: 2502S54931E-RF-00A

Environmental Conditions:

Temperature: (°C)	25.9	Relative Humidity: (%)	64	ATM Pressure: (kPa)	100.9
-------------------	------	------------------------	----	---------------------	-------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Narda	Coaxial Attenuator	773-10	F-08-EM511	2024/06/07	2025/06/06
Anritsu	Microwave Peak Power Sensor	MA24418A	12618	2024/08/27	2025/08/26

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

Mode	Antenna	Test Frequency (MHz)	Peak Output Power(dBm)	Average Output Power(dBm)	Limit (dBm)	Verdict
		2412	23.63	20.86	27.80	Pass
	Chain 0	2437	25.65	22.02	27.80	Pass
802.11b		2462	24.67	21.99	27.80	Pass
802.110		2412	21.72	18.73	27.80	Pass
	Chain 1	2437	21.77	18.25	27.80	Pass
		2462	21.71	18.04	27.80	Pass
		2412	23.84	15.62	27.80	Pass
	Chain 0	2437	23.85	15.67	27.80	Pass
002 11~		2462	23.71	15.54	27.80	Pass
802.11g		2412	23.87	15.96	27.80	Pass
	Chain 1	2437	23.86	15.92	27.80	Pass
		2462	23.82	15.86	27.80	Pass
	Chain 0	2412	22.85	14.76	27.80	Pass
		2437	22.67	14.66	27.80	Pass
		2462	22.58	14.57	27.80	Pass
	Chain 1	2412	23.05	14.75	27.80	Pass
802.11n ht20		2437	22.93	14.61	27.80	Pass
11120		2462	22.38	14.17	27.80	Pass
		2412	25.96	17.77	27.80	Pass
	Chain 0+Chain 1	2437	25.81	17.65	27.80	Pass
		2462	25.49	17.38	27.80	Pass
		2422	23.11	15.05	27.80	Pass
	Chain 0	2437	23.00	14.89	27.80	Pass
		2452	22.96	14.83	27.80	Pass
		2422	23.22	14.71	27.80	Pass
802.11n	Chain 1	2437	23.19	14.63	27.80	Pass
ht40		2452	23.15	14.42	27.80	Pass
		2422	26.18	17.89	27.80	Pass
	Chain 0+Chain 1	2437	26.11	17.77	27.80	Pass
		2452	26.07	17.64	27.80	Pass
	Antenna Gain:	8.20	dBi	Directional Gain:	8.20	dBi

Report No.: 2502S54931E-RF-00A

^{1.} for FCC Rules; Directional Gain = 8.2dBi > 6 dBi. the maximum output power limit should be reduced (8.2 -6) dB= 2.2 dB.

2. for MIMO mode, Total Power (Chain 0+Chain 1) = 10*log [(10^{Power Chain 0/10}) + (10^{Power Chain 1/10})].

5.6 Power Spectral Density

Test Information:

Serial No.:	31QP-1	Test Date:	2025/06/05
Test Site:	RF	Test Mode:	Transmitting
Tester:	Conor Fu	Test Result:	Pass

Report No.: 2502S54931E-RF-00A

Environmental Conditions:

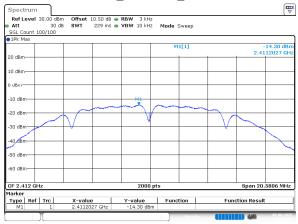
Temperature: (°C)	Relative Humidity: (%)		ATM Pressure: (kPa)	100.9
-------------------	------------------------------	--	---------------------	-------

Test Equipment List and Details:

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Narda	Coaxial Attenuator	773-10	F-08-EM511	2024/06/07	2025/06/06
R&S	Spectrum Analyzer	FSV40	101461	2024/09/05	2025/09/04

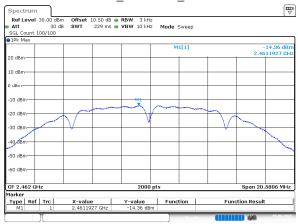
^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:


Mode	Antenna	Test Frequency (MHz)	Result (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
802.11b		2412	-14.30	5.8	Pass
	Chain 0	2437	-14.30	5.8	Pass
		2462	-14.36	5.8	Pass
	Chain 1	2412	-14.01	5.8	Pass
		2437	-14.06	5.8	Pass
		2462	-14.15	5.8	Pass
		2412	-12.75	5.8	Pass
	Chain 0	2437	-12.66	5.8	Pass
902 11 ~		2462	-12.77	5.8	Pass
802.11g		2412	-12.35	5.8	Pass
	Chain 1	2437	-12.38	5.8	Pass
		2462	-12.40	5.8	Pass
	Chain 0	2412	-12.30	5.8	Pass
		2437	-12.58	5.8	Pass
		2462	-12.50	5.8	Pass
	Chain 1	2412	-12.68	5.8	Pass
802.11n ht20		2437	-12.70	5.8	Pass
		2462	-13.17	5.8	Pass
	Chain 0+Chain 1	2412	-9.48	2.8	Pass
		2437	-9.63	2.8	Pass
		2462	-9.81	2.8	Pass
	Chain 0	2422	-14.21	5.8	Pass
		2437	-14.38	5.8	Pass
		2452	-14.36	5.8	Pass
	Chain 1	2422	-15.49	5.8	Pass
802.11n ht40		2437	-15.33	5.8	Pass
		2452	-15.70	5.8	Pass
	Chain 0+Chain 1	2422	-11.79	2.8	Pass
		2437	-11.82	2.8	Pass
		2452	-11.97	2.8	Pass
Antenna Gain:	8.20	dBi	Directional Gain:	11.20	dBi

- 1. for MIMO mode; Directional gain = 11.2dBi > 6 dBi. the MIMO transmitting maximum power spectral density limit should be reduced (11.2-6) dB=5.2 dB.
- 2. for SISO mode, the max. antenna gain is greater than 6 dBi, Directional gain =8.2dBi > 6 dBi. the maximum power spectral density limit for SISO mode should be reduced (8.2 -6) dB= 2.2 dB.

 3. for MIMO mode, Total PSD (Chain 0+1) = 10*log [(10^{PSD Chain 0/10}) + (10^{PSD Chain 1/10})].


Report No.: 2502S54931E-RF-00A

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 00:39:01

802.11b_2462MHz_Chain 0

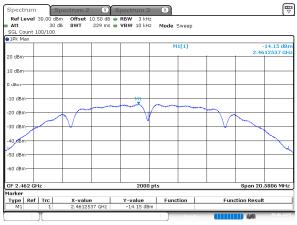
ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 00:44:04

802.11b_2437MHz_Chain 1

Date: 5.JUN.2025 20:29:56

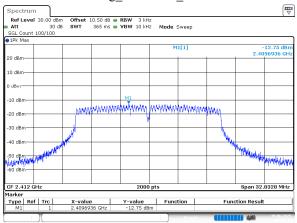
802.11b_2437MHz_Chain 0

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 00:42:09

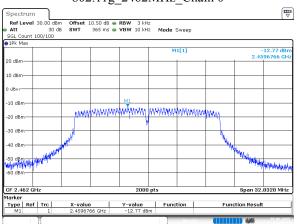

Chain 1

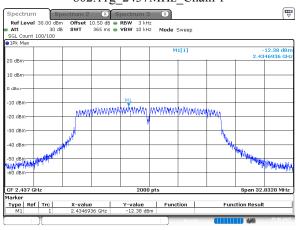
802.11b_2412MHz_Chain 1

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:28:10

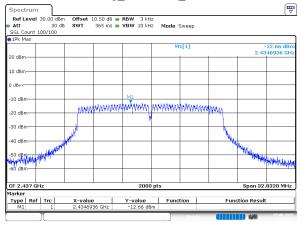

802.11b_2462MHz_Chain 1

ProjectNo.:2502S54931E-RF Tester:Conor Fu


Chain 0

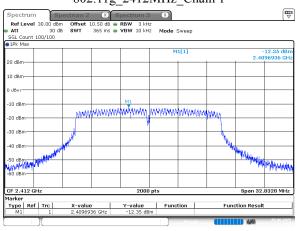

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 00:46:41

802.11g_2462MHz_Chain 0

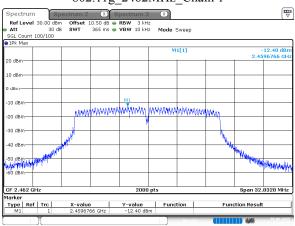

ProjectNo.: 2502S54931E-RF Tester: Conor Fu Date: 5.JUN.2025 00:50:43

802.11g_2437MHz_Chain 1

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:37:44

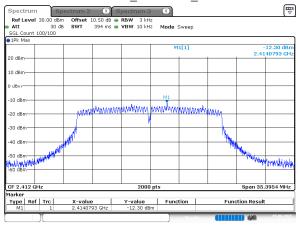

802.11g_2437MHz_Chain 0

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 00:48:37

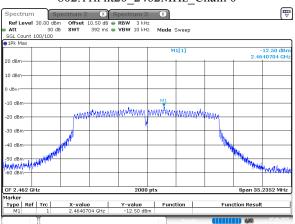

Chain 1

802.11g_2412MHz_Chain 1

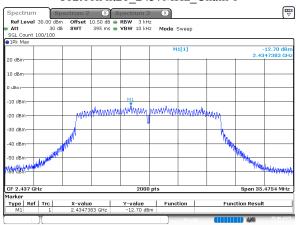
ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:34:53


802.11g 2462MHz Chain 1

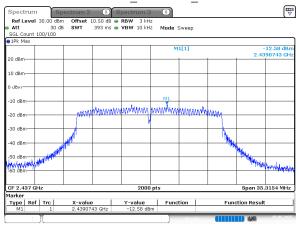
ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:40:09


Chain 0

802.11n ht20_2412MHz_Chain 0

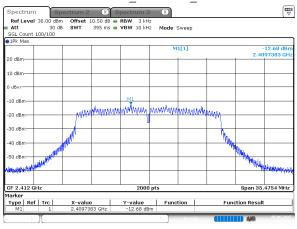

ProjectNo.: 2502S54931E-RF Tester: Conor Fu Pate: 5.JUN.2025 20:10:00

802.11n ht20_2462MHz_Chain 0

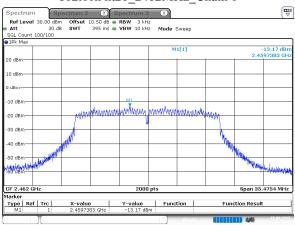

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:15:18

802.11n ht20 2437MHz Chain 1

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:46:28

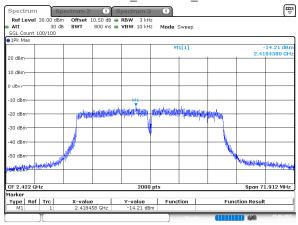

802.11n ht20_2437MHz_Chain 0

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:12:31

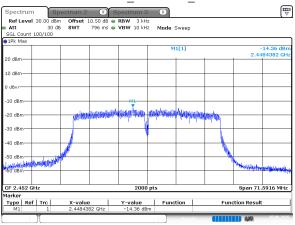

Chain 1

802.11n ht20_2412MHz_Chain 1

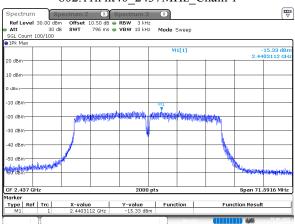
ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:44:12


802.11n ht20 2462MHz Chain 1

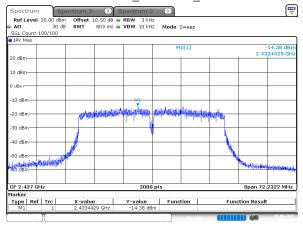
ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:49:03


Chain 0

802.11n ht40_2422MHz_Chain 0

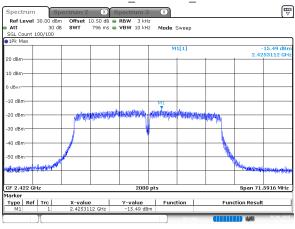

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:18:13

802.11n ht40_2452MHz_Chain 0

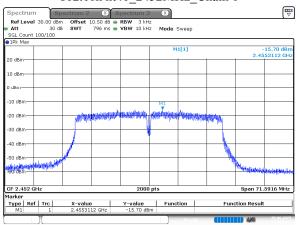

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:23:37

802.11n ht40_2437MHz_Chain 1

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:55:19


802.11n ht40_2437MHz_Chain 0

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:20:49


Chain 1

802.11n ht40_2422MHz_Chain 1

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:52:40

802.11n ht40 2452MHz Chain 1

ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 5.JUN.2025 20:58:27

5.7 Conducted Spurious Emission

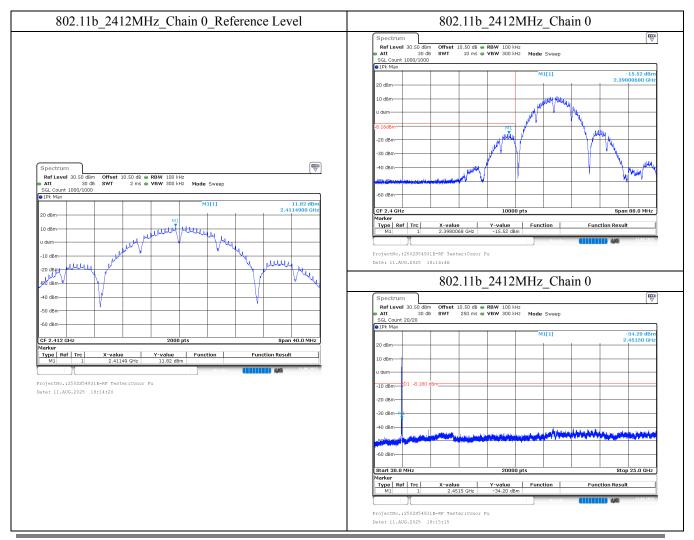
Test Information:

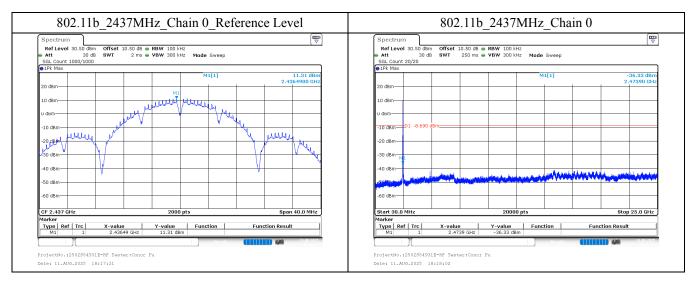
Serial No.:	31QP-1	Test Date:	2025/08/11
Test Site:	RF	Test Mode:	Transmitting
Tester:	Conor Fu	Test Result:	Pass

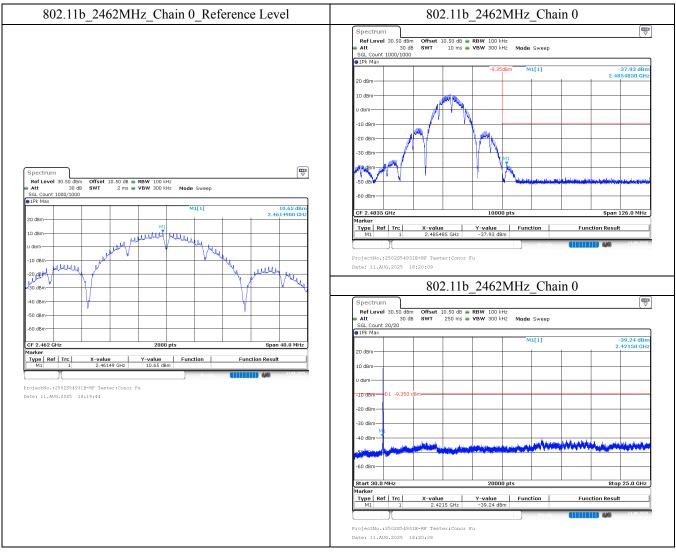
Report No.: 2502S54931E-RF-00A

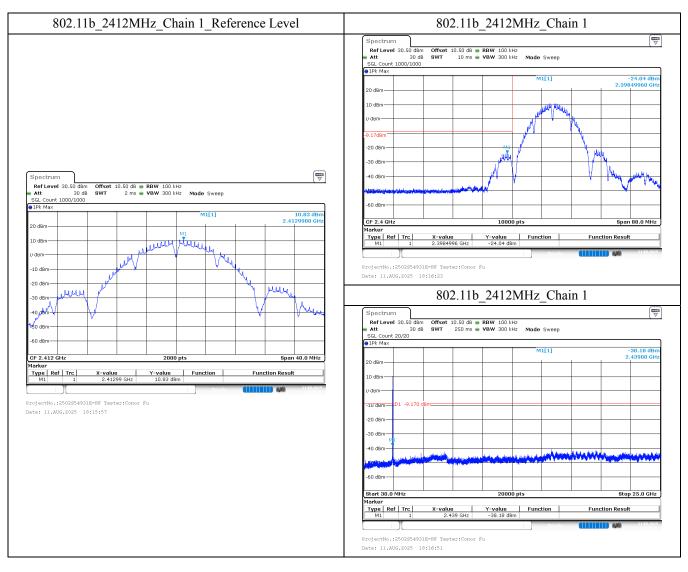
Environmental Conditions:

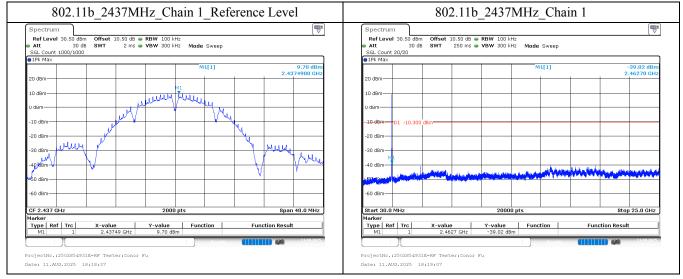
Temperature:	27.9	Relative Humidity:	50	ATM Pressure:	100.0
(°C)	27.9	(%)	30	(kPa)	100.0

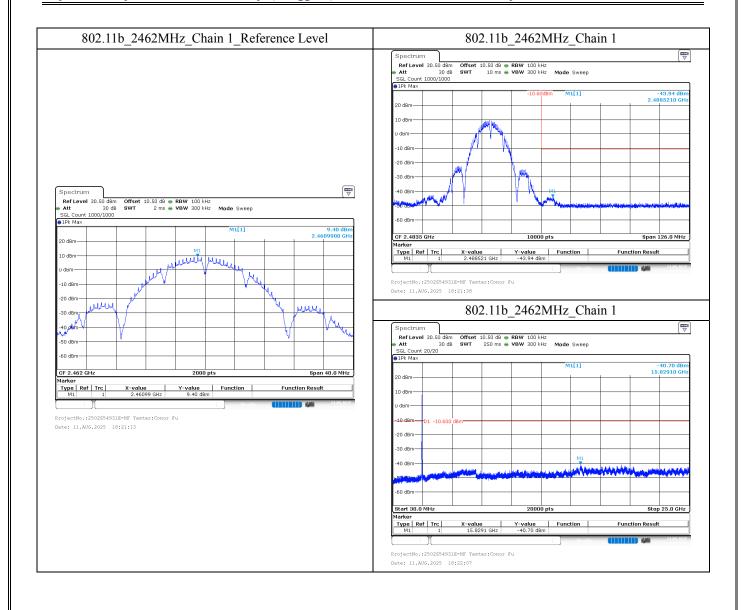

Test Equipment List and Details:

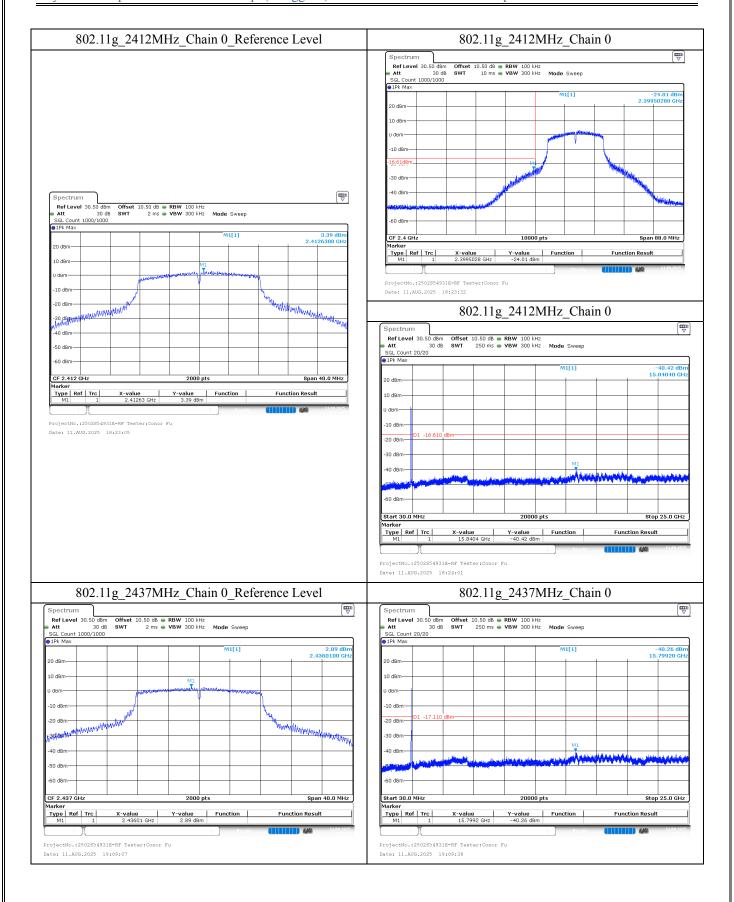

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101461	2024/09/05	2025/09/04
Narda	Coaxial Attenuator	773-10	F-08-EM511	2025/06/07	2026/06/06

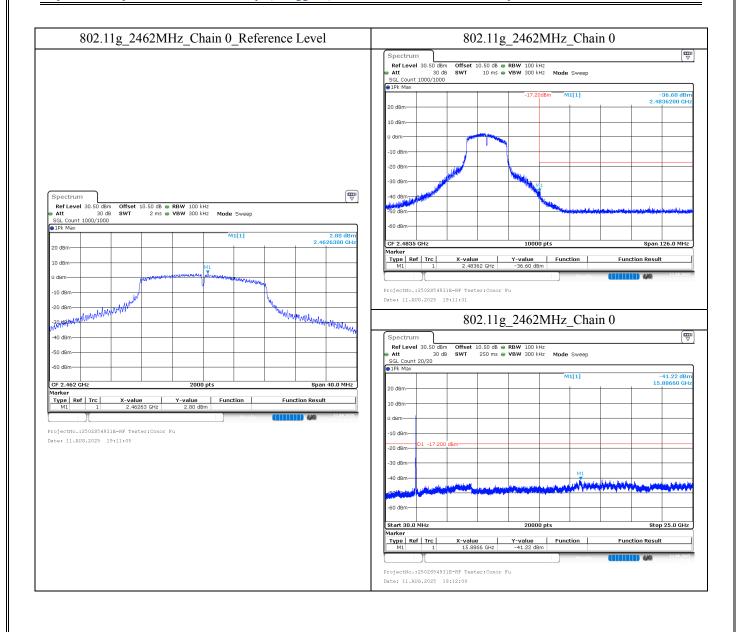

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

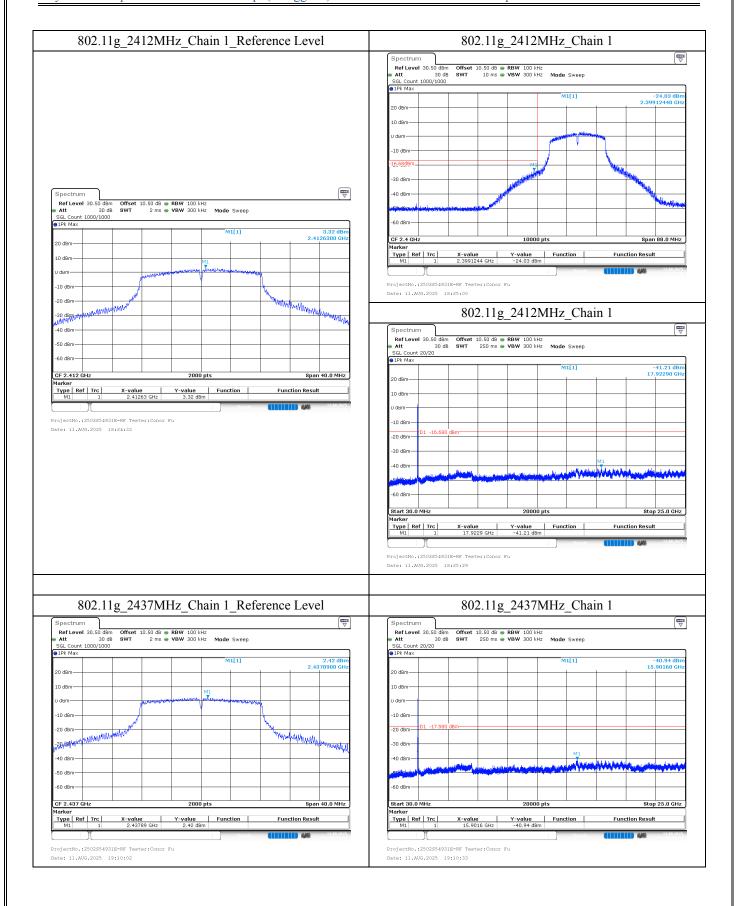

Test Data:

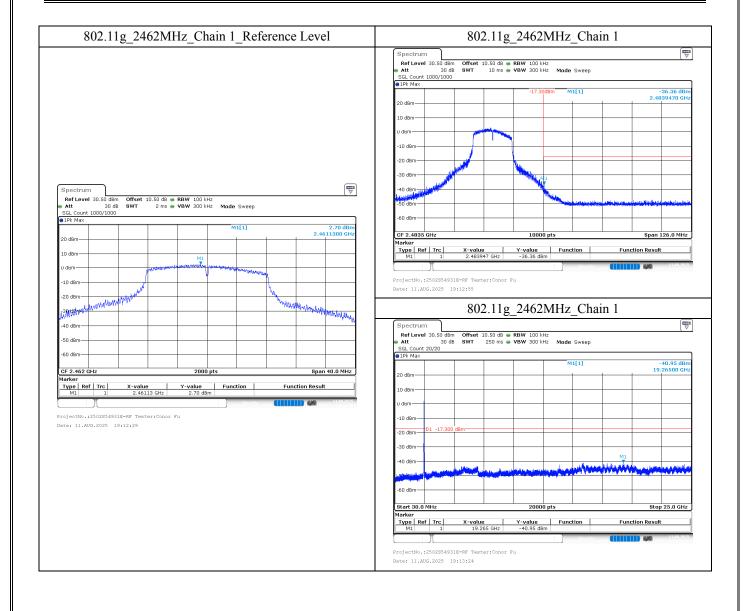

The test plots as follows:

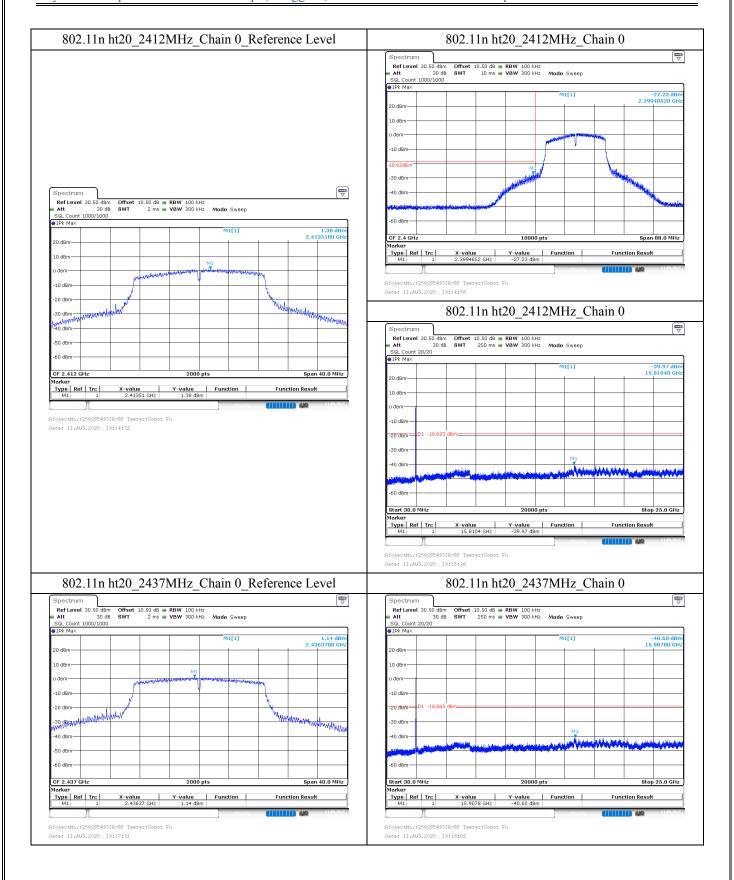


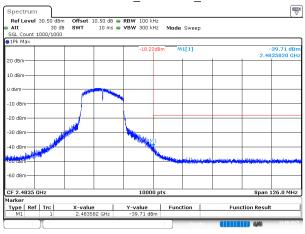




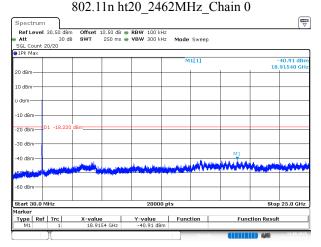




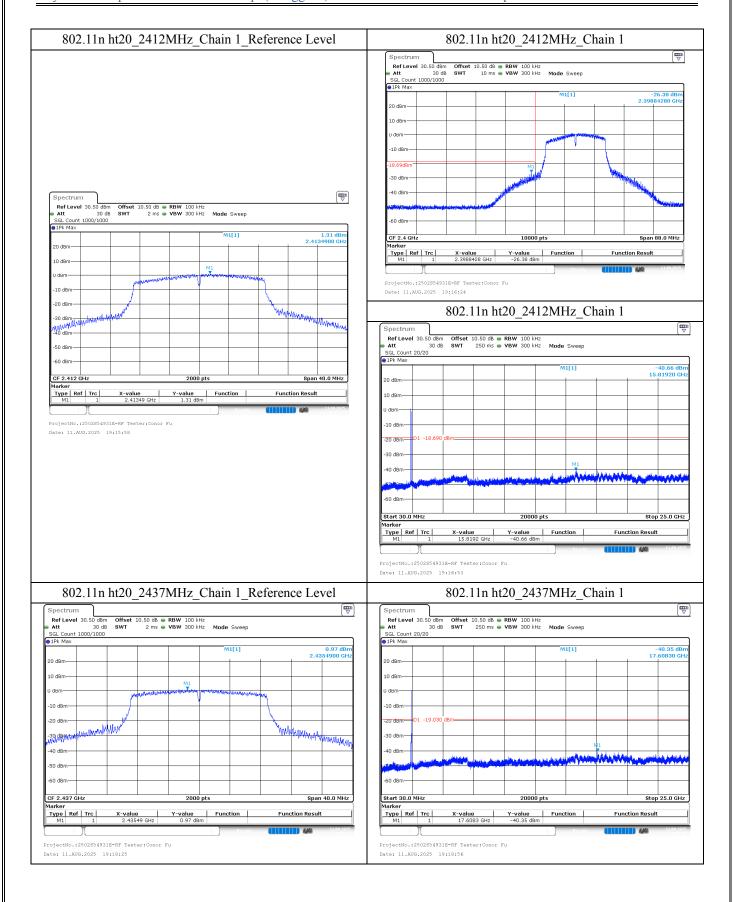


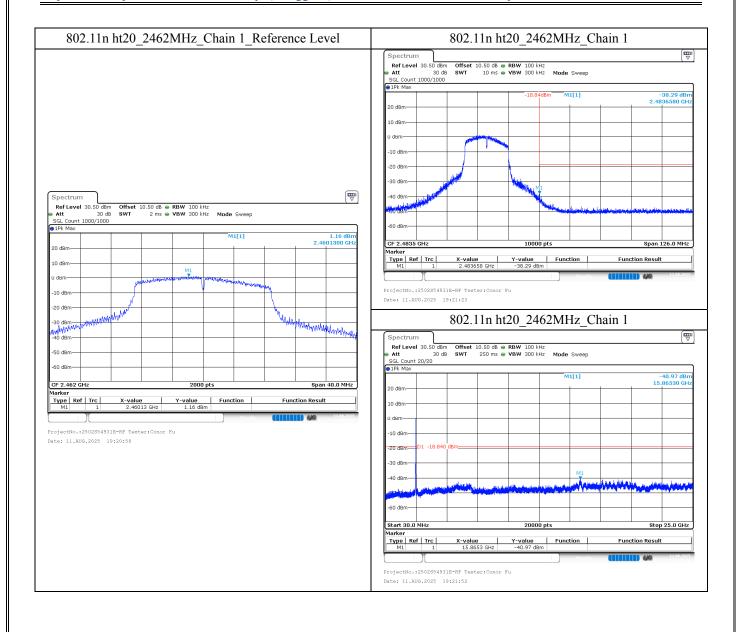


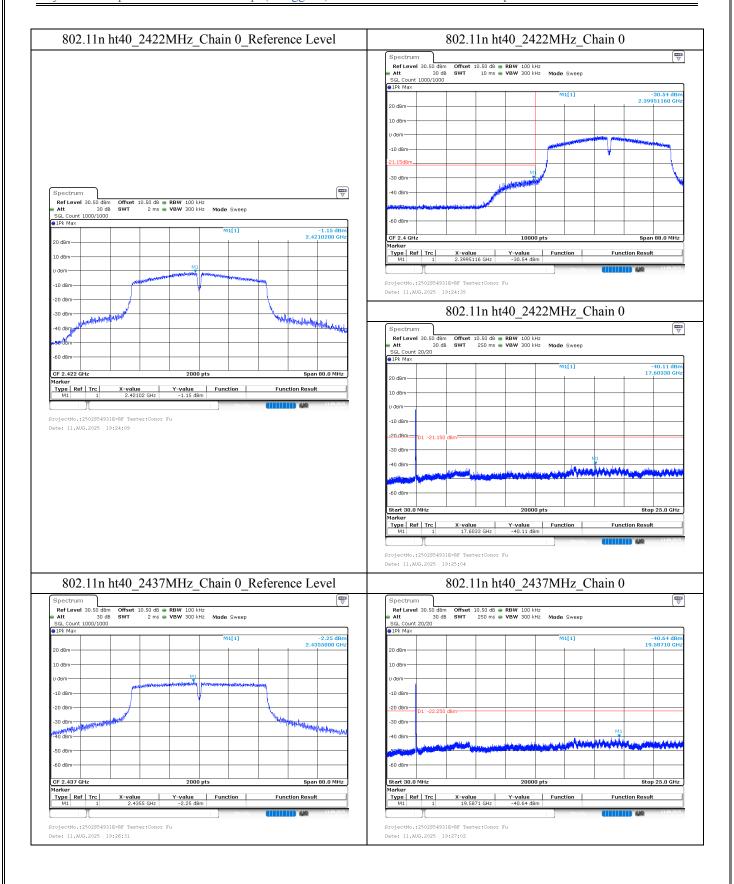
802.11n ht20_2462MHz_Chain 0_Reference Level

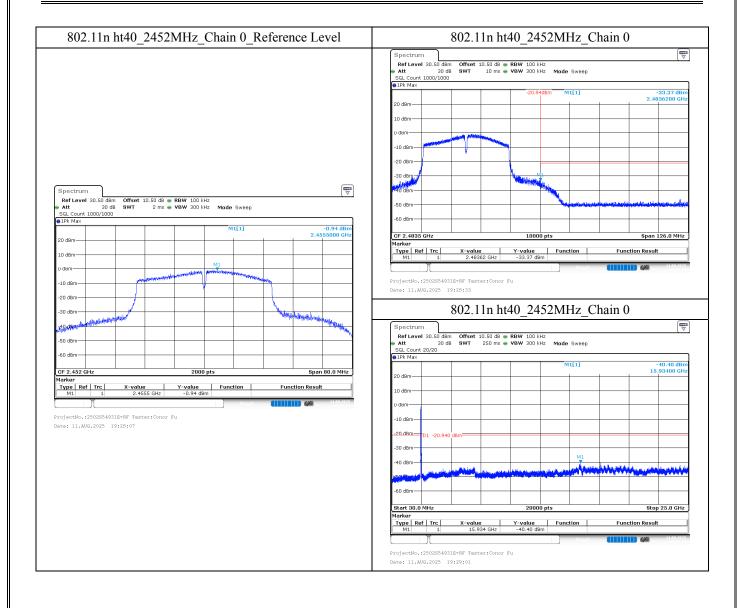


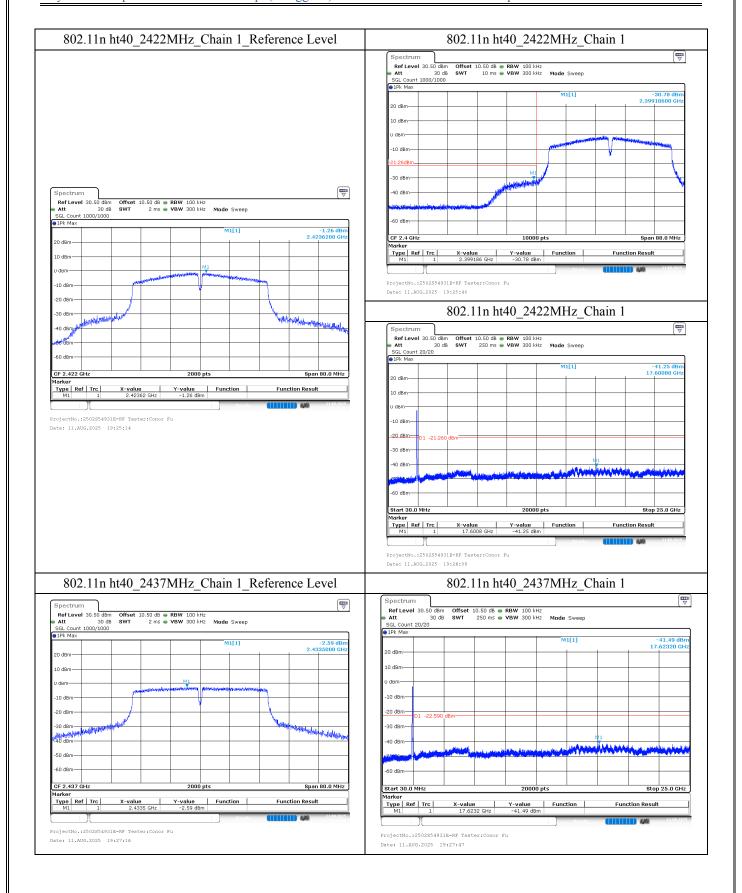
ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 11.AUG.2025 19:19:35

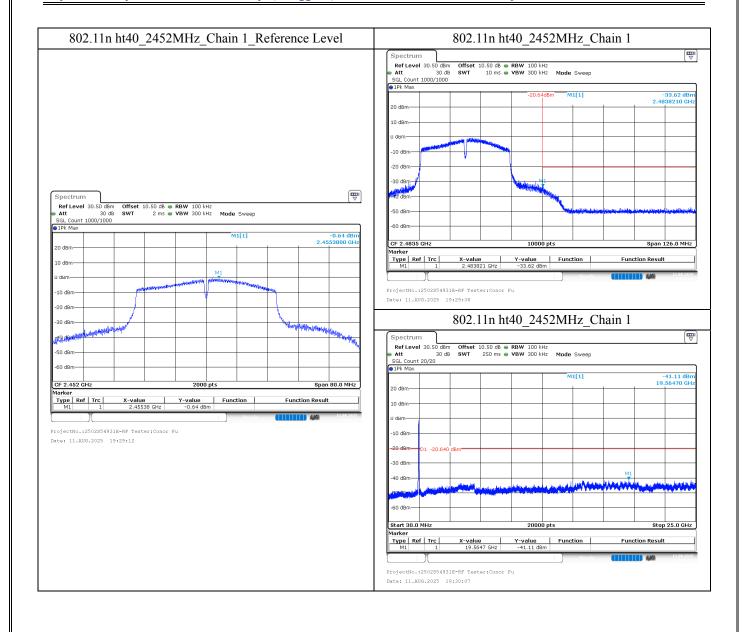

802.11n ht20_2462MHz_Chain 0




Date: 11.AUG.2025 19:20:01




ProjectNo.:2502S54931E-RF Tester:Conor Fu Date: 11.AUG.2025 19:20:30



5.8 Duty Cycle

Test Information:

Serial No.:	31QP-1	Test Date:	2025/06/05
Test Site:	RF	Test Mode:	Transmitting
Tester:	Conor Fu	Test Result:	N/A

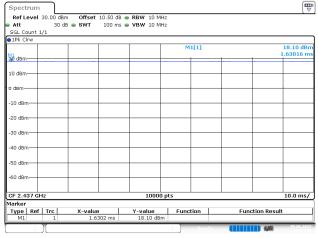
Report No.: 2502S54931E-RF-00A

Environmental Conditions:

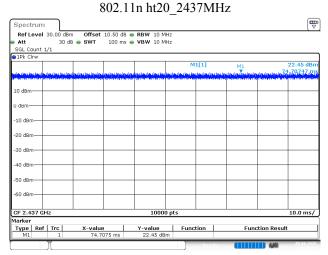
Temperature:	25.9	Relative Humidity: (%)	64	ATM Pressure: (kPa)	100.9
()		(/0)		(KI a)	

Test Equipment List and Details:

Manufacturer	Description Model Serial Number		Calibration Date	Calibration Due Date	
Narda	Coaxial Attenuator	773-10	F-08-EM511	2024/06/07	2025/06/06
R&S	Spectrum Analyzer	FSV40	101461	2024/09/05	2025/09/04

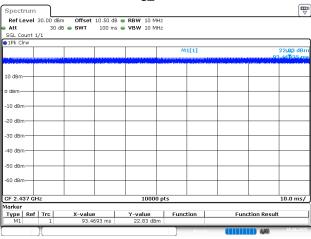

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data:

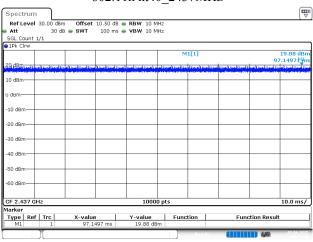

Mode	Test Frequency (MHz)	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)	Duty Cycle Factor(dB)	1/Ton (Hz)	VBW Setting (kHz)
802.11b	2437	100	100	100	0	NA	0.010
802.11g	2437	100	100	100	0	NA	0.010
802.11n ht20	2437	100	100	100	0	NA	0.010
802.11n ht40	2437	100	100	100	0	NA	0.010

Duty Cycle = Ton/(Ton+Toff)*100%

802.11b_2437MHz



ProjectNo.: 2502S54931E-RF Tester: Conor Fu Date: 5.JUN.2025 00:27:07


ProjectNo.:2502S54931E-RF Tester:Conor Fu

802.11g_2437MHz

ProjectNo.: 2502S54931E-RF Tester: Conor Fu Date: 5.JUN.2025 00:28:37

802.11n ht40_2437MHz

ProjectNo.:2502S54931E-RF Tester:Conor Fu

Report No.: 2502S54931E-RF-00A

EXHIBIT A - EUT PHOTOGRAPHS

Please refer to the attachment 2502S54931E-RF-EXPEUT EXTERNAL PHOTOGRAPHS and 2502S54931E-RF-INPEUTINTERNAL PHOTOGRAPHS.

Report Template Version: FCC-Wi-Fi-V2.2 Page 94 of 96

Bay Area Compliance Laboratories Corp. (Dongguan)	Report No.: 2502S54931E-RF-00A
EXHIBIT B - TEST SETUP PHOTOGRAPHS	3
lease refer to the attachment 2502S54931E-RF-00A-TSPTES	T SETUP PHOTOGRAPHS.

Report Template Version: FCC-Wi-Fi-V2.2 Page 95 of 96

EXHIBIT C - RF EXPOSURE EVALUATION

Maximum Permissible Exposure (MPE)

Applicable Standard

According to subpart §1.1310,15.247(i) and 15.407(f)systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure							
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)			
0.3-1.34	614	1.63	*(100)	30			
1.34–30	824/f	2.19/f	*(180/f²)	30			
30–300	27.5	0.073	0.2	30			
300–1500	/	/	f/1500	30			
1500-100,000	/	/	1.0	30			

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculation formula:

Prediction of power density at the distance of the applicable MPE limit

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Mode	Frequency (MHz) Antenna Gain		ıa Gain	Output including	d Average t Power Tune-up ance	Evaluation Distance (cm)	Power Density (mW/cm²)	MPE Limit (mW/cm²)
		(dBi)	(numeric)	(dBm)	(mW)	` '	,	
2.4G WIFI	2412-2462	8.20	6.607	22.5	177.83	20	0.2339	1.0
	5150-5250	5.69	3.707	15	31.62	20	0.0233	1.0
5C WIEL	5250-5350	5.69	3.707	18	63.10	20	0.0466	1.0
5G WIFI	5470-5725	5.17	3.289	18.5	70.79	20	0.0463	1.0
	5725-5850	4.10	2.570	18.5	70.79	20	0.0362	1.0

Note:

- 1. The Conducted Average Output Power including Tune-up Tolerance provided by manufacturer.
- 2. 2.4G WiFi and 5G WiFi can't transmit simultaneously.

Result: The device meets FCC MPE at 20 cm distance

***** END OF REPORT *****

Report No.: 2502S54931E-RF-00A